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Abstract
We show that the independence number of 𝐺𝑛,𝑝 is concentrated on two values if 𝑛−2/3+𝜖 < 𝑝 ≤ 1. This result is
roughly best possible as an argument of Sah and Sawhney shows that the independence number is not, in general,
concentrated on two values for 𝑝 = 𝑜((log(𝑛)/𝑛)2/3). The extent of concentration of the independence number of
𝐺𝑛,𝑝 for 𝜔(1/𝑛) < 𝑝 ≤ 𝑛−2/3 remains an interesting open question.

1. Introduction

An independent set in a graph 𝐺 = (𝑉, 𝐸) is a set of vertices that contains no edge of the graph. The
independence number of G, denoted 𝛼(𝐺), is the maximum number of vertices in an independent set in
G. The binomial random graph 𝐺𝑛,𝑝 has a vertex set of cardinality n, and each potential edge appears
independently with probability p, where 𝑝 = 𝑝(𝑛) can vary with n. We say that an integer-valued random
variable X defined on 𝐺𝑛,𝑝 is concentrated on 𝑘 = 𝑘 (𝑛) values if there is a function 𝑓 (𝑛) such that

lim
𝑛→∞
P(𝑋 ∈ { 𝑓 (𝑛), . . . , 𝑓 (𝑛) + 𝑘 − 1}) = 1.

In this work, we address the following question: For which probabilities 𝑝 = 𝑝(𝑛) is 𝛼(𝐺𝑛,𝑝) concen-
trated on two values?

The independence number of 𝐺𝑛,𝑝 has been a central issue in the study of the random graph
since the beginning. In the 1970s, Bollobás and Erdős [5] and Matula [17] independently showed that
𝛼(𝐺𝑛,𝑝) is concentrated on two values when p is a constant. In the late 1980s, Frieze [9] showed that if
𝜔(1/𝑛) < 𝑝 < 𝑜(1), then

𝛼(𝐺𝑛,𝑝) =
2
𝑝
[log(𝑛𝑝) − log log(𝑛𝑝) + log(𝑒/2) ± 𝑜(1)] (1)

with high probability. This celebrated result combines the second moment method with a large deviation
inequality in a surprising way. Dani and Moore [8] give the best-known lower bound on the independence
number of𝐺𝑛,𝑝 when p is a constant over n. For further discussion of 𝛼(𝐺𝑛,𝑝), see the canonical random
graphs texts [4] [10] [14].
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The algorithmic question of finding a large independent set in a random graph is also a central issue.
An influential work of Karp and Sipser [15] introduced a simple randomized algorithm that determines
the independence number of 𝐺𝑛,𝑝 for 𝑝 = 𝑐/𝑛 such that 𝑐 < 𝑒. However, the computational problem
of finding a maximum independent set in 𝐺𝑛,𝑝 for larger p appears to be a very difficult problem; for
example, Coja-Oghlan and Efthymiou [6] showed that the space of independent sets in 𝐺𝑛,𝑝 that are
larger than roughly half the independence number form an ‘intricately ragged landscape’ that foils local
search algorithms.

Interest in the concentration of the independence number of 𝐺𝑛,𝑝 is also motivated by the study
of the chromatic number of 𝐺𝑛,𝑝 . An influential series of works starting with Shamir and Spencer
[19] and culminating in the result of Alon and Krivelevich [2] establish two point concentration of the
chromatic number of 𝐺𝑛,𝑝 for 𝑝 < 𝑛−1/2−𝜖 (also see [16], [1], [7], [20]). More recently, Heckel [12]
showed that the chromatic number of 𝐺𝑛,1/2 is not concentrated on any interval of length smaller then
𝑛1/4−𝜖 . Heckel and Riordan [13] then improved this lower bound on the length of the interval on which
the chromatic number is concentrated to 𝑛1/2−𝜖 . They also state a fascinating conjecture regarding fine
detail of the concentration of the chromatic number of 𝐺𝑛,1/2. Determining the extent of concentration
of the chromatic number of 𝐺𝑛,𝑝 for 𝑛−1/2 ≤ 𝑝 < 𝑜(1) is another central and interesting question. Two
point concentration of the domination number of 𝐺𝑛,𝑝 has also been established for a wide range of
values of p [11].

Despite this extensive interest in two point concentration of closely related parameters, two point
concentration of 𝛼(𝐺𝑛,𝑝) itself has not been addressed since the early pioneering results of Bollobás
and Erdős and Matula. Our main result is as follows.
Theorem 1. Let 𝜖 > 0. If 𝑛−2/3+𝜖 < 𝑝 ≤ 1, then 𝛼(𝐺𝑛,𝑝) is concentrated on two values.

Soon after the original version of this manuscript was posted to the ArXiv, Sah and Sawhney observed
that Theorem 1 is roughly best possible.
Theorem 2 (Sah and Sawhney [18]). Suppose 𝑝 = 𝑝(𝑛) satisfies 𝑝 = 𝜔(1/𝑛) and
𝑝 < (log(𝑛)/(12𝑛))2/3. Then there exists 𝑞 = 𝑞(𝑛) such that 𝑝 ≤ 𝑞 ≤ 2𝑝 and 𝛼(𝐺𝑛,𝑞) is not concen-
trated on fewer than 𝑛−1𝑝−3/2 log(𝑛𝑝)/2 values.

Note that this anti-concentration statement is somewhat weak as it is compatible with two point
concentration for some functions 𝑝 < 𝑛−2/3. On the other hand, it is natural to suspect that the extent of
concentration of the independence number is monotone in the regime. See the Conclusion for further
discussion.

Now, the second moment method is the main tool in the proof of Theorem 1. Let 𝑋𝑘 be the number
of independent sets of size k in 𝐺𝑛,𝑝 . We have

E[𝑋𝑘 ] =
(
𝑛

𝑘

)
(1 − 𝑝) (

𝑘
2) ,

and if k is large enough for this expectation to vanish, then there are no independent sets of size k with
high probability. This simple observation provides a general upper bound on 𝛼(𝐺𝑛,𝑝). As far as we are
aware, this is the only upper bound on 𝛼(𝐺𝑛,𝑝) that appears in the literature. It turns out this upper bound
is sufficient to establish two point concentration when 𝑛−1/2+𝜖 < 𝑝 ≤ 1. (This was recently observed by
the authors [3] for 𝑛−1/3+𝜖 < 𝑝 < 𝑜(1).) However, for smaller values of p this upper bound turns out not
to be sufficient for two point concentration as the independence number is actually somewhat smaller
than the largest value of k for which E[𝑋𝑘 ] = 𝜔(1) with high probability.

In the regime 𝑛−2/3+𝜖 < 𝑝 < 𝑛−1/2+𝜖 , we need to consider a more general object. We define an
augmented independent set of order k to be a set S of 𝑘 + 𝑟 vertices such that the graph induced on
S is a matching with r edges and every vertex 𝑣 ∉ 𝑆 has at least two neighbors in S. Clearly, such an
augmented independent set contains 2𝑟 independent sets of size k, and so E[𝑋𝑘 ] can be quite large even
when the expected number of augmented independent sets of order k vanishes. As the appearance of a
single independent set of size k implies the appearance of an augmented independent set of order at least
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k, it follows from this observation that the appearance of augmented independent sets containing large
induced matchings can create a situation in which 𝛼(𝐺𝑛,𝑝) is less then k with high probability (whp)
even though E[𝑋𝑘 ] tends to infinity. Furthermore, it turns out the variance in the number of augmented
independent sets of order k is small enough to allow us to establish two point concentration using the
second moment method in the regime in question.

The remainder of this paper is organized as follows. In the following section, we make some
preliminary calculations. We then prove our main result, Theorem 1, in Section 3. Theorem 2 is proved
in Section 4. In Section 5, we observe that if 𝑝 = 𝑐/𝑛 for some constant c, then there is a constant K
such that 𝛼(𝐺𝑛,𝑝) is not concentrated on any interval of length 𝐾

√
𝑛. We conclude by making some

remarks regarding the concentration 𝛼(𝐺𝑛,𝑝) for 𝜔(1/𝑛) < 𝑝 ≤ 𝑛−2/3 in Section 6.
We mentioned above that the second moment method applied to 𝑋𝑘 is sufficient to establish two

point concentration down to 𝑝 = 𝑛−1/3+𝜖 (see [3] for this proof). It turns out that the second moment
method applied to the number of maximal independent sets of size k suffices to establish two point
concentration down to 𝑝 = 𝑛−1/2+𝜖 . We include this proof in an appendix.

2. Preliminary calculations

Throughout Sections 2 and 3, we restrict our attention to 𝑝 = 𝑝(𝑛), where 𝑝 = 𝑛−2/3+𝜖 < 𝑝 < 1/log(𝑛)2

for some 𝜖 > 0. This is valid as the classical results of Bollobás and Erdős and Matula treat the case
𝑝 > 1/log(𝑛)2. It is a classical result of Frieze that for all such p we have

𝛼(𝐺𝑛,𝑝) =
2[log(𝑛𝑝) − log(log(𝑛𝑝)) + log(𝑒/2) ± 𝑜(1)]

𝑝
(2)

with high probability. As we are interested in refinements of this result, we will need some estimates
regarding numbers in this range.

Recall that 𝑋𝑘 is the number of independent sets of size k in 𝐺𝑛,𝑝 . The upper bound in Frieze’s result
is achieved by simply identifying a value of k such that E[𝑋𝑘 ] = 𝑜(1). In order to make comparisons
with this bound, we define 𝑘𝑥 to be the largest value of k for which

E[𝑋𝑘 ] =
(
𝑛

𝑘

)
(1 − 𝑝) (

𝑘
2) > 𝑛2𝜖 .

We note in passing that the exact value in the exponent of this cut-off function is not crucial; we simply
need it to be small (in particular, we need E[𝑋𝑘𝑥+2] = 𝑜(1)) and greater than the exponent in the
polynomial function bound that we use to define the variable 𝑘𝑧 below.

Now, suppose 𝑘 = 𝑘𝑥 ± 𝑜(1/𝑝). In other words, consider

𝑘 =
2[log(𝑛𝑝) − log(log(𝑛𝑝)) + log(𝑒/2) ± 𝑜(1)]

𝑝
. (3)

(Note that impact of the 2𝜖 in the definition of 𝑘𝑥 is absorbed in the 𝑜(1) term.) Our first observation is
that, for such a k, we have

𝑛𝑒

𝑘
(1 − 𝑝)𝑘/2 = (1 + 𝑜(1)) 𝑛𝑒

𝑘
exp{− log(𝑛𝑝) + log(log(𝑛𝑝)) − log(𝑒/2) + 𝑜(1)}

= (1 + 𝑜(1)) log(𝑛𝑝)
log(𝑛𝑝) − log log(𝑛𝑝) + log(𝑒/2) − 𝑜(1) = 1 + 𝑜(1).

