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Abstract

We show Exel’s tight representation of an inverse semigroup can be described in terms of joins and covers
in the natural partial order. Using this, we show that the C∗-algebra of a finitely aligned category of paths,
developed by Spielberg, is the tight C∗-algebra of a natural inverse semigroup. This includes as a special
case finitely aligned higher-rank graphs: that is, for such a higher-rank graph Λ, the tight C∗-algebra of
the inverse semigroup associated to Λ is the same as the C∗-algebra of Λ.
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1. Introduction

C∗-algebras generated by partial isometries include many important families specified
by generators and relations, such as graph algebras, higher-rank graph algebras [7, 11],
Kellendonk’s C∗-algebras of tilings [8, 9] and C∗-algebras of quasilattice-ordered
groups [18]. There is a close connection between partial isometries on a Hilbert space,
where A ∈ B(H) is a partial isometry if and only if AA∗A = A, and inverse semigroups,
where each element s satisfies ss∗s = s and s∗ss∗ = s∗ for a unique element s∗. But
there is no equivalent of addition in an inverse semigroup and this issue prevents a
straightforward translation of the partial isometries’ relations to inverse semigroups.
For instance, while there is a natural inverse semigroup associated to a graph (first
developed in [1] and rediscovered independently in each of [13, 19]), the C∗-algebra
of this inverse semigroup is not the C∗-algebra of the graph, but rather the Toeplitz
C∗-algebra.

Exel has developed a crucial notion, tightness, for Hilbert-space representations of
inverse semigroups [3] and several authors have shown that the tight C∗-algebra, that is,
the one universal for tight representations, is the ‘right’ one for various families. That
is, the tight C∗-algebra of a graph inverse semigroup is the graph algebra, and similarly
for C∗-algebras of a large family of semigroupoids (which includes singly-aligned
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higher-rank graph algebras) [3], for Kellendonk’s tiling C∗-algebras [6], and for some
Cuntz–Li-type crossed products relating to number fields [22].

We give an alternative approach to tightness, using the natural partial order of an
inverse semigroup and finite joins in that partial order as a way to formulate finite sums
in an inverse semigroup. For inverse semigroups of operators, such joins are always
available: all possible joins, finite or not, exist as operators and can be added to the
codomain of a representation; see Proposition 1.1. General inverse semigroups, such
as the natural inverse semigroups for graphs and other combinatorial objects, can have
(finite) sets of elements that ‘should have’ a join but do not. Following Lenz [16],
these finite sets that should have a join can be identified as covers. It is then natural to
study representations of inverse semigroups as operators that send covers to joins of
the operators. One of our main results is that for Hilbert-space representations of an
inverse semigroup, cover-to-join and tight are equivalent, Corollary 2.3. Thus, the tight
C∗-algebra of an inverse semigroup S is universal for the cover-to-join Hilbert-space
representations of S , Corollary 2.5.

In fact, this is a special case of a more general result for homomorphisms between
inverse semigroups. For θ : S → T , tightness is defined if T has a Boolean algebra
of idempotents, while cover-to-join is defined if T is finitely complete, that is, all
possible finite joins exist, and finitely distributive, that is, a ∨ B = ∨{ab : b ∈ B} for
each element a and finite subset B and similarly for multiplication on the right by a.
Then, for T satisfying both conditions, a homomorphism θ : S → T is tight if and only
if it is cover-to-join, Theorem 2.2.

To demonstrate the usefulness of this description of tight C∗-algebras, we apply
these methods to a very general construction of a C∗-algebra from a combinatorial
object, a category of paths, introduced by Spielberg [20]. Spielberg’s construction
generalises both higher-rank graphs [11] and positive cones in discrete ordered groups,
including Nica’s quasilattice ordered groups [18]. A category of paths is a left and
right cancellative category with the property that morphisms do not have inverses. For
many of his results, Spielberg imposes an additional condition, that the category of
paths be finitely aligned; see Section 3, following Proposition 3.4 for the definition.
This condition is motivated by a similar condition for higher-rank graphs.

We observe that there is a natural inverse semigroup associated to a category of
paths, Proposition 3.1, and that finitely aligned categories of paths can be characterised
in terms of the associated inverse semigroup; see Proposition 3.6. In the finitely
aligned case, Spielberg’s C∗-algebra is the tight C∗-algebra of this inverse semigroup,
Theorem 3.7 and Corollary 3.8. This result is new for finitely aligned higher-rank
graph algebras, extending the result that singly-aligned higher-rank graphs are tight
C∗-algebras in [3].

