
Introduction

This book develops the contents of a series of lectures given at the Institut des
Hautes Études Scientifiques in February and March 2015 (see [KS15]), based
on [Ka84], [DK13] and [KS14]. They are addressed to readers familiar with
the language of sheaves and D-modules, in the derived sense.

As announced in the title, the subject of this book is holonomic D-modules.
The theory of D-modules appeared in the 1970s with the thesis of [Ka70] and
Bernstein’s paper [Be71]. However, already in the 1960s, Mikio Sato had the
main ideas of the theory in mind and gave talks at Tokyo University on these
topics. Unfortunately, Sato did not write anything and it seems that his ideas
were not understood at this time. (See [An07, Sc07].)

A left coherent DX-module on a complex manifold X is locally represented
by (the cokernel of ) a matrix of differential operators acting on the right.
Hence, D-module theory is essentially the algebraic study of systems of linear
partial differential equations. It seems that algebraic geometers were frightened
by the non-commutative nature of the sheaf of rings DX , and it may be the
reason why one had to wait untill the 1970s until the theory appeared. But
once one realizes that the ring DX has a natural filtration (by the order of
the operators) and that the associated graded ring is commutative, it is not
too difficult to apply the tools of algebraic geometry to this non-commutative
setting. In particular, one can define the characteristic variety char(M ) of a
coherent DX-module, a closed C

×-conic complex analytic subset of the cotan-
gent bundle T∗X and a fundamental result of the theory is that this variety is co-
isotropic (or involutive). Partial results in this direction (involutivity at generic
points) were first obtained by Guillemin, Quillen, and Sternberg [GQS70].
The general case was obtained later by Sato, Kawai, and Kashiwara [SKK73],
using tools of microlocal analysis such as microdifferential operators of infinite
order. Then Gabber proposed a purely algebraic proof of this result in [Ga81],
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and there is also now another totally different proof based on the involutivity
of the microsupport of sheaves on a real manifold (see [KS90]).

Once one knows that the characteristic variety of a coherent DX-module
is co-isotropic, it is natural to study with a special attention those modules
whose characteristic variety is as small as possible, that is, Lagrangian,
and these are the holonomic D-modules. They were first called “maximally
overdetermined systems” in [SKK73], and they are the natural generalization
in higher dimension of the classical theory of ordinary differential equations.
An ordinary differential equation may also be regarded as a connection with
poles, and among them, there are the connections with regular singularities
or, equivalently, the Fuchsian differential operators. In this framework, the
Riemann–Hilbert problem is, roughly speaking, to construct a Fuchsian oper-
ator on a Riemann surface when the monodromy of its holomorphic solutions
is prescribed.

A natural question is to generalize the theory of Fuchsian equations to higher
dimensions. A first important step is the book of Deligne [De70], in which he
solves the Riemann–Hilbert problem for regular connections with singularities
on hypersurfaces.

A second important step is the constructibility theorem of [Ka75], which
asserts that the functor “holomorphic solutions” sends the derived category of
holonomic DX-modules to that of constructible sheaves on X. More precisely,
denote by Db

hol(DX) the bounded derived category of left DX-modules with
holonomic cohomology and by Db

C-c(CX) the bounded derived category of
sheaves of C-vector spaces with constructible cohomologies. Then it is proved
in [Ka75] that the (contravariant) functor SolX( • ) = RHomD ( • , OX), when
restricted to Db

hol(DX), takes its values in Db
C-c(CX). It is also noticed in this

paper that if an object of Db
C-c(CX) is in the image of the abelian category

Modhol(DX) of holonomic DX-modules, then it satisfies the properties which
are now called the perversity conditions.

It is well known that the functor SolX : Db
hol(DX)op −→ Db

C-c(CX) is not
faithful. For example, if X = A

1(C), the complex line with coordinate t, P =
t2∂t − 1 and Q = t2∂t + t, then the two holonomic DX-modules DX/DXP
and DX/DXQ have the same sheaves of solutions. Hence, a natural question
is to look for a full triangulated category of Db

hol(DX) on which SolX is fully
faithful and induces an equivalence with Db

C-c(CX). A precise formulation was
formulated in 1977 by the same author (see [Ra78, p. 287]), and a detailed
sketch of proof of the theorem establishing this correspondence (in the regular
case) appeared in [Ka80] where the functor Thom of tempered cohomology
was introduced; a detailed proof appears in [Ka84]. Many tools used in the
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proof of this result were first elaborated in [KK81]. Note that a quite different
proof to this correspondence was obtained by Mebkhout in [Me84].

