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PIERI’SFORMULA VIA EXPLICIT RATIONAL EQUIVALENCE

FRANK SOTTILE

ABSTRACT. Pieri’s formula describes the intersection product of a Schubert cycle
by a special Schubert cycle on a Grassmannian. We present a new geometric proof,
exhibiting an explicit chain of rational equivalences from a suitable sum of distinct
Schubert cycles to the intersection of a Schubert cycle with a special Schubert cycle.
The geometry of these rational equivalences indicates a link to a combinatorial proof
of Pieri’sformulausing Schensted insertion.

1. Introduction. Pieri’s formula asserts that the product of a Schubert class and a
special Schubert classisasum of certain other Schubert classes, each with coefficient 1.
This determines the multiplicative structure of the Chow ring of a Grassmann variety.
Pieri’s formula also arises in algebra, combinatorics, and representation theory, and has
several proofs these contexts [13, p. 73][6, p. 463][5, p. 24]. Among the geometric
proofs, perhaps the most vivid uses linear algebra to compute a triple intersection of
Schubert varieties (cf. [9][ 7, p. 203][5, Section 9.4]) and then invokes (Poincaré) duality.
Interestingly, Hodge [9] does not deduce Pieri’s formula from this triple intersection, but
rather gives an inductive proof based upon certain deformations in the Grassmannian.
Laksov [12] uses Giambelli’s formula and intersection-theoretic maps (a substitute for
Hodge's deformations) in his inductive proof and Hiller [8] uses Borel's characteristic
map and the Chevalley [3] formula. Recently, Pragacz and Ratajski [15, 16, 17, 18]
have developed an approach valid for al G/P’s, (G aclassical algebraic group, and P a
maximal parabolic) using Borel’s characteristic map and divided differences[2, 4]. This
issummarizedin [14].

We present anew geometric proof of Pieri’sformula, explicitly describing a sequence
of deformations (inducing rational equivalence) that transform ageneral intersection of a
Schubert variety with aspecial Schubert variety into aunion of distinct Schubert varieties.
This gives an understanding of the structure of rational equivalence on Grassmann
varieties in terms of the combinatorics of the Bruhat order of the Schubert cellular
decomposition. This proof enables one to determine some enumerative problems [24,
Section 5] (thoseinvolving at most five Schubert varieties where at | east three are special
Schubert varieties) without reference to a Chow or cohomology ring, the traditional tool
in enumerative geometry. Moreover, these deformations show that these enumerative
problems may be solved over the real numbers[24]. The geometry of these deformations
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is quite interesting and their form parallels a combinatorial proof of Pieri’s formula [5,
p. 24] using Schensted insertion [21].

Their explicit nature leads to homotopy continuation agorithms [1] for finding nu-
merical solutions to enumerative problems involving any humber of special Schubert
conditions[10].

Let GV bethe Grassmannian of m-dimensional subspacesof an n-dimensional vector
space V over afield k. A decreasing sequence « of lengthm(n > oy > -+ > am > 1)
and a complete flag F, in V together determine a Schubert subvariety Q,F, of G,V.
Specia Schubert varieties Q, are those Schubert varieties given by the single condition
that an m-plane intersect a given linear subspace L non-trivially. For any subscheme X
of GV, let [X] beits cycle classin the Chow ring of G,V. Pieri’s formula asserts

@ [QaF] - [Qu] = 2[R

the sum over all sequencesy withvy > a1 > 72 > -+ > Y > am Where 7 — a; is
equal to the codimension b of Q, . (L necessarily has codimensionm+b — 1inV.) Let
o * b denote this set of sequences. One may deduce Pieri’s formula as follows (cf. [5,
Section 9.4]): Let E, be aflag in general position with respect to F, and L, and define
Y¢ by 77 = n+1—Ymaj. By (Poincaré) duality, Pieri’s formula is equivalent to the
statement that

) Q.F.NQLNQE,

iseither atransverseintersection consisting of asingle point or isempty, depending upon
whether or noty € o x b.

Indeed, Q,F. N QyE, = () unless o; < 7; for eachj. If dso b = ;7 — o, then
there exists a subspace C of dimension m+ b — 31, max{0, 7j; — oj—1 + 1} such that if
H € Q,F. N QyE., thenH C C. Hence (2) isempty unlessL N C # () and s07; < 1,
hencey € a x b. Moreover, inthatcase, C=C; @ --- ® Crand H € Q,F, N Q«E,
impliesthat dimHNC; = 1. Since LN Cisspanned by thevector f; & & - - - &, where
fi € Cj, the intersection (2) is the singleton (fy. f,. . ... fm). Examining local equations
showstheintersection is transverse. Similar ideas lead to a proof of aPieri-type formula
for the flag manifold [22].

In contrast, Hodge [9] deforms the cycle Q,F, N Q into a sum A + B of cycles,
where A C {H € Gpk" | v € H} >~ Gp_1k™ 2, with v € k", and B comes from a cycle
B’ ¢ Gnk™ . He shows that both A and B’ have the form Q. F.’ N Q, and completes
the proof by induction.

For our proof, let Chow G,V be the Chow variety of GV, let Y, , be the cycle
Sheash QyF., and let G C Chow G,V be the set of cycles Q,F. N Q_ for al L of a
fixed dimension such that the intersection is generically transverse. We describe a partial
compactification of G in Chow G,V with b + 1 rational strata, each an orbit of the
Borel subgroup of GL (V) stabilizing F,, hence consisting of isomorphic cycles. The O-th
stratum is dense in G and cycles in the i-th stratum have components X; indexed by
B € axi, where X3 is asubvariety of QgF,. Passing from one stratum to the next, each
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component X; deformsinto some componentsof cyclesin the next stratum. The* history’

of each component Q,F, of Y, through this process gives a chain in the Bruhat order
of Schubert varieties, recording which component at each stage gaveriseto Q,F,.. This
leads to the following interpretation of Pieri’s formula: The sumin (1) is over acertain
set of chainsin the Bruhat order which begin at «, with the chain ending at *y recording
the history of the cycle Q,F, in the sequenceof deformations. In Section 4, we show how
thisis similar to a combinatorial proof of Pieri’s formula based on Schensted insertion.

A chain in the Bruhat order is a standard skew tableau [5, 19]. Thusthe Littlewood-
Richardson rule for multiplying two Schubert classes has an interpretation as a sum
over certain chains in the Bruhat order. A (as yet unknown) geometric proof of the
Littlewood-Richardson rule for Grassmannians should provide an explanation for this,
similar to what we give here for Pieri’s formula.