So, we have

(1 − 𝑝)𝑘/2 = (1 + 𝑜(1)) 𝑘

𝑒𝑛
. (4)
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It follows that we have

(
1 − (1 − 𝑝)𝑘

)𝑛−𝑘
=

(
1 − (1 + 𝑜(1))

(
𝑘

𝑒𝑛

)2
)𝑛−𝑘

= 𝑒
−(1+𝑜 (1)) 𝑘2

𝑒2𝑛 . (5)

Similarly,

[
1 − (1 − 𝑝)𝑘 − 𝑝𝑘 (1 − 𝑝)𝑘−1]𝑛−𝑘 = 𝑒

−(1+𝑜 (1)) 𝑝𝑘3

𝑒2𝑛 . (6)

3. Two-point concentration

In this section, we show that two point concentration of 𝛼(𝐺𝑛,𝑝) persists for p as low as 𝑛−2/3+𝜖 but at a
value that does not equal 𝑘𝑥 for small p. Our main technical result is as follows. We write 𝑓 (𝑛) ∼ 𝑔(𝑛)
if lim𝑛→∞ 𝑓 /𝑔 = 1.

Theorem 3. If 𝑛−2/3+𝜖 < 𝑝 < 1/log(𝑛)2 for some 𝜖 > 0, then there exists an integer 𝑘𝑧 = 𝑘𝑧 (𝑛) such
that 𝛼(𝐺𝑛,𝑝) ∈ {𝑘𝑧 , 𝑘𝑧 + 1} whp. Furthermore, we have

𝑘𝑥 − 𝑘𝑧

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 0 if 𝑝 = 𝜔

(
log(𝑛)𝑛−1/2)

= 𝜉𝑛 if 𝑝 = 𝐶 log(𝑛)𝑛−1/2

∼ 𝑘2
𝑥

𝑒2𝑛
∼ 4 log(𝑛𝑝)2

𝑒2 𝑝2𝑛
if 𝑝 = 𝑜

(
log(𝑛)𝑛−1/2) ,

where 𝜉𝑛 ∈
(

1
𝑒2𝐶2 − 5

2 ,
1

𝑒2𝐶2 + 3
2

)
.

We emphasize that the sequence 𝜉𝑛 for the case 𝑝 = 𝐶 log(𝑛)𝑛−1/2 does not converge to a particular
value; rather, it ranges over the specified interval. Indeed, 𝜉𝑛 is more precisely given by the following
expression

𝜉𝑛 =

⌈
1

𝑒2𝐶2 −
2 log(E[𝑋𝑘𝑥 ])

log(𝑛) + 2𝜖 ± 𝑜(1)
⌉
.

As E[𝑋𝑘𝑥 ] can take a wide range of values as n varies, we have persistent variation of 𝜉𝑛 over a small
list of values. The remainder of this section is a proof of Theorem 3.

Recall that an augmented independent set of order k in a graph G is defined to be a set of vertices
S for which there exists some 𝑟 ≥ 0 such that |𝑆 | = 𝑘 + 𝑟 and S contains exactly r edges that form a
matching (i.e., these edges are pairwise disjoint) and all vertices outside of S have at least two neighbors
in S. To motivate this definition, first note that such a set S contains 2𝑟 independent sets of size k, so this
structure is well suited for isolating large variations in the number of independent sets of size k. The
fact that we are interested in studying the number of independent sets of size k where k is close to the
independence number of G motivates the condition regarding vertices outside of S. Indeed, suppose S
is a set such that the induced graph on S is a (not necessarily perfect) matching and v is a vertex outside
of S that has one neighbor in S. If v is adjacent to a vertex u that is not in the matching then adding
v to S creates an augmented independent set of order k with an additional edge in its matching. So in
this situation we would want to include v in S in order to isolate as much variation in the number of
independent sets of k as possible. On the other hand, if v is adjacent to a vertex u that is part of the
matching, then 𝑆 \ {𝑢} ∪ {𝑣} contains an independent set of size 𝑘 + 1.

Lemma 4. For any graph G, 𝛼(𝐺) = 𝑘 if and only if G has an augmented independent set of order k
but no augmented independent set of any larger order.
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Proof. Let �̂�(𝐺) be the largest k for which there is an augmented independent set of order k. As an
augmented independent set of order k contains an independent set on k vertices, we have

�̂�(𝐺) ≤ 𝛼(𝐺).

Now, suppose that G has a maximum independent set S of size k. Let T be a maximum set of vertices that
contains S and has the additional property that the graph induced on T is a matching. We claim that T is
an augmented independent set; that is, every vertex outside of T has two neighbors in T. Clearly, every
vertex outside T has a neighbor in T (since S is a maximum independent set). If v is a vertex outside of
T with only one neighbor in T, then this neighbor u is in one of the matching edges (since T is chosen
to be a maximum set with the given property), but in this situation the set (𝑇 \ {𝑢}) ∪ {𝑣} contains an
independent set that is larger than S, which is a contradiction. So, T is an augmented independent set of
order at least k. Therefore,

𝛼(𝐺) ≤ �̂�(𝐺). �

We prove Theorem 3 by applying the second moment method to the random variable Z, which counts
the number of augmented independent sets of order 𝑘𝑧 with a prescribed number of edges 𝑟𝑧 . This
requires some relatively delicate estimates to determine the optimal values of the parameters 𝑘𝑧 and 𝑟𝑧 .
We begin with those calculations. We then move on to the first moment and second moment calculations
for Z that suffice to prove Theorem 3.

3.1. Defining and estimating 𝑘𝑧 and 𝑟𝑧

In this section, we define 𝑘𝑧 and 𝑟𝑧 , and establish a number of estimates of these quantities.
To start, let 𝐸 (𝑛, 𝑘, 𝑟) denote the expected number of augmented independent sets of order k with

exactly r edges in 𝐺𝑛,𝑝 . There are
( 𝑛
𝑘+𝑟

)
ways to choose the location of our set, and given this set there

are (𝑘+𝑟 )!
(𝑘−𝑟 )!2𝑟𝑟 ! ways to choose the locations of the r disjoint edges. The probability of choosing internal

edges accordingly is

𝑝𝑟 (1 − 𝑝) (
𝑘+𝑟

2 )−𝑟 ,

and finally, the probability that every vertex outside our set has at least two neighbors within the set is
𝐹 (𝑛, 𝑘, 𝑟)𝑛−𝑘−𝑟 where we set

𝐹 (𝑛, 𝑘, 𝑟) := 1 − (1 − 𝑝)𝑘+𝑟 − (𝑘 + 𝑟)𝑝(1 − 𝑝)𝑘+𝑟−1. (7)

Thus, we have

𝐸 (𝑛, 𝑘, 𝑟) =
(

𝑛

𝑘 + 𝑟

)
(𝑘 + 𝑟)!

(𝑘 − 𝑟)!2𝑟𝑟!
𝑝𝑟 (1 − 𝑝) (

𝑘+𝑟
2 )−𝑟𝐹 (𝑛, 𝑘, 𝑟)𝑛−𝑘−𝑟 . (8)

Now, we define 𝑘𝑧 = 𝑘𝑧 (𝑛) to be the largest 𝑘 ≤ 𝑘𝑥 for which there exists an r such that 𝐸 (𝑛, 𝑘, 𝑟) > 𝑛𝜖 .1
Our first observation is that, while 𝑘𝑧 is not equal to 𝑘𝑥 when p is sufficiently small, the difference

between the two numbers is relatively small.

Lemma 5. If 𝑝 = 𝜔(log(𝑛)/
√
𝑛), then 𝑘𝑧 = 𝑘𝑥 . Otherwise, we have

𝑘𝑧 ≥ 𝑘𝑥 −𝑂

(
𝑘2
𝑥

𝑛

)
≥ 𝑘𝑥 − 𝑜(𝑘1/2

𝑥 ).

1We impose the condition 𝑘 ≤ 𝑘𝑥 to avoid situations in which 𝑘𝑧 > 𝑘𝑥 . In particular, there are certain values of n and p for
which we would have 𝑘𝑧 = 𝑘𝑥 + 1. For example, this would happen if 𝑛3𝜖 /2 < E[𝑋𝑘𝑥+1 ] < 𝑛2𝜖 .
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Proof. This observation follows from considering 𝑟 = 0 and 𝑘 = 𝑘𝑥 − 𝐶𝑘2
𝑥

𝑛 , where C is a sufficiently
large constant and applying Equations (4) and (6). We first note that if 𝑝 = 𝜔(log(𝑛)/

√
𝑛), then the

expression in Equation (6) is subpolynomial. In this case, we have 𝐸 (𝑛, 𝑘𝑥 , 0) > 𝑛𝜖 and 𝑘𝑧 = 𝑘𝑥 .
Restricting our attention to 𝑝 = 𝑂 (log(𝑛)/

√
𝑛), note that for 𝑘 = 𝑘𝑥 −𝑂 (𝑘2

𝑥/𝑛) we have(𝑛
𝑘

)
(1 − 𝑝) (

𝑘
2)( 𝑛

𝑘+1
)
(1 − 𝑝) (

𝑘+1
2 )

=
𝑘 + 1
𝑛 − 𝑘

(1 − 𝑝)−𝑘 = (1 + 𝑜(1)) 𝑛𝑒
2

𝑘
, (9)

and thus

𝐸 (𝑛, 𝑘, 0) =
(
𝑛

𝑘

)
(1 − 𝑝) (

𝑘
2) exp

{
−(1 + 𝑜(1)) 𝑝𝑘

3

𝑒2𝑛

}

≥
(
𝑛𝑒2

2𝑘

) 𝐶𝑘2
𝑛

exp
{
−(1 + 𝑜(1)) 𝑝𝑘

3

𝑒2𝑛

}
.

Therefore, 𝐸 (𝑛, 𝑘, 0) > 𝑛𝜖 if C is a sufficiently large constant. �

Note that we may henceforth assume that the estimates given in Equations 3–6 hold for 𝑘𝑧 ≤ 𝑘 ≤ 𝑘𝑥 .
Next, for 𝑘𝑧 ≤ 𝑘 ≤ 𝑘𝑥 define

𝑟𝑀 (𝑘) = 𝑟𝑀 (𝑛, 𝑘) := arg max
𝑟

{𝐸 (𝑛, 𝑘, 𝑟)}.

We are now ready to define the random variable Z. Set 𝑟𝑧 = 𝑟𝑀 (𝑘𝑧), and let the variable Z count the
number of augmented independent sets of order 𝑘𝑧 with exactly 𝑟𝑧 internal edges. Note that such sets
have 𝑘𝑧 + 𝑟𝑧 vertices and E(𝑍) = 𝐸 (𝑛, 𝑘𝑧 , 𝑟𝑧) > 𝑛𝜖 .

We now move on to more accurate estimates for 𝑘𝑧 and 𝑟𝑧 , starting with an estimate for 𝑟𝑧 that we
obtain by estimating the ratio of consecutive terms of Equation (8). Note that we always have 𝑟 ≤ 𝑘 ,
which we will use a couple of times below. First, we show that 𝐹 (𝑛, 𝑘, 𝑟)𝑛−𝑘−𝑟 will have an insignificant
effect on the ratio. One can easily verify, using Equation (4), that 𝐹 (𝑛, 𝑘, 𝑟) = 1 − 𝑜(1). Furthermore,

𝐹 (𝑛, 𝑘, 𝑟 + 1) − 𝐹 (𝑛, 𝑘, 𝑟) = (𝑘 + 𝑟)𝑝2(1 − 𝑝)𝑘+𝑟−1

exactly. Therefore, we have

𝐹 (𝑛, 𝑘, 𝑟 + 1)𝑛−𝑘−𝑟−1

𝐹 (𝑛, 𝑘, 𝑟)𝑛−𝑘−𝑟
=

(
𝐹 (𝑛, 𝑘, 𝑟 + 1)
𝐹 (𝑛, 𝑘, 𝑟)

)𝑛−𝑘−𝑟
𝐹 (𝑛, 𝑘, 𝑟 + 1)−1

= (1 + 𝑜(1))
(
1 + (𝑘 + 𝑟)𝑝2(1 − 𝑝)𝑘+𝑟−1

𝐹 (𝑛, 𝑘, 𝑟)

)𝑛−𝑘−𝑟
= (1 + 𝑜(1))

(
1 + (1 + 𝑜(1)) (𝑘 + 𝑟)𝑝2(1 − 𝑝)𝑘+𝑟−1

)𝑛−𝑘−𝑟
.

