
BULL. AUSTRAL. MATH. SOC. 11RO4, 1 2 D 1 0

VOL. 58 (1998) [423-434]

ON ALGEBRAIC NUMBERS CLOSE TO 1

ARTURAS DUBICKAS

We prove that there exists a polynomial of small height with a root close to 1. This
implies that there are algebraic numbers close to 1 with relatively small Mahler mea-
sure. We also give an explicit construction of such numbers with small Weil height.

1. INTRODUCTION

Let a be an algebraic number of degree d, with complex conjugates a.\ = a, 02, • . . , «d
and minimal polynomial a(x — ai)(x — 0:2)... (x — a<j) € Z[x], where a > 0. We denote,
as usual, by M(a) Mahler's measure of a and by h = h(a) Weil's height of a:

M(a)= a{[ max{1, KQ, h(a) = ^

Suppose that a / 1. Liouville's inequality gives the following lower bound for |a — 1|
in terms of d and M(a):

The dependence on M(a) in this bound is sharp. For instance, one can take a =
(1 - l/aji'd with large a (see [12] for similar simple examples). However, this is not
the case for the dependence on d. For algebraic numbers of small measure and large
degree the lower bound for |Q — 1| can be significantly improved. Mignotte [11] (see also
[13, Chapter VII, Section 11]), proved that

|a - 1| ^ exp ( - 4\/d log (16d))

provided that M(a) ^ 2. In the recent years, this inequality has been strengthened by
means of Schneider's method and interpolation determinants. We now briefly describe
these results.

There is no loss of generality in assuming that h = h(a) > 0. Indeed, if ft = 0 then,
by Kronecker's theorem, a is either 0 or root of unity. Hence, we have the following
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strong lower bound: |a - 1| » (d log log d)"1 (see also [3]). Mignotte and Waldschmidt

[12] proved that for each e > 0 there exists 5 > 0 such that

(1) | o - l | >

provided that 0 < h < 6. This result was strengthened in [7]. Written in the form (1)
it gives the constant ^2/3 + e instead of 1 + e. Finally, the author [9] considered the
polynomials

where Ju = \k sin (TTU/A;)| and k ^ 3 is an integer. Taking k = \n/2J(l/h) log (l//i)|
and estimating the product

we proved that

(3) =

under the same hypotheses.
On the other hand, Amoroso [2] considered the polynomial

G(x) = 1 + (i + 1) n (a^'"1 - 1)

of degree T> = r2 + 1. He showed that there exists a root of G(—x) close to 1

|a - 1| ^ (r2 + l) 2"r = exp ( - y/V-Uog2 + log©),

and that the Mahler measure of G is bounded as follows:

M(G) ^ exp (JL(log£>)2 + 1 log I? + 7).

The minimal polynomial of a divides G(-x), so that its Mahler measure is bounded from
above by the same quantity and d — deg a ̂  V. It is clear that a is not a root of unity.
Thus, we have

(4) | a - l | < exp ( - (2TTlog2 - e)y/d logM(a)/logd).

This shows that the inequality (3) is not far from being sharp. Utilising the above
example and the results of the work on Lehmer's conjecture (see, for example, [8]) it is
not difficult to prove the existence of algebraic numbers for which

(5) | a - l | < exp(-(2TT log2-e)dv7i/log (l//i)).
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The aim of this paper is to prove that there are algebraic numbers which are even
closer to 1. Siegel's classical result on small solutions of systems of linear equations
implies the existence of a polynomial with low height and high vanishing at 1. We use a
modern version of Siegel's lemma due to Bombieri and Vaaler [5, 6] in order to construct
algebraic numbers close to 1. We also give an explicit construction of such numbers
utilising the polynomial F(x) given by (2).

2. STATEMENT O F T H E RESULTS

We recall that the height of a polynomial is the maximum of the absolute values of
its coefficients.