This paper builds on extensive work by Exel [3, 4], Lenz [16], and Lawson [14, 15],
who have laid the foundational work for C∗-algebras of inverse semigroups and, of
course, Spielberg’s interesting categories of paths construction [20]. Further, we would
like to thank Spielberg for helpful comments about this work.
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1.1. Background. For consistency with adjoints of operators, we use s∗ for the
inverse of an element s in an inverse semigroup. Given an inverse semigroup S and
A ⊆ S , E(A) denotes the idempotents of A.

By an inverse semigroup of operators we mean a collection of partial isometries in
some C∗-algebra so that, using the usual multiplication and adjoint, the collection is
an inverse semigroup.

Let P be a semilattice of projections in a C∗-algebra A, that is, P is closed under
products. Define PI(P) to be the set of all partial isometries X in A, that is, elements
satisfying X = XX∗X and X∗ = X∗XX∗, such that: (1) X∗X, XX∗ ∈ P; and (2) X∗PX ⊆ P
and XPX∗ ⊆ P. From [2, Proposition 1], PI(P) is an inverse semigroup of operators
with semilattice of idempotents P, so that for any inverse semigroup of operators
S ⊂A with E(S ) ⊆ P, we have S ⊆ PI(P).

P 1.1. If S is an inverse semigroup of operators, then S is contained in an
infinitely distributive inverse semigroup of operators.

P. We may assume S ⊂ B(H) for some Hilbert space H . By [12,
Proposition 1.4.20], it suffices to verify the result for the lattice of idempotents E(S )
contained in the projections of B(H). Since the projections in E(S ) all commute,
it is easy to verify finite distributivity using P ∨ Q = P + Q − PQ. Infinite joins are
strong-operator-topology limits of an increasing net of finite joins, so using the SOT-
continuity of multiplication on bounded sets gives distributivity for infinite joins;
see [17, Section 3.2] for the details of these arguments. So adding all infinite joins
to E(S ) gives a semilattice of projections, P, and PI(P) is an inverse semigroup of
operators which is infinitely distributive and contains S . �

2. Tight and cover-to-join

The key point of this section is that, with the right restriction on the codomain of an
inverse semigroup homomorphism, tight and cover-to-join are the same.

In [4, Definitions 2.6 and 6.1], tightness is defined first for a homomorphism on the
semilattice of idempotents and then extended to one on an inverse semigroup. Let S be
an inverse semigroup. First, given finite sets X and Y in E(S ), possibly empty, define

EX,Y := {e ∈ E : e ≤ x for all x ∈ X, ey = 0 for all y ∈ Y}

and, for a set F ⊆ E(S ), we call a finite set Z ⊆ F a cover of F if, for all f ∈ F, there is
z ∈ Z so that there is a nonzero element below both z and f . Since z f is the meet of z
and f , this is equivalent to requiring z f , 0.

For a homomorphism θ : E→ B from a semilattice to a Boolean algebra B, θ is
defined to be tight if for all finite covers Z of EX,Y ,∨

θ(Z) =

(∧
θ(X)

)
∧

(∧
¬θ(Y)

)
. (2.1)

A homomorphism θ : S → T between inverse semigroups S and T with E(T ) a
Boolean algebra is then defined to be tight if θ|E(S ) is tight.

https://doi.org/10.1017/S0004972713001111 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713001111


124 A. P. Donsig and D. Milan [4]

We also need Lenz’s relation from [16, Definition 5.1], although we adopt the arrow
notation of [15, page 3]. For an element a and a finite set B, we say a −→ B if, for
each x ≤ a, there is some b ∈ B so that there is a nonzero element below both x and b.
For finite sets A and B, we write A −→ B if, for each a ∈ A, a −→ B. Lastly, A←→ B if
A −→ B and B −→ A. Lemma 2.2 of [15] gives the key properties of this relation; for
example, it is transitive, and if a −→ b then a∗ −→ b∗ and if, in addition, bc , 0, then
ac −→ bc.

