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SUMMARY

We have investigated a mathematical model of the process of activa-
tion of the X chromosomes in eutherian mammals. The model assumes that
the activation is brought about over some definite time interval 7' by the
complete saturation of IV receptor sites on an X chromosome by M activa-
ting molecules (or multiples of M). The probability A of a first hit on the
receptor site is considered to be very much lower than that of subsequent
hits; that is, we assume strong co-operative binding. Assuming further
that an incomplete saturation of receptor sites is malfunctional, we can
show that for proper activation of X chromosomes in normal diploid
males and females, we must have AMT > 3 and 0-96 < N/M < 1. An ex-
tension of this analysis for the triploid cases shows that under these con-
ditions, we cannot explain the activation of two X’s if the number of
activating molecules is fixed at M. This suggests that there must be two
classes of triploid embryos differing from each other in a step-wise manner
in the number of activating molecules. In other words, triploids with two
active X chromosomes would require 21 activating molecules as opposed
to M molecules in triploids with a single active X. This interpretation
of the two classes of triploids would be consistent with differing imprinting
histories of the parental contributions to the triploid zygote.

1. INTRODUCTION

The mechanism that leads to random activation of one of the two X chromosomes
normally present in human and other eutherian females continues to be an unre-
solved problem (Lyon, 1961, 1974). A model proposed by Brown & Chandra (1973)
seems to be consistent with most of the cytogenetic data, but apparent exceptions
have since become known (Lyon, 1974; Chandra & Brown, 1975; Cattanach, 1975).
It is not yet clear whether these exceptions, nearly all of which are among human
triploids, are attributable to vagaries either in the expression of sex chromatin in
triploids or in the imprinting process following, for example, fertilization by more
than one sperm.

The data on X inactivation are varied, but appear to be highly specific within
each cytogenetic category. For example, in basically diploid cases, one X remains
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active irrespective of the total number of X chromosomes or the sex of the indivi-
dual. Among X XY triploids, some have only one X active, while others have both
X’s active. Similarly, XXX triploids occur as two classes: those with one X active
and others with two X’s active. The Brown—-Chandra model assumes that in dip-
loids (1) each X chromosome, whether maternal or paternal in origin, has a receptor
stte capable of accepting one informational entity or activating molecule; (2) there is
a sensitive site on each of a pair of autosomes (homologues). When this autosomal
gensitive site is paternal in origin, it is inactive because it is imprinted in the egg at
the time of fertilization; the maternally derived sensitive site, which is not so im-
printed, remains active and releases a single activating molecule sometime in early
embryogeny. This molecule binds to the receptor site of one of the two X chromo-
somes normally present in eutherian females, thus activating that X chromosome.
The remaining X chromosome or chromosomes become inactive non-specifically.

The above model assumes that in diploids only one of a pair of homologous auto-
somal genes (the sensitive sites) is functional in each cell. This is an almost unprece-
dented requirement because the only autosomal genes for which this appears to
be true are those governing the production of immunoglobulins (Pernis et al.
1965; Weiler, 1965). Although it is not known whether a single informational entity
or molecule is involved in the activation process, the cytogenetic data seem to re-
quire a mechanism with a unitary effect. Such an effect could conceivably be
brought about by the functioning of more than one activating molecule and recep-
tor sites. In fact, Ohno (Drews et al. 1974; Ohno, 1973) postulates that a small
number of activating molecules, of unspecified origin, bind co-operatively to a small
number of receptor sites on the X chromosome and bring about its activation. He
further assumes that parental origin of the autosomes has no bearing on the activa-
tion process (Ohno, 1973).

Keeping in mind the qualitative features of the cytogenetic data mentioned
earlier, we have attempted to set up in this paper a mathematical model to obtain
some insight into the process of activation of X chromosomes. Among other things,
the number of activating molecules is treated as an independent parameter of the
model. It is not one of the aims of the model to see which of the two possible hypo-
theses, the single informational entity of Brown and Chandra or the many such
entities suggested by Ohno, is to be preferred. Rather, the aim is to see whether, in
the framework of a simple mathematical scheme, requirement of consistency with
the data gives fairly restrictive conditions on the parameters of the model or allows
wide variations in them; and to find out in what way the ‘unitary effect’ of the activa-
tion process could be understood. In other words, this is, among other things, an
attempt to put limits on plausible models of the nature of the activation process.
Furthermore, it should be emphasized that the dynamics of the process modelled
here is independent of the source or origin of the activating molecules. Although we
will, for purposes of exposition, refer to the autosomal origin of these molecules as
specified under the Brown—Chandra model, they could as well have other origins
in so far as the following analysis is concerned.

