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PIERI’S FORMULA VIA EXPLICIT RATIONAL EQUIVALENCE

FRANK SOTTILE

ABSTRACT. Pieri’s formula describes the intersection product of a Schubert cycle
by a special Schubert cycle on a Grassmannian. We present a new geometric proof,
exhibiting an explicit chain of rational equivalences from a suitable sum of distinct
Schubert cycles to the intersection of a Schubert cycle with a special Schubert cycle.
The geometry of these rational equivalences indicates a link to a combinatorial proof
of Pieri’s formula using Schensted insertion.

1. Introduction. Pieri’s formula asserts that the product of a Schubert class and a
special Schubert class is a sum of certain other Schubert classes, each with coefficient 1.
This determines the multiplicative structure of the Chow ring of a Grassmann variety.
Pieri’s formula also arises in algebra, combinatorics, and representation theory, and has
several proofs these contexts [13, p. 73][6, p. 463][5, p. 24]. Among the geometric
proofs, perhaps the most vivid uses linear algebra to compute a triple intersection of
Schubert varieties (cf. [9][7, p. 203][5, Section 9.4]) and then invokes (Poincaré) duality.
Interestingly, Hodge [9] does not deduce Pieri’s formula from this triple intersection, but
rather gives an inductive proof based upon certain deformations in the Grassmannian.
Laksov [12] uses Giambelli’s formula and intersection-theoretic maps (a substitute for
Hodge’s deformations) in his inductive proof and Hiller [8] uses Borel’s characteristic
map and the Chevalley [3] formula. Recently, Pragacz and Ratajski [15, 16, 17, 18]
have developed an approach valid for all GÛP’s, (G a classical algebraic group, and P a
maximal parabolic) using Borel’s characteristic map and divided differences [2, 4]. This
is summarized in [14].

We present a new geometric proof of Pieri’s formula, explicitly describing a sequence
of deformations (inducing rational equivalence) that transform a general intersection of a
Schubert variety with a special Schubert variety into a union of distinct Schubert varieties.
This gives an understanding of the structure of rational equivalence on Grassmann
varieties in terms of the combinatorics of the Bruhat order of the Schubert cellular
decomposition. This proof enables one to determine some enumerative problems [24,
Section 5] (those involving at most five Schubert varieties where at least three are special
Schubert varieties) without reference to a Chow or cohomology ring, the traditional tool
in enumerative geometry. Moreover, these deformations show that these enumerative
problems may be solved over the real numbers [24]. The geometry of these deformations
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is quite interesting and their form parallels a combinatorial proof of Pieri’s formula [5,
p. 24] using Schensted insertion [21].

Their explicit nature leads to homotopy continuation algorithms [1] for finding nu-
merical solutions to enumerative problems involving any number of special Schubert
conditions [10].

Let GmV be the Grassmannian of m-dimensional subspaces of an n-dimensional vector
space V over a field k. A decreasing sequence ã of length m (n ½ ã1 Ù Ð Ð Ð Ù ãm ½ 1)
and a complete flag Fž in V together determine a Schubert subvariety ΩãFž of GmV.
Special Schubert varieties ΩL are those Schubert varieties given by the single condition
that an m-plane intersect a given linear subspace L non-trivially. For any subscheme X
of GmV, let [X] be its cycle class in the Chow ring of GmV. Pieri’s formula asserts

[ΩãFž] Ð [ΩL] =
X

[ΩçFž]Ò(1)

the sum over all sequences ç with ç1 ½ ã1 Ù ç2 ½ Ð Ð Ð Ù çm ½ ãm where
P
çi � ãi is

equal to the codimension b of ΩL. (L necessarily has codimension m + b � 1 in V.) Let
ã Ł b denote this set of sequences. One may deduce Pieri’s formula as follows (cf. [5,
Section 9.4]): Let Ež be a flag in general position with respect to Fž and L, and define
çc by çc

j := n + 1 � çm+1�j. By (Poincaré) duality, Pieri’s formula is equivalent to the
statement that

ΩãFž \ΩL \Ωçc Ež(2)

is either a transverse intersection consisting of a single point or is empty, depending upon
whether or not ç 2 ã Ł b.