Crucially, for a finite set C and an element a with C ⊆ a↓ (where a↓ := {x ∈ S :
x ≤ a}), call C a cover of a if a −→C. To distinguish between these two different
uses of cover, notice that Exel’s definition is always applied to sets denoted EX,Y while
this second definition is applied to single elements. Of course, for E(S ), C being a
cover of a is equivalent to C being a cover of E{a},∅. A homomorphism θ : S → T
between inverse semigroups is called a cover-to-join map if for each cover C of an
element s ∈ S , ∨θ(C) exists and equals θ(s).

Observe that, in a distributive inverse semigroup, if some finite set F satisfies
∨F = a, then F is a cover for a. To see this, observe that F ⊆ a↓ and for any b ≤ a
with b , 0, b = b ∧ a = ∨{b ∧ f : f ∈ F} and so b ∧ f0 , 0 for some f0 ∈ F.

The following result is a natural extension to general inverse semigroups of [15,
Lemma 3.14(1)]; since this result appears only in the first version of that paper on the
arXiv, we give a proof here.

P 2.1. Let S be an inverse semigroup and let θ : S → T be a homomorphism
to a finitely complete distributive inverse semigroup. Then θ is cover-to-join if and
only if the restriction of θ to E(S ) is cover-to-join.

P. The forward direction is clear. Suppose that θ|E(S ) is cover-to-join and let C be
a cover of a in S . Define d(x) = x∗x. First, we claim that {d(c) : c ∈C} is a cover of
d(a). Let 0 , e ≤ d(a). Putting a′ = ae, we have d(a′) = e and 0 , a′ ≤ a. Thus there
exists some c ∈C and some x so that 0 , x ≤ a′, c. Therefore, 0 , d(x) ≤ d(a), d(c),
proving the claim.

Since θ|E(S ) is cover-to-join, the claim implies

θ(d(a)) =
∨
c∈C

θ(d(c)).

Multiplying this equation by θ(a) gives θ(a) =
∨
θ(c). �

We can now prove the main result of this section.

T 2.2. Let S be an inverse semigroup with zero and T a finitely complete
distributive inverse semigroup so that E(T ) is a Boolean algebra.

Then a homomorphism θ : S → T is tight if and only if it is a cover-to-join map.

P. Suppose that θ|E(S ) is tight. By Proposition 2.1, it suffices to establish that θ|E(S )

is cover-to-join. Assume Z ⊂ E(S ) is a cover for x ∈ E(S ). Then Z is a cover for E{x},∅
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and so by tightness ∨
θ(Z) = θ(x).

Thus, θ|E(S ) (and hence, θ) is a cover-to-join map.
Conversely, suppose that θ is a cover-to-join map and Z ⊂ E(S ) is a cover for EX,Y .

Then Z ∪ Y is a cover for ∧X and so(∨
θ(Z)

)
∨

(∨
θ(Y)

)
= θ(∧X).

Before taking the meet of both sides with ¬
∨
θ(Y) =

∧
¬θ(Y), notice that z ∧ y = 0

for all z ∈ Z and y ∈ Y so θ(z) ≤ ¬θ(y). It follows that
∨
θ(Z) ≤

∧
¬θ(Y) and so when

we take the meet, we obtain (2.1). �

By Proposition 1.1, inverse semigroups of operators can always be enlarged to be
finitely complete, distributive, and have a Boolean algebra of idempotents. Thus, we
have the following corollary.

C 2.3. Let S be an inverse semigroup and θ : S → B(H) a representation of
S on Hilbert space. Then θ is tight if and only if it is cover-to-join.

In general, the conditions on T in Theorem 2.2 are essential. For example, for the
inverse semigroup S of [4, Section 7], the identity map i : S→S is tight in the sense
of Exel but is not a cover-to-join map. In contrast to Proposition 2.1, note that i|E(S) is
a cover-to-join map, even though i is not. What this inverse semigroup S shows is that
defining a homomorphism θ : S → T to be tight when θ|E(S ) satisfies (2.1) can create
complications if T is not distributive.

We should mention a result similar to Theorem 2.2 in a different context. Exel,
in [5], defines tightness of representations of semigroupoids, a generalisation of
categories. He shows, in [5, Proposition 7.4], that, under mild conditions, if the
semigroupoid is a category, then a representation is tight if and only if it satisfies
an appropriate version of cover-to-join for a semigroupoid.

The following result, a restatement of [3, Theorem 13.3], gives the universal
property of the tight C∗-algebra of an inverse semigroup.