In Section 1, we describe the model, specifying the independent parameters
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involved. Section 2 contains the basic equations of the model and the solution in the
case of a normal diploid male, and also in the case of a normal diploid female in an
interesting limiting case. The analytical results of Section 2 are compared with the
data in Section 3, and fairly stringent conditions on some of the parameters of the
model are shown to follow. Making use of these conditions, we analyse the case of
triploids in Section 4 and show that the occurrence of two distinet classes of triploids
convincingly demonstrates a distinct difference in the number of activating mole-
cules in the two cases. Section 5 summarizes our work, and some mathematical
details relating to Section 2 are given in the Appendix.

2. DESCRIPTION OF THE MODEL

We confine our attention to the sex chromosomes and to the as yet unidentified
homologous pair of autosomes each of which is presumed to carry the sensitive
site. The sex chromosomes will as usual be called X and ¥ chromosomes, while the
autosome of interest will be denoted by A. Each A is assumed to carry a sensitive
site which when imprinted becomes desensitized. When not so imprinted a single
A releases M activating molecules at the particular developmental stage — after the
first division of the zygote but significantly prior to implantation (Lyon, 1974) —
when the process of activation takes place. This process is assumed to last for a
time interval 7'. Each X chromosome is assumed to possess IV receptor sites. The
activating molecules released at time zero may attach themselves up to time 7' to
the receptor sites on the X chromosomes. The activating molecules are assumed to
bind to the receptor sites in a definite sequence. When all the sites on an X are
unoccupied, the probability per unit time per available molecule that the first site
in the sequence will get occupied is A; this is assumed to be relatively small. If one
or more sites on an X are already occupied the probability per unit time per avail-
able molecule that the next site will get occupied is . We assume the existence of
co-operative binding, which means g is much greater than A. It is implicit in this
model that the activating molecules are all alike.

The independent basic parameters are therefore N, M, A, g and T'. The activation
process is described by a system of differential equations in time for a set of prob-
abilities which are functions of time. If we have one X chromosome we have a set of
functions p,,(¢), withn = 0, 1, ..., N and 0 < t < T, denoting the probability that at
time ¢ precisely n sites are occupied. For the case of two X’s we have a double
string of probabilities p,,,(t) for m sites on the first X and # on the second to be
occupied at time £; we have p,,,.(£) = p,,,.(t), 1.e. the two chromosomes are symmetric.
For three X’s, we have a triple string of probabilities p,,,(t), completely symmetriec
in l, m and n.

A normal X ¥ male has a single X and p,(T') for it will denote the probability that
all NV receptor sites are occupied at time 7', the end of the activation period. For
normal functioning, py(7') must be close to unity; that is, proper activation of X
must take place in almost all the embryonic cells. In a normal diploid XX female,
the probability of interest is pyy(7') and its symmetric partner pyo(7'). We now
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assume that proper activation of an X chromosome results from occupation of all N
receptor sites, while occupation of less than N but more than zero sites is malfunctional.
We know that in a normal female, only one of the two X’s is active or potentially
so, the other remaining inactive. The assumption just stated means that we must
require poy(T') = pno(T) ~ 1/2. This would ensure that one and only one of the
X’s is properly activated in almost all the embryonic cells, a condition presumably
essential for proper functioning of the organism; and that this is achieved without
making the cell malfunctional.

It is a corollary of our assumptions that the number of activating molecules, M,
must not be less than the number of receptor sites IV on a single X chromosome.

3. DYNAMICS OF THE SYSTEM
We now set up the equations of the model and solve them for the cases of the
normal diploid male and female.
(i) Case (a): normal diploid male
The quantities to be determined now are p,(t), n =0, 1, ..., N. The number of

activating molecules available is M. The condition of the X chromosome at time
zero, and the fact that the p,,(¢) are probabilities, are expressed by the equations

PO) =1, pi0) = y0) = .. = py(0) =0,
ie. P2,(0) = 8,,0; (2.1a)
PO +PA0) + o+ ) = 3 20 = 1. (2.10)

We obtain the (N + 1) functions p,,(t) by solving a system of linear first order differ-
ential equations for them, subject to the given initial conditions. Denote by A, the
probability per unit time per available molecule that the (= + 1)st site gets occupied
if the previous n have already been occupied. The words ‘per available empty site’
are not included in this definition since the receptor sites are to be occupied in a
definite sequence. The assumptions of the model show that A,, depends on » but not
on ¢t and has the values

A for n=0;
A, = {,u for 1<n<<N-1; (2.2)
0 for n=N.