Indeed, ΩãFž \ ΩçcEž = ; unless ãj � çj for each j. If also b =
P

j çj � ãj, then
there exists a subspace C of dimension m + b�

Pm
j=2 maxf0Ò çj � ãj�1 + 1g such that if

H 2 ΩãFž \Ωçc Ež, then H ² C. Hence (2) is empty unless L \ C 6= ; and so çj � ãj�1,
hence ç 2 ã Ł b. Moreover, in that case, C = C1 ý Ð Ð Ð ý Cm and H 2 ΩãFž \ ΩçcEž

implies that dim H\Cj = 1. Since L\C is spanned by the vector f1ý f2ýÐ Ð Ðý fm, where
fi 2 Ci, the intersection (2) is the singleton h f1Ò f2Ò    Ò fmi. Examining local equations
shows the intersection is transverse. Similar ideas lead to a proof of a Pieri-type formula
for the flag manifold [22].

In contrast, Hodge [9] deforms the cycle ΩãFž \ ΩL into a sum A + B of cycles,
where A ² fH 2 Gmkn j v 2 Hg ' Gm�1kn�1, with v 2 kn, and B comes from a cycle
B0 ² Gmkn�1. He shows that both A and B0 have the form Ωã0Fž

0 \ ΩL0 and completes
the proof by induction.

For our proof, let Chow GmV be the Chow variety of GmV, let YãÒb be the cycleP
ç2ãŁb ΩçFž, and let G ² Chow GmV be the set of cycles ΩãFž \ ΩL for all L of a

fixed dimension such that the intersection is generically transverse. We describe a partial
compactification of G in Chow GmV with b + 1 rational strata, each an orbit of the
Borel subgroup of GL(V) stabilizing Fž, hence consisting of isomorphic cycles. The 0-th
stratum is dense in G and cycles in the i-th stratum have components Xå indexed by
å 2 ã Ł i, where Xå is a subvariety of ΩåFž. Passing from one stratum to the next, each
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component Xå deforms into some components of cycles in the next stratum. The ‘history’
of each component ΩçFž of YãÒb through this process gives a chain in the Bruhat order
of Schubert varieties, recording which component at each stage gave rise to ΩçFž. This
leads to the following interpretation of Pieri’s formula: The sum in (1) is over a certain
set of chains in the Bruhat order which begin at ã, with the chain ending at ç recording
the history of the cycle ΩçFž in the sequence of deformations. In Section 4, we show how
this is similar to a combinatorial proof of Pieri’s formula based on Schensted insertion.

A chain in the Bruhat order is a standard skew tableau [5, 19]. Thus the Littlewood-
Richardson rule for multiplying two Schubert classes has an interpretation as a sum
over certain chains in the Bruhat order. A (as yet unknown) geometric proof of the
Littlewood-Richardson rule for Grassmannians should provide an explanation for this,
similar to what we give here for Pieri’s formula.

Kleiman [11] proves that in characteristic zero, general subvarieties of a Grassmannian
intersect generically transversally and gives a counterexample in positive characteristic.
In Section 2, we work over an arbitrary field and give a precise determination (Theo-
rem 2.4) of when a special Schubert variety meets a fixed Schubert variety generically
transversally, and describe the components of such an intersection. The geometry of these
components is interesting: while not an intersection of Schubert varieties, each compo-
nent is ‘birationally fibred’ over such an intersection, with Schubert variety fibres. Such
cycles are the key to our proof of Pieri’s formula in Section 3; they are the components
of the intermediate cycles in the deformations used to establish Pieri’s formula.

2. Geometry of Pieri-type intersections.

2.1. Grassmann and Schubert varieties. Let k be a fixed, but arbitrary, field and m � n
positive integers. For sets U ² W let W�U be their set-theoretic difference. Let V ' kn

be an n-dimensional vector space over k and GmV be the Grassmannian of m-planes in
V. A complete flag Fž in V is a sequence of subspaces

0 = Fn+1 ² Fn ² Ð Ð Ð ² F2 ² F1 = V

of V where dim Fj = n + 1� j. Let hSi denote the linear span of a subset S of V. We let�
[n]
m

�
be the set of all m-element subsets of [n] := f1Ò 2Ò    Ò ng, considered as decreasing

sequences ã of length m: n ½ ã1 Ù ã2 Ù Ð Ð Ð Ù ãm ½ 1. A complete flag Fž and a
sequence ã 2