T 2.4 (Exel). For a countable inverse semigroup S , there is a C∗-algebra
C∗tight(S ), and a canonical tight representation i : S →C∗tight(S ), so that for each tight

representation θ : S →B(H), there is a unique representation θ : C∗tight(S )→B(H) so

that θ = θ ◦ i.

That is, the following diagram commutes:

S

C∗tight(S ) B(H)

i

θ

θ
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Thus, there is a one-to-one correspondence between tight representations of S and
representations of C∗tight(S ). The next result then follows from Corollary 2.3.

C 2.5. For a countable inverse semigroup S , C∗tight(S ) is universal for the
cover-to-join Hilbert-space representations of S . That is, there is a one-to-one
correspondence between representations of C∗tight(S ) and cover-to-join representations
of S .

3. Categories of paths

To show that the connections developed in the previous section can be usefully
applied to tight C∗-algebras, we look at the C∗-algebra of a finitely aligned category
of paths and show that this is a tight C∗-algebra for a natural inverse semigroup.
Before giving our results, we need to outline Spielberg’s work. In [20], Spielberg
introduces the notion of a category of paths, a generalisation of the path category of
a directed graph that includes the categories of higher-rank graphs as well as many
other examples. He builds a C∗-algebra for a finitely aligned category of paths and
shows that, when the category is a higher-rank graph (necessarily finitely aligned),
this C∗-algebra is isomorphic to the C∗-algebra of the higher-rank graph. Our goal in
this section is to show that the C∗-algebra of a category of paths is the tight C∗-algebra
of a natural inverse semigroup, the inverse semigroup of zigzag maps.

Briefly, a category of paths, say Λ, is a small category with left and right
cancellation and no inverses. That is, a category whose class of objects is a set and
for morphisms α, β, and γ, αβ = αγ implies β = γ and αγ = βγ implies α = β. Finally,
if αβ equals the identity map on s(β), then each of α and β is this identity map. We
routinely identify an object (or vertex) with the identity morphism on the object and
view a morphism, α, as a map from its source, s(α), to its range, r(α).

For α ∈ Λ, there is a right shift map, also denoted α, from s(α)Λ to αΛ via β 7→ αβ.
Also, there is a left shift map, σα, from αΛ to s(α)Λ via αβ 7→ β. Both left shift
maps and right shift maps are one-to-one, by the cancellation properties of Λ, and, as
functions on subsets of Λ, the shift maps α and σα are inverses of each other.

Define a zigzag as a 2n-tuple of elements ζ = (α1, β1, . . . , αn, βn), where r(αi) =

r(βi) and s(αi+1) = s(βi), and the associated zigzag map as the composition of shift
maps φζ = σα1β1 · · · σ

αnβn. Note that φζ is one-to-one, being a composition of one-to-
one maps. The reverse of ζ is ζ = (βn, αn, . . . , β1, α1). Finally, we use A(ζ) ⊂ Λ for the
domain of ζ ∈ Z. Note that left and right shift maps embed in Z: the left-shift map
σα as (α, r(α)) and the right shift β as (r(β), β).

We useZM for the set of zigzag maps and call φζ the reverse of φζ . We can identify

A(ζ) with the zigzag map of ζζ, the right identity of ζ in ZM. Using composition as
the operation, ZM becomes an inverse semigroup. Precisely, for maps f : A→ B
and g : C→ D, we define f ◦ g to have domain g−1(B ∩C) and range f (B ∩C). The
symmetric inverse monoid on Λ is the set of all one-to-one maps between subsets of
Λ, with this composition operation and f −1 the inverse of f . The symmetric inverse
monoid on a set is well known to be an inverse semigroup.
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P 3.1. For a category of paths Λ,ZM forms an inverse semigroup with the
reverse as the inverse.

P. Observe that φζ is the inverse function of φζ , so the reverse onZM corresponds
to the usual inverse in the symmetric inverse monoid on Λ. Since the collection
of zigzag maps is a subset of the symmetric inverse monoid which is closed under
compositions and inverses, it is an inverse subsemigroup, and hence an inverse
semigroup itself. �

For convenience, we will use ζ instead of φζ , writing ζ ∈ ZM to clarify that we are
working with the zigzag map instead of the zigzag itself.