We now get the differential equations of the model by relating the condition of the
X at time ¢ + 8¢, & being small, to its condition at time #:

This is easily understood: the probability that » sites are occupied at time £+ 8¢
is the sum of two terms. The first is the product of the probability that = sites were
already occupied at time ¢ and the probability that no further occupation occurs in
the small time interval ¢. The second is the product of the probability that (z—1)
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sites were occupied at time ¢ and the probability that one more site gets occupied in
the time span 6¢. Transposing terms, dividing by é¢ and passing to the limit 6t 0
we get the system of differential equations

Dnt) = A (M —n+1) Py () = A, (M —n) p,(£) (0 <n < N). (2.4)
With the help of equation (2.2) this system could be displayed more explicitly as:
Po = —AMp,; (2.5a)
Py = AMpy—p(M —1) p,; (2.5b)
Pp =pM—-—n+1)p, ;—p(M—n)p, 2<n<<N-1); (2.5¢)
Py =M —-N+1)py_,. (2.5d)

A straightforward consequence of these equations is
N -
% Palt) = 0. (2.6)
n=0

This ensures that the solution to equation (2.5) will automatically satisfy the con-
dition (2.15) if the initial conditions (2.1a) are respected.

Two methods are available for solving the system of equation (2.5); this system is
in any case a well-known one. The first, a ‘direct integration’ technique, is a step-by-
step process in which one first solves for p,, uses this to solve for p,, and so on. The
second, using a generating function which contains all the p,’s in it, converts (2.5)
into a partial differential equation for this function and solves this equation. We
briefly describe these in turn, leaving details to the Appendix.

The solution to (2.5a) subject to (2.1a) is immediate:
Polt) = e7AME, (2.7)

To get py, Ps, - .., Pn_1, We Te-express equations (2.5b,c) as follows. Based on the form
of these equations, we set up an auxiliary set of functions ¢, as

¢ = (M —n)!lefM—nitp (2.8)
Then, after one integration and use of equation (2.1a), equations (2.5b, c) lead to
t
a(t) = ’lf dt; e~#hgy(t); (2.9a)
0
¢
i) = Ao at) E<n<N-1), (2.95)
0

By a process of iteration, this sequence of equations can be solved to yield the
various p,, as integrals over p, which is known. The steps are given in the Appendix
and the result is:

M

¢
Py(t) = A L =m) (n=1D) e KM f , dt’ (e~#¢ — e=#t)n=1eMM-1) ¥y (¢')

1<n<N-1). (2.10)

One can now expand the first factor in the integrand in a binomial series and inte-
grate each term. On comparing the result with the expression given in the Appendix
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for the hypergeometric function of the form F(e, — k; @ + 1; z) with £ a non-negative
integer (see equation A 11), one can write p, () in the form
M! exp{—u(M —1)t}
= 1\
Pull) = M- G T =1 AM (1 =00) °

X [exp{—[/\M+,u(1—M)]t}F(%n+1—M,1—'n,; %”+2—M;1)

—F(&%+1—M,1—n;M+2—M;el‘t):| (1<ngN-1). (2.11)
# #
There is now no need to solve (2.5d) to get py{t), since one can use (2.1b); so one gets

oal) = 1="3 po(t). (2.12)

n=0

Thegenerating function method for solving (2.5) uses the following feature of those
equations: the differential equation for p,(f) involves p, and p,_, alone, not p,,,,
Pnsos --- - One can therefore initially ignore the fact that the index » on p,, does not
go beyond the value N and that py.,, Pxys, ... are without meaning, and first solve
(2.5a, b, ¢) alone with no upper limit on n. One would of course use the boundary
condition (2.1a), suitably augmented. The results for p,, p,, ..., py_, that one gets
by solving this extended problem are also valid for the originally posed problem,
but one next discards the results one has got for py, Px.,, ... in the extended prob-
lem, and defines the true py(t) via (2.12) again. Even in the extended problem, the
presence of the factors (M —n + 1) and (M —n) on the right hand side of (2.5¢) leads
to the fact that quantities py;, 1, D740, ... Never appear. Keeping these observations
in mind, we define a generating funection 7(§, 1) as

(&, £) =n=02:1 “_€" alt); (2.13)

here { is an auxiliary continuous variable and we realize in advance that this series
will terminate at n = M. Equations (2.5a—c) can now be translated into a partial
differential equation for 77, after having first agreed that the upper limit on » in
(2.5¢) is to be ignored. The steps involved, and the equation for 7, are:

om(C,t) -
3t - 'n.=(§1,...c »
= n=0§i gn[An—l(M_n'i' l)pn—l_ An(M_n)pn]

=¢-1 % A -np,

= (§- V) [(A—p) Mpo+p n=(‘)$-:1 &M —n) p,]
o
— w= 1) (ML) 7EO+ Q=W - ) Mn0,0. (@19
Here, (2.4) was used to substitute for , and the values of A,, were taken from (2.2)
(with no upper limit on 7). The boundary condition on p,, (2.1a), appears now as

mZ,0) = 1. (2.15)
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This boundary condition, plus the vanishing of the right hand side of (2.14) at
¢ = 1, ensures that at all times the probabilities p, sum up to unity (i.e. #(1,£) = 1).