THEOREM 1. Let H be a positive integer and let e > 0. For sufficiency large n,
n ^ n(e), there is polynomial with integer coefficients of degree at most n — 1 and of
height at most H with a root a ^ 1 satisfying

Moreover, ifH is sufficiently large, H ^ H{e), then the constant (4/\/lOJ log 3 - e in (6)

can by replaced by 2 J2/71og7 - e.

In particular, there exists a polynomial of degree ^ n — 1 with coefficients 0, +1, —1
which has a root a, a / 1, close to 1:

COROLLARY. Let e > 0. There exist a constant C\ = C\{e) and an infinite sequence
of positive integers d with the following property: for each d there is an algebraic number
a of degree d such that 0 < log M(a) < Cj logd and

By Dobrowolski's result [8] we have logM(a) > c2(logd)~3 whenever logM(a) is
strictly positive. Thus, the Weil height of the above numbers is in the range

d(logd)3

so that

(8) | a - l | <
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Clearly, (7) improves (4) by a factor c2y/\ogd and (8) improves (5) by a factor
C3ylog(l//i). In the following theorem we give an explicit construction of algebraic
numbers of small Weil height and close to 1.

THEOREM 2 . Let e > 0, and let d be a sufficiently large positive integer d ~£ d(e).
Suppose that k is the largest integer for which 2 + 4 deg Fk ^ d, where F = Fk is given
by (2). Then

is an irreducible polynomial of degree d in l\x\ which has a root a such that

(9) | a - l | < exp ( - ( ^p -e)dsjh/log (I/ft)).

Note that numerically one has (4/?r)log5 = 2.0491..., 2^/2/7 log 7 = 2.0802...,
hence the inequality (8) is stronger than (9). We shall show below that the Weil height
of the algebraic numbers in Theorem 2 is bounded above by h(a) ^ c^ d~2?5 \ogd.

3. PRELIMINARY LEMMAS

We begin with the following version of Siegel's lemma:

LEMMA 1 . Let H be an integer in the range 1 ^ H < exp(iVloglog./V) and
let e > 0. For sufficiently large N, N ^ N(e), there is a nonzero polynomial
f(x) in Z[x] of degree ^ N — 1 and of height ^ H vanishing at 1 with multi-
plicity at least [(2 - e)y/Nlog(H + l)/logiV|. Moreover, if H is sufficiently large,
H(e) ^ H < exp (AHog log ./V), then the order of vanishing of f(x) at 1 is at least

Suppose that r < N are two positive integers. Bombieri and Vaaler [6] proved that
there is a nonzero polynomial in Z[x] of degree < iV vanishing at 1 with multiplicity ^ r
and such that its height is bounded from above by

By taking r = [(2 - e)^N\og(H + l)/logiV|, we see that this is less than H + 1, so
that the height of the polynomial is < H. Similarly, the second part of the lemma follows
from [1, Theorem 3].

We denote the norm of a polynomial Q{x) € C[x] by

v{Q) = max|Q(z)|.

Let also r(Q) be the order of vanishing of Q(x) at 1.
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LEMMA 2 . For the polynomial Fk given in (2) with the choice Ju = [k sin (wu/k)}
we have the following asymptotic formulas for k tending to infinity:

k5

deg Fk = nk ~ — ,

«K - £ * * - £
We have proved these asymptotic formulas in [9] (see also [10]). Our final lemma is

a simple analytical statement which was also used in [2].

LEMMA 3 . Suppose $(x) is a polynomial of degree t with complex coefficients such

that $'(1) 7̂  0. Then there is a root a of $ for which

Indeed, if $(1) = 0 then the above statement is trivial. Otherwise,

x - ax x - a2 x - at

and the lemma follows by taking x — 1.

4. P R O O F OF THEOREM 1

Suppose first that H ^ 2n. Let us consider the polynomial Hxn~l — H + 1. For one
of its zeros a = (1 - l/H)1/{n~1) we have

whenever n > 580 and the theorem follows.

We are left with the non-trivial case H < 2n. Suppose that f(x) is the polynomial
of degree ^ N — 1 and of height ^ H from Lemma 1. We put for brevity r = r(f) and

f 1, if

" 1 - 1 , if / ( r ) ( l ) / ( r + 1 ) ( l ) < 0 .