�
[n]
m

�
together determine a Schubert (sub)variety of GmV,

ΩãFž := fH 2 GmV j dim H \ Fãj ½ jÒ 1 � j � mg

This variety has codimension jãj :=
P
ãi � i. For example, let Ež be a complete flag in

k10. The Schubert subvariety Ω8531Ež of G4k10 is

fH j dim H \ E8 ½ 1Ò dim H \ E5 ½ 2Ò dim H \ E3 ½ 3g

A special Schubertvariety consists of all m-planes H which intersect a single subspace
Fm+s in the flag non-trivially, that is, Ωm+sÒm�1ÒÒ2Ò1Fž. We use a compact notation for
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special Schubert varieties. Let L := Fm+s, a subspace of dimension n + 1 � m � s, and
define

ΩL := Ωm+sÒm�1ÒÒ2Ò1Fž

Two subvarieties meet generically transversally if they intersect transversally along
a dense subset of every component of their intersection. They meet improperly if the
codimension of their (non-empty) intersection is less than the sum of their codimensions.
A subspace L meets a flag Fž properly if it meets each subspace Fi properly.

To simplify some assertions and formulae, we adopt the convention that if ç is
a decreasing sequence of length m with ç1 Ù n, then ΩçFž = ;. Similarly, if the
dimension of a subspace is asserted to be negative, we intend that subspace to be f0g.
Also, dimf0g = �1. We sometimes make no distinction between a subvariety and its
fundamental cycle.

Let ã 2
�

[n]
m

�
and r be a positive integer. Define ã Ł r ²

�
[n]
m

�
to be the set of those

å 2
�

[n]
m

�
with å1 ½ ã1 Ù å2 ½ Ð Ð Ð Ù åm ½ ãm and jåj = jãj + r. If å 2 ã Ł r, set

j(ãÒ å) := minfi j åi Ù ãig, the first index i where åi differs from ãi. For 1 � j � m, let
é j be the Kronecker delta, the sequence with a 1 in the j-th position and 0’s elsewhere.

2.2. The cycle Xå( jÒF.ÒL). Central to the geometry of Pieri-type intersections are the
components, Xå( jÒFžÒL), of reducible intersections. These subvarieties are also compo-
nents of cycles intermediate in deformations we use to establish Pieri’s formula. Let
å 2

�
[n]
m

�
, 1 � j � m be an integer, Fž a flag, and L a linear subspace in V. Define

Xå( jÒFžÒL) := fH 2 ΩåFž j dim H \ Fåj \ L ½ 1gÒ

a subvariety of ΩåFž \ ΩL.

EXAMPLE 2.3. We illustrate this notion in G4k10. First note that

Ω8631Ež = fH j dim H \ E8 ½ 1Ò dim H \ E6 ½ 2Ò and dim H \ E3 ½ 3g

Suppose Λ ² k10 has codimension 5 = 4 + 2 � 1 (hence dimension 5) so that ΩΛ has
codimension 2 in G4k10. Then

X8631(2ÒEžÒΛ) = fH 2 Ω8631Ež j dim H \ E6 \ Λ ½ 1g

This has dimension 0Ò 13Ò 14Ò 15, or 16 depending upon whether dim E6 \Λ is 0Ò 1Ò 2Ò 3,
or ½ 4. (This is determined by considering the condition that a 2-dimensional subspace
(‘H \ E6’) of E6 meet Λ \ E6.) Since the expected dimension of Ω8631Ež \ ΩΛ is 14,
X8631(2ÒEžÒΛ) is a proper subvariety of Ω8631Ež\ΩΛ if dim E6\Λ � 1 and Ω8631Ež\ΩΛ
has excess intersection if dim E6 \ Λ ½ 3.

The following theorem generalizes these observations, giving precise conditions on
L and Fž which determine whether ΩãFž \ ΩL is improper, generically transverse, or
irreducible. Moreover, it computes the components of the intersection in the crucial
case of a generically transverse intersection with the maximal number of irreducible
components.
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THEOREM 2.4. Let ã 2
�

[n]
m

�
, s Ù 0, Fž be a complete flag in V, and L 2 Gn+1�m�sV.

(1) If, for some 1 � j � m, dim Fãj \ L Ù n + 2� ãj � j� s and Fãj \ L 6= f0g, then
ΩãFž \ΩL is improper. Otherwise, it is generically transverse.

(2) Suppose dim Fãj \ L = n + 2 � ãj � j � s for each 1 � j � m. Let M ž be any
flag satisfying Mãj = Fãj and Mãj+1 ¦ hFãj�1ÒFãj \ Li, for 1 � j � m. Then ΩãFž

meets ΩL generically transversally, and

ΩãFž \ΩL =
X

å2ãŁ1
Xå

�
j(ãÒ å)ÒMž ÒL

�


(3) Suppose dim Fãj \ L Ú n + 2 � ãj � j � s for each 1 � j Ú m and Fãm meets L
properly, so that dim Fãm \L = n + 2�ãm�m� s. Then ΩãFž\ΩL is irreducible.