If we set { = 0in (2.14) we get an equation for 7(0,¢), which is easily integrated
using (2.15). The result, which is really the same as (2.7), is

7(0,) = e~AMt, (2.16)

This can now be used in (2.14), leading to a definite equation for 7({, t) together with

a boundary condition at ¢ = 0given by (2.15). The details of solving this equation

for m(g,t) are given in the Appendix. Here we quote the final result which gives

m({,t) again in terms of hypergeometric functions of the same general type as
appeared in (2.11):

Mp—2)
= —ut(] — &)1 M-1(1
m(g, 1) = [E+er(1 - Pre BT e —g)
X [e—"M“F(I—M, 1—M;2—/\—41 €—_—1)
) /2N S

—e_”tF(l—M,l—M;2_M;e—pt §—-1)]'
W )z

(2.17)

As expected, this is a polynomial of degree M in¢.

While we have been able to solve the equations describing the activation of a
single X chromosome quite explicitly, it is considerably more difficult to get
such solutions for cases with two or three X’s. At any rate, even with the explicit
expressions provided by (2.11, 2.17), the dependence of the p,’s on 7 is not easily
seen, unless one evaluates the expressions numerically. In this paper, our aim will be
to obtain qualitative properties of the model described in Section 1 and, as far as
possible on the basis of analytic expressions alone. To this end, we will hence-
forth restrict ourselves to a certain limiting case of the model of Section 1, namely
that in which the parameter u is taken to be infinitely larger than A. One can get the p,,’s
in this limit starting either from (2.11) or from (2.17) for #(&,t). Taking the latter
course, we easily find:

m(E,t) ——> (8, 8) = I+ MEM-1(1 —)e AR (1, 1—M;2;—§_—1). (2.18)
proo 4

(The property 7(1,t) = 1 is retained.) The hypergeometric function appearing here
is quite elementary, as one sees by using (A 11), and (2.18) simplifies to

To(g,t) = e~AME4 (1 — e AMEYEM, (2.19)

By the prescription for passing from the solution of the extended problem to the
solution for the true problem, we get the result that in thelimit #— o, the functions
Pn(t) describing activation of the X chromosome in a normal diploid male are:

Polt) = e pi(t) = po(t) = ... = Pu-alt) = 05 py(t) = 1—e M (2.20)

The interpretation of this result, quite obviously, is as follows. When none of the
receptor sites on an X chromosome are occupied by activating molecules, there is a
constant and finite probability per unit time, A}, that an occupation will occur.
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However, once the first site is occupied, the enhanced occupation probability u
comes into play. If we now take the limit 400, then before one can say Mary Lyon
all the remaining (N — 1) sites will get occupied, essentially instantaneously. There-
fore the only nonzero entries in the string of probabilities p,, are the first and last
ones, p, and py; all the intermediate ones are strictly zero. One also sees why p,
and py do not depend on N. This interpretation makes sense, of course, provided
M > N, which must be so.
A justification for taking the limit x— o0 is given in Section 3.

(ii) Case (b): normal diploid female
The number of available activating molecules is M as before, but there are two X

chromosomes and so a double string of probabilities p,,,(¢) to solve for. In place of
(2.1) we now have:

Pmal0) = 8m,08n,09 (2.21a)
N
% pmn(t) =1. (2'21b)
m,n=0

Generalizing the derivation of (2.4) we get the system

pmn = (M'—m—n'*' 1) (Am—lpm—l,'n""ln—lpm, n—l)
—(M-m—n)(A,+A,) Py (0 <m,n < N). (2.22)

It is easily checked that these equations conserve the sum of all the probabilities
pmn'

The direct integration technique can again be used to get the subset of probabili-
ties P,,,0(¢), with not much more difficulty than in Case (). However, its extension to
get all the p,,, is rather arduous though possible, and will not be attempted in this
paper. Similarly the generating function approach entails quite a bit of work, since
one has to handle a partial differential equation with three independent variables.
Fortunately, as long as we are interested only in the limit p—o00, much of this work can
be avoided. The interpretation given above of the result in (2.20) shows quite clearly
that in the present case the only probabilities that are non-zero in the limit 4 —oo
are Poogs Pon = Pno» and pyy. (For the present, we assume M > 2N; modifications
needed if M < 2N are given later.) These four non-zero p’s must add up to unity.
One can easily obtain py(¢) from (2.21a, 2.22):