Since

(𝑘 + 𝑟)𝑝2(1 − 𝑝)𝑘+𝑟−1(𝑛 − 𝑘 − 𝑟) ≤ 2𝑘 𝑝2𝑛(1 − 𝑝)𝑘−1 <
𝑘3𝑝2

𝑛
= 𝑜(1),

it follows that

𝐹 (𝑛, 𝑘, 𝑟 + 1)𝑛−𝑘−𝑟−1

𝐹 (𝑛, 𝑘, 𝑟)𝑛−𝑘−𝑟
= 1 + 𝑜(1), (10)

as desired.
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With this bound on the ratio 𝐹 (𝑛, 𝑘, 𝑟 + 1)𝑛−𝑘−𝑟−1/𝐹 (𝑛, 𝑘, 𝑟)𝑛−𝑘−𝑟 in hand and applying Equation
(4) as in Equation (9), we conclude that if 𝑟 = 𝑜(1/𝑝), then we have

𝐸 (𝑛, 𝑘, 𝑟 + 1)
𝐸 (𝑛, 𝑘, 𝑟) = (1 + 𝑜(1))

( 𝑛
𝑘+𝑟+1

)
(1 − 𝑝) (

𝑘+𝑟+1
2 )( 𝑛

𝑘+𝑟
)
(1 − 𝑝) (

𝑘+𝑟
2 )

(
(𝑘 + 𝑟 + 1) (𝑘 − 𝑟)𝑝

2(𝑟 + 1)

)

= (1 + 𝑜(1))
(
𝑘

𝑒2𝑛

) (
(𝑘 + 𝑟 + 1) (𝑘 − 𝑟)𝑝

2(𝑟 + 1)

)
(11)

= (1 + 𝑜(1)) 𝑘3𝑝

2𝑒2𝑛(𝑟 + 1)
(1 − 𝑟2/𝑘2). (12)

This calculation provides the desired estimate for 𝑟𝑧 .

Lemma 6.

𝑟𝑧 =

⌈
(1 + 𝑜(1)) 4 log(𝑛𝑝)3

𝑒2𝑛𝑝2 − 1
⌉
.

Proof. First, note that the form of Equation (12) suggests that 𝑟𝑀 (𝑘) should be roughly 𝑘3𝑝/𝑛 as this
is the regime in which the ratio is roughly one. Since 𝑘3𝑝/𝑛 = 𝑜(1/𝑝), the estimate given by Equation
(12) holds in the vicinity of 𝑟 = 𝑘3𝑝/𝑛. Furthermore, for 𝑟 = Ω(1/𝑝) the arguments above can be easily
adapted to show that 𝐸 (𝑛, 𝑘, 𝑟 + 1)/𝐸 (𝑛, 𝑘, 𝑟) is bounded above by the expression in Equation (12). It
follows that we have

𝑟 ≥ 𝑘3𝑝/(𝑒2𝑛) ⇒ 𝐸 (𝑛, 𝑘, 𝑟 + 1)
𝐸 (𝑛, 𝑘, 𝑟) < 1. (13)

Hence, we can conclude that

𝑟𝑀 (𝑘) ≤ 𝑘3𝑝

𝑒2𝑛
= 𝑂

(
log(𝑛𝑝)𝑘2

𝑛

)
. (14)

Note that if 𝑟 = 𝑂 (𝑘3𝑝/𝑛) then the (1− 𝑟2/𝑘2) term in Equation (12) is equal to 1 + 𝑜(1). We conclude
that we have

𝑟𝑀 (𝑘) =
⌈
𝑘3𝑝

2𝑒2𝑛
(1 + 𝑜(1)) − 1

⌉
. (15)

In light of Lemma 5, the proof is complete. �

We note in passing that Lemma 6 implies that 𝑟𝑧 becomes relevant at 𝑝 = Θ(log(𝑛)3/2/𝑛1/2), as
𝑟𝑧 = 0 for p larger than this regime. Furthermore, for all p that we contemplate in this section (i.e., for
𝑝 > 𝑛−2/3+𝜖 ) we have

𝑟𝑧 = 𝑜(𝑘1/2
𝑥 ). (16)

Finally, we turn to estimating 𝑘𝑧 . Note that we may assume 𝑝 = 𝑂 (log(𝑛)𝑛−1/2) as we have 𝑘𝑧 = 𝑘𝑥 for
larger p by Lemma 5. Note further that Equation (15) implies that 𝑟𝑀 (𝑘) = Ω(log(𝑛)) for 𝑘𝑧 ≤ 𝑘 ≤ 𝑘𝑥
for p in this regime. Recall that, appealing to Equation (6), we have

𝐸 (𝑛, 𝑘𝑥 , 0) = E[𝑋𝑘𝑥 ]𝑒
−(1+𝑜 (1)) 𝑝𝑘3

𝑥
𝑒2𝑛 .
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Next, observe that, since 𝐹 (𝑛, 𝑘 + 1, 𝑟) = 𝐹 (𝑛, 𝑘, 𝑟 + 1), we can easily adapt the argument that proves
Equation (10) to establish

𝐹 (𝑛, 𝑘 + 1, 𝑟)𝑛−𝑘−𝑟−1

𝐹 (𝑛, 𝑘, 𝑟)𝑛−𝑘−𝑟
= 1 + 𝑜(1)

for 𝑘𝑧 ≤ 𝑘 ≤ 𝑘𝑥 and 𝑟 = 𝑜(1/𝑝). So we can calculate the ratio over a change in k in the same way that
we established Equation (12). Thus, for 𝑘𝑧 ≤ 𝑘 ≤ 𝑘𝑥 and 𝑟 = 𝑜(1/𝑝) we have

𝐸 (𝑛, 𝑘 + 1, 𝑟)
𝐸 (𝑛, 𝑘, 𝑟) =

𝑘

𝑒2𝑛
(1 + 𝑜(1)). (17)

Using Equations (6), (17), (12) and (15), we write

𝐸 (𝑛, 𝑘, 𝑟𝑀 (𝑘)) = 𝐸 (𝑛, 𝑘𝑥 , 0)
𝑘𝑥−1∏
ℓ=𝑘

𝐸 (𝑛, ℓ, 0)
𝐸 (𝑛, ℓ + 1, 0)

𝑟𝑀 (𝑘)−1∏
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟 + 1)
𝐸 (𝑛, 𝑘, 𝑟)

= E[𝑋𝑘𝑥 ]𝑒
−(1+𝑜 (1)) 𝑝𝑘3

𝑥
𝑒2𝑛

(
𝑒2𝑛

𝑘
(1 + 𝑜(1))

) 𝑘𝑥−𝑘 (
(1 + 𝑜(1)) 𝑘

3𝑝

2𝑒2𝑛

)𝑟𝑀 (𝑘) 1
𝑟𝑀 (𝑘)!

= E[𝑋𝑘𝑥 ]𝑒
−(1+𝑜 (1)) 𝑝𝑘3

𝑥
2𝑒2𝑛

(
𝑒2𝑛

𝑘
(1 + 𝑜(1))

) 𝑘𝑥−𝑘
.

This estimate suffices to establish the following.

Lemma 7.

𝑛−2/3+𝜖 < 𝑝 � log(𝑛)𝑛−1/2 ⇒ 𝑘𝑥 − 𝑘𝑧 = (1 + 𝑜(1))
𝑘2
𝑥

𝑒2𝑛
= (1 + 𝑜(1)) 4 log(𝑛𝑝)2

𝑒2𝑝2𝑛

𝑝 = 𝐶 log(𝑛)𝑛−1/2 ⇒ 𝑘𝑥 − 𝑘𝑧 =

⌈
1

𝑒2𝐶2 −
2 log(E[𝑋𝑘𝑥 ])

log(𝑛) + 2𝜖 ± 𝑜(1)
⌉
.

Proof. First, note that for p in these ranges we have

log(𝑛/𝑘) = (1 + 𝑜(1)) log(𝑛𝑝) = (1 + 𝑜(1)) 𝑝𝑘
2
.

It follows that 𝑘𝑥 − 𝑘𝑧 is the smallest integer 𝜅 such that

logE[𝑋𝑘 ] − (1 + 𝑜(1))
𝑘3
𝑥 𝑝

2𝑒2𝑛
+ 𝜅(1 + 𝑜(1)) 𝑝𝑘𝑥

2
> 𝜖 log(𝑛).

If 𝑝 � log(𝑛)𝑛−1/2, then logE[𝑋𝑘 ] = 𝑂 (log(𝑛)) = 𝑜(𝑘3
𝑥 𝑝/𝑛) and the first part of the Lemma follows.

On the other hand, if 𝑝 = 𝐶 log(𝑛)𝑛−1/2, then 𝑘3
𝑥 𝑝/𝑛 = (1+𝑜(1)) log(𝑛)/𝐶2 and 𝑝𝑘𝑥 = log(𝑛) (1+𝑜(1))

and we recover the second part of the lemma. �

3.2. First moment

Here, we show that, with high probability, no augmented independent set of order k appears for any
𝑘𝑧 + 2 ≤ 𝑘 ≤ 𝑘𝑥 + 1. This is sufficient because we can simply consider the expected number of
independent sets of size 𝑘𝑥 + 2 to rule out the appearance of any larger independent set. We emphasize
that we are restricting our attention to k that satisfy Equation (3). We begin with a simple observation.
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Lemma 8. For all k that satisfy Equation (3), we have

𝑘∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟) ≤ 4
2𝑟𝑀 (𝑘)∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟).

Proof. We begin by noting that Equation (12) can be adapted to show

𝐸 (𝑛, 𝑘, 𝑟 + 1)
𝐸 (𝑛, 𝑘, 𝑟) ≤ (1 + 𝑜(1)) 𝑘3𝑝

2𝑒2𝑛(𝑟 + 1)
.

Now, we consider cases depending on the value of 𝑟𝑀 = 𝑟𝑀 (𝑘). First, note that if 𝑟𝑀 = 0 then we have
𝑘3𝑝/(2𝑒2𝑛) < 1 + 𝑜(1) and

𝑘∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟) ≤ (1 + 𝑜(1))𝐸 (𝑛, 𝑘, 0)
∞∑
𝑟=0

1
𝑟!

≤ 4𝐸 (𝑛, 𝑘, 0).