Note that n + 2�ãj� j� s, the critical dimension for Fãj \L in this theorem, exceeds
the expected dimension of n+2�ãj�m�s by m� j. Thus, it is not necessary that Fž and
L meet properly for ΩãFž\ΩL to be generically transverse or even irreducible. However,
it is necessary that Fãm and L meet properly. Also, as the relative position of Fž and L
becomes more degenerate, the intersection ΩãFž \ ΩL ‘branches’ into components, one
for each j such that dim Fãj \ L = n + 2�ãj � j� s, and it will attain excess intersection
if dim Fãj \ L Ù n + 2� ãj � j� s, for even one j.

REMARK 2.5. In the situation of Theorem 2.4(2), if å 2 ã Ł 1 and j(ãÒ å) = 1, then
å = ã + é1. Suppose further that Mã1 \ L = Mã1+s. Then

Xå(1ÒM žÒL) = Ωã+sé1M ž = Ωå+(s�1)é1M žÒ

so we have

ΩãFž \ΩL =
X
å2ãŁ1

j(ãÒå)=1

Ωå+(s�1)é1M ž +
X
å2ãŁ1

j(ãÒå)Ù1

Xå

�
j(ãÒ å)ÒMž ÒL

�


We prove Theorem 2.4 in Section 2.11. First, we study the varieties Xå( jÒFžÒL). Let
å 2

�
[n]
m

�
, Fž be a complete flag, and 1 � j � m an integer. The rational map from ΩåFž

to GjFåj given by H 7�! H\Fåj is defined on the dense locus in ΩåFž of those H where
dim H \ Fåj = j. The closure of the graph of this map is the variety

Ω̃ j
åFž :=

n
(HÒK) 2 ΩåFž ð GjFåj j K ² H and dim K \ Fåi ½ iÒ 1 � i � j

o


In Lemma 2.7, we show that the projection to GjFåj realizes Ω̃ j
åFž as a fibre bundle with

base and fibres themselves Schubert varieties. Let p be the projection to ΩåFž and ô the
projection to GjFåj . For K ² V, let FžÛK be the image of the flag Fž in VÛK. Let Fžjåj be
the flag

Fn ² Ð Ð Ð ² Fåj+1 ² Fåj

and åj j 2
�

[n+1�åj]
j

�
the sequence

å1 � åj + 1 Ù Ð Ð Ð Ù åj�1 � åj + 1 Ù 1 = (åj j)j

Unraveling this definition shows (Fžjåj )(åjj)i
= Fåi , for i � j.
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EXAMPLE 2.6. Let (HÒK) 2 Ω̃2
8631Ež. Then dim H \ E3 ½ 3, K ² H \ E6 has

dimension 2, and dim K \ E8 ½ 1. If dim H \ E6 = 2, so H is in the ‘big cell’ of
Ω8631Ež, then K = H \ E6 and H determines K uniquely. Also, any K 2 G2E6 such that
dim K \ E8 ½ 1 may arise in this way, which shows

ô(Ω̃2
8631Ež) = Ω86Ež = Ω31(E10 ² Ð Ð Ð ² E6) = Ω8631j2 Ežj6

We also see that
H
K
²

E1

K
and dim

 
H
K
\

E3

K

!
½ 1Ò

which shows HÛK 2 Ω31(EžÛK).

LEMMA 2.7. Let å 2
�

[n]
m

�
, Fž be a flag, and 1 � j � m. Then p is an isomorphism

over the dense subset fH 2 ΩåFž j dim H \ Fåj = jg. Also, ô exhibits Ω̃ j
åFž as a

fibre bundle with base Ωåj j
Fžjåj whose fibre over K 2 Ωåj j

Fžjåj is the Schubert variety
Ωåj+1 åm FžÛK ² Gm�jVÛK. Moreover, each fibre of ô meets the locus where p is an
isomorphism.