Doolt) = e2AE, (2.23)
If by some means py, could now be calculated, then the problem is solved. This

can be done. Setting » = 0in (2.22) and summing over m from 0 to N we get:

N N N
20 j’m0= mEO (M—m+ 1) Am—lpm—l, 0 mZ:O(M_m) (Am+/\0)pm,0

N
= —Améo (M —m) Ppg- (2.24)

Here, the vanishing of Ay was used. Now this result, an exact consequence of (2.22),
is fortunately independent of z which we are allowing to tend to infinity. Since py,
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is known, and since only p,, and py, (out of the subset p,,,) survive as u—>o0,
(2.24) gives in this limit a differential equation for py,:

Do = AM e 2AME L A\(N — M) pp,. (2.25)

The solution is immediate; on using (2.21a) we obtain:

Prolt) = Mﬂ-fN e~ MM-N(] — = MM+N)E), (2.26)
(It can be verified that if one calculates p,,, for finite 4 by the direct integration
method and in the result one lets x->00, then indeed p,,(f) takes the value (2.26)
while all p,,, for 1 < m < N — 1 vanish.) The value of py, follows from conservation
of total probability. Collecting the results, in the case of the normal diploid female
with two X chromosomes, in the limit g —>oc0 the non-zero probabilities are:

Pooft) = 721,

Do (t) = Don(t) = M]l_f 7 &ML — e MarENY),

An interesting feature of these expressions is that even with g — oo they show
dependence on both M and N, whereas in the case of a single X chromosome all depen-
dence on N vanishes in the limit. Another point to be mentioned is that (2.27) are
fully valid if M > 2N as in that case the system of (2.22) does really involve all
(V + 1) quantities p,,,, for 0 < m,n < N.However,if M < 2N,one can see that (2.22)
break off at the point m +n = M : only those p,,, With 0 < m,n < N and in addition
m+mn < M enter the problem. Thus our calculation of pyy is without meaning in
case M < 2N, but the results for py, and py, are unaffected by this problem. Some of
the probabilities py,_,, , would become non-zero. As we shall see in the following
Section, we shall need only the expressions for p,, and py, in our analysis.

4. CONSTRAINTS ON THE PARAMETERS

Before making use of the results of the last section to estimate the values of the
parameters, we shall attempt to justify the limiting operation s —co. The point is
that the parameter x can reasonably be estimated to be about a hundred times as
largeas A.Thisgivesone the expectation that one can get areliable guide to the system
by examining the limit #—co, and that making x finite but much larger than A is
unlikely to drastically alter the results obtained when g —c0. Another argument is
thefollowing. In the extended problem that wasset upin thelastsection in connection
with the generating function method, we saw that there was no dependence at all on
N. The characteristic shape of the distribution of probabilities p, must then be
fixed by M : one must expect a peaking of probabilities around n = M. Thisisindeed
what happens as u—oc0, as is seen from (2.19): the only non-zero p,’s are at the
beginning and end of the extended chain p,, p,, ..., 23 Bringing g down from

https://doi.org/10.1017/50016672300016839 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672300016839

156 N. MURKUNDA AND OTHERS

infinity to a large finite value will make p,, p,, ..., Py;_; non-zero but small, with
P, and p,, remaining the most significant ones. In passing next from the extended to
the true problem we leave p,, py, ..., Py_, unchanged, and just lump the sum of
Dns Pnsys -+ » Pag in the extended solution into the py of the true solution. If anything,
then, the true py is slightly larger than the extended p,,. (Of course, all the p,, are
positive in the extended problem.)

The results of (2.20, 2.27) can all be expressed in terms of two dimensionless
parameters &« = AMt, § = ANT, where it is known that & > f. The expressions of
interest are:

normal diploid male: py(7') = e, py(T) = 1 —e~%; (3.1a)
normal diploid female: py(T) = p jc_ 7 (ef—=—e—2), (3.1b)

We can now make numerical estimates of o and f by requiring that the process of
activation of an X chromosome should occur with a definite efficiency. Considering
first the case of the normal diploid male, it is reasonable to demand that there be,
say, a 95 9, chance that one X chromosome is activated. This means that the early
embryo can tolerate a cell death rate of no more than 5 %, due to malfunctioning of
the activation mechanism. Such a requirement fixes the parameter a, for we must
have

Po=e"*=x 1/20, py=1-—e"*= 19/20. (3.2)

This is achieved by making o ‘large enough’; it turns out that one must have
a=AMT 2 3. (3.3)