Let us consider the polynomial

9(x) = 0xN(x - l)f(z°) + /(*),

https://doi.org/10.1017/S0004972700032408 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032408


428 A. Dubickas [6]

where s ^ 2 is a fixed integer to be chosen later. Clearly, g(x) is a polynomial of degree
^ N{s + 1) - s + 1 and of height ^ H. We put n = N(s + 1) - s + 2. Then

H <2n <exp(WloglogAO

and we can apply Lemma 1:

(10) r = 7

We now show that p(x) has a root a, a ^ 1, for which (6) holds. Indeed, Taylor's
formula gives the following expansion:

On replacing x by xs we obtain

It follows that

j = r

]=T ;=r

Here $(x) is a polynomial in Z[x] for which

r>
_

1 J r! + (r + 1)!"

Taking into account the choice of 0 and the fact that / ' r ' ( l) j1 0, we obtain

9sr

Since $(1) 7̂  0 and $'(1) 7̂  0, from Lemma 3 we deduce that $(1), and so g(x), has a
root a, a / 1, for which

|a - - s

Bounding r from below by (10) and substituting N = (n + s - 2)/(s + 1), we further
find

(11)
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The choice s = 9 completes the proof of (6) with e being replaced by 3e. Hence the result
with e in (6) carries over if we replace e by e/3 in Lemma 1.

If if is sufficiently large, H ^ H(e), then we consider the polynomial f\(x) of degree
^ N — 1 and of height $J [H/2] from Lemma 1. Let 8\ be the above 6 with / replaced
by / , . Then

(12) gi(x) =

is a polynomial of degree ^ s(N - 1) + 1 and of height ^ 2[/f/2] ^ H. Similarly, we can
take n = s(N - 1) + 2 and argue as above. The lower bound (10) from Lemma 1 will be
replaced by

Nlog

Since H and

log AT

are large, instead of (11) we now have

ns expf-(\/8- 2e) log s\
log AT lI)

The choice s = 7 completes the proof of Theorem 1.

5. P R O O F O F THE COROLLARY

Let us fix a positive number c, and let n be a sufficiently large positive integer. We
consider the polynomial of degree at most n — 1 and of height at most H = [nc] with a
root close to 1 as in the second part of Theorem 1 (for example, gi(x) given by (12)).
Since log (H + 1) ^ clogn, by Theorem 1 the polynomial <?i has a root a ^ 1 for which

(13)

We write

i=o
where p(x) is the minimal polynomial for a. Utilising Landau's inequality and the mul-
tiplicativity of Mahler's measure we have

M(a) = M(p) < M(9l)
N

Clearly, a is not a root of unity, since otherwise the inequality opposite to (13) holds.
Thus,

0 < logM(a) ^ (c+ -J logn.
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Now (13) and the trivial bound d = deg a < n give

,2x/21og7 en log M(a) \
(c +1/2) log n)

for sufficiently large c.
On the other hand, by Liouville's inequality we have

(a)"1 >exp( -d log2- (c+-) lognV

Combining this inequality with (13) we see that d is bounded from below as d > c5,/cn.
Thus, there is an infinite sequence of d such as required and

logM(a) 5% fc+ -J logn < ci logd.

This completes the proof. 0

6. PROOF OF THEOREM 2

It is clear that the polynomial

R(x) = *- + 2 ( x - l ) ^

is monic and irreducible, by Eisenstein's criterion. Further, we have that R(l) = 1 and

By Lemma 3, there is a root a of R(x) for which

(14) | a - l | <d5" r ( F ) .

The choice of k is such that

2 + 4deg Fk = 2 + 4nk ^ d < 2 + 4nA+1.

Hence, Lemma 2 implies that d ~ 2k5/IT2. Let us put

= s(Fk) = l 0 / ^ ) = to»^).
deg Ft nfc

https://doi.org/10.1017/S0004972700032408 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032408


[9] Algebraic numbers 431

From Lemma 2 (see also [10, Theorem 3]) it follows that

r(Fk) >(-- e)nk]/s(Fk)/log(l/S(Fk)).