Kleiman[11] provesthatin characteristic zero, general subvarieties of aGrassmannian
intersect generically transversally and gives a counterexamplein positive characteristic.
In Section 2, we work over an arbitrary field and give a precise determination (Theo-
rem 2.4) of when a special Schubert variety meets a fixed Schubert variety generically
transversally, and describethe componentsof such anintersection. The geometry of these
componentsis interesting: while not an intersection of Schubert varieties, each compo-
nent is ‘birationally fibred’ over such an intersection, with Schubert variety fibres. Such
cycles are the key to our proof of Pieri’s formulain Section 3; they are the components
of the intermediate cyclesin the deformations used to establish Pieri’s formula.

2. Geometry of Pieri-typeinter sections.

2.1. Grassmannand Schubertvarieties. Let k beafixed, but arbitrary, fieldandm <n
positive integers. For setsU € W let W— U betheir set-theoretic difference. Let V ~ k"
be an n-dimensional vector space over k and G,V be the Grassmannian of m-planesin
V. A completeflagF, in V is a sequence of subspaces

O=FmCF,C---CF,CF =V

of VwheredimFj = n+1—j. Let (S) denote the linear span of a subset Sof V. We let
([:1]) be the set of all m-element subsetsof [n] := {1,2...., n}, considered as decreasing
sequences ¢ of lengthm:n > a3 > ap > -+ > am > 1. A completeflag F, and a
sequence o € ([:1]) together determine a Schubert (sub)variety of GV,

Q.F, = {H € GnV | dmHNF, >j, 1<j<m}.

This variety has codimension |«| := 3" o; — i. For example, let E, be acompleteflagin
k0. The Schubert subvariety Qgs31 E, of G4k is

{H| dmHNEg > L.dimHNEs > 2.dimHNE; > 3}.

A special Schubertvariety consistsof all m-planesH which intersect asingle subspace
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specia Schubert varieties. Let L ;= Fws, @ subspace of dimensionn+1— m—s, and
define

QL = Qnusm-1

Two subvarieties meet generically transversally if they intersect transversally along
a dense subset of every component of their intersection. They meet improperly if the
codimension of their (non-empty) intersectionislessthan the sum of their codimensions.
A subspaceL meetsaflag F, properly if it meets each subspace F; properly.

To simplify some assertions and formulae, we adopt the convention that if v is
a decreasing sequence of length m with v; > n, then Q,F, = (. Similarly, if the
dimension of a subspaceis asserted to be negative, we intend that subspace to be {0}.
Also, dim{0} = —oco. We sometimes make no distinction between a subvariety and its
fundamental cycle.

Let o € (1) and r be a positive integer. Define a » r C (I7) to be the set of those
B8 € ([ﬂ) Withgr > a1 >822 - >08m>oamand |8 = |a| +r. If 3 € ax*r, set
j(o, B) =min{i| 3 > i}, thefirst index i where g; differsfrom ;. For 1 <j < m, let
61 be the Kronecker delta, the sequencewith a1 in the j-th position and 0's elsewhere.

2.2. The cycle X5(j,F,L). Central to the geometry of Pieri-type intersections are the
components, X;(j, R, L), of reducible intersections. These subvarieties are also compo-
nents of cycles intermediate in deformations we use to establish Pieri’s formula. Let

8 € (), 1<j <mbeaninteger, F. aflag, and L alinear subspacein V. Define

X/g(j. k., L) = {H S Q[fF.| dmHN F(g] NL> 1}.

asubvariety of QsF, N QL.
ExaMPLE 2.3. Weillustrate this notion in G4k°. First note that

Qgga1 E. :{H | dmHNEg > 1, dmHNEs > 2, and dmHNE3 23}

Suppose A C k!© has codimension 5 = 4 + 2 — 1 (hence dimension 5) so that Q has
codimension 2 in G4k'°. Then

X8631(2-, E,/\) = {H € Qgsa1E. | dmHNEsNA > 1}

This hasdimension 0, 13, 14, 15, or 16 depending upon whether dimEs N A is0, 1,2, 3,
or > 4. (Thisis determined by considering the condition that a 2-dimensional subspace
(‘H N Eg’) of Es meet A N Eg.) Since the expected dimension of QgesiE, M Qn is 14,
Xas31(2, E., \) isaproper subvariety of Qgsz E.NQA if dimEsNA < 1and QgszE.NQA
has excessintersection if dimEg A > 3.

The following theorem generalizes these observations, giving precise conditions on
L and F, which determine whether Q,F, N Q_ is improper, genericaly transverse, or
irreducible. Moreover, it computes the components of the intersection in the crucial
case of a generically transverse intersection with the maximal number of irreducible
components.
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THEOREM 2.4. Leter € (1), s> 0, F, beacompleteflaginV, and L € Gry-m-sV.

(1) If, forsomel <j <m,dimF, NL>n+2— o —j—sandF, NL # {0}, then
Q.F. N Q isimproper. Otherwise, it is generically transverse.

(2) SupposedimF, NL=n+2— o —j—sforeachl <j < m. Let M, beany
flag satisfying My, = Fo, and Mg+1 D (Fo_,,Fo ML), for 1 <j < m. Then Q,F,
meets Q, generically transversally, and

Q.FENQL= ) X(f(j(asﬁ)~M.~|—)-
Beaxl
(3) SupposedimF, NL <n+2— o —j—sforeachl <j < mandF,_ meetsL
] ] m
properly, sothat dimF,, NL = n+2—om—m—s. ThenQ,F,NQ, isirreducible.

Notethat n+2— oj —j — s, the critical dimension for F,,; NL in thistheorem, exceeds
the expected dimension of n+2— o —m—shby m—j. Thus, it is not necessary that F, and
L meet properly for Q,F,NQ, to be generically transverse or evenirreducible. However,
it is necessary that F,,, and L meet properly. Also, as the relative position of F, and L
becomes more degenerate, the intersection Q,F, N Q. ‘branches’ into components, one
for eachj suchthat dimF, ML =n+2— o5 —] — s, and it will attain excessintersection
ifdmF, NL>n+2—a; —]—s, for evenonej.