If we next demand that the efficiency of activation of one X chromosome in each
embryonic cell in a normal female be as high as in the male case, the other X chromo-
some having all its receptor sites unoccupied at the end of the time period 7', we
must have the probability p,y(7") of (3.15) lying somewhere between 0-475 and 0-5:

o
o+

0-475 < 7 (efi—= —e—22) < 0-5. (3.4)
In the expression involved here, the term e—2* may safely be neglected since it is of
the order of 1/400 by virtue of (3.2). Having determined « already, # must now be
so chosen (remembering o > f) as to have

o
0475 £ —— ef—= < 0-5. 3.5

A plot of the two functions af(e+/£) and ef~* with respect to f in the range
0 € f# < a = 3 quickly shows that £ must be very close to  for (3.5) to be satisfied.
The trend can easily be seen from the following list of values compiled for chosen
values of g:

g ... 0 1 2 25 28 29 3

a (3.6)
—— ef—= . 0:05 0-102 0-223 0-332 0-425 0-462 0-5
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We can infer that demanding an efficiency rate of 95 9, for single X-chromosome
activation in the normal diploid female, as in the male, leads to

ﬂ N
. <L ==X
096 S£ = 37 <1. (3.7)

The conditions we have obtained on « and £ imply that the number of activating
molecules present in the normal diploid male or female cell can only very slightly
exceed the number of receptor sites on a single X chromosome; it is in particular
ruled out that this ratio be significantly larger than unity, say 1-25 or 1-5. It should
be stressed here that these stringent conditions on the parameters of the model have
followed from analysis of the diploid cases alone because x was assumed to be prac-
tically infinite, that is, co-operative binding is tremendously efficient. Of course we
are unable to estimate the individual parametersA, M, N and T'; only the dimension-
less combinations & and f can be fixed. If values of A and 7" could be estimated, we
could put bounds on N and M. The analysis given above by itself does not rule out
either the single informational entity postulate of Brown and Chandra, or the many
entities postulate of Drews et al. (1974).

5. CONSEQUENCES FOR TRIPLOIDS

The implications of the results of the previous Section for the triploid cases (69,
XXX and 69, XX Y) are worth consideration. The cytogenetic data show that the
triploids fall into two clear-cut categories, those with one X active and those with
two X’s active. The occurrence of these two distinct categories implies that there
cannot be a single set of parameters describing both. In the first case (one X active)
the parameters must be such as to produce

Poon(T) = 13, (4.1)
while in the second case (two X’s active) it is necessary that
Donn(T) = 1/3. (4.2)

With three X’s and only M activating molecules, we have a triple string of prob-
abilities p;,,,(t) completely symmetric in I, m, » and obeying

Pimn(0) = 6; 0, 090,05 (4.3a)
N
. Z_Oplmn(t) =1 (4.30)

i’lmn = (M —l-m- n+ 1) (AI—] pl—l, m,n + ’\m—]pl, m-1,n

+ An—lpl, m, 11.—1) - (M —l—m- n) (Al + Am + /\n) DPimn- (43 C)

Equation (4.3¢) is a straightforward generalization of (2.4, 2.22), and is easily

checked to be consistent with (4.3b). After evaluation of pgy(t), we follow the

pattern of calculation in the normal diploid female case and go straightaway to the

limit g-—>co, when only 2o, Doon: Ponys Pnnyy and their symmetric partners

survive. Setting l=m=n=0 in (4.3¢c) we get an equation for py,, with the
solution (independent of x)

Pooolt) = €=M, (4.4)
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Next we set m = » = 0 and sum on [ in (4.3¢) and simplify to get:

N N
2 P = —21 T (M—1)py- (4.5)
1=0 1=0

In the limit g~ oo, this gives rise to an equation for pyg,,

Proo+ 2A(M — N) ppoo = A e~31ME, (4.6)
with the solution

Prolt) = gy @ 0K — -0t (47)

(As in the case of (2.26) it can be verified that if p,y, is calculated for finite x by the
direct, integration method and one lets g->o0 in the result, then pyy,(t) takes the
value (4.7) while all pyo for 1 <7 < N — 1 vanish.) Moving next to the determination
of Pyng, We set n = 0 in equation (4.3c), sum over both I and m, and simplify
to get:

N N
zoplm():_)lz 2 (M —=1—m) Py (4.8)

! ma= ,m=0

Now we let 00, use (4.4, 4.7) for pyye and Pyg (= Done) and end up with an
equation for pyy,

, AM (M~ N
Prno +A(M —2N) pyyo = @13y M( T2 ) e PAM-NY(] — e~ AWMLY, (4.9)
The solutionis:
M-N M(M - N) 2(M — N) ]
= a—AMM—2N)T —2A(M+N) E —AME
Panolf) = e [M+N+ (L) (0 +2M)° e e |