Now, suppose 𝑟𝑀 ≥ 1. Recalling Equation (15), note that if 𝑟 > 2𝑟𝑀 , then we have

𝐸 (𝑛, 𝑘, 𝑟 + 1)/𝐸 (𝑛, 𝑘, 𝑟) ≤ 2/3. (18)

So we have

𝑘∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟) =
2𝑟𝑀∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟) +
𝑘∑

𝑟=2𝑟𝑀+1
𝐸 (𝑛, 𝑘, 𝑟)

≤
(2𝑟𝑀∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟)
)
+ 3𝐸 (𝑛, 𝑘, 2𝑟𝑀 + 1) ≤

(2𝑟𝑀∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟)
)
+ 3𝐸 (𝑛, 𝑘, 2𝑟𝑀 ). �

Note that it follows from the proof of Lemma 8 that we have

𝐸 (𝑛, 𝑘 + 1, 𝑘 + 1) ≤ 2
3
𝐸 (𝑛, 𝑘 + 1, 𝑘).

Applying this observation together with Lemma 8 and Equation (17), we have

𝑘+1∑
𝑟=0

𝐸 (𝑛, 𝑘 + 1, 𝑟) < 5
3

𝑘∑
𝑟=0

𝐸 (𝑛, 𝑘 + 1, 𝑟)

<
20
3

2𝑟𝑀 (𝑘+1)∑
𝑟=0

𝐸 (𝑛, 𝑘 + 1, 𝑟)

<
𝑘

𝑛

2𝑟𝑀 (𝑘+1)∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟)

<
𝑘

𝑛

𝑘∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟).
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Therefore, by Lemma 8 and Equation (14), we have

𝑘𝑥+1∑
𝑘=𝑘𝑧+2

(
𝑘∑
𝑟=0

𝐸 (𝑛, 𝑘, 𝑟)
)
<

2𝑘𝑧
𝑛

𝑘𝑧+1∑
𝑟=0

𝐸 (𝑛, 𝑘𝑧 + 1, 𝑟)

≤ 8𝑘𝑧
𝑛

2𝑟𝑀 (𝑘𝑧+1)∑
𝑟=0

𝐸 (𝑛, 𝑘𝑧 + 1, 𝑟)

≤
(

8𝑘𝑧
𝑛

) (3𝑘3
𝑧 𝑝

𝑒2𝑛

)
𝐸 (𝑛, 𝑘𝑧 + 1, 𝑟𝑀 (𝑘𝑧 + 1))

≤
(

8𝑘𝑧
𝑛

) (3𝑘3
𝑧 𝑝

𝑒2𝑛

)
𝑛𝜖

= 𝑂 (log(𝑛)4𝑛−2𝜖 ).

Hence, whp no augmented independent set of order k for any 𝑘 ≥ 𝑘𝑧 + 2 appears and by Lemma 4,
we have 𝛼(𝐺) ≤ 𝑘𝑧 + 1 whp.

3.3. Second moment method applied to Z

Here, we prove by the second moment method that an augmented independent set of order 𝑘𝑧 appears
with high probability; more specifically, we prove that such a set with 𝑘𝑧 + 𝑟𝑧 vertices and 𝑟𝑧 = 𝑟𝑀 (𝑘𝑧)
internal edges appears whp. For convenience we let

𝑘 = 𝑘𝑧 , 𝑟 = 𝑟𝑧 = 𝑟𝑀 (𝑘𝑧), and �̃� = 𝑘 + 𝑟

throughout the rest of this subsection. Recall that the random variable Z counts the number of augmented
independent sets of order k with r edges, and by the definition of 𝑟𝑀 and Z we have

E(𝑍) > 𝑛𝜖 ,

and our goal is to show that 𝑍 > 0 whp.
We now break up Z into a sum of indicator random variables. Let S be the collection of all pairs

(𝑆, 𝑚𝑆), where S is a set of �̃� vertices and 𝑚𝑆 is a matching consisting of r edges all of which are
contained in S. Note that

|S| =
(
𝑛

�̃�

)
�̃�!(

�̃� − 2𝑟
)
!2𝑟𝑟!

.

For each pair (𝑆, 𝑚𝑆) ∈ S, let 𝑍𝑆,𝑚𝑆 be the indicator random variable for the event that S is an augmented
independent set with matching 𝑚𝑆 . We have

Var(𝑍) ≤
∑

(𝑆,𝑚𝑆 ) ∈S
Var(𝑍𝑆,𝑚𝑆 ) +

∑
𝑆≠𝑇

Cov(𝑍𝑆,𝑚𝑆 , 𝑍𝑇 ,𝑚𝑇 )

≤ E(𝑍) +
∑
𝑆≠𝑇

E(𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 ) − E(𝑍𝑆,𝑚𝑆 )E(𝑍𝑇 ,𝑚𝑇 ),
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where here and throughout this section such summations are over all (𝑆, 𝑚𝑆), (𝑇, 𝑚𝑇 ) ∈ S that have the
specified S and/or T. Note that we are making use of the full covariance; we will see below that this is
necessary to handle sets 𝑆, 𝑇 such that |𝑆 ∩ 𝑇 | is roughly 𝑘2/𝑛. Next, let

ℎ𝑖 :=
1

E(𝑍)2

∑
|𝑆∩𝑇 |=𝑖

E(𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 ) − E(𝑍𝑆,𝑚𝑆 )E(𝑍𝑇 ,𝑚𝑇 ) (19)

=

(
1
|S|

)2 ∑
|𝑆∩𝑇 |=𝑖

(
E(𝑍𝑇 ,𝑚𝑇 |𝑍𝑆,𝑚𝑆 = 1)

E(𝑍𝑆,𝑚𝑆 )
− 1

)
. (20)

Applying the second moment method, we have P(𝑍 = 0) ≤ Var[𝑍]/E[𝑍]2. Thus, our goal is to show

�̃�−1∑
𝑖=0

ℎ𝑖 = 𝑜(1).

We emphasize that E(𝑍) can be significantly different from E(𝑋) here. We consider three ranges of i to
establish the desired bounds on

∑
ℎ𝑖 .

3.3.1. Case 1: 𝑖 < 1
log(𝑛) 𝑝 .

Fix a pair (𝑆, 𝑚𝑆) ∈ S, and define E to be the event that 𝑍𝑆,𝑚𝑆 = 1. In other words, E is the event that S
gives an augmented independent set with the prescribed matching 𝑚𝑆 . Let E𝑇 be the event 𝑍𝑇 ,𝑚𝑇 = 1.
Recalling Equation (20), we seek to bound

ℎ𝑖 =
1
|S|

∑
𝑇 : |𝑆∩𝑇 |=𝑖

(
P(E𝑇 | E)
P(E) − 1

)
. (21)

Now, for ℓ = 0, . . . , 𝑟 let Sℓ be the collection of pairs (𝑇, 𝑚𝑇 ) ∈ S with the property that 𝑚𝑆 and 𝑚𝑇

have exactly ℓ edges in common. Define

𝐵 =

⌈
1√

𝑝 ln(𝑛)

⌉
,

and, for 𝐵 < 𝑖 < 𝐵2, let S𝑖,ℓ be the collection of pairs (𝑇, 𝑚𝑇 ) ∈ Sℓ such that |𝑇∩𝑆 | = 𝑖. Finally, let S′ℓ be
the collection of pairs (𝑇, 𝑚𝑇 ) ∈ Sℓ with the additional property that |𝑇 ∩ 𝑆 | ≤ 𝐵. We make two claims.

Lemma 9. If (𝑇, 𝑚𝑇 ) ∈ S𝑖,ℓ and 𝑖 < 1
log(𝑛) 𝑝 then

P(E𝑇 | E) ≤ 𝑒𝑂 (𝑘3 𝑝2𝑖/𝑛)+𝑜 (1) P(E)
𝑝ℓ (1 − 𝑝) (

𝑖
2)
.

Proof. In order to discuss the conditioning on the event E , we need to define an additional parameter.
Let w be the number of edges in 𝑚𝑇 that have exactly one vertex in 𝑆 ∩ 𝑇 and let W be the vertices in
𝑇 \ 𝑆 that are included in such edges. To be precise, we define

𝑊 = {𝑣 ∈ 𝑇 \ 𝑆 : ∃ 𝑢 ∈ 𝑆 ∩ 𝑇 such that 𝑢𝑣 ∈ 𝑚𝑇 }.

For each vertex 𝑣 ∈ 𝑊 , let 𝑣𝑣′ be the edge of 𝑚𝑇 that contains v.
We condition as follows. First, we simply condition on all pairs within S appearing as edges and

nonedges as required for the event E . But we proceed more carefully for vertices v that are not in S.
For such vertices, we must reveal information about the neighbors of v in S. We do this by observing
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whether or not the potential edges of the form 𝑣𝑢, where 𝑢 ∈ 𝑆 actually are edges one at a time, starting
with potential neighbors 𝑢 ∈ 𝑆 \𝑇 , and stopping as soon as we observe at least two such neighbors. For
vertices 𝑣 ∈ 𝑊 , we add the restriction that the edge 𝑣𝑣′ ∈ 𝑚𝑇 is the last edge observed in this process.
So, for a vertex 𝑣 ∈ 𝑇 \ 𝑆, this process either observes two edges between v and 𝑆 \ 𝑇 – and therefore
observes no potential edges between v and 𝑆 ∩ 𝑇 – or the process observes at most one edge between
v and 𝑆 \ 𝑇 and therefore observes edges between v and 𝑆 ∩ 𝑇 and reveals that at least one such edge
appears. In this latter case, the conditional probability of E𝑇 is zero unless this vertex v is in W and the
observed edge is 𝑣𝑣′.

For each set𝑈 ⊂ 𝑇 \𝑆, we define F𝑈 to be the event that E holds and U is the set of vertices 𝑣 ∈ 𝑇 \𝑆
with the property that our process reveals edges between 𝑣 and 𝑆 ∩ 𝑇 . Note that we have

E =
∨

𝑈 ⊆𝑇 \𝑆
F𝑈

and

𝑈 � 𝑊 ⇒ P(E𝑇 ∧ F𝑈 ) = 0.

Next, let 𝐼 = 𝑆 ∩ 𝑇 , and define I to be the event that the process detailed above resorts to revealing
potential edges between v and I for more than log2(𝑛)𝑘 vertices 𝑣 ∉ 𝑆. Note that the probability that a
particular vertex 𝑣 ∉ 𝑆 resorts to observing potential edges to I is

1 − 1 − ((1 − 𝑝) �̃�−𝑖 + 𝑝( �̃� − 𝑖) (1 − 𝑝) �̃�−𝑖−1)
1 − (1 − 𝑝) �̃� − 𝑝�̃� (1 − 𝑝) �̃�−1

= 𝑂

(
log(𝑛)𝑘2

𝑛2

)
.

Thus, the expected number of vertices that observe edges to 𝐼 is 𝑂 (log(𝑛)2𝑘2/𝑛) = 𝑜(𝑘). As these
events are independent, the Chernoff bound (see Corollary 21.9 in [10]) then implies

P(I) ≤ exp{− log2(𝑛)𝑘}. (22)

Now, we are ready to put everything together. Applying the law of total probability, we have

P(E𝑇 | E) =
∑

𝑈 ⊆𝑇 \𝑆

(
P(E𝑇 | F𝑈 ∧ I) · P(F𝑈 ∧ I)

P(E) + P(E𝑇 | F𝑈 ∧ I) · P(F𝑈 ∧ I)
P(E)

)

≤ P(I)
P(E) +

∑
𝑈 ⊆𝑇 \𝑆

P(E𝑇 | F𝑈 ∧ I) · P(F𝑈 )
P(E)

=
P(I)
P(E) +

∑
𝑈 ⊆𝑊

P(E𝑇 | F𝑈 ∧ I) · P(F𝑈 )
P(E) .