The functor Thom is thus an essential tool in the original proof of the
regular Riemann–Hilbert correspondence. Its functorial properties as well as

the construction of the Whitney tensor product
w⊗, a kind of “dual functor” of

Thom, are systematically studied in [KS96]. These two functors are in fact
better understood in the language of indsheaves of [KS01]. They correspond
to the indsheaves O t

X and O w
X of tempered holomorphic functions and Whitney

holomorphic functions. For example, O t
X is constructed as the Dolbeault

complex with tempered distributions as coefficients. Of course, the presheaf
of tempered distributions (on a real analytic manifold) is not a sheaf for the
usual topology, but it becomes a sheaf for a suitable Grothendieck topology,
called the subanalytic topology, and one can naturally embed the category of
subanalytic sheaves in that of indsheaves.

Already, in early 2000, it became clear that the indsheaf O t
X is an essential

tool for the study of irregular holonomic modules. A toy model was studied
in [KS03], where the indsheaf of tempered holomorphic solutions of the
ordinary differential operator t2∂t + 1 is calculated. However, on X = A

1(C),
the two holonomic DX-modules DX exp(1/t) and DX exp(2/t) have the same
tempered holomorphic solutions, which shows that O t

X is not precise enough
to treat irregular holonomic D-modules.

This difficulty is overcome in [DK13] by adding an extra variable in order
to capture the growth at singular points. This is done first by adapting to ind-
sheaves a construction of Tamarkin [Ta08], leading to the notion of “enhanced
indsheaves”, then by defining the “enhanced indsheaf of tempered holomor-
phic functions”. Using fundamental results of Mochizuki [Mo09, Mo11] (see
also Sabbah [Sa00] for preliminary results and see Kedlaya [Ke10, Ke11]
for the analytic case), this leads to the solution of the Riemann–Hilbert
correspondence for (not necessarily regular) holonomic D-modules.

First, we shall recall the main results of the theory of indsheaves and
subanalytic sheaves and we shall explain with some detail the operations on
D-modules and their tempered holomorphic solutions. As an application, we
obtain the Riemann–Hilbert correspondence for regular holonomic D-modules
as well as the fact that the de Rham functor commutes with integral transforms.

Second, we do the same for the sheaf of enhanced tempered solutions of (no
longer necessarily regular) holonomic D-modules. For that purpose, we first
recall the main results of the theory of indsheaves on bordered spaces and its
enhanced version.

Let us describe with some details the contents of this book.
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Chapter 1 is a review on the theory of sheaves and D-modules. Sheaf theory
is now so classical that it does not seem necessary to recall it, and our aim is
essentially to establish the notation and to recall the main formulas of constant
use. Reference for this subject is made to [KS90]. On the other hand, D-module
theory is not so well known. Our presentation of the subject here may be
considered as an invitation to the reading of [Ka03].

In Chapter 2, extracted from [KS96, KS01], we briefly describe the category
of indsheaves on a locally compact space and the six operations on indsheaves.
A method for constructing indsheaves on a subanalytic space is the use of
the subanalytic Grothendieck topology, a topology for which the open sets
are the open relatively compact subanalytic subsets and the coverings are the
finite coverings. On a real analytic manifold M, this allows us to construct
the indsheaves of Whitney functions, tempered C∞-functions and tempered
distributions. On a complex manifold X, by taking the Dolbeault complexes
with such coefficients, we obtain the indsheaf (in the derived sense) O w

X of
Whitney holomorphic functions and the indsheaf O t

X of tempered holomorphic
functions.

Then, in Chapter 3, also extracted from [KS96, KS01], we study the tempered
de Rham and Sol (“Sol” for solutions) functors; that is, we study these functors
with values in the sheaf of tempered holomorphic functions. We prove two
main results which will be the main tools to treat the regular Riemann–Hilbert
correspondence later. The first one is Theorem 3.1.1, which calculates the
inverse image of the tempered de Rham complex. It is a reformulation of a
theorem of [Ka84], a vast generalization of the famous Grothendieck theorem
on the de Rham cohomology of algebraic varieties. The second result, Theorem
3.1.5, is a tempered version of the Grauert direct image theorem.