REMARK 2.5. In the situation of Theorem 2.4(2), if 3 € a x 1 and j(r, 3) = 1, then
B = a + 6. Suppose further that M,,, N L = M,,+s. Then

X[j(l. M,. L) = QO(+S§1M° = QB‘F(S—].)(S]'M"
so we have

QRN = Y QueyaMe+ 3 Xg(i(e 8), M., L),
Beaxl Beaxl
j(a8)=1 j(e.8)>1
We prove Theorem 2.4 in Section 2.11. First, we study the varieties Xs(j, .. L). Let
CRS ([[';]) F. beacompleteflag, and 1 <j < man integer. The rational map from QgF,

to GjF4, givenby H — HNF isdefined on the denselocusin QgF, of those H where
dimH N Fs =]j. The closure of the graph of this map is the variety

GUF. = {(H.K) € Q4F. x G | K C Hand dimK NFy >i.1<i <j}.

InLemma 2.7, we show that the projection to G;F, realizes fz};F. asafibre bundlewith
base and fibres themselves Schubert varieties. Let p be the projection to QgF, and = the
projectionto GjF. For K C V, let F, /K be theimage of theflag F. in V/K.LetF, 5 be
theflag

FnC CFﬁj+1CFﬁj
and 3| € ("™*~41) the sequence
Pr—=F+1>->fFa— G +1>1=(8l;)-
Unraveling this definition shows (F,

ﬁi)(ﬁ\j)i =Fy, fori <j.
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ExAMPLE 2.6. Let (H,K) € fzﬁeglE.. Then dmHNE; > 3, K € HN Eg has
dimension 2, and dmK NEg > 1. If dmH N Eg = 2, so H is in the ‘big cell’ of
Qgez1E., then K = H N Eg and H determines K uniquely. Also, any K € G;Eg such that
dimK N Eg > 1 may arisein this way, which shows

1(Qasa1E.) = QeoE. = Qai(Eao C - - C Eg) = Qaggan), E.l6-

We also see that

H E . H E;
— f— —N—| >1.
KCK and d|m(KmK)_1,

which showsH /K € Qz(E, /K).

LEMMA 2.7. Let 8 € ([r';]) F. beaflag,and 1 <j < m. Then p is an isomorphism
over the dense subset {H € QuF. | dimH NFy = j}. Also, = exhibits Q}F. as a
fibre bundle with base Qg F.|5 whose fibre over K € Qg |4 is the Schubert variety
Q4.5 /K C GmV/K. Moreover, each fibre of = meets the locus where p is an
isomorphism.

PrROOF. We describethe fibres of 7. Note that Schubert varieties have adual descrip-
tion:
<m-—i, forl<i<m

H
H e QsF < dim
€% HAF,

If K € Qg Flg, thenK C Fy C Fy, fori > j. Thus (R/K), = Fs /K, fori > j.
Hence, if H isin the fibre over K, then H € Q4F, andK C H, so

H/K

dimH/Kﬁ(F./K) =dim

Bi

<m-—i, forj<i<m
HOF, = I<t=

ThusH/K € Qg,,..5,F /K. Thereverse implication is similar and the remaining asser-

tions follow easily from the definitions. ]
Reformulating the definition of X;(j. F., L) in these terms gives a useful characteriza-
tion:

COROLLARY 2.8. X4(j.F.. L) = p(n1(Qg,R s N QFJJ_QL))‘

Since the fibres of = meet the locus where p is an isomorphism, the map

p: Wﬁl(Qmj K

5 N QF, L) — X5(s R L)
is proper and birational. Thus, while X;3(j, F,, L) is neither a Schubert variety nor an in-

tersection of Schubert varieties, itis‘birationally fibred’ over anintersection of Schubert
varietieswith Schubert variety fibres, and henceisintermediate between these extremes.
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2.9. Tangent spacesto Schubert varieties. LetH € G,V and K € G,V be comple-
mentary subspaces,so HNK = {0}. Theopenset U C GV of thoseH’ with H'NK = {0}
is identified with Hom(H, K) by ¢ € Hom(H,K) — I, thegraphof ¢ inH@® K = V.
Thus we identify THGmV, the tangent space of G,V at H, with Hom(H. V /H), asK is
canonically isomorphic to V /H. Theintersection of a Schubert variety Q,F, containing
H with this open set U can be used to determine whether Q,F, is smooth at H and its
tangent spaceat H. Thisgivesthefollowing description: If H € GV anddimHNF,, =]
for 1 <j < m, then Q,F, issmooth at H and

THQoF. = {¢ € Hom(H.V/H) | (HNFy) C (Fo+H)/H. 1 <j <mj.

Similarly, if H € GV, L € Gpii—m—sV, anddimH N L =1, then Q, issmooth at H and
the tangent spaceof Q_ at H is

ThQL = {¢ € Hom(H.V/H) | ¢(H NL) C (L +H)/H}.

Let P be the subgroup of GL (V) stabilizing the partial flag F,, C Fo, C -+ C Fq,,.
The orbit P - L’ consists of those L with dimF, NL = dimF, NL" for1 <j <m,
Similarly, L € P- L’ if dimF, NL > dimF, NL' for 1 <j <m.IfP-L=P-L/, then
Q.FENQL ~ Q,F NQL. ThusP-orbits on Gnt1—m-sV determine the isomorphism type
of Pieri-type intersections.

LEMMA 2.10. SupposethatL.L’ € Gpi1-m-—sV WithL € P-L’. Then
1) dmQ,FENQL >dimQ,FNQ,.
(2) If Q,F NQ, isgenericallytransverse, then Q,F, N Q. isgenerically transverse.
(3) If QuF. NQ isgenerically transverseand irreducible, then Q,F, N Q.. isgener-
ically transverseand irreducible.

PROOF. Let 1: Pt — P - L’ be amap with ¢(0) = L and y(PY) N (P- L") # (). Then
Q.F. N Qy isisomorphic to Q.F, N Qu, forany t € (P - L). The lemma follows
by considering the subvariety of P* x G,V whosefibreovert € PLisQ,F. N Quqp. =

m

Gn+1-m-sV. Theconditionson L in statement (2), that dimF,, "L = n+2—o; —j —sfor
eachj, determineaP-orbit, whichistheclosureof any P-orbit P-L’, wheredim F,, NL" <
n+2— o —j—sfor eachj. Thus (2) and Lemma 2.10(2) together imply that if
dimF, NL < n+2— o —] —sfor eachj, then Q,F N Q_ is genericaly transverse,
proving the second part of (1).