Now, observe that we have

P(F𝑈 )
P(E) ≤

(
(1 − 𝑝) �̃�−𝑖 + 𝑝( �̃� − 𝑖) (1 − 𝑝) �̃�−𝑖−1

1 − (1 − 𝑝) �̃� − 𝑝�̃� (1 − 𝑝) �̃�−1

) |𝑈 |

=

[
(1 + 𝑜(1)) 𝑝𝑘

3

𝑒2𝑛2

] |𝑈 |
,
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and if 𝑈 ⊆ 𝑊 , then we have

P(E𝑇 | F𝑈 ∧ I) ≤
(

1
𝑖

) |𝑈 |
(1 − 𝑝) (

�̃�
2)−( 𝑖2)−𝑖 |𝑈 |−(𝑟−|𝑈 |−ℓ) 𝑝𝑟−|𝑈 |−ℓ

·
(
1 − (1 − 𝑝) �̃� − �̃� 𝑝(1 − 𝑝) �̃�−1

)𝑛−2�̃�+𝑖−log(𝑛)2𝑘

≤ P(E)
𝑝ℓ (1 − 𝑝)𝑖2/2

(
1
𝑖𝑝

) |𝑈 |
exp{𝑝 · 2𝑖𝑟} exp

{
𝑂

(
𝑘3𝑝

𝑛2

(
�̃� + log(𝑛)2𝑘

))}

≤ (1 + 𝑜(1)) P(E)
𝑝ℓ (1 − 𝑝)𝑖2/2

(
1
𝑖𝑝

) |𝑈 |
exp{𝑝 · 2𝑖𝑟},

where we use |𝑈 | ≤ min{𝑖, 𝑟} and 𝑘4𝑝 < 𝑛2−2𝜖 . Thus,

∑
𝑈 ⊆𝑊

P(E𝑇 | F𝑈 ∧ I) · P(F𝑈 )
P(E)

≤ (1 + 𝑜(1))𝑒𝑂 (𝑘3𝑝2𝑖/𝑛)P(E)
𝑝ℓ (1 − 𝑝)𝑖2/2

𝑤∑
𝑢=0

(
𝑤

𝑢

) [
(1 + 𝑜(1)) 𝑘3

𝑒2𝑖𝑛2

]𝑢
=

(1 + 𝑜(1))𝑒𝑂 (𝑘3 𝑝2𝑖/𝑛)P(E)
𝑝ℓ (1 − 𝑝)𝑖2/2

,

where we use 𝑤 ≤ 𝑖 to bound the sum. We finally note that we have

P(I)
P(E)2 ≤ exp{− log2 (𝑛)𝑘 +𝑂 (log(𝑛)𝑘)} = exp{−Ω

(
log2(𝑛)𝑘

)
} = 𝑜(1).

And the proof of the lemma is complete. �

Lemma 10. For ℓ = 1, . . . , 𝑟 , we have

|Sℓ | ≤ |S|
(

3𝑟2

𝑛2

)ℓ
.

Furthermore, we have

|Sℓ,𝑖 | ≤ |S|
(

3𝑟2𝑖2

�̃�4

)ℓ (
𝑒�̃�2

𝑛𝑖

) 𝑖
.

Proof. We have

|Sℓ | ≤
(
𝑟

ℓ

) (
𝑛 − 2ℓ
�̃� − 2ℓ

)
( �̃� − 2ℓ)!

( �̃� − 2𝑟)!2𝑟−ℓ (𝑟 − ℓ)!
.

Thus,

|Sℓ |
|S| ≤

(
𝑟

ℓ

)
�̃� ( �̃� − 1) · · · ( �̃� − 2ℓ + 1)
𝑛(𝑛 − 1) · · · (𝑛 − 2ℓ + 1) · 2ℓ · 𝑟 (𝑟 − 1) · · · (𝑟 − ℓ + 1)

�̃� ( �̃� − 1) · ( �̃� − 2ℓ + 1)
≤

(
3𝑟2

𝑛2

)ℓ
.

The calculation for the second part of the lemma is similar.

|Sℓ,𝑖 | ≤
(
𝑟

ℓ

) (
�̃� − 2ℓ
𝑖 − 2ℓ

) (
𝑛 − �̃�

�̃� − 𝑖

)
( �̃� − 2ℓ)!

( �̃� − 2𝑟)!2𝑟−ℓ (𝑟 − ℓ)!
.
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Thus,

|Sℓ,𝑖 |
|S| ≤

(𝑟
ℓ

) (�̃�−2ℓ
𝑖−2ℓ

) (𝑛−�̃�
�̃�−𝑖

) (�̃�
𝑖

)(𝑛
𝑖

) (𝑛−𝑖
�̃�−𝑖

) · 2ℓ · 𝑟 (𝑟 − 1) · · · (𝑟 − ℓ + 1)
�̃� ( �̃� − 1) · ( �̃� − 2ℓ + 1)

≤
(
𝑟

ℓ

) (
𝑒�̃�2

𝑛𝑖

) 𝑖 (
𝑖

�̃�

)2ℓ
· 2ℓ · 𝑟 (𝑟 − 1) · · · (𝑟 − ℓ + 1)

�̃� ( �̃� − 1) · ( �̃� − 2ℓ + 1)

≤
(

3𝑟2𝑖2

�̃�4

)ℓ (
𝑒�̃�2

𝑛𝑖

) 𝑖
. �

We are now ready to show that
∑1/(𝑝 log(𝑛))
𝑖=0 ℎ𝑖 = 𝑜(1) using Lemmas 9 and 10. We will split this into

two subranges.

Subcase 1.1: 𝑖 ≤ 𝐵.

In this case, by Lemma 9 we have P(E𝑇 | E) ≤ (1 + 𝑜(1)) P(E)
𝑝ℓ

, hence

𝐵∑
𝑖=0

ℎ𝑖 =
1
|S|

𝑟∑
ℓ=0

∑
(𝑇 ,𝑚𝑇 ) ∈S′

ℓ

(
P(E𝑇 | E)
P(E) − 1

)

=
𝑜(|S′0 |)
|S| +

𝑟∑
ℓ=1

(
4𝑟2

𝑝𝑛2

)ℓ

≤ 𝑜(1) +
𝑟∑
ℓ=1

(
1

𝑛2/3

)ℓ
= 𝑜(1).

Subcase 1.2: 𝐵 < 𝑖 < 𝐵2.

Here, we have

ℎ𝑖 =
1
|S|

𝑟∑
ℓ=0

∑
(𝑇 ,𝑚𝑇 ) ∈Sℓ,𝑖

(
P(E𝑇 | E)
P(E) − 1

)

≤
𝑟∑
ℓ=0

(
|Sℓ,𝑖 |
|S|

)
𝑒𝑂 (𝑘3 𝑝2𝑖/𝑛)+𝑜 (1)

𝑝ℓ (1 − 𝑝) (
𝑖
2)

≤
𝑟∑
ℓ=0

(
3𝑟2𝑖2

�̃�4

)ℓ (
𝑒�̃�2

𝑛𝑖

) 𝑖 ( 2𝑒𝑂 (𝑘3 𝑝2𝑖/𝑛)

𝑝ℓ (1 − 𝑝) (
𝑖
2)

)

≤
(

𝑒2 �̃�2

𝑛𝑖(1 − 𝑝)𝑖/2

) 𝑖 𝑟∑
ℓ=0

(
3𝑟2

�̃�2𝑝

)ℓ

≤
(
𝑒3 �̃�2𝑝1/2 ln(𝑛)1/2

𝑛

) 𝑖 𝑟∑
ℓ=0

(
3𝑟2

�̃�2𝑝

)ℓ
.

Since 𝑟2

𝑘2 𝑝
= 𝑂

(
𝑘4 𝑝
𝑛2

)
= 𝑜(1) and �̃�2 𝑝1/2 log(𝑛)1/2

𝑛 = 𝑜(1), we have

𝐵2∑
𝑖=𝐵

ℎ𝑖 = 𝑜(1).
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3.3.2. Case 2: 1
log(𝑛) 𝑝 ≤ 𝑖 < (1 − 𝜖) �̃� .

In this case, we can afford to be lenient with our bounds; in particular, we do not need to make
use of the condition that vertices outside S have at least two neighbors in S. We begin by bounding

1
E(𝑍𝑆,𝑚𝑆

)
∑
𝑚𝑆 ,𝑚𝑇

E(𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 ) for a fixed pair of sets 𝑆, 𝑇 such that |𝑆∩𝑇 | = 𝑖. If there are ℓ edges in
the intersection, a bound for the number of ways to choose 𝑚𝑆 and 𝑚𝑇 is �̃�4𝑟−2ℓ (we have 2𝑟 − ℓ edges
total; each has less than �̃�2 choices.) Thus, we have

∑
𝑚𝑆 ,𝑚𝑇

E(𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 ) ≤
𝑟∑
ℓ=0

�̃�4𝑟−2ℓ 𝑝2𝑟−ℓ (1 − 𝑝)2( �̃�2)−( 𝑖2)−2𝑟+ℓ

= �̃�4𝑟 𝑝2𝑟 (1 − 𝑝)2( �̃�2)−( 𝑖2)−2𝑟
𝑟∑
ℓ=0

(
1 − 𝑝

�̃�2𝑝

)ℓ
= (1 + 𝑜(1)) �̃�4𝑟 𝑝2𝑟 (1 − 𝑝)2( �̃�2)−( 𝑖2)−2𝑟 .

Recalling Equation (6), we have

∑
𝑚𝑆 ,𝑚𝑇

E(𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 )
E(𝑍𝑆,𝑚𝑆 )2 ≤ (1 + 𝑜(1)) �̃�4𝑟 (1 − 𝑝)−(

𝑖
2)𝑒 (2+𝑜 (1))

𝑝𝑘3

𝑒2𝑛

≤ (1 − 𝑝)−(
𝑖
2)𝑒𝑂 (log(𝑛)𝑟+1) .

It follows that

ℎ𝑖 ≤
(�̃�
𝑖

) (𝑛−�̃�
�̃�−𝑖

)(𝑛
�̃�

) (1 − 𝑝)−(
𝑖
2)𝑒𝑂 (log(𝑛)𝑟+1)

≤
(
𝑒�̃�

𝑖

) 𝑖 (
�̃�

𝑛

) 𝑖
(1 − 𝑝)−(

𝑖
2)𝑒𝑂 (log(𝑛)𝑟+1)

≤
[
𝑒�̃�2

𝑖𝑛

(
(1 − 𝑝)−�̃�/2

) 𝑖/�̃� ] 𝑖
𝑒𝑂 (log(𝑛)𝑟+1)

≤
[
𝑒2 log(𝑛)𝑝�̃�2

𝑛

(
𝑛𝑒

�̃�

)1−𝜖
] 𝑖
𝑒𝑂 (log(𝑛)𝑟+1)

≤
[
𝑒3−𝜖 log(𝑛)𝑝�̃�1+𝜖

𝑛𝜖

] 𝑖
𝑒𝑂 (log(𝑛)𝑟+1) .

As 𝑟 = 𝑜(𝑘1/2) = 𝑜(𝑖), we have

(1−𝜖 ) �̃�∑
𝑖=1/(𝑝 log(𝑛))

ℎ𝑖 = 𝑜(1).

