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Periodic points and chaotic

functions in the unit interval

G.J. Butler and G. Pianigiani

It is shown that the set of chaotic self-maps of the unit

interval contains an open dense subset of the space of all

continuous self-maps of the unit interval. Other aspects of

chaotic behaviour are also considered together with some

illustrative examples.

1. Introduction

Let J be the unit interval [0, l] of the real line and let C(j)

be the space of all continuous functions from J into itself with the

usual norm. For a point x € T and a function T € C(l) , the orbit of x

is the set

0T(x) = {x, T(x), ^ ( x ) , ...} where ^+1(x) = T{^(X)) , « = 1, 2, ....

For a natural number p , x is called a periodic point of T of order p

if T?(x) =x and ^ ( x ) * x , i = 1, ..., p-1 . In this case 0y(x)

will be called a periodic orbit of period p . x is called an eventually-

periodic point of T if for some natural number p , x = 1r{x) is a

periodic point of T . x is called an asymptotically periodic point of T

if there is a periodic point y of T such that \Tn(x)-Tn(y)| + 0 as

n •*• co . To avoid unnecessary repetition, we shall suppress reference to

the function T in speaking of periodic points, and so on.

There has been much recent interest in functions T € C(I) which
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possess orbits which are not asymptotically periodic. The study of such

functions has been thought possibly to shed light on the complicated

behaviour of models exhibiting turbulence of water flow in which there

occur so-called strange attractors consisting of highly irregular

trajectories [8], We refer to [/, 2, 3, 7, 70] for some biological

motivations for such study.

The term chaos has been coined by a number of authors to describe

various situations in which irregular orbital behaviour occurs. Motivated

by the definition implicit in the paper of Li and Yorke [6] we shall assume

the following definition of ohaotio function:

T € C(l) is chaotic if there is an uncountable set S

consisting of -points which are not asymptotically periodic and

such that for every pair x, y € S , x ? y , we have

0 = lim inf \Tn(x)-Hn(y)\ < lim sup

In this paper we shall examine some of the consequences of this definition,

both with regard to conditions sufficient for the existence of chaos and

with regard to stability properties of chaotic functions.

2. Periodic points and chaos

Li and Yorke show that if there exists a point of period 3 then T

is chaotic. In a remarkable paper Sharkovsky [9] showed that there is an

ordering <[ of natural numbers such that if m ̂  n and T has a point of

period m , then T will have a point of period n . The precise ordering

is as follows:

3 < 5 < 7 < . . . < 2-3 < 2 - 5 < . . . < 2 2 - 3 < 22-5 < . . . < 2 W - 3 < 2*- 5 <

see also [7]. It is easily seen from the definition that T is chaotic if

and only if 2^ is chaotic. Combining the results of Li and Yorke and

Sharkovsky we have the following:

THEOREM 1. If T € C(I) has a point of period m-g" for some odd

integer m > 3 and for some natural number n then T is chaotic.
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In view of th i s resu l t i t i s natural to ask whether there i s a natural

number n such that the existence of a periodic point of period 2:

implies chaos. We shal l show that th i s question has a negative answer;

indeed we shall construct a function T € C{l) possessing points of a l l

periods of the form 2 in which every trajectory i s eventually periodic.

EXAMPLE 1 . A function T € C(J) which has points of period 2" ,

for each natural number n , and such that a l l points of I are eventually

periodic of period 2 for some i .

Fi r s t we shal l construct, for each natural number n , a continuous

function T mapping the interval T^ = [0, 2 +l] on to i t s e l f such that

T fixes the endpoints of I , has points of period 2 , and a l l points

of J are periodic of period 2 for some i with 0 5 i 5 n .

Let A, , B, he defined by

Ak = { l , 2, . . . , 2k] , Bk = {2fe+l, 2^+2, . . . , 2fe+1} , k = 1, 2, . . . .

Define P : A± •* A by P ( l ) = 2 , P (2) = 1 , and define

if i € A, ,

k = 1, 2, ... .

if i € B,. .,

Let Tfe(i) = Pfc(i) i f £ € 4fe , 2^(0) = 0 , Tfe(2
fe+l) = 2fe + 1 , and

define T, : [0, 2 +l] ->• [0, 2 +l] by piecewise l inear extension. For

k = 1 we have

2x , 0 5 x £ l ,

Z^U) = • 3-x , 1 < a; < 2 ,

( 2 E - 3 , 2 < x 5 3 .

It is easily seen that 3/2 has period 1 ; each point of [l, 2]\{3/2}

has period 2 and all other points are eventually periodic of period 1
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or 2 .