For thefirst part of (1), supposedim F,, ML > n+2—a;—j—sandletL’ := F,, ML # {0}.
Then L’ has codimensionat most j +s— 1inF,,. HenceQahF.lo,j NQu # 0 and so has
codimensionin Qa|j|:.|aj at most that of Q. in GjF,,, whichisat mosts— 1. Thus

2.11. Proof of Theorem 2.4. Let o € (1), s > 0, F, be a complete flag, and L €

Xolj. Fe L) = p(n1(Qu R

aj M QL’))

which has codimension less than sin Q,F, = p(w‘l(QahF.
improper, as X,(j. R, L) C Q,F NQ, proving (1).

«))- Hence Q,F, N Qy is
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We make a computation before proceeding with the rest of the proof. Suppose
dmF, "L <n+2—qa —j—sforl <j<mandF, NL ¢ F,, . Then there
exists H € Q,F NQ_ withdmHNF, =jforl <j <m dmHNL =1, and
HNLZF Inductively choose linearly independent vectorsf; € Fy, for 1 <j <m

asfollows. Letf; € F,, — {0}. Thenfor 1 < j < msupposethat fi, ... . fi_1 have been
chosen. Since
dimF, N(L.f1,....fi1) <Nn+2—a —j—s+(j — 1) <dimF,,.

we can select avector f; in

Fo

i

andsetH := (fy,....fn). ThenH € Q,FNQL, dmHNF, =]
Let X, be the set of all such H. For

- Faj N <L, fi ..., fj71> - Focj,l-

Letfm E FmﬂL_Fam,ly
foorl<j<mdmHNL=1andHNLZF
He X5,

Um-1*

ThQuF N ThQL = {¢ € ThQAF. | S(HNL) C (F,, ML +H)/H}.

This has codimension in T4Q,F, equal to dim(F,,, + H) — dim(F,, "L +H) =s. Thus
Q,F. and Q| meet transversally along X5,
We show (2). SupposedimF, NL=n+2—o; —sforeachl <j <m. Let M, be
any flag satisfying
My = Fy

. and My D (Fy .FoyNL), j=1....m
LetH € Q,F N Q. Thenthereissome 1l <j < mwithHNLNF, ¢ F,_,. Since
dmHNF, , >j—1 wehavedimHN(F,_,.Fy, NL) >jandsodimHNMg+1 > .
ThusH € Q,.sM. if a+8 € (). But thisisthe case, as o + 1 < oj_1, for otherwise
dimensional considerationsimply that LNF,, = LNF, , C Fy . Letg = a+d! € axl.
Thenj(a,B) =jandH € X,,(j(oc,ﬁ). M., L), sinceH € QsM, anddimHNLNMg > 1.
Conversely, if 3 € a x 1, then QsM, C QuF, 50 Xs(j(c. ). M..L) C QoF. N QL. This
shows

QFRNQL= 3 Xs(j(a. B). M., L).

Beaxl

We claim this intersection is generically transverse. Let 3 € ax 1 andj = j(a, §).
Then X;(j. M., L) has an open subset X consisting of those H with dimH N F,, =i for
1<i<mdmHNL=1andHNL CF, butHNL ¢ F, 1. Aswith X7, above, Xy
is nonempty, so it is a dense open subset of X;(j, M,,L). ForH € X?,

THQF NTHQL = {¢ € THQLF

$(HNL) C (LNFy +H)/H}.

Sincedim(Fy, +H) —dim(L N F,, +H) = s, thishas codimensionsin T4Q,F, showing
that Q,F, and Q| meet transversally along X°, a dense subset of X,(j(a. 8). M...L).
By Lemma2.10(3), it sufficesto prove a specia case of (3):
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(3)" If Fy,, meetsL properly,andfor 1 <j <m,dimF, NL=n+2—0o;—j—(s+1),
then Q,F, N Q isirreducible.

Theseconditionsimply F,,, L & F,, ,.Inthenotation of Section2.5,letL’ := F
F':=F|ay, ., and o = a|m_1. Consider

L,

m-1

Xo(m—L.F.L) = p(r (QuF'NQL)).
Forj <m-—1,

dimF, NL" =n+2—0a; —j—(s+1)
dimFg, , +2—af —j—(s+1),

Om-1

so L' and R’ satisfy the conditions of (2) for the pair o/, s+ 1. Thus Q.F' N Q. is
generically transverse, whichimpliesthat X,(m— 1, K, L) hascodimensions+1in Q,F,
and henceis a proper subvariety of Q,F N Q. — X,(m— 1, K. L). Since X}, isdensein
Q.F. N QL — X,(m— 1.F, L), thisestablishes (3)'. .

3. Construction of explicit rational equivalences. Theorem 2.4 shows that for L
in adense subset of Gn+1-m_pV, theintersection Q,F, N Q, isgenerically transverse and
irreducible. We use Theorem 2.4(2) to study such a cycle as L ‘moves out of’ this set,
ultimately deforming it into the cycle Sy .0 QVF..

3.1. Familiesand Chowvarieties. SupposeZ C (P*—{0}) x GmV hasequidimensional
fibres over Pt — {0}. Thenits Zariski closure = in P x G,V has equidimensional fibres
over PL. Denote the fibre of = over 0 by lim¢_o 2, where Z; is the fibre of X over
t € P! — {0}. The association of apoint t of P to the fundamental cycle of the fibre 5,
determines a morphism P* — Chow G,,V. Moreover, if X is defined over k, then so is
the map P! — Chow G,V ([20], Section 1.9).

3.2. Thecycle Y, ((F.L). In Section 2.2, we defined the components X;(j, F.. L) of the
cyclesintermediate between Q ,FNQ and Yy e« QyF.. Here, we definetheintermediate
cycles, Y, ((F., L), which are parameterized by subspacesL in certain Schubert cellsU,, &F,
of Gni1—m—sV. Let U, sF. bethe set of thoseL € Gi1—m—sV such that

(1) Fa, ML =Fgyus and

(@) FoyNL=F4+1NL,andhasdimensonn+2 —oj —j—s,for1<j<m
These conditions are consistent and determinedimF; N L for 1 <i < n. For example,

(3.2) o <i<ojg=dimFNL=dmF+1—j—(s—1).