3.3.3. Case 3: 𝑖 ≥ (1 − 𝜖) �̃�
We calculate ℎ𝑖 as defined in Equation (19). For simplicity, let 𝑗 = �̃� − 𝑖. For some fixed i (hence j),
there are

(𝑛
�̃�

) (𝑛−�̃�
𝑗

) (�̃�
𝑗

)
ways to choose S and T. Now, fix sets S and T.

We now consider the number of ways to choose the matchings 𝑚𝑆 and 𝑚𝑇 that are compatible with
the event {𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 = 1}. Let 𝑅𝐼 be the set of matching edges contained in 𝑆 ∩𝑇 , and let 𝑟𝐼 := |𝑅𝐼 |
(so 𝑟𝐼 is the same as ℓ from Cases 1 and 2). Secondly, let 𝑅𝑂 be the set of edges in 𝑚𝑆 that are not in
𝑅𝐼 , and let 𝑅′

𝑂 be the set of edges of 𝑚𝑇 that are not in 𝑅𝐼 , and define 𝑟𝑂 := |𝑅𝑂 | = |𝑅′
𝑂 | (‘I’ stands

for ‘inner’, and ‘O’ stands for ‘outer’). Hence, 𝑟 = 𝑟𝑂 + 𝑟𝐼 . Finally, let 𝑅𝑆 be the matching edges in 𝑅𝑂
which are contained completely in 𝑆 \ 𝑇 , and let 𝑟𝑆 = |𝑅𝑆 |. See Figure 1.
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S T

RO R′
ORIRS

Figure 1. A depiction of the edges appearing in intersecting augmented independent sets.

We now count the number of ways to choose edges in 𝑅𝑂 if 𝑟𝑂 is fixed. To do this, we first note that
if 𝑟𝑆 is also fixed, then the number of ways to choose the edges that comprise 𝑅𝑆 is

𝑗!
( 𝑗 − 2𝑟𝑆)!𝑟𝑆!2𝑟𝑆

.

Then the number of ways to choose the rest of the rest of the edges in 𝑅𝑂 is(
( 𝑗 − 2𝑟𝑆)!

( 𝑗 − 𝑟𝑆 − 𝑟𝑂)!

) (
( �̃� − 𝑗)!

( �̃� − 𝑗 − (𝑟𝑂 − 𝑟𝑆))!

) (
1

(𝑟𝑂 − 𝑟𝑆)!

)
;

therefore, the total number of ways to choose 𝑅𝑂 is

∑
𝑟𝑆

1
2𝑟𝑆

(
𝑗!

𝑟𝑆!(𝑟𝑂 − 𝑟𝑆)!

) (
( �̃� − 𝑗)!

( �̃� − 𝑗 − (𝑟𝑂 − 𝑟𝑆))!( 𝑗 − 𝑟𝑆 − 𝑟𝑂)!

)

≤
∑
𝑟𝑆

(
𝑗!

𝑟𝑆!(𝑟𝑂 − 𝑟𝑆)!

) (
( �̃� − 𝑗)𝑟𝑂−𝑟𝑆

( 𝑗 − 𝑟𝑆 − 𝑟𝑂)!

)

≤ ( �̃� − 𝑗)𝑟𝑂
∑
𝑟𝑆

𝑗!
𝑟𝑆!(𝑟𝑂 − 𝑟𝑆)!( 𝑗 − 𝑟𝑂)!

≤ 3 𝑗 �̃�𝑟𝑂 . (23)

By a symmetric argument, Equation (23) is an upper bound for the number of ways to choose the edges
in 𝑅′

𝑂 as well.
Next, note that the number of ways to choose edges in 𝑅𝐼 is bounded by �̃�2𝑟𝐼 /(2𝑟𝐼 𝑟𝐼 !). Putting these

together, the number of ways to choose 𝑚𝑆 and 𝑚𝑇 is at most

9 𝑗 �̃�2𝑟

2𝑟𝐼 𝑟𝐼 !
≤ 9 𝑗 �̃�2𝑟 (2𝑟)𝑟𝑂

2𝑟𝑟!
(24)

(assuming that 𝑟𝑟𝑂 = 1 if 𝑟 = 𝑟𝑂 = 0).

https://doi.org/10.1017/fms.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.6


Forum of Mathematics, Sigma 17

Now, we estimate the probability of the event {𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 = 1}. The probability the edges within
S and within T are chosen accordingly is

𝑝𝑟+𝑟𝑂 (1 − 𝑝) (
�̃�
2)+( �̃�− 𝑗) 𝑗+( 𝑗2)−𝑟−𝑟𝑂 .

Now, consider pairs of vertices from 𝑆\𝑇 to 𝑇\𝑆. Recall that a vertex 𝑣 ∈ 𝑆 \𝑇 has at least two neighbors
in T. So, if 𝑣 is already incident with an edge that goes into T among the edges already specified, then
there is at least one edge from v to 𝑇\𝑆 (since each from 𝑆\𝑇 can send at most one edge to 𝑆 ∩𝑇). Such
an edge appears with probability 1 − (1 − 𝑝) 𝑗 ≤ 𝑗 𝑝. If a vertex 𝑣 ∈ 𝑆\𝑇 is not in an edge of 𝑚𝑆 that
intersects 𝑆 ∩ 𝑇 , then v is incident with at least two edges going to 𝑇\𝑆. The probability of these two
edges appearing is at most 𝑗2𝑝2 by the union bound. Since the number of vertices in the first category
is at most 𝑟𝑂, the total probability of all edges between 𝑆\𝑇 and 𝑇\𝑆 being chosen accordingly is at
most ( 𝑗 𝑝)2 𝑗−𝑟𝑂 . Hence, the probability that the edges within 𝑆 ∪𝑇 appear in accordance with the event
{𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 = 1} is at most

𝑝𝑟+𝑟𝑂 (1 − 𝑝) (
�̃�
2)+( �̃�− 𝑗) 𝑗+( 𝑗2)−𝑟−𝑟𝑂 ( 𝑗 𝑝)2 𝑗−𝑟𝑂 .

Finally, the probability that all vertices outside 𝑆 ∪ 𝑇 have at least two neighbors in S is at most
(1 − (1 − 𝑝) �̃� − �̃� 𝑝(1 − 𝑝) �̃�−1)𝑛−2�̃� . Note that, since

(1 − (1 − 𝑝) �̃� − �̃� 𝑝(1 − 𝑝) �̃�−1)−�̃� ≤ exp{(1 + 𝑜(1))𝑘2𝑝(1 − 𝑝)𝑘 }
= exp{(1 + 𝑜(1))𝑘4𝑝/(𝑒2𝑛2)}
= 1 + 𝑜(1),

we have

P(𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 = 1) ≤ (1 + 𝑜(1))P(𝑍𝑆,𝑚𝑆 = 1)𝑝𝑟𝑂 (1 − 𝑝) ( �̃�− 𝑗) 𝑗+(
𝑗
2)−𝑟𝑂 ( 𝑗 𝑝)2 𝑗−𝑟𝑂 .

Multiplying this probability estimate by the estimate for the number of choices for 𝑚𝑆 and 𝑚𝑇 given
by Equation (24) and summing over 𝑟𝑂, we see that for a fixed S and T we have

1
P(𝑍𝑆,𝑚𝑆 = 1)

∑
𝑚𝑆 ,𝑚𝑇

P
(
𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 = 1

)
is at most

(1 + 𝑜(1))
min{𝑟 , 𝑗 }∑
𝑟𝑂=0

9 𝑗 �̃�2𝑟 (2𝑟)𝑟𝑂
2𝑟𝑟!

𝑝𝑟𝑂 (1 − 𝑝) ( �̃�− 𝑗) 𝑗+(
𝑗
2)−𝑟𝑂 ( 𝑗 𝑝)2 𝑗−𝑟𝑂

= (1 + 𝑜(1)) �̃�
2𝑟

2𝑟𝑟!

(
9𝑝2 𝑗2(1 − 𝑝) �̃�−( 𝑗+1)/2

) 𝑗 min{𝑟 , 𝑗 }∑
𝑟𝑂=0

(
2𝑟

𝑗 (1 − 𝑝)

)𝑟𝑂
≤ (1 + 𝑜(1)) �̃�

2𝑟

2𝑟𝑟!

(
9𝑝2 𝑗2(1 − 𝑝) �̃�−( 𝑗+1)/2

) 𝑗
max{1, 2(3𝑟) 𝑗 }

≤ (2 + 𝑜(1)) �̃�
2𝑟

2𝑟𝑟!

(
30𝑝2 𝑗2(1 − 𝑝) �̃�− 𝑗/2 max{1, 𝑟}

) 𝑗
≤ (3 + 𝑜(1)) �̃�!

( �̃� − 2𝑟)!2𝑟𝑟!

(
30𝑝2 𝑗2(1 − 𝑝) �̃�− 𝑗/2 max{1, 𝑟}

) 𝑗
,
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where we use 𝑟 = 𝑜(𝑘1/2) in the last step (and assume 𝑟𝑟𝑂 = 1 if 𝑟 = 𝑟𝑂 = 0). Recalling that
|S| =

(𝑛
�̃�

)
�̃�!

( �̃�−2𝑟 )!2𝑟𝑟 ! and that the number of choices for the pair of sets 𝑆, 𝑇 is
(𝑛
�̃�

) (𝑛−�̃�
𝑗

) (�̃�
𝑗

)
, we have

ℎ𝑖E(𝑍) ≤
1

|S|P(𝑍𝑆,𝑚𝑆 = 1)
∑

|𝑆∩𝑇 |=𝑖

∑
𝑚𝑆 ,𝑚𝑇

P(𝑍𝑆,𝑚𝑆𝑍𝑇 ,𝑚𝑇 = 1)

≤ (3 + 𝑜(1))
(
𝑛 − �̃�

𝑗

) (
�̃�

𝑗

) (
30𝑝2 𝑗2(1 − 𝑝) �̃�− 𝑗/2 max{1, 𝑟}

) 𝑗
≤ (3 + 𝑜(1))

(
𝑛�̃�𝑒2

𝑗2

) 𝑗 (
30𝑝2 𝑗2(1 − 𝑝) �̃�− 𝑗/2 max{1, 𝑟}

) 𝑗
= (3 + 𝑜(1))

(
30𝑒2𝑛�̃� 𝑝2 (1 − 𝑝) �̃�− 𝑗/2 max{1, 𝑟}

) 𝑗
≤ (3 + 𝑜(1))

(
31𝑒𝜖 �̃�3−𝜖 𝑝2𝑛−1+𝜖 max{1, 𝑟}

) 𝑗
.

As 𝑟 = 𝑜(𝑘1/2) and 𝑘 = 𝑂 (log(𝑛)𝑛2/3−𝜖 ), we have
∑�̃�−1
𝑖=(1−𝜖 ) �̃� ℎ𝑖 = 𝑜(1), as desired.

4. Weak anti-concentration of 𝛼(𝐺𝑛,𝑝) for 𝑛−1 < 𝑝 < 𝑛−2/3

In this section, we present the argument of Sah and Sawhney that shows that two-point concentration
of the independence number does not extend to 𝑝 = 𝑛𝛾 if 𝛾 ≤ −2/3; that is, we prove Theorem 2.
We note in passing that this proof is similar to an argument that appears in [2] (see the last item
in the ‘concluding remarks and open problems’ section of [2]). Throughout this section, we assume
𝜔(1/𝑛) < 𝑝 < (log(𝑛)/𝑛)2/3. Recall Theorem 2:

Theorem 2 (Sah and Sawhney [18]). Let 𝑝 = 𝑝(𝑛) satisfy 𝜔(1/𝑛) < 𝑝 < (log(𝑛)/(12𝑛))2/3, and set

ℓ = 𝑛−1𝑝−3/2 log(𝑛𝑝)/2.