(4.10)
Finally, the value of pyyy in the limit 4 —ocofollows from probability conservation:

Pnnlt) = 1= Dooo(t) — 3D noo(t) — 3Dno(2)

MW ey g M2V e (=N (M —2N)

e—3AM¢
M+N M+2N (M +N) (M +2N)

=1-3

(4.11)

So far, the assumption M > 3N has been made for analytical convenience; certain
modifications must be made if M < 3N. If 2N < M < 3N, then pyyy is without
meaning, while the calculations of py,, and pyy stand. Similarly, if M < 2N, then
both pyxy and Py, are meaningless, but again the calculation of py,, is unaffected.
In these cases, some terms like oy v 3 onv OF Dy pmayr—n—m Would become
nonzero. These comments relate only to the mathematical analysis of the triploid
cases.

We can now confront the expressions obtained for various probabilities in the
triploid case with what we have learnt about @ and £ in the previous section. Let us
to start with suppose that the number of activating molecules present in a triploid
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cell is the same number M as in the diploid cell. The probabilities pyg(7') and
PanolT) in (4.7, 4.10) when expressed in terms of @ and # appear as:

[0 4
PrlT) = 57 (697 —e75), (4.12a)

_B apa 9278 ppaa,  H2=B)
PynolT) _a+ﬁe2 —2a+2/3’ e2f—2 +(oc+ﬂ)(a+2ﬂ)e Sz (4.12b)

We now use the results of the last section: e—* is very small (x~ 1/20) and f is very
nearly equal to « (i.e. M is only slightly larger than N). This has two consequences
for the present case: (1) the expression (4.12b) for pyye(T') is to be discarded since
Do 18 itself without meaning; (2) pyoo(T') is practically equal to 1/3. Thus if the
same parameters are used for the triploid case as in the diploid case, we reach the
not-very-surprising conclusion that only that category of triploids with one active
X chromosome is understood. For the second category of triploids for which we
require pyyo(7T") to be very nearly 1/3, the number of activating molecules in
the cell cannot remain M. The only way to understand this category is for the num-
ber of entities in the cell to be 2 (which is equal to or slightly in excess of 2N).
With this change in the parameters the expressions for pyy(7') and pyy(T') may
be obtained from (4.12) by simply replacing « everywhere by 2c:

Proo(T) = ai i (e?h-4x — e752), (4.13a)
, _2a—=f . 20— ., al2a—f) .
Pyxo(T) —me” 2 Yy e M+——_(a+,3)(2a+ﬂ) o5, (4.13b)

(A prime has been added to these p’s to distinguish them from the previous ones.)
With the values of « and £ taken from Section 3, it is immediately seen that pyy,(T')
is essentially 1/3. This describes the second category of triploids satisfactorily.

6. DISCUSSION AND SUMMARY

Itis perhaps useful to recapitulate here the essential features of the mathematical
model discussed in the preceding sections. The model assumes that the activation
of an X chromosome is achieved by complete saturation of NV receptor sites. These
receptor sites are assumed to receive certain informational entities or activating
molecules and that saturation of less than IV sites renders the system non-functional.
It is further assumed that strong co-operative binding exists such that the prob-
ability A of a first hit of a receptor site is very much lower than the probability of
subsequent hits. For the present analysis we have assumed that the probability of
subsequent hits is infinitely greater than that of the first hit. On the basis of these
assumptions we first found the bounds on the various parameters of the model such
that one and only one X chromosome is properly activated in normal diploid males
and females. These bounds are AMT > 3 and 0-96 < N/M < 1, where M is the
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number of activating molecules. As seen above, an extension of this analysis to the
triploid cases shows that we cannot explain the activation of two X’s if the number
of activating molecules is fixed at M. Their number must in this case be double the
number in diploids or nearly so. On the other hand, the activation of a single X in a
triploid is consistent with the same number of molecules, M, as in normal diploid
males and females. The number of activating molecules cannot therefore be con-
stant in all triploid embryos. In other words, this model suggests that there must
be two classes of triploid embryos differing from each other in a step-wise manner
in the number of these molecules. The two classes could result from two different
histories of imprinting of autosomal sets or from other unknown mechanisms.

Our result that M has to be close to N, that is, the total number of activating
molecules has to be almost exactly equal to the number of sites to be occupied calls
for the following comment. The simplest model satisfying this requirement would
be the Brown—Chandra model which postulates a single receptor site per X chromo-
some. The value of assuming that M may be greater than one is that it can make the
activation process more efficient in case there are other reasons to believe that the
parameter A is very small.