PROOF. We describe the fibres of ô. Note that Schubert varieties have a dual descrip-
tion:

H 2 ΩåFž () dim
H

H \ Fåi

� m� iÒ for 1 � i � m

If K 2 Ωåj j
Fžjåj , then K ² Fåj ² Fåi , for i Ù j. Thus

�
FžÛK

�
åi

= FåiÛK, for i Ù j.
Hence, if H is in the fibre over K, then H 2 ΩåFž and K ² H, so

dim
HÛK

HÛK \
�
FžÛK

�
åi

= dim
H

H \ Fåi

� m� iÒ for j Ú i � m

Thus HÛK 2 Ωåj+1ÐÐÐåm FžÛK. The reverse implication is similar and the remaining asser-
tions follow easily from the definitions.

Reformulating the definition of Xå( jÒFžÒL) in these terms gives a useful characteriza-
tion:

COROLLARY 2.8. Xå( jÒFžÒL) = p
�
ô�1(Ωåj j

Fžjåj \ΩFåj
\L)

�


Since the fibres of ô meet the locus where p is an isomorphism, the map

p:ô�1(Ωåj j
Fžjåj \ΩFåj

\ L) �! Xå( jÒFžÒL)

is proper and birational. Thus, while Xå( jÒFž ÒL) is neither a Schubert variety nor an in-
tersection of Schubert varieties, it is ‘birationally fibred’ over an intersection of Schubert
varieties with Schubert variety fibres, and hence is intermediate between these extremes.
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2.9. Tangent spaces to Schubert varieties. Let H 2 GmV and K 2 Gn�mV be comple-
mentary subspaces,so H\K = f0g. The open set U ² GmV of those H0 with H0\K = f0g
is identified with Hom(HÒK) by û 2 Hom(HÒK) 7! Γû, the graph of û in H ý K = V.
Thus we identify THGmV, the tangent space of GmV at H, with Hom(HÒVÛH), as K is
canonically isomorphic to VÛH. The intersection of a Schubert variety ΩãFž containing
H with this open set U can be used to determine whether ΩãFž is smooth at H and its
tangent space at H. This gives the following description: If H 2 GmV and dim H\Fãj = j
for 1 � j � m, then ΩãFž is smooth at H and

THΩãFž =
n
û 2 Hom(HÒVÛH) j û(H \ Fãj ) ² (Fãj +H)ÛHÒ 1 � j � m

o


Similarly, if H 2 GmV, L 2 Gn+1�m�sV, and dim H \ L = 1, then ΩL is smooth at H and
the tangent space of ΩL at H is

THΩL =
n
û 2 Hom(HÒVÛH) j û(H \ L) ² (L + H)ÛH

o


Let P be the subgroup of GL(V) stabilizing the partial flag Fã1 ² Fã2 ² Ð Ð Ð ² Fãm .
The orbit P Ð L0 consists of those L with dim Fãj \ L = dim Fãj \ L0 for 1 � j � m.
Similarly, L 2 P Ð L0 if dim Fãj \ L ½ dim Fãj \ L0 for 1 � j � m. If P Ð L = P Ð L0, then
ΩãFž \ΩL ' ΩãFž \ΩL0 . Thus P-orbits on Gn+1�m�sV determine the isomorphism type
of Pieri-type intersections.

LEMMA 2.10. Suppose that LÒL0 2 Gn+1�m�sV with L 2 P Ð L0. Then
(1) dim ΩãFž \ΩL ½ dim ΩãFž \ΩL0 .
(2) If ΩãFž \ΩL is generically transverse, then ΩãFž \ΩL0 is generically transverse.
(3) If ΩãFž \ΩL is generically transverse and irreducible, then ΩãFž \ΩL0 is gener-

ically transverse and irreducible.

PROOF. Let †: P1 ! P Ð L0 be a map with †(0) = L and †(P1) \ (P Ð L0 ) 6= ;. Then
ΩãFž \ Ω†(t) is isomorphic to ΩãFž \ ΩL0 , for any t 2 †�1(P Ð L0 ). The lemma follows
by considering the subvariety of P1 ð GmV whose fibre over t 2 P1 is ΩãFž \Ω†(t).

2.11. Proof of Theorem 2.4. Let ã 2
�

[n]
m

�
, s Ù 0, Fž be a complete flag, and L 2

Gn+1�m�sV. The conditions on L in statement (2), that dim Fãj \L = n + 2�ãj� j� s for
each j, determine a P-orbit, which is the closure of any P-orbit PÐL0, where dim Fãj\L0 �
n + 2 � ãj � j � s for each j. Thus (2) and Lemma 2.10(2) together imply that if
dim Fãj \ L � n + 2 � ãj � j � s for each j, then ΩãFž \ ΩL is generically transverse,
proving the second part of (1).