Hence, from (14) we see that

(15) | a - l | < e x p ( - ( ^ ^ - 2e)

Further, F(x) is a product of cyclotomic polynomials. Therefore

M{a) = M{R) = M(RF) ̂  u(RF) = v(xdF{x) + 2(x - l)F(x5))

so that we can bound h{a) from above:

Theorem 2 now clearly follows from (15). Note that we also have

7. CONCLUDING REMARKS

Recently, Bugeaud [4] considered the norm of a - 1. He showed [4, Theorem 2] that
if a is not a root of unity then for any t > 0, there exists a <5 > 0, depending only on e,
such that if log M(a) ^ 6d, d = deg a, then

(16) log | jV(a - l ) | ^ yJ{2/3 + e) dlogd logM{a).

Moreover, using the example of algebraic numbers close to 1 due to Amoroso [2] he showed
[4, Theorem 3] that the dependence on d in (16) cannot be relaxed to Vd/(\ogd)l+c, for
any e > 0.

Note that by considering polynomials (2) with k = [(7r/2)^/(l//i) log (l//i)J from our
estimates in [9, Section 3], we get

(17) log|jV(a-l)| < ( J + | ) dy/hlog{l/h) < ( J +e)y/d logd logM(a)

under the same hypotheses as in (16). Clearly, this inequality strengthens (16).

On the other hand, let us consider the polynomial

T(x) = xd + 2 ^ p ^ = x" + 2

https://doi.org/10.1017/S0004972700032408 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032408


432 A. Dubickas [10]

As in Section 6 we see that T(x) is monic and irreducible. Suppose a is a root of T{x).
Then we have

\N(a - 1)| = |T(1)| = 1 + 2 • 5r<F> > 5r ( F ) .

From the results of Section 6 we obtain the lower bound for the norm:

log\N(a - 1)| > ( ^ p - e) dyjh/\og{\Ih).

This shows that the dependence on d in (16) and (17) cannot be relaxed to \/5/(logrf)1/2+E,
for any e > 0.

It is easily seen from our arguments in Section 4 that the upper bound for \a — 1|
depends on the results concerning the order of vanishing r of polynomials at 1. On the
other hand, we remark that the results on the lower bound for \a — 1| imply the upper
bounds for r. An old result of Schur [14] on the number of real roots of a polynomial
gives the following bound:

r(f) ^ 2y/N log L{f).

Here / is a polynomial in Z[x] of degree < TV and of length L(f). Recently, Amoroso [1]
strengthened the constant in this upper bound

(18) r(f) ^ 1.21-//V logL(/)

provided that TV -> oo, log TV/ log L{f) -> 0 and (logL(/))/TV -> 0.

Let us consider the polynomial

g3(x)=0(x-l)f(x>)+f(x),

where 6 is as in Section 4. Analogously, we deduce that g$(x) has a root a, a ^ 1, such
that

|a - 1| < s~r( / ) deg g3 < TVs-r(/)+1.

In this way we find that

r ( / ) logs < - l o g | a - l | + log(TVs).

We see that a lower bound for |a - 1| implies an upper bound for r(f). We cannot
improve upon (18) utilising the lower bound (3). However, if, for example, the lower
bound

|o - 1| > exp ( - c(a)^/

holds with a in the range 0 ̂  a ^ 1/2 and constant c{a) > 0, then

r ( / ) log* < c{a)sjd log M{a)(log d ) " ' + log (TVs).

Since d < TVs and
M(a) ^ M(g3) ̂  v(g3)
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the choice of s = 7 would further imply

for sufficiently large TV.
Finally, we have noticed in [9] that the lower bound for the difference between a and

a root of unity

) > e x p f - (n^/m/8 + e)dyjhlog(l//i)),

where m ^ 3 is a fixed integer, holds. Replacing the polynomial gi(x) in (12) by gi(xm)
gives an example of algebraic numbers close to m-th root of unity. The inequality (see
also (8))

holds for infinite number of a.
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