Thus U, ¢F, is a single Schubert cell of Gn1-m-sV. Specificaly, U, sk, is the dense
cell of QsF., where 8 € (,.,[" ) is defined as follows: If oy < n+1—s, then
B=[nN—a—{o+1,.... ag +s—1}. Otherwise, 3 isthe smallest n+1— m— sintegers

in[n] — o "
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For 3 € a1, recall that j(or, 8) = min{i | o5 < Bi}. If L € U, R, definethe cycle

Yor(Fl) = 3 Quue s+ X Xs(i(eB).FR.L).

BEaxr BEaxr
j(eB)=1 j(aB)>1
Let G,srF. C Chow GV be the set of these cycles Y, (R, L) for L € U, sF. Since
Ua.sF is a Schubert cell, G, sF. is an orhit of the Borel subgroup stabilizing F, and
henceisrational.

EXAMPLE 3.3. Thecell Ugsz; 2E, C Gsk!? consists of those A with
1. Eig C A\, s0EgN A =EgNA hasdimension 1,
2. EsNA =EsN A hasdimension 3,
3. EsNA =E;sNA hasdimension 4, and
4. \ C Ej.
In this case, the sequence (di m(g; N /\))j is(5544332111). Hence, for A € Ugsa; 2E,,

Yesar, 1(E., A) = Qios31E, + Xes31(2, E., A) + Xgs41(3. E.. A\) + Xgsz2(4. E.. N\)
= Qgsz1E. N Q.

The second line is a consequence of Remark 2.5. To see the first, suppose H €
Qgsz1E, N Qp, then HN A meets a unique largest of Eg C Es C Ez C E;, which gives
four cases:
1. HNA C Eg. HenceEp C H soH € Qjos3;E..
2. HNA meetsEs — Eg. ThusH NA meetsEg — Eg, sodimHNEg > 2and HN Eg
meets A\, henceH € Xgg31(2, E,, N).

3. HNA meetsEz — Es. ThusHN A meetsE;, — Es, sodmHNE; > 3andHNEy
meets A\, henceH € Xgs41(3. E.. N).

4 HNA meets E; — Es. ThusHNA meets E; — E3, o H C E; henceH €
Xesa2(4, E.. N).

REMARK 3.4. SupposelL € U, sF, then by Remark 2.5,

QRN = 3 QueaynR+ X Xs(i(e.B).F.L)

Beaxl Beoaxl
j(a,8)=1 j(a,8)>1
= (X,l(Eﬁ L)-

The following lemma parameterizes our explicit rational equivalences. It isidentical
to Lemma 6.1 of [23].

LEMMA 3.5. Let| < nand let M, be a complete flag in M ~ k& Suppose L., isa
hyper plane containing M, but not M,_,. Then there exists a pencil of hyperplanesL, for
t € P, such that if t # 0, then L, contains M, but not M,_; and, for eachi < | — 1, the
family of codimensioni + 1 planesinduced by M; N L; for t # 0 has fibre M;.; over 0.
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PROOF. Let ey,..., €, be a basis of M such that M; = (e...., €) and L, =

(e1,...,8_2,M)). Define
L= (M, tg +g41 |1 <j <1 —2).

FortZ0and1 <i <I|—1,MiNL; = (M, tg+6g+1|i <j <I—2)andsohasdimension
n—i. Thefibre of thisfamily att = 0is (M. g+1|i <] <|—2) = Mjsa. n
In Section 3.10, we prove the following theorem.

THEOREM 3.6. Let o € (1), s.r be positive integers and F, a flagin V. Let M €
U.s 1F, and define M, to betheflag in M consisting of the subspacesin F, N M.

Let L., C M be any hyperplane containing F,+s but not F,,+s—1. Suppose L; is the
family of hyperplanesof M given by Lemma 3.5. Then

(1) Fort#0,L; €Uy sF.

(2) 1M Your(Fes L) = Yorsa(Fi. M),

In the invocation of Lemma 3.5 in this theorem, we havea = n+2 — m— s and
| =a; — m+2,sothat M, = Fa1+3.

EXAMPLE 3.7. Letey, ..., e beabasisfor k! and supposeE; = (g, .. ., €i0). Then
let
M := (€. €4. €. €7. €. €10) € Ugsan1E..

Set A, := (€. €4, 6, €7, €10), and, for t € P, define
N = (tez + 4. 1€y + €5. tes + €7, te7 + €y. €10).
Fort # 0, A¢ € Ugsai, 2E.. We compute limy_g Yasa1, 1(E., /\t), which is
Qiosa1E, + {Lfg Xeea1(2. E.. \p) + ana Xesa1(3. E.. ) + ll_@ Xesze (4. E,. N\y).
For t # 0, consider the component
Xesar(2. E.. Ay) = {H € QgezE.|dimHNEs N A, > 1}.

Whent # 0, {K € QgE.|dimK N A; > 1} isirreducible. To describe thisast — 0,
let A := lim_o(A: N Eg) = (€7, €9, €10). Then {K € QggE.|dimK N A > 1} has two
components:

[KC(\Es)=Er} =QgE. and {K|KDANEs=Eo}=QuE..
Thus, since
Xaga1(2. E.. A) = p(fl({K € QgeE.| dimK N A > 1})).

we see that
EB Xeea1(2. E.. \t) = QgraiE, + Qogzi E..
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Similarly,

ltho Xegsa1(3. E.. At) = QgoarE. + QosaaE,
lth(} Xes32(4, E., \t) = QagsagE, + QgeoE, + QosoE..

These Schubert varieties, plus QiossiE., are the summands of Ygss1 2(E..M) =
Yhessars2 QyE., which proves

limVYesa, 1(E.A) = > QyE..
=0 ve8531%2

Since Ygsa1, 1(E.. At) = Qgsa1E. M Qp,, this provesthis instance of Pieri’'s formula.

THEOREM 3.8 (PIERI'S FORMULA). Let o € ([ﬂ) F. be a complete flag in V, and
K € Gnr1-m-bV be a subspace which meets F, properly. Then the cycle Q,F, N Qk, a
generically transver seintersection, isrationally equivalent to >y c.«b QyF.. Thus, in the
Chowring A*Gp,V of GV,

[QF]-[Qx]= > [QF]
Yeoxb
Moreover, let G ¢ Chow G,V be the set of cycles arising as generically transverse
inter sectionsof theform Q,F, NQk for K € Gpi1—m-bV. Thenonemay giveb+1 explicit
rational deformations inducing this rational equivalence, where the cycles at the i-th
stage are of the form Yy (F., M), with M € U, p+1-iF.,, and all arewithin G.