For the first part of (1), suppose dim Fãj\L Ù n+2�ãj�j�s and let L0 := Fãj\L 6= f0g.
Then L0 has codimension at most j + s � 1 in Fãj . Hence Ωãjj

Fžjãj \ ΩL0 6= ; and so has
codimension in Ωãj j

Fžjãj at most that of ΩL0 in GjFãj , which is at most s� 1. Thus

Xã( jÒFžÒL) = p
�
ô
�1(Ωãjj

Fžjãj \ΩL0)
�

which has codimension less than s in ΩãFž = p
�
ô�1(Ωãjj

Fžjãj )
�
. Hence ΩãFž \ ΩL is

improper, as Xã( jÒFžÒL) ² ΩãFž \ΩL, proving (1).
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We make a computation before proceeding with the rest of the proof. Suppose
dim Fãj \ L � n + 2 � ãj � j � s for 1 � j � m and Fãm \ L 6² Fãm�1 . Then there
exists H 2 ΩãFž \ ΩL with dim H \ Fãj = j for 1 � j � m, dim H \ L = 1, and
H \ L 6² Fãm�1 . Inductively choose linearly independent vectors fj 2 Fãj for 1 � j � m
as follows. Let f1 2 Fã1 � f0g. Then for 1 Ú j Ú m suppose that f1Ò    Ò fj�1 have been
chosen. Since

dim Fãj \ hLÒ f1Ò    Ò fj�1i � n + 2� ãj � j � s + ( j � 1) Ú dim Fãj Ò

we can select a vector fj in

Fãj � Fãj \ hLÒ f1Ò    Ò fj�1i � Fãj�1

Let fm 2 Fm\L�Fãm�1 , and set H := h f1Ò    Ò fmi. Then H 2 ΩãFž\ΩL, dim H\Fãj = j
for 1 � j � m, dim H \ L = 1, and H \ L 6² Fãm�1 . Let XŽ

m be the set of all such H. For
H 2 XŽ

m,

THΩãFž \ THΩL =
n
û 2 THΩãFž j û(H \ L) ² (Fãm \ L + H)ÛH

o


This has codimension in THΩãFž equal to dim(Fãm + H) � dim(Fãm \ L + H) = s. Thus
ΩãFž and ΩL meet transversally along XŽ

m.
We show (2). Suppose dim Fãj \ L = n + 2 � ãj � s for each 1 � j � m. Let M ž be

any flag satisfying

Mãj = Fãj and Mãj+1 ¦ hFãj�1ÒFãj \ LiÒ j = 1Ò    Òm

Let H 2 ΩãFž \ ΩL. Then there is some 1 � j � m with H \ L \ Fãj 6² Fãj�1 . Since
dim H \ Fãj�1 ½ j� 1, we have dim H \ hFãj�1ÒFãj \ Li ½ j and so dim H \Mãj+1 ½ j.
Thus H 2 Ωã+éj M ž if ã + éj 2

�
[n]
m

�
. But this is the case, as ãj + 1 Ú ãj�1, for otherwise

dimensional considerations imply that L\Fãj = L\Fãj�1 ² Fãj�1 . Let å := ã+é j 2 ãŁ1.
Then j(ãÒ å) = j and H 2 Xå

�
j(ãÒ å)ÒM ž ÒL

�
, since H 2 ΩåM ž and dim H\L\Måj ½ 1.

Conversely, if å 2 ã Ł 1, then ΩåM ž ² ΩãFž, so Xå

�
j(ãÒ å)ÒMž ÒL

�
² ΩãFž \ ΩL. This

shows
ΩãFž \ΩL =

X
å2ãŁ1

Xå

�
j(ãÒ å)ÒMž ÒL

�


We claim this intersection is generically transverse. Let å 2 ã Ł 1 and j := j(ãÒ å).
Then Xå( jÒM ž ÒL) has an open subset XŽ

j consisting of those H with dim H \ Fãi = i for
1 � i � m, dim H \ L = 1, and H \ L ² Fãj but H \ L 6² Fãj�1. As with XŽ

m above, XŽ
j

is nonempty, so it is a dense open subset of Xå( jÒM ž ÒL). For H 2 XŽ
j ,

THΩãFž \ THΩL =
n
û 2 THΩãFž j û(H \ L) ² (L \ Fãj + H)ÛH

o


Since dim(Fãj + H)� dim(L \ Fãj + H) = s, this has codimension s in THΩãFž, showing
that ΩãFž and ΩL meet transversally along XŽ

j , a dense subset of Xå

�
j(ãÒ å)ÒMž ÒL

�
.