Then there exists 𝑞 = 𝑞(𝑛) such that 𝑝 ≤ 𝑞 ≤ 2𝑝 such that 𝛼(𝐺𝑛,𝑞) is not concentrated on ℓ values.

For p in the specified range, we define

𝑝′ = 𝑝 + 𝑛−1√𝑝.

We first observe that this choice of 𝑝′ is close enough to p to ensure that there is no ‘separation’ of
the intervals over which 𝐺𝑛,𝑝 and 𝐺𝑛,𝑝′ are respectively concentrated. To be precise, we establish the
following:

Lemma 11. If 𝜔(𝑛−1) < 𝑝 < 𝑜(1), then there is a sequence 𝑘 = 𝑘 (𝑛) such that

P[𝛼(𝐺𝑛,𝑝) ≤ 𝑘] > 1
20

and P[𝛼(𝐺𝑛,𝑝′ ) ≥ 𝑘] > 1
20

for n sufficiently large.

Proof. First, observe that, since the distributions of 𝑒(𝐺𝑛,𝑝) and 𝑒
(
𝐺𝑛,𝑝′

)
are approximately Gaussian

with equal variances and with means that are 1/
√

2 standard deviations apart, there is some value 𝑚
such that

P[𝑒(𝐺𝑛,𝑝) > 𝑚] > 1
10

and P[𝑒(𝐺𝑛,𝑝′ ) < 𝑚] > 1
10

.

Now let k be the median value of 𝛼(𝐺𝑛,𝑚). As the addition of edges does not increase the independence
number, the lemma follows. �
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Now, we prove Theorem 2. Assume for the sake of contradiction that if n is sufficiently large and
𝑝 ≤ 𝑞 ≤ 2𝑝, then there is an interval I such that |𝐼 | ≤ ℓ and

P[𝛼(𝐺𝑛,𝑞) ∈ 𝐼] > 49
50

.

Consider the sequence 𝑝0, 𝑝1, 𝑝2, . . . , where 𝑝0 = 𝑝 and 𝑝𝑖+1 = 𝑝′𝑖 for 𝑖 ≥ 0, and let z be the lowest
integer such that 𝑝𝑧 ≥ 2𝑝; it is easy to see that 𝑧 ≤ 𝑛

√
𝑝. Let 𝐼0 = [𝑎0, 𝑏0], 𝐼1 = [𝑎1, 𝑏1], . . . , 𝐼𝑧−1 =

[𝑎𝑧−1, 𝑏𝑧−1] be intervals of ℓ values such that 𝛼(𝐺𝑛,𝑝𝑖 ) lies in 𝐼𝑖 with probability at least 49/50 for each
i. By Lemma 11, we have 𝑎𝑖 ≤ 𝑏𝑖+1 for all 𝑖 < 𝑧. This implies 𝑏𝑖+1 ≥ 𝑏𝑖 − ℓ. Iterating this observation
gives

𝑏𝑧 ≥ 𝑏0 − 𝑧ℓ ≥ 𝑏0 −
log 𝑛𝑝

2𝑝
.

On the other hand, by Equation (1), we have

𝑏0 − 𝑏𝑧 = (1 + 𝑜(1)) 2 log(𝑛𝑝)
𝑝

− (1 + 𝑜(1)) 2 log(2𝑛𝑝)
2𝑝

= (1 + 𝑜(1)) log(𝑛𝑝)
𝑝

.

This is a contradiction.

5. Anti-concentration of 𝛼(𝐺𝑛,𝑝) for 𝑝 = 𝑐/𝑛

In this section, we establish anti-concentration of the independence number of 𝐺𝑛,𝑝 for 𝑝 = 𝑐/𝑛, where
c is a constant. We note in passing that for very small 𝑝(𝑛) it is easy to show that 𝛼(𝐺) is not narrowly
concentrated. Indeed, if 𝑝 = 𝑛𝛾 for some 𝛾 ∈ (−2,−3/2), then whp no two edges intersect, and hence
the independence number is determined by the number of edges that appear. Since the distribution of
the number of edges is roughly Poisson with mean 𝜇 ≈ 𝑛2+𝛾/2, then we will not have concentration of
𝛼(𝐺) on fewer than Θ(𝑛1+𝛾/2) values.

We now state our anti-concentration result.

Theorem 12. Let 𝑝 = 𝑐/𝑛, where 𝑐 > 0 is a constant, and let 𝑘 = 𝑘 (𝑛) be an arbitrary sequence of
integers. There exists a constant 𝐿 > 0 such that P(𝛼(𝐺𝑛,𝑝) = 𝑘) ≤ 𝐿𝑛−1/2 for n sufficiently large.

Theorem 12 implies that 𝛼(𝐺𝑛,𝑐/𝑛) is not concentrated on fewer than
√
𝑛/(2𝐿) values. Note that

this is the best possible anti-concentration result in this regime (up to the constant) as standard mar-
tingale methods (such as Hoeffding–Azuma or Talagrand’s inequality) show that, for any function
𝑘 (𝑛) = 𝜔(

√
𝑛), the independence number is concentrated on some interval of length 𝑘 (𝑛) (this assertion

holds for any value of p).
For a fixed graph G, let 𝑇 (𝐺) be the subgraph of G given by all connected components that are trees

on 4 vertices. Let 𝑡 (𝐺) be the number of components in 𝑇 (𝐺). Finally, let 𝑇 (𝐺) be the remainder of the
graph G (so 𝐺 = 𝑇 (𝐺) + 𝑇 (𝐺)). Let 𝑝 = 𝑐/𝑛 and let 𝐺 = 𝐺𝑛,𝑝 . We set 𝜇 = 𝜇(𝑐) = 2𝑐3𝑒−4𝑐

3 . Note that
we have

𝐸 [𝑡 (𝐺)] =
(
𝑛

4

)
· 16 · 𝑝3 (1 − 𝑝)3+4(𝑛−4) = (1 + 𝑜(1)) 16𝑐3𝑒−4𝑐𝑛

24
= (1 + 𝑜(1))𝜇𝑛.

We note that 𝑡 (𝐺) is a well concentrated random variable.

Lemma 13.

P(𝑡 (𝐺) < 𝜇𝑛/2) = 𝑂

(
1
𝑛

)
.
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Proof. Here, we use standard second moment method once again. For vertex set S with |𝑆 | = 4, let 𝑊𝑆

be the random variable that indicates if the graph induced on S is an isolated tree. Set 𝑊 = 𝑡 (𝐺), and
note that 𝑡 (𝐺) is the sum of all

(𝑛
4
)

indicators. By Chebychev, we have

P

(
𝑊 <

𝜇𝑛

2

)
≤ P

(
|𝑊 − E(𝑊) | ≥ E(𝑊)

3

)
≤ 9Var(𝑊)
E(𝑊)2 .

Hence

P

(
𝑊 <

𝜇𝑛

2

)
≤ 9Var(𝑊)
E(𝑊)2 < 9

(
1
E(𝑊) + max

𝑆,𝑇

{
E(𝑊𝑆𝑊𝑇 ) − E(𝑊𝑆)E(𝑊𝑇 )

E(𝑊𝑆)2

})
.

Note that the only case where we get a positive covariance is where 𝑆 ∩𝑇 = ∅, and in this case, we have

E(𝑊𝑆𝑊𝑇 ) − E(𝑊𝑆)E(𝑊𝑇 )
E(𝑊𝑆)2 = (1 − 𝑝)−16 − 1 =

16𝑐 + 𝑜(1)
𝑛

.

Therefore,

P

(
𝑡 (𝐺) < 𝜇𝑛

2

)
<

9 + 𝑜(1)
𝜇𝑛

+ 144𝑐 + 𝑜(1)
𝑛

= 𝑂

(
1
𝑛

)
. �

With this observation in hand, we are ready to proceed to the proof of Theorem 12. Let k be a fixed
integer. Let T be the collection of all graphs H on 𝑣𝐻 ≤ 𝑛 vertices such that 4 | 𝑛 − 𝑣𝐻 and H has no
connected component that is a tree on four vertices. Let T ′ be the collection of graphs in 𝐻 ∈ T such
that 𝑣𝐻 ≤ 𝑛 − 2𝜇𝑛 vertices. Applying the law of total probability, we have

P(𝛼(𝐺) = 𝑘) =
∑
𝐻 ∈T
P(𝛼(𝐺) = 𝑘 | 𝑇 (𝐺) = 𝐻)P(𝑇 (𝐺) = 𝐻)

≤ P(𝑡 (𝐺) ≤ 𝜇𝑛/2) +
∑
𝐻 ∈T ′

P(𝛼(𝐺) = 𝑘 | 𝑇 (𝐺) = 𝐻)P(𝑇 (𝐺) = 𝐻).

So, it suffices to bound the conditional probability

P(𝛼(𝐺) = 𝑘 | 𝑇 (𝐺) = 𝐻),

where H is a graph in T ′. Under this conditioning, the graph G is H together with a forest of (𝑛− 𝑣𝐻 )/4
trees on four vertices. Furthermore, the number of trees in this forest which are stars on four vertices
is a binomial random variable with (𝑛 − 𝑣𝐻 )/4 trials with probability of success 1/4 on each trial. Let
B be this random variable, and note that if G is drawn from the conditional probability space on the
collection of graphs with 𝑇 (𝐺) = 𝐻, then we have

𝛼(𝐺) = 𝛼(𝐻) + (𝑛 − 𝑣𝐻 )/2 + 𝐵.

Therefore, we have

P(𝛼(𝐺) = 𝑘 | 𝑇 (𝐺) = 𝐻) = P(𝐵 = 𝑘 − 𝛼(𝐻) − (𝑛 − 𝑣𝐻 )/2 | 𝑇 (𝐺) = 𝐻).

But B is a binomial random variable with a linear number of trials, and therefore the probability that B
is any particular value is at most 𝐿/

√
𝑛 for some constant L.

6. Conclusion

In this section, we present some remarks and open questions related to the extent of concentration of
𝛼(𝐺𝑛,𝑝) for 𝑝 < 𝑛−2/3. We write 𝑓 = �̃� (𝑔) if 𝑓 /𝑔 is bounded above by a polylogarithmic function and
𝑓 = Ω̃(𝑔) if 𝑓 /𝑔 is bounded below by a polylogarithmic function.
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◦ The precise extent of concentration of 𝛼(𝐺𝑛,𝑝) for 𝑝 = 𝑛𝛾 with−1 < 𝛾 < −2/3 remains an interesting
open question. Note that Theorem 2 gives a lower bound of Ω̃(𝑛−1−3𝛾/2) on the extent of concentration
in this range. Furthermore, Theorems 1 and 12 show that this lower bound is of the correct order at
either end of the interval. So it is natural to ask if this lower bound is actually tight throughout this
range.

Question 14. Suppose 𝑝 = 𝑛𝛾 where 𝛾 is a constant such that −1 < 𝛾 < −2/3. Is 𝛼(𝐺𝑛,𝑝)
concentrated on �̃�

(
𝑛−1−3𝛾/2) values?