Suppose that for the function T the points 1, 2 2" are

periodic of period 2*1 and a l l points of [0, 2"J are eventually periodic

of period & , 0 5 i < n . We shal l show that th i s inductive hypothesis

extends to the function T , • We observe that P , : A •*• B ,
n+1 n+1 n n

:Bn * An ' m d t h a t P n + l ( i ) = P n ( i ) l f * 6 4n •

U ) = 2" + P ^ - 2 " ) i f *

-2n) • * € f l n - '

It follows that 1, 2 2" are periodic points of period 271 for

2" . , and we see that

2 [ m , m+1]) = Tn([m, m+l]) , m = 1 , 2 , . . . , 2M-1 ,

tm, m+l]) = 2" + r ( [ m - 2 \ BZ+1-2?1]) , m = 1

The inductive assumption then yields that any point of [m, m+l] , m ± 0 ,

m t 2" , is eventually periodic of period 2t , 0 < •£ < n+1 . Now

Let x € [2^, 2w+l] . I f there i s a natural number r such that

(x) f [2?, 2M+l] and T^^ix) € [2", 2n+l] then we shal l have

T Ax) € [m, m+l] where m is some integer satisfying 1 < m < 2^ ,

m ?s 2 . Thus a; i s eventually periodic of period 2 , 0 < i, < n+1 .

On the other hand, on [2n , 2"+l] , T + 1 has the form

2" ., (*) = a + X(x-a)n+1
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where a is a fixed point of 7 , , X > 1 : in fact
w+l

ex = 2 " ( l + +1
X ] , X = 1 + a"" 1

Hence i f
+ 1

C2"' 2"+1J ' r = 1, 2, ... , we shall have

C K ) =a + ̂ ( H ' * = 1. 2, ... ,
which implies that * = a .

Finally we note that T ([0, l]) = [o, 2n+l] and

Tn+1[/
l+1, 2n+1+l] = [l, 2M+1+l] , and so we conclude that all points of

[o, 2 W +l] are eventually periodic of period 2^ , 0 £ i £ n+1 , which

completes the inductive construction. Now we can scale TAx) down on to

[1/2, 1] , T2(x) on to [1/3, 1/2] , T(x) onto fe-, |J ,

n = 1, 2 and define 2" on k^p i to be the "scaled-down" 2^ ,

T(0) to be 0 . Since T fixes the endpolnts of I , T is a well-

defined continuous function with the required properties.

3. Chaos and stability

In [4], Kloeden has shown that "near" to any function F € C(I) ,

there are chaotic functions T ; in particular it is possible to find a

function T € C{I) with a point of period 3 . A natural question to ask

is what happens under small perturbations to a function which has a point

of period 3 . We shall show by an example that the perturbed function

need not have points of period 3 . However in Theorem 2 we shall show

that every continuous function sufficiently close to a given function with

a point of period 3 will be chaotic. Thus the property of being chaotic

appears to be stable.

EXAMPLE 2. Period 3 can be destroyed by small perturbations. Let

T : [0, l] ->• [0, l] be defined by
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{ x + 1/2 , x £ 1/2 ,

2 - 2x , x > 1/2 .

The orbit {0, 1/2, l} is periodic of period 3 . Now consider, for

fixed e > 0 , the function 'T defined by

Tjx) = •

1/2 + e , 0 £ x £ e ,

x + 1/2 , E < x £ 1/2 ,

2 - 2x , x > 1/2 .

We have that \\T -T\\ < e and i t is easy to see that 1 has not any point

of period 3 .

THEOREM 2. Let T be a continuous real valued function on I , and
suppose T has a point of period 3 • Then there exists e > 0 such that
if F is continuous and \\F-T\\ < z then F has at least one point of
period 5 •

Proof. Let (x. , Xp, x_) be an orbit of period 3 for T . Suppose

x < x2 < x- (if x < x., < x2 the proof is similar) . We have

T{x-^) = x2 , T(x2) = x3 , T(x3) = x± . Let y± € [x^, x2] be such that

T{y.) = Xp and T has no fixed points in [)/-,» x~\ . Now consider

T2 : T2{\y1, x2]) z> T{\x2, X^) => [x^ x^ . There exists y2 6 (2^, x2)

such that T (z/2) = Xg . We remark that y2 ^ y , j / 2 t Xp ; in fact

T1*([]/2, Xp]) z> T[\x2, X 3 ] ) => [ij^, x3] , and therefore

T5(Q/2, ^2]) => 0«1» a;J • Hence I"5 maps the interval [z/2, x ^ onto a

strict ly larger interval [u, v] where u < y < x < V so that by

continuity arguments there exists an e > 0 such that if ||r-F|| < e then

F maps y , x onto a larger interval than itself. Thus there exists at

least one fixed point xQ ; that is, x = F'>{x ) . Since the interval

[z/ ,Xp] is disjoint from the fixed point set of T, by taking, if necessary, a
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smaller value of e we can arrange that F has no fixed points in

[z/2> x2] . This completes the proof.

From Theorems 1 and 2 and the result in [4] we deduce that the chaotic

functions are not only dense in C(I) but also contain an open dense set.