From the category of paths Λ, Spielberg first builds a groupoid G and then defines
the boundary of the category, ∂Λ, which can be identified with a subset of the unit
space. Then the C∗-algebra of the category, C∗(Λ), is defined as C∗(G|∂Λ), where G|∂Λ

is the reduction of G to ∂Λ. We refer the reader to [20] for this construction and
concentrate here on characterisations of C∗(G|∂Λ) in terms of representations ofZM.

First, [20, Theorem 6.1] characterises the representations of C∗(G). Essentially,
they are in one-to-one correspondence with families of Hilbert space operators
{Tζ : ζ ∈ ZM}, whereZM is the inverse semigroup of zigzag maps, satisfying:

(1) TζTη = Tζη;
(2) T ∗ζ = Tζ ;
(3) T ∗ζTζ =

∨n
i=1 T ∗ηi

Tηi if A(ζ) =
⋃n

i=1 A(ηi).

This is a slight modification of the statement of [20, Theorem 6.1], which indexes
the partial isometries by the zigzags but imposes a fourth condition, that Tζ = T ∗ζTζ
if φζ = idA(ζ). But this condition is equivalent to requiring that if two zigzags ζ and
η have the same zigzag maps, then Tζ = Tη. Indeed, if φζ = φη, then ζη = idA(ζ)

and so the extra condition implies T ∗ζTη = T ∗ηTζT ∗ζTη. Multiplying on the left by Tζ
and observing that Tη and Tζ are partial isometries with the same initial and final
projections by condition (3), it follows that Tη = Tζ . The other direction is immediate
from idA(ζ) = id−1

A(ζ)idA(ζ).
Clearly, such a family {Tζ : ζ ∈ ZM} satisfying the first two conditions is equivalent

to an inverse semigroup homomorphism, T :ZM→ B(H) given by T (ζ) = Tζ . To
describe the third condition in terms of this representation, we need to develop another
concept: a homomorphism of inverse semigroups, θ, is finitely join-preserving if,
whenever a = ∨C for a finite set C and an element a, then θ(a) = ∨θ(C). Analogous to
Proposition 2.1, we have the following result.

P 3.2. Let S and T be inverse semigroups and θ : S → T be a
homomorphism. Then θ is finitely join-preserving if and only if the restriction of θ
to E(S ) is finitely join-preserving.

P. Because of the parallels to Proposition 2.1, we give only an outline.
For the nontrivial direction, let a = ∨C and define d(x) = x∗x. It follows from
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[12, Proposition 1.4.17] that d(a) = ∨d(C), and so by the assumption on θ, θ(d(a)) =

∨θ(d(C)). Multiplying by a and using [12, Proposition 1.4.18], we have θ(a) =

∨θ(C). �

Applying this proposition to the representation T of ZM, we have the following
corollary.

C 3.3. Let ZM be the inverse semigroup of zigzag maps associated to a
category of paths. An inverse semigroup representation T :ZM→ B(H) satisfies
condition (3) if and only if the representation is finitely join-preserving.

Since a = ∨C implies that C is a cover of a, we immediately have the following
observation.

P 3.4. For a homomorphism θ between inverse semigroups, if θ is cover-to-
join, then it is finitely join-preserving.

Join-preserving representations properly include cover-to-join representations. A
trivial example is the identity map on a three-element chain of idempotents, say
{0, s, 1}. Then s is a cover for 1 and since s , 1, the identity map is not cover-to-join,
even though it is join-preserving.

Spielberg calls a category of paths finitely aligned if for every pair of elements α
and β, there is a finite subset G of Λ so that

αΛ ∩ βΛ =
⋃
ε∈G

εΛ.

Zigzag maps in the finitely aligned case admit a simple form: every zigzag map
is a finite union of maps of the form γσδ, with γ, δ ∈ Λ [20, Lemma 3.3]. In fact, it
follows from the fourth paragraph of the proof of [20, Theorem 6.3] that this form is
canonical, that is, if

⋃
i γiσ

δi =
⋃

j α jσ
β j then both finite unions have the same number

of elements and there is a permutation π so that γi = απ(i) and δi = βπ(i). We thank Jack
Spielberg for clarifying our initially ambiguous discussion of this point.

We call maps of the form γσδ elementary zigzag maps.