We realize that a number of restrictive assumptions have been made in this pre-
liminary investigation. It is possible to solve the equations of our model numerically
and probably also analytically without assuming g = co; thisis under investigation.
Other restrictive assumptions which could be relaxed include (a) sequential occupa-
tion of the receptor sites, (b) simultaneous release of the activating molecules,
(¢) co-operative binding leading to a single-step increase in the probability of hits,
and (d) a specific kind of activating molecule tailored to a specific kind of receptor
site. However, exploration of these modifications does not appear justified until
more genetic and biochemical data become available.

During his visit to this Institute in 1974 Professor Spencer W. Brown encouraged us to
study this problem. Professor 8. K. Srinivasan helped in its mathematical formulation. Dr R.
Sundar gave computational assistance during the early phases of this work. Professors S. K.
Rangarajan and V. Anantanarayanan helped clarify some aspects of the mathematics and of
cooperative binding respectively. We thank all of them. This work was supported in part by
the Indian Council of Medical Research.

APPENDIX

Here we outline some steps involved in the mathematical analysis of the normal
diploid male case in Section 2. We first consider the passage from (2.9) to (2.10). For a
given value of n, it is permitted to iterate (2.9b) up to (n — 1) times. Doing so, we get
¢, expressed in terms of ¢;. Then, use of (2.9a) gives g, in terms of g,:

t 4L 7
g.(t) = :“n‘l/\fo dt]fo diy ... fo di,exp{—plt;+... +t, 1 +1,)}goltn). (A1)

Here the integrand is symmetric in £,, ¢,, ..., {,_;. The range of integration of these
variables can also be made symmetric, with each of them going from 0 to¢, if we
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divide by the factor (n—1)! and take the upper limit for ¢, to be the least of the
variables ¢, &y, ..., ¢, ;¢

Py ¢ t ]
7a(t) = (n m=1)! f dt1f0 dt, ... fo dt’n—lfo dt, exp{—p(ts+... +t, 1 +t,)} qoltn), (A 2)

6 = min (£, ..., by_y)-

Next we interchange the {, integration and the symmetric integrations over
tystgs vy t,_y. This gives:

0t = iy [ ataerrtgye) [ anea|™

= @oD 1 f de’ e=#t' (e=at' — entyn—lq (¢'). (A 3)

This result is valid for » = 2, 3, ..., N —1 since that is the range of validity of
(2.9b); but comparison with (2.9a) shows that (A 3) is true for n = 1 as well. With
the help now of (2.8), the result (2.10) of the text is immediate.

The solution (2.17) for the generating function 7 (¢, t) is obtained as follows. If we
use (2.16) in (2.14), the partial differential equation for 7 reads:

TED _ we- 1)( gg) 7GH) + MA—p) (G~ )ebt.  (Ad)

The change of variable {—x according to
£ =1/(1+e) (A 5)

brings about some simplification since then

om  om
ML= 157 = 5. (A6)
In terms of zand ¢, (A 4) is:
o 0 uMer _ it _
[ ot 1+eﬂ] m = M(p—A)e~AMt[(1 + e—+=). (A7)
Multiplying through by the Mth power of (1 + e#*) gives
(:t a) (1+er)Ma = M(p — A) ess—AMY(1 4 nz)d-1, (A8)

Since M is an integer not less than one, the right-hand side can be expanded as a
binomial series and written in terms of x +¢:

6 M-1 (M—1)!

X exp{(AM +ru+p) (x—1)[2}.exp{(rp+p—AM)(x+£)[2}. (A9)
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Integration of this is immediate; with f(xz —¢) an as yet unknown function to be
fixed with the use of (2.15), we ﬁnd

-1 M
(1 +exp {pa})Mm = flx—t) + (1 — /\) m

exp{(rp+p—AM) (x+1)/2}

x exp {(AM +ru+p) (x—1t)[2}

T+ p—AM
(—2A) M exp {rux}
= flx—t)+—— exp{/w /\Mt} Z s T —1=n) 71— M

(A 10)

Before fixing f, we note that this result can be neatly expressed in terms of the
hypergeometric function of type ,F,. For k a positive integer, we have:

k !
Fla, ~k;a+1;2)= 3 i k!

rmo+rri(k—r)! (
Using this, (A 10) takes the form:

- M(p—A)
(1+es=)Mny = f(x— t)+m

—2y. (A11)

esx—AMt I (I_M 1— M 2_M _e;u:)
2 o

(A12)
The form of fis now determined using the condition (2.15) at ¢ = 0:

f(x)=(1+eﬂx)M_%—l%) WF(I—%" 1~ M; 2_%‘! _e/m) (A 13)

Putting this into (A 12) after having replaced x by (x—t), and then reverting to
in place of z, (2.17) of the text is obtained.
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