◦ We do not see a way to adapt the argument given in Section 4 to prove anti-concentration of 𝛼(𝐺𝑛,𝑚)
for 𝑚 ≤ 𝑛4/3. We conjecture that we have such anti-concentration.

Conjecture 15. Suppose 𝑚 = 𝑛𝜂 , where 𝜂 is a constant such that 1 < 𝜂 < 4/3. Then 𝛼(𝐺𝑛,𝑚) is not
concentrated on 𝑛2−3𝜂/2−𝜖 values.

At the moment, we have no lower bound on the extent of concentration 𝛼(𝐺𝑛,𝑚) in this regime.
It seems natural to suspect that Conjecture 15 is closely related to the questions of proving a stronger,
uniform form of anti-concentration of 𝛼(𝐺𝑛,𝑝) for 𝑝 = 𝑛𝛾 with −1 < 𝛾 < −2/3. We believe that the
following strengthening of Theorem 2 holds.

Conjecture 16. If 𝑝 = 𝑛𝛾 where 𝛾 is a constant such that −1 < 𝛾 < −2/3, then we have

P
(
𝛼(𝐺𝑛,𝑝) = 𝑘

)
= �̃�

(
𝑛1+3𝛾/2

)
for any sequence 𝑘 = 𝑘 (𝑛).

Note that we proved Conjecture 16 for 𝛾 = −1 (i.e., 𝑝 = 1/𝑛) in Section 5.
◦ We conclude by noting that the first moment argument using augmented independent sets given

in Section 3.2 can be adapted in straightforward way to give the following upper bound on the
independence number of 𝐺𝑛,𝑝 for 𝑝 ≤ 𝑛−2/3.

Theorem 17. If 𝜔(1/𝑛) < 𝑝 ≤ 𝑛−2/3, then we have

𝛼(𝐺𝑛,𝑝) ≤ 𝑘𝑥 −Ω

(
log(𝑛𝑝)2

𝑝2𝑛

)

with high probability, where 𝑘𝑥 is the largest integer such that
( 𝑛
𝑘𝑥

)
(1 − 𝑝) (

𝑘𝑥
2 ) > 1.

This improvement can be extended to give a small linear improvement on the best known upper
bound on 𝛼(𝐺𝑛,𝑝), where 𝑝 = 𝑐/𝑛 and c is a constant. In fact, a first moment argument using maximal
independent sets is sufficient to give a linear improvement on the upper bound in this context. As the
precise magnitude of the optimal improvement requires a lengthy calculation, we exclude this in the
interest of brevity.

7. Appendix: two-point concentration of 𝛼(𝐺𝑛,𝑝) for 𝑛−1/2+𝜖 < 𝑝 < 1/log(𝑛)2

Here, we show that the second moment method applied to the random variable 𝑌𝑘 , which is the number
of maximal independent sets of size k, suffices to establish two point concentration of 𝛼(𝐺𝑛,𝑝) for
𝑛−1/2+𝜖 < 𝑝 < 1/log(𝑛)2.

Recall that 𝑋𝑘 is the random variable which counts the number of independent sets of size k in 𝐺𝑛,𝑝 ,
and we defined 𝑘𝑥 to be the largest integer such that

E(𝑋𝑘 ) > 𝑛2𝜖 . (25)

Set 𝑋 = 𝑋𝑘𝑥 and 𝑌 = 𝑌𝑥𝑘 .
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Theorem 18. Consider 𝑝 = 𝑝(𝑛) such that 𝑛−1/2+𝜖 < 𝑝 < 1/log(𝑛)2. Then 𝛼(𝐺𝑛,𝑝) ∈ {𝑘𝑥 , 𝑘𝑥 + 1}
whp.

Proof. Set 𝑘 = 𝑘𝑥 . First, we show by the standard first moment method that no independent set of size
𝑘 + 2 appear whp:

P(𝛼(𝐺𝑛,𝑝) ≥ 𝑘 + 2) ≤
(

𝑛

𝑘 + 2

)
(1 − 𝑝) (

𝑘+2
2 )

=

(
𝑛

𝑘 + 1

)
(1 − 𝑝) (

𝑘+1
2 )

(
𝑛 − 𝑘 − 1
𝑘 + 2

(1 − 𝑝)𝑘+1

)

= (1 + 𝑜(1))
(

𝑛

𝑘 + 1

)
(1 − 𝑝) (

𝑘+1
2 ) 𝑛

𝑘

(
𝑘

𝑛𝑒

)2

= 𝑜

(
𝑘

𝑛1/2

)
= 𝑜(1),

where we use the fact that 𝑘 = 𝑜(𝑛1/2) when 𝑝 > 𝑛−1/2+𝜖 in the last line.
Next, we show that an independent set of size k exists whp. Here, we use the second moment method,

but the variance of X itself is too large. So we work with the random variable Y which counts the
number of maximal independent sets of size k. The first moment calculation is straightforward, using
Equation (5):

E(𝑌 ) =
(
𝑛

𝑘

)
(1 − 𝑝) (

𝑘
2) (1 − (1 − 𝑝)𝑘 )𝑛−𝑘

=

(
𝑛

𝑘

)
(1 − 𝑝) (

𝑘
2)𝑒−𝑂 (𝑘2/𝑛) (26)

= E(𝑋) (1 − 𝑜(1)) (27)
= 𝜔(1).

By Chebyshev’s inequality, all that is left to show is that 𝑉 𝑎𝑟 (𝑌 )
E(𝑌 )2 = 𝑜(1). We write Y as the sum

of indicator variables 𝑌𝑆 , over all sets S such that |𝐾 | = 𝑘 , of the random variable 𝑌𝑆 which is the
indicator for the event that S is a maximal independent vertex set. We define indicator variables 𝑋𝑆 for
not necessarily maximal independent sets analogously. Then we have

Var(𝑌 ) =
∑
𝑆

Var(𝑌𝑆) +
∑
𝑆≠𝑇

Cov(𝑌𝑆 , 𝑌𝑇 ) ≤ E(𝑌 ) +
∑
𝑆≠𝑇

E(𝑌𝑆𝑌𝑇 ).

Next, define, for all relevant i:

𝑓𝑖 =
1

E(𝑋)2

∑
|𝑆∩𝑇 |=𝑖

E(𝑋𝑆𝑋𝑇 ) =
(𝑘
𝑖

) (𝑛−𝑘
𝑘−𝑖

)(𝑛
𝑘

) (1 − 𝑝)−(
𝑖
2) ,

𝑔𝑖 =
1
E(𝑌 )2

∑
|𝑆∩𝑇 |=𝑖

E(𝑌𝑆𝑌𝑇 ), and

𝜅𝑖 =
𝑓𝑖+1
𝑓𝑖

.
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Since E(𝑌 ) = 𝜔(1), our goal is to show that

𝑘−1∑
𝑖=0

𝑔𝑖 = 𝑜(1).

We consider three ranges of i: 𝑖 < 𝜖
2 𝑘𝑥 , 𝜖

2 𝑘𝑥 ≤ 𝑖 ≤ (1 − 𝜖)𝑘𝑥 , and 𝑖 > (1 − 𝜖)𝑘𝑥 (where 𝜖 is the
constant in the statement of the Theorem). For each range, we show that the sum of variables 𝑔𝑖 within
that range is 𝑜(1). For the first two ranges, we will actually work with variables 𝑓𝑖 instead, noting that,
since 𝑌𝑆 ≤ 𝑋𝑆 and by similar reasoning to Equation (27), 𝑔𝑖 ≤ 𝑓𝑖 (1 + 𝑜(1)).

First, consider 𝑖 < 𝜖
2 𝑘 . Using the explicit formula for 𝑓𝑖 we have

𝜅𝑖 =
(𝑘 − 𝑖)2(1 − 𝑝)−𝑖

(𝑖 + 1) (𝑛 − 2𝑘 + 𝑖 + 1) <
𝑘2 (1 − 𝑝)−𝜖 𝑘/2

𝑛
= (1 + 𝑜(1)) 𝑘

2

𝑛

(𝑛𝑒
𝑘

) 𝜖
= 𝑂

(
log(𝑛)2

𝑛𝜖

)
= 𝑜(1).

As 𝑓2 = 𝑂 (𝑘4/𝑛2) = 𝑜(1) then
∑𝜖 𝑘/2
𝑖=2 𝑓𝑖 is a geometric sum with leading term and ratio in 𝑜(1).

Next, consider the range 𝜖
2 𝑘 ≤ 𝑖 ≤ (1 − 𝜖)𝑘 . We have

𝑓𝑖 ≤ 2𝑘
(
𝑘

𝑛

) 𝑖
(1 − 𝑝)−(

𝑖
2)

≤
[
2𝑘/𝑖

𝑘

𝑛

(
(1 − 𝑝)−𝑘/2

) 𝑖/𝑘 ] 𝑖
≤

[
(1 + 𝑜(1))22/𝜖 𝑘

𝑛

(𝑛𝑒
𝑘

)1−𝜖
] 𝑖

(28)

≤
[
(1 + 𝑜(1))22/𝜖 𝑒1−𝜖

(
𝑘

𝑛

) 𝜖 ] 𝑖
.

Hence, the sum of variables 𝑓𝑖 over 𝜖
2 𝑘𝑥 ≤ 𝑖 ≤ (1 − 𝜖)𝑘𝑥 is 𝑜(1).

The range where 𝑖 > (1 − 𝜖)𝑘 is where we use the variables 𝑔𝑖 instead of 𝑓𝑖 . Given two vertex sets
S and T with intersection size i, and given that they are both independent, consider the probability that
both are maximal independent sets. This probability is bounded above by the probability that each vertex
in 𝑆\𝑇 is adjacent to at least one vertex in 𝑇\𝑆, which is equal to (1 − (1 − 𝑝)𝑘−𝑖)𝑘−𝑖 ≤ ((𝑘 − 𝑖)𝑝)𝑘−𝑖 .
Therefore, we have

𝑔𝑖 ≤ (1 + 𝑜(1))
(𝑘
𝑖

) (𝑛−𝑘
𝑘−𝑖

)(𝑛
𝑘

) (1 − 𝑝)−(
𝑖
2) ((𝑘 − 𝑖)𝑝)𝑘−𝑖

=
1 + 𝑜(1)
E[𝑋]

((
𝑘

𝑘 − 𝑖

)
(𝑘 − 𝑖)𝑘−𝑖

) ((
𝑛 − 𝑘

𝑘 − 𝑖

)
(1 − 𝑝) (

𝑘
2)−( 𝑖2) 𝑝𝑘−𝑖

)

<
1 + 𝑜(1)
E[𝑋] (𝑘𝑒)𝑘−𝑖𝑛𝑘−𝑖 (1 − 𝑝) (1−𝜖 )𝑘 (𝑘−𝑖) 𝑝𝑘−𝑖

<
1
E[𝑋]

(
(1 + 𝑜(1))𝑒𝑘𝑛𝑝

(
𝑘

𝑛𝑒

)2(1−𝜖 )
) 𝑘−𝑖

<
1
E[𝑋]

(
22 log(𝑛)3𝑛−𝜖 +2𝜖 2

) 𝑘−𝑖
,

so
∑
𝑖> (1−𝜖 )𝑘 𝑔𝑖 = 𝑜(1), as desired. �
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