In Chapter 4, we give a proof of the main theorem of [Ka80, Ka84] on
the Riemann–Hilbert correspondence for regular holonomic D-modules (see
Corollary 4.3.4). Our proof is based on Lemma 4.1.9, which essentially claims
that to prove that regular holonomic D-modules have a certain property, it
is enough to check that this property is stable by projective direct images
and is satisfied by modules of “regular normal forms”, that is, modules
associated with equations of the type zi∂zi − λi or ∂zj . The Riemann–Hilbert
correspondence as formulated in [Ka80, Ka84] is not enough to treat integral
transform, and we have to prove a “tempered” version of it (Theorem 4.3.2).
We then collect all results on the tempered solutions of D-modules in a
single formula which, roughly speaking, asserts that the tempered de Rham
functor commutes with integral transforms whose kernel is regular holonomic
(Theorem 4.4.2). We end this chapter with a detailed study of the irregular
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holonomic D-module DX · exp(1/z) on A
1(C), following [KS03]. This case

shows that the solution functor with values in the indsheaf O t
X gives much

information on the holonomic D-modules, but not enough: it is not fully
faithful. As seen in the next chapters, in order to treat irregular case, we need
the enhanced version of the setting discussed in this chapter.

Chapter 5, extracted from [DK13], treats indsheaves on bordered spaces. A
bordered space is a pair (M, M̂) of good topological spaces with M ⊂ M̂ an
open embedding. The derived category of indsheaves on (M, M̂) is the quotient
of the category of indsheaves on M̂ by that of indsheaves on M̂ \ M. Indeed,
contrary to the case of usual sheaves, this quotient is not equivalent to the
derived category of indsheaves on M.

The main way of treating the irregular Riemann–Hilbert correspondence is
to replace the indsheaf O t

X with an enhanced version, the object O E
X . Roughly

speaking, this object (which is no longer an indsheaf) is obtained as the image
of the complex of solutions of the operator ∂t −1 acting on O t

X×C
, in a suitable

category, namely that of enhanced indsheaves.

Chapter 6, also extracted from [DK13], defines and studies the triangulated
category Eb(IkM) of enhanced indsheaves on M, adapting to indsheaves a
construction of Tamarkin [Ta08]. Denoting by R∞ the bordered space (R,R)

in which R is the two-point compactification of R, the category Eb(IkM) is
the quotient of the category of indsheaves on M × R∞ by the subcategory of
indsheaves which are isomorphic to the inverse image of indsheaves on M.

Chapter 7, mainly extracted from [DK13], treats the irregular Riemann–
Hilbert correspondence. Similarly as in the regular case, an essential tool is
Lemma 7.5.5, which asserts that to prove that holonomic D-modules have a
certain property, it is enough to check that this property is stable by projective
direct images and is satisfied by modules of “normal forms”, that is, D-modules
of the type DX · exp ϕ where ϕ is a meromorphic function. This lemma follows
directly from the fundamental results of Mochizuki [Mo09, Mo11] (in the
algebraic setting) and later Kedlaya [Ke10, Ke11] in the analytic case, after
preliminary results by Sabbah [Sa00]. The proof of the irregular Riemann–
Hilbert correspondence is rather intricate and uses enhanced constructible
sheaves and a duality result between the enhanced solution functor and the
enhanced de Rham functor. However, as formulated in [DK13], this theorem
is not enough to treat irregular integral transform and we have to prove an
“enhanced” version of it (Theorem 7.8.1, extracted from [KS14]).

In Chapter 8, extracted from [KS14], we apply the preceding results. The
main formula (8.1.4) asserts, roughly speaking, that the enhanced de Rham
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functor commutes with integral transforms with irregular kernels. In a previous
paper [KS97] we had already proved (without the machinery of enhanced
indsheaves) that given a complex vector space V, the Laplace transform
induces an isomorphism of the Fourier–Sato transform of the conic sheaf
associated with O t

V
with the similar sheaf on V

∗ (up to a shift). We obtain
here a similar result in a non-conic setting, replacing O t

V
with its enhanced

version O E
V

. For that purpose, we extend first the Tamarkin non-conic Fourier-
Sato transform to the enhanced setting.

Comments. As already mentioned, most of the results discussed here are
already known. We sometimes do not give proofs or give only a sketch of the
proof. However, Theorems 2.5.13 and 6.6.4 and Corollaries 2.5.15 and 7.7.2,
proving the R-constructibility of tempered and Whitney holomorphic solutions
of (irregular) holonomic D-modules, are new.
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