R 3.5. For two elementary zigzags maps, a = ασβ and b = γσδ, observe that
a ≤ b if and only if

α = γε and β = δε,

for some ε ∈ s(α)Λ. The reverse direction is immediate and the forward direction
follows from observing that a ≤ b implies βΛ ⊆ δΛ, which implies that β = δβ′ for
some β′ in Λ. Further, α = ασβ(β) = γσδ(β) = γβ′.

Steinberg [21] defined a poset to be a weak semilattice if the intersection of
principal downsets is finitely generated as a downset. Lenz [16] and Lawson [15]
used the stronger condition that the intersection be singly generated. Both conditions
hold for all E-unitary and 0-E-unitary inverse semigroups. It is worth noting that
the weak semilattice condition appears, without a name, in [10] as a necessary and
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sufficient condition for a cocycle to have closed range—see Proposition 3.9 and the
final paragraph of the paper.

P 3.6. Let Λ be a category of paths and ZM the associated inverse
semigroup of zigzag maps. Then Λ is finitely aligned if and only if ZM is a weak
semilattice.

P. Viewing Λ as a subset ofZM, it is immediate that ifZM is a weak semilattice
then Λ is finitely aligned.

Conversely, suppose that Λ is finitely aligned. Let x = γ1σ
δ1 and y = γ2σ

δ2 . Since
Λ is finitely aligned, there is a finite set Gδ such that

δ1Λ ∩ δ2Λ =
⋃
ν∈Gδ

νΛ.

Let G′δ be the subset of those ν ∈Gδ for which there is an elementary zigzag map
κσλ ∈ x↓ ∩ y↓ with λ ∈ νΛ.

If an elementary zigzag map κσλ is below both x and y, then by Remark 3.5
λ ∈ δ1Λ ∩ δ2Λ and so λ ∈ νΛ for some ν ∈Gδ. Since κσλ is below both x and y, it
follows that x(λ) = y(λ). Writing λ = νλ′ for a path λ′ with s(ν) = r(λ′), we have that
x(λ) = x(ν)λ′. Thus s(x(ν)) = s(ν) and, further,

κ = κσλ(λ) = x(λ) = x(ν)λ′.

Thus, κσλ is below x(ν)σν.
We claim that a finite set of generators for x↓ ∩ y↓ is {x(ν)σν : ν ∈G′δ}. By the

previous paragraph, each element of x↓ ∩ y↓ is below an element of this set. On the
other hand, we know that x(ν) = y(ν) for each ν ∈G′δ and so, using Remark 3.5 again,
x(ν)σν will be below both x and y.

Next, if we allow x and y to be arbitrary zigzag maps, then each map is a finite
join of elementary zigzags. By applying the above reasoning to each possible pair
of elementary zigzags making up x and y and then taking a union, we have a finite
generating set for the order ideal x↓ and y↓. �

Given a finite union
⋃

i γiσ
δi , a finitely join-preserving representation ofZM must

map this element to ∨
i

Tγi T
∗
δi
.

So a finitely join-preserving representation of ZM, in the finitely aligned case, is
determined by the image of elements of Λ. Spielberg shows [20, Theorem 6.3] that
conditions (1)–(3) above have a simpler equivalent form that involves Tα only for those
α ∈ Λ:

(1′) T ∗αTα = Ts(α);
(2′) TαTβ = Tαβ if s(α) = r(β);
(3′) TαT ∗αTβT ∗β =

∨
γ∈α∨β TγTγ∗.
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Here α ∨ β denotes the minimal common extensions of α and β, that is, the generators
of the downset αΛ ∩ βΛ.

Thus, representations of ZM for a finitely aligned countable category of paths Λ

are determined by the image of Λ itself. Spielberg characterises, in [20, Theorem 8.2],
the representations of C∗(Λ) for Λ a finitely aligned countable category of paths such
that the associated groupoid is amenable, in terms of this image, that is, {Tα : α ∈ Λ}.
There are four conditions, the three conditions (1′)–(3′) and a fourth condition, which
we will now outline.

Call F an exhaustive set for a vertex v ∈ Λ if s(β) = v for all β ∈ F and for every
α with s(α) = v, there is some β ∈ F such that αΛ ∩ βΛ is nonempty. If F is a finite
exhaustive set for v, then it follows that { βσβ : β ∈ F} is a cover for v in the inverse
semigroupZM.

It is convenient to use FE(v) for the collection of finite exhaustive sets at v. With
this in hand, the fourth condition is:

(4′) Tv =
∨
β∈F TβT ∗β if F ∈ FE(v) .