By Lemma 2.10(3), it suffices to prove a special case of (3):
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(3)0 If Fãm meets L properly, and for 1 � j Ú m, dim Fãj \ L = n + 2�ãj � j� (s + 1),
then ΩãFž \ΩL is irreducible.

These conditions imply Fãm\L 6² Fãm�1 . In the notation of Section 2.5, let L0 := Fãm�1\L,
Fž

0 := Fžjãm�1 , and ã0 := ãjm�1. Consider

Xã(m� 1ÒFžÒL) = p
�
ô
�1(Ωã0Fž

0
\ΩL0)

�


For j � m� 1,

dim Fãj \ L0 = n + 2� ãj � j� (s + 1)

= dim Fãm�1 + 2� ã0j � j� (s + 1)Ò

so L0 and Fž

0 satisfy the conditions of (2) for the pair ã0Ò s + 1. Thus Ωã0Fž

0 \ ΩL0 is
generically transverse, which implies that Xã(m�1ÒFžÒL) has codimension s + 1 in ΩãFž

and hence is a proper subvariety of ΩãFž \ ΩL � Xã(m� 1ÒFžÒL). Since XŽ
m is dense in

ΩãFž \ΩL � Xã(m� 1ÒFžÒL), this establishes (3)0.

3. Construction of explicit rational equivalences. Theorem 2.4 shows that for L
in a dense subset of Gn+1�m�bV, the intersection ΩãFž \ΩL is generically transverse and
irreducible. We use Theorem 2.4(2) to study such a cycle as L ‘moves out of’ this set,
ultimately deforming it into the cycle

P
ç2ãŁb ΩçFž.

3.1. Families and Chow varieties. Suppose Σ ² (P1�f0g)ðGmV has equidimensional
fibres over P1�f0g. Then its Zariski closure Σ̄ in P1ðGmV has equidimensional fibres
over P1. Denote the fibre of Σ̄ over 0 by limt!0 Σt, where Σt is the fibre of Σ over
t 2 P1 � f0g. The association of a point t of P1 to the fundamental cycle of the fibre Σ̄t

determines a morphism P1 ! Chow GmV. Moreover, if Σ is defined over k, then so is
the map P1 ! Chow GmV ([20], Section I.9).

3.2. The cycle YãÒr(F.ÒL). In Section 2.2, we defined the components Xå( jÒFžÒL) of the
cycles intermediate between ΩãFž\ΩL and

P
ç2ãŁb ΩçFž. Here, we define the intermediate

cycles, YãÒr(FžÒL), which are parameterized by subspaces L in certain Schubert cells UãÒsFž

of Gn+1�m�sV. Let UãÒsFž be the set of those L 2 Gn+1�m�sV such that
(1) Fã1 \ L = Fã1+s, and
(2) Fãj \ L = Fãj+1 \ L, and has dimension n + 2� ãj � j � s, for 1 � j � m.

These conditions are consistent and determine dim Fi \ L for 1 � i � n. For example,

(3.2) ãj Ú i Ú ãj�1=) dim Fi \ L = dim Fi + 1� j� (s� 1)

Thus UãÒsFž is a single Schubert cell of Gn+1�m�sV. Specifically, UãÒsFž is the dense
cell of ΩåFž, where å 2

�
[n]

n+1�m�s

�
is defined as follows: If ã1 � n + 1 � s, then

å = [n]�ã�fã1 +1Ò    Ò ã1 + s�1g. Otherwise, å is the smallest n +1�m� s integers
in [n]� ã.
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For å 2 ã Ł r, recall that j(ãÒ å) = minfi j ãi Ú åig. If L 2 UãÒsFž, define the cycle

YãÒr(FžÒL) :=
X
å2ãŁr

j(ãÒå)=1

Ωå+(s�1)é1Fž +
X
å2ãŁr

j(ãÒå)Ù1

Xå

�
j(ãÒ å)ÒFž ÒL

�


Let GãÒsÒrFž ² Chow GmV be the set of these cycles YãÒr(FžÒL) for L 2 UãÒsFž. Since
UãÒsFž is a Schubert cell, GãÒsÒrFž is an orbit of the Borel subgroup stabilizing Fž and
hence is rational.