Hodge [9] a so described deformations of Q,F, M Qk into a sum of distinct Schubert
cycles. However, theseintermediate cycles are not contained in the Zariski closure of G,
and there could be as many as max{m, n — m} deformations. Theorem 3.8 uses fewer
(b < max{m,n — m}) deformations and the structure of the deformations reflects the
Bruhat order on Schubert cells.

3.9. Proof of Pieri’sformulausing Theorem3.6. Letb > 0,and o € ([ﬂ) Fori1<i<

b, let Uj := U, p+1-iF, and G = er,b+17i.iF.- Let Up C Gni1—m-bV bethe (dense) set of

thoseL which meet F,, properly andfor 1 <j <m,dimF, NL <n+2—a;—j—b. By

Theorem2.4,if L € Gpr1—m-bV, then Q,FE N Q. isgenerically transverseandirreducible

if andonly if L € Uo. Let Gy € Chow G,V be the set of cyclesQ,F. N Q for L € Uo.
Let L € Uy and consider the cycle Yy u(F.. L) € Gp:

Yoo(Fo) = 30 QR+ 3> X(i(a. B). R, L).
Beaxb Beaxb
i(,B)=1 i(e3)>1
We claim Yy p(F. L) = Xsecab QpF., the cycle Y, R of the Introduction. It suffices to
show xﬁ(j(a. B8), k., L) = QgF, for 8 € a * bwith j(a, 3) > 1. Supposej = j(a, 3) > 1,
then
Xs(j. F L) = p(7 Qg R lg N QF‘;J-OL))-
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By Formula(3.2), dimF;NL =dimFs —j+1,as0§ < §j < ¢j—1ands=1. SoQFij_ =
GjFg,, sinceany j-planein F 5 meetsF4 ML non-trivially. ThUSXﬁ(j(O(. B),F. L) = QgF,
by the definition of p and 7 in Section2.5.

Let G C Chow G,V bethe set of al cyclesQ,F. N Q,, whereL € Gyy1_m-pV and
the intersection is generically transverse. Then by Theorem 2.4 and Remark 3.4, both
Go and G; are subsets of G. Arguing as in the proof of Lemma 2.10 shows G _c G.
Theorem 3.6 implies G;  Gj_; for 2 <i < b, soin particular, Yo ,F. € G, C G. Since
Go, and hence G, is rational, Y, ,F, is rationally equivalent to any cyclein G, including
Q.F. N Qg, proving Pieri’s formula.

More explicitly, one may construct a sequence of parameterized rational curves
¢i:Pt — G for 1 < i < b witnessing this rational equivalence. For 2 < i < b, se-
lect subspacesM; € U; and pencilsL; ¢ of hyperplanes of M; by downward induction on
i asfollows: Choose My € Uy,. Given M; € U, let L be apencil of hyperplanes of M;
asin Theorem 3.6, let Mi_1 := L »,, and continue. Then for eachi, if t Z0, Lj; € Uj_1.
Define & C P! x GpV to be the family whose fibre over t € P! — {0} is the variety
Yoi-1(R,Liy).

Let ¢¥: P! — Ug = Gpe1—m—sV be a map with 1/(0) = My := Ly, 1¥(00) = K, and
v~ 1(Uo) = P — {0}. Let 53 C P! x GV be the family whose fibre over t € P! is
Q.F N Quq), agenericaly transverse intersection which is irreducible for t # O, by
Theorem 2.4. Thenfor 1 < i < b, I C P! x GV is afamily with equidimensional
generically reduced fibres over P*.

For 1 <i < b, let ¢;:P! — Gj_; be the map associated to the family %;, as in
Section 3.1. Then ¢;(0) = ¢i+1(c0) € Gj and ¢i(t) € Gj_1 for t # 0, by Theorem 3.6.
Thus these parameterized rational curves give a chain of rational equivalences between
Q.F. N Qk and YyuF. n

LetB e axrandy € ax*(r+1).1fy € 3x1withj(a,7) =j(8,7), write 3 <, 7.
For example, if o« = 8531 and 3 = 8631 € « * 1, then thosey € « x 2 with 3 <, v are
9631 and 8731. Note these index the summands of lim;_.o Xgs31(2. E., /At) in the example
following Theorem 3.6.

3.10. Proof of Theorem3.6. Lett # 0. Recall that L; containsthe subspaceF,,+s of M.,
but not Fy,+s-1. SinceM € U, s 1R, wehaveF,, "M = Fy 451, but Fo, N Lt = Fo,4s,
thus F N L; isahyperplaneof Fi "M for any i < «;. ThenL; € U, R, fort #0, as
1. Fo, MLt =Fgy s
22Forl1 <j<mFy;NM=FuuNM. SoF, NLt = Fgua N L. Moreover,
dimF, ML =dimF, "M — 1, whichisn+2— o —j —s.
Supposet # 0 and recall that

Yor(Fol) = Y QuuenaR+ Y Xs(i(e. 8).F. Lt).

BeEaxr Beaxr
j(@,p)=1 j(a,3)>1

Thisdefinesafamily = C (P*—{0}) x GV with equidimensional (actually isomorphic)
fibresover Pt —{0}. Weestablish Theorem 3.6, showing thefibreof < at 0is Yy r+1(F.. M)
by examining each component of Y, ((F.. L;) separately, then assembling the result.
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Let3 € axr.Consider acomponentof Y, (F. L) inthefirst summand, soj(c, 8) = 1.
Then~ := 3 +§' is the unique sequence satisfying 3 < 7. In this case, Q4. 1k =
QH(S—Z)(SlF--

Now consider a component in the second sum, soj = j(er, 3) > 1. Let ¢/ := f];,
R':=Fl|s,andL{ = Fg NL. Fort #0, Corollary 2.8 gives

Xs(i(e. B), R, Lt) = p(r H(QpR N QL))

Asaj < < ajg, dimLy=dimFs +1—j — (s— 1), by formula(3.2). For 1 <i <},
Bi = aiandsodimLi{NFs =n+2— 3 —i—s. Thus, by Theorem 2.4(3), Qs F.' N Q,
is generically transverse and irreducible. We study the ‘limit’ of these cyclesast — 0,
in the sense of Section 3.1. DefineL’ := limo L{ = limo Fs ML, whichisFg.. MM,
by Lemma3.5. Then

(1) Fo, "L =Fo, "M = Fpas1.