T 3.7. Let Λ be a countable finitely aligned category of paths and ZM be the
inverse semigroup of zigzag maps. There is a one-to-one correspondence between
families of operators {Tα : α ∈ Λ} satisfying conditions (1′)–(4′), and cover-to-join
representations of ZM. In particular, if the groupoid of Λ is amenable, then
representations of C∗(Λ) correspond to cover-to-join representations ofZM.

P. Suppose that π is a cover-to-join representation ofZM and consider the family
{Tα} of operators where Tα = π(σr(α)α). Conditions (1) and (2) follow from the fact
that π is a ∗-homomorphism. We observed after the definition of cover-to-join that
such a map is necessarily finitely join-preserving and so by Corollary 3.3, conditions
(1)–(3) hold. By Spielberg’s [20, Theorem 6.3], this is equivalent to conditions
(1′)–(3′). Finally, suppose that v is a vertex in Λ and F ∈ FE(v). As noted above,
{βσβ : β ∈ F} is a cover for v inZM and so condition (4′) follows from the fact that π
is cover-to-join.

Conversely, suppose that {Tα : α ∈ Λ} is a family of operators satisfying
conditions (1′)–(4′). We will show that the induced representation π of ZM is cover-
to-join.

Let {z1, z2, . . . , zn} be a cover for x in ZM. Since every zigzag map is a union of
maps of the form γσδ, we may assume (possibly enlarging the cover) that zi = γiσ

δi

for each i.

Initially we will suppose that x = γσδ. For each i, since zi ≤ x, by Remark 3.5, there
is βi in s(δ)Λ such that δi = δβi and γi = γβi.

Let v = s(δ). We claim that {β1, . . . , βn} ∈ FE(v). To see this, let α ∈ vΛ and
consider the zigzag map γασδα ≤ γσδ. Since {z1, z2, . . . , zn} cover x, there exists i and
a nonzero zigzag z such that z ≤ zi and z ≤ γασδα. In particular, there is some β ∈ Λ
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common to the domains of zi and δασδα. So

β ∈ δαΛ ∩ δβiΛ.

Thus σδ(β) ∈ αΛ ∩ βiΛ, that is, αΛ ∩ βiΛ is not empty. This shows that {β1, . . . , βn}

is exhaustive at v. By condition (4′),

Tv =

n∨
i=1

Tβi T
∗
βi
.

Multiplying on the left by Tγ and on the right by T ∗δ and using δi = δβi and γi = γβi,

TγT
∗
δ =

n∨
i=1

Tγi T
∗
δi
,

which proves that π(x) =
∨
π(zi).

Next, suppose that x =
⋃m

j=1 α jσ
β j and let e j = (α jσ

β j )∗ α jσ
β j . Again, let {zi =

γiσ
δi : i = 1, . . . , n} be a cover for x. Then {zie j : i = 1, . . . , n} covers the elementary

zigzag map xe j = α jσ
β j . By the previous two paragraphs,

π(xe j) =

n∨
i=1

π(zie j) =

n∨
i=1

π(zi)π(e j).

Since π is join-preserving (by Corollary 3.3) we have

π(x) =

m∨
j=1

π(xe j)

=

m∨
j=1

n∨
i=1

π(zi)π(e j)

=

n∨
i=1

π(zi)π(x∗x) =

n∨
i=1

π(zi),

where the last equality holds since zi ≤ x. Thus π is cover-to-join. �

By the universal property of tight C*-algebras, Corollary 2.5, we have the following
result.

C 3.8. For Λ a countable finitely aligned category of paths with ZM its
inverse semigroup of zigzag maps, if the groupoid of Λ is amenable, then C∗tight(ZM)
is isomorphic to C∗(Λ).

Finitely aligned categories of paths include finitely aligned higher-rank graphs, so
this shows that their C*-algebras are tight. The best previous result for higher-rank
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graphs along these lines was for singly-aligned higher rank graphs (or, more generally,
for higher-rank graphs with the little pull-back property) by Exel in [3, Section 20], as
a consequence of a result for a family of semigroupoids. Exel also mentions there that
his methods should work for all finitely aligned higher-rank graphs, so Corollary 3.8
is expected. Nonetheless, we believe that this approach is sufficiently different to be
interesting.
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