4. The chaotic behaviour of a one-parameter family of continuous functions

Many people have s tud ied t h e o r b i t s t r u c t u r e of the family of

parabolas

Gx(x) = l*Xx(l-x) , 0 5 x 5 1 , 0 5 X 5 1 ,

because of its occurrence in simple models of population growth [?, 2, 3, 7,

J0]. It is known that for X = 0.957 ... orbits of period 3 begin to

appear. The precise value of X such that chaos occurs for X > X but

not for X S X is not known; numerical analysis suggests that it is

approximately 0.89 . We shall study the onset of chaos for the family

Xx , 0 5 x 5 1 / 2 ,

rx(x) = -

X(l-x) , 1 > i > 1/2 ,

as X varies from 0 to 2 .

I t is obvious that for X < 1 , there is a single periodic orbit,

namely the fixed point 0 , and al l orbits converge to 0 . If X = 1 ,

all points of [0, 1/2] are fixed points and the points of [1/2, l ] are

eventually periodic of period 1 . I t is easily seen that for

X = X = (l/2)(l+V/J) there is a bifurcation which produces points of

period 3 , and thus chaos for X 2 X . We shall show that periodic

points of period 2T«3 for some n occur as soon as X > 1 . As a

preliminary we need the following lemma.

LEMMA. Let T be a continuous real-valued funatton on I . If there

exist two closed intervals I, J such that I n J contains at most one

point and T{I) n T{J) z> I u J , then there exists a point of period 3

for T .

Proof. Since T(l) => J , there exists x € J such that
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T[XQ) - max{y : y € j} , and let [xQ, yJ c J be chosen so that

T[\x
0' y^\) ^ ^ and T n a s n o fixed points in [xQ, y^\ .

T ( [ x
0 ' y^} ^ ^ ' h e n c e T2{LXQ' h^l) => T(J) => ? u 7 and

7 {[xQ, y^\) 3 I u 7 3 [xQ, j / J . Thus the interval [xQ, j/Q] is mapped

by T onto a larger interval. Hence there exists in [xn, j / J a point

fixed under 2" . Since no point of [x , j / J is fixed under T the

lemma is proved.

THEOREM 3. For any X > 1 , T\^x^ ^lae P e r ^ ° ^ c point of period

3»2W for some n .

Proof. We shall show that for any fixed A > 1 there exist an

integer m = m(\) and two closed intervals J , J such that
m m

2", fj ) n T\{j ) 3 J u J and I n J contains just one point.
\K m} \K m} m m mm

I t i s eas i ly seen that the interval [r, (A/2), A/2] i s mapped onto

i t s e l f by T . Let n i l be such that

2«-l ^
A < 2 , A > 2 .

2
Set 2\(A/2) = a and consider 2\ . This transformation maps the interval

A A

\a, 2"?(a) onto itself and is linear in [0, 1/2] , 1/2, 2^(a) •

Analogously the transformations 77 (is n-l) map the intervals

A

E i *~n
[, 77 (a) onto themselves and they are linear in (a, x.) and in

x., 77 (a) , where x. is the unique point of a, 77 (a) such that

2i 9^
7. (x.) = 0 . The slopes of the linear pieces of the curve Tcurve T are

±A . Since A i 2 each of the images of intervals \d, x ~\ ,
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x , T {a)\ by T. contain \a, T. (a) , where x is the unique

F 2*1 1 2"
point of a, T (a) such that T-. (x) = 0 . This completes the proof.

5. The closure of periodic orbits. A counterexample

In [6] Li and Yorke asked whether or not the closure of the periodic

points of G € C(J) is always a finite union of intervals. We shall now

give a negative answer to this question.

Let I = [1-21""; 1-2~"J , n = 1, 2, ... .

Let T, U : [0, l] •+ [0, l] he defined by

T(x) =

2x , 0 2 x 5 1 / 2 ,

U(x) =

2(l^x) , 1 > x > 1/2 , ^ , 1/3 £ x < 1 .

2x , 0 < x £ 1/3 ,

T has points of period 3 while it is easy to see that U has just two

periodic points, namely the two fixed points 0 , 1 . All other points tend

asymptotically to 1 . We now define G : [0, l] ->• [0, l] as follows. On

I- o define G by
3n-2

On I_ , define G by
3w-l

22-3MG(x) = 1 - 23"3" + 3(x+22-3M-l) .

On J_ define G by

G(x) = 1 - 21"3" + 2-3My[23"x+2-23n) ,

and define G(l) to be 1 .

All we have done is to arrange that the graph of G restricted to

J_ . is a suitable "scaled-down" copy of the graph of T and that the
3w-2

graph of G restricted to J_ is a copy of the graph of U . The

definition of G on J_ , assures continuity. G has periodic points in
3w-l

each interval J_ o , but the interior of each interval J_ is free from
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periodic points. Hence the closure of the periodic point set cannot be a

finite union of intervals.

Conc lus i on

Since the existence of a point of period 3*2W implies the existence

of two closed disjoint sets A, B such that T {A) n T (s) 3 A u B ,

following [5], period 3*2 gives us not only chaos in the sense of Li and

Yorke, but also the existence of a continuous ergodic measure invariant

under T .
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