(2 For1 <i <j, FsNL" = Fg41 ML This follows for i = j because we have
L’ C Fge1 C Fy and for i < j, because 6i = ai and Fo, TM = Fpup N M.
Moreover, for 1 <i <j,dmFz NL ' =n+2— 6 —i—(s— 1).

ThusL’ € Uy s 1R’ s0QyF'NQ, isgenerically transverse, by Theorem 2.4(1). So,

. . _ 71 /
ler(} Xs(j(e. B). R Lt) =p(r HQy R M QL)).
But (Fs_,.Fg ML) C Fg4q, sincel’ € Uy s 1F/. By Remark 2.5,

QR NAL= Y QuueaaR+ > Xu(i(8.7).F.L).
Y ef’'x1 Y e x1
i(8)=1 i(8)>1

And s0 limy_o Xs(j(e. 8). F. Lt) isthe cycle

Y P @ peF) + X p(r (%05 )FL)))-

YeR x1 Yep'x1
i(87)=1 i(8)>1

We simplify this expression, beginning with the first sum. Let v/ € 3’ % 1 satisfy
j(8.7) = 1. Thenby Lemma 2.7, p(1~X(Qy+(s-5F)) €QUAIS Qs 55 F, Wherey 1=
8+ 6' isthe unique sequencewith 3 <, v and j(a. V) = 1.

Consider termsin the second sum, thosefor whichy’ € '« 1withj(3,7") > 1. Then
p(wfl (xw, (j(ﬁ/. ). E’, L’))) isthe subvariety of QsF, consisting of those H such that
thereexistsK ¢ HwithdimK =j, K € QF’,anddimKNF,, NL > 1.

i /Al . . . ’j(d/ﬁ/) .

Lety := g+61(F"), the unique sequencewith 5 <, v andj(a, ) =j(3'.7"). Then, as
Vit > B, the definition of K’ impliesF!, = Fj) C Fgs1. Sincel’ = Fgi N M,

i3 ' :

weseethat F,, NL'=F,, NM. Thusif
CRG)

i)

He p(fl(xw(j(ﬁ’.w’). F/, L’))).
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then H € Q\F, and dimH N Fy,, MM > 1, s0 H € X(j(e.7). F. M). The reverse
inclusion,

X (i) R M) © p( (X (5.7 F L)) ).
issimilar.
This showsthat lim_o Xs(j(e. 8). F.. Lt) isthecycle

(3.10) > QusoanRt Y X (j(@).R.L).
B=<Y B=<a?
i(@n)=1 i(@)>1

Thesets {7 |3 <, 7} for 3 € a  r partition the set o * (r + 1). Thus

Ithg YD(.((F'“, L'() = Z QN,+(572)51F0 + Z Xﬂ (J (Cl’, fy) R 9 M)

Yeax(r+1) Yeox(r+1)
jlam)=1 jlay)>1

whichis Yy r+1(F, M). n

4. Link to Schensted insertion. Theset (V) has a partial order, called the Bruhat
order: o < g if and only if QgF, C Q,F,. Combinatorialy, thisisa < g if o5 < 3 for
1<i<m

We interpret the behavior of the components X (j (o, P)F., L) of the intermediate
varieties Y, i—1(F., L) in our proof of Pieri’s formula (Section 3.9) as the branching of a
certain subtree of (I™) with root .. This tree arises similarly in a combinatorial proof of
Pieri’s formula for Schur polynomials using Schensted insertion [5, p. 24]. We assume
familiarity with the notionsof Youngtableaux and Schenstedinsertion asfoundin[5, 19].
To simplify this discussion, assume further that n > o1 + b.

Each rational equivalence of Section 3.9 is induced by a family 3; over P! with
generic fibre in G;_; and special fibre in G;. The components of cyclesin G;_; are
indexed by 8 € o x (i — 1), with g-th component Q. .1y, if j(a, ) = 1, and
Xs(j(r. B). R, L) otherwise. In passing to G; via ¢;, the component Qg .1 iynF is
unchanged, but reindexed: Q. ;i) F, wherey 1= 3 + ' isthe unique sequencein o i
with 8 <, 7. By equation (3.10), the other components become

> QupaisRt > X(ji(@).R.M).
B=aY B=aY
j(e)=1 j(a)>1
Thusthe component of the generic fibre of Z; indexed by 3 € o * (i — 1) becomesasum
of componentsindexed by {y € axi|3 <, 7} at the special fibre.

This suggests defining a tree T, , whose branching represents the ‘branching’ of
components of Y,.;_1(F.L) in these deformations. Let T, C ([I’T‘}) be the tree with
vertex set (J{a *i|0 <i < b} and covering relation 3 <, 7. Thisisatreeas a * i is
partitioned by thesets {Y| 8 <o 7} for 3 € ax (i — 1).
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For a decreasing m-sequence «, let \(«) be the partition (g — Mmoo —m+1,...,
am — 1). The association o «—— () gives an order isomorphism between the set of
decreasing m-sequences and the set of partitions of length at most m. This transfers
notions for sequencesinto corresponding notions for partitions.

To a(semi-standard) Young tableau T with entriesamong 1, . . ., m, associateamono-
mial x" inthevariablesxy, X, . . . , Xm: theexponent of x; inx" isthe number of occurrences
of i in T. This exponent vector is called the content of T. The Schur polynomial s, is
> x", the sum over all tableaux T of shape A. There is surjective homomorphism from
the algebra of Schur polynomials to the Chow ring of G,V defined by:

[Q.F] if A = A(e) for some o € (1)
0 otherwise.

S)\ |—

Specia Schur polynomials are indexed by partitions (b, O, . . . , 0) with asingle row.
Schensted insertion gives a combinatorial proof of Pieri’s formula, providing a
content-preserving bijection between the set of pairs (S T) of tableaux where S has
shape A and T has shape (b, 0, ... ., 0) and the set of all tableaux whose shapeisin A x b:
Insert the reading word of T into S. The resulting tableau has shape 4 € A x b.
Consider the tableau S of shape A\(8531) = 421.

2[3]4]4]
4

3
4

Schensted insertion of 1,2,3, respectively, 4 into Sgives the following tableaux:

1/3[4]4] 224 4] 2]3]3]4] 2[3]4]4]4]
24 33 3/4]4 34

13 414 4] 14

[4]

If we insert the sequences 12,13, 14, 23, 24, 33,34, and 44 into S, we abtain all
possible sequences of shapes. Thisis displayed in Figure 1 on the next page as a tree of
tableaux, where the edges are labeled by the integer inserted.

Converting the shapesinto sequences, we obtain the tree Tgsa; » shown in Figure 2 on
the next page. Thisis exactly the branching of componentsin the examplein Sections 3.3
and 3.7.

Let A = A% AL, ..., AP =4 be the sequence of shapes resulting from the insertion of
successive entries of T into S. Since T is a single row, it is a property of the insertion
agorithm that \' <, AI*1, and so this sequenceis achainin thetree Ty p.

The totality of these insertions for all such pairs of tableaux gives all chainsin T, p.
Thus the ‘branching’ of shapes during Schensted insertion is identical to the branching
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1[2]4]4] [1]3][3]4] [1[3]4]4]4] [2[2][3]4] [2]2]4]4]4] [2][3]3][3] [2]3]3]4]4] [2][3[4]4]4]4]
12]3] 2[a[4]  [2]4] 3[3[4]  [3[3] 3[4a[4]4] [3]4]4] 13]4]
|34 13 13 14]4] 14]4] 4] 4] 4]
4] 4] 4]

3 3 4 4

\\ E D\ /e /"

1]3]4]4] 2[2]4]4] 2[3]3[4] 2[3[4]4]4]

[2]4] 13]3] 3[a[4] 13]4]

|3 14]4] 4 14]

4]

2 3 2

1]3]4]4]
12]4]
3]

FIGURE 1: INSERTION OF 12,13,14,23,24,33,34, AND 44 INTO S

8542 8632 9532 8641 9541 8731 9631 10531

ENVARMVANS s

8532 8541 8631 9531
3 2| 3 4
8531

FIGURE 2: CONVERSION OF THE SHAPES OF FIGURE 1 INTO SEQUENCES

of components in the rational equivalences of Section 3.9. We feel this relation to
combinatoricsis one of the more intriguing aspects of our proof of Pieri’s formula and
that similar ideas may yield a geometric proof of the Littlewood-Richardson rule.

ACKNOWLEDGMENTS. | thank the anonymous referee for his helpful comments and
suggestions, in particular the suggestion to include an illustrative running example and
to discuss other geometric proofs of Pieri’s formula.

REFERENCES
. E. Allgower and K. Georg, Numerical Continuation Methods, An Introduction. Springer Ser. Comput.
Math. 13, Springer-Verlag, 1990.

. 1. N. Bernstein, |. M. Gelfand, and S. I. Gelfand, Schubert cells and cohomology of the spaces G/P.
Russian Math. Surveys 28(1973), 1-26.

. C. Chevalley, Sur les decompositions cellulaires des espaces G/B. Proc. Sympos. Pure Math. (1) 56,

Algebraic Groups and their Generalizations: Classical Methods, Amer. Math. Soc., Providence, RI,
1994, 1-23.

M. Demazure, Désingularization des variétés de Schubert généralisées. Ann. Sci. Ecole Norm. Sup.
(4) 7(1974), 53-88.

https://doi.org/10.4153/CJM-1997-063-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-063-7

1298 FRANK SOTTILE

5.

9.
10.
11
12.
13.

14.

15.

16.

17.

18.
10.

20.

21
22.

23.

24.

W. Fulton, Young Tableaux, with Applications to Representation Theory and Geometry. Cambridge
University Press, Cambridge, 1996.

6. W. Fulton and J. Harris, Representation Theory. Graduate Textsin Math 129, Springer-Verlag, 1991.
7.
8. H. Hiller, The Geometry of Coxeter Groups. Pitman Res. Notes Math. Ser. 54, Pitman, Boston, MA,

P. Griffiths and J. Harris, Principles of Algebraic Geometry. J. Wiley and Sons, New York, 1978.

1982.

W. V. D. Hodge, The intersection formula for a Grassmannian variety. J. London Math. Soc. 17(1942),
48-64.

B. Huber, F. Sottile, and B. Sturmfels, Numerical Schubert calculus. 1997.

S. Kleiman, The transversality of a general transate. Compositio Math. 28(1974), 287-297.

D. Laksov, Algebraic cyclesin Grassmann varieties. Adv. Math. 9(1972), 267-295.

I. G. Macdonald, Symmetric Functions and Hall Polynomials. 2nd edn, Oxford University Press, New
York, 1995.

P. Pragacz, Symmetric polynomials and divided differencesin formulas of intersection theory. In: Param-
eter Spaces 36, Banach Center Publications, Banach Center workshop, 1994; Intitute of Mathematics,
Polish Academy of Sciences, 1996, 125-177.

P. Pragacz and J. Ratajski, Pieri type formula for isotropic Grassmannians; the operator approach.
Manuscripta Math. 79(1993), 127-151.

, Pieri-type formula for SP(2m)/P and SO(2m+ 1)/P. C. R. Acad. Sci. Paris Sér. | Math.
317(1993), 1035-1040.

, Pieri-type formula for Lagrangian and odd orthogonal Grassmannians. J. Reine Angew. Math.
476(1996), 143-189.

, A Pieri-type theorem for even orthogonal Grassmannians. Max-Planck Institut preprint, 1996.
B. Sagan, The Symmetric Group; Representations, Combinatorics, Algorithms & Symmetric Functions.
Wadsworth & Brooks/Cole, 1991.

P. Samuel, Méthodes d’ Algebre Abstraite en Geométrie Algébrique. Seconde édition, Ergeb. Math.
Grenzgeb., Springer-Verlag, 1967.

C. Schensted, Longest increasing and decreasing subsequence, Can. J. Math. 13(1961), 179-191.

F. Sottile, Pieri’s formula for flag manifolds and Schubert polynomials. Ann. Inst. Fourier (Grenoble)
46(1996), 89-110.

, Enumerative geometry for the real Grassmannian of lines in projective space. Duke Math. J.
87(1997), 59-85.

, Real enumerative geometry and effective algebraic eguivalence. J. Pure Appl. Algebra
117/118(1997), 601-615.

Department of Mathematics
University of Toronto

100 S. George Street
Toronto, Ontario

https://doi.org/10.4153/CJM-1997-063-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-063-7