EXAMPLE 3.3. The cell U8531Ò 2Ež ² G5k10 consists of those Λ with
1. E10 ² Λ, so E8 \ Λ = E9 \ Λ has dimension 1,
2. E5 \ Λ = E6 \ Λ has dimension 3,
3. E3 \ Λ = E4 \ Λ has dimension 4, and
4. Λ ² E2.

In this case, the sequence
�
dim(Ej \ Λ)

�
j
is (5544332111). Hence, for Λ 2 U8531Ò 2Ež,

Y8531Ò 1(EžÒΛ) = Ω10 531Ež + X8631(2ÒEžÒΛ) + X8541(3ÒEžÒΛ) + X8532(4ÒEžÒΛ)

= Ω8531Ež \ΩΛ

The second line is a consequence of Remark 2.5. To see the first, suppose H 2
Ω8531Ež \ ΩΛ, then H \ Λ meets a unique largest of E8 ² E5 ² E3 ² E1, which gives
four cases:

1. H \ Λ ² E8. Hence E10 ² H so H 2 Ω10 531Ež.
2. H \Λ meets E5 � E8. Thus H \Λ meets E6 � E8, so dim H \ E6 ½ 2 and H \ E6

meets Λ, hence H 2 X8631(2ÒEžÒΛ).
3. H \Λ meets E3 � E5. Thus H \Λ meets E4 � E5, so dim H \ E4 ½ 3 and H \ E4

meets Λ, hence H 2 X8541(3ÒEžÒΛ).
4. H \ Λ meets E1 � E3. Thus H \ Λ meets E2 � E3, so H ² E2 hence H 2

X8532(4ÒEžÒΛ).

REMARK 3.4. Suppose L 2 UãÒsFž, then by Remark 2.5,

ΩãFž \ΩL =
X
å2ãŁ1

j(ãÒå)=1

Ωå+(s�1)é1 Fž +
X
å2ãŁ1

j(ãÒå)Ù1

Xå

�
j(ãÒ å)ÒFž ÒL

�

= YãÒ1(FžÒL)

The following lemma parameterizes our explicit rational equivalences. It is identical
to Lemma 6.1 of [23].

LEMMA 3.5. Let l � n and let M ž be a complete flag in M ' ka. Suppose L1 is a
hyperplane containing Ml but not Ml�1. Then there exists a pencil of hyperplanes Lt, for
t 2 P1, such that if t 6= 0, then Lt contains Ml but not Ml�1 and, for each i � l� 1, the
family of codimension i + 1 planes induced by Mi \ Lt for t 6= 0 has fibre Mi+1 over 0.
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PROOF. Let e1Ò    Ò ea be a basis of M such that Mi := heiÒ    Ò eai and L1 =
he1Ò    Ò el�2ÒMli. Define

Lt := hMlÒ tej + ej+1 j 1 � j � l� 2i

For t 6= 0 and 1 � i � l�1, Mi\Lt = hMlÒ tej + ej+1 j i � j � l�2i and so has dimension
n� i. The fibre of this family at t = 0 is hMlÒ ej+1 j i � j � l� 2i = Mi+1.

In Section 3.10, we prove the following theorem.

THEOREM 3.6. Let ã 2
�

[n]
m

�
, sÒ r be positive integers and Fž a flag in V. Let M 2

UãÒs�1Fž and define M ž to be the flag in M consisting of the subspaces in Fž \M.
Let L1 ² M be any hyperplane containing Fã1+s but not Fã1+s�1. Suppose Lt is the

family of hyperplanes of M given by Lemma 3.5. Then
(1) For t 6= 0, Lt 2 UãÒsFž.
(2) lim

t!0
YãÒr(FžÒLt) = YãÒr+1(FžÒM).

In the invocation of Lemma 3.5 in this theorem, we have a = n + 2 � m � s and
l = ã1 � m + 2, so that Ml = Fã1+s.

EXAMPLE 3.7. Let e1Ò    Ò e10 be a basis for k10 and suppose Ej = hejÒ    Ò e10i. Then
let

M := he2Ò e4Ò e6Ò e7Ò e9Ò e10i 2 U8531Ò1Ež

Set Λ1 := he2Ò e4Ò e6Ò e7Ò e10i, and, for t 2 P1, define

Λt := hte2 + e4Ò te4 + e6Ò te6 + e7Ò te7 + e9Ò e10i

For t 6= 0, Λt 2 U8531Ò 2Ež. We compute limt!0 Y8531Ò 1(EžÒΛt), which is

Ω10 531Ež + lim
t!0

X8631(2ÒEžÒΛt) + lim
t!0

X8541(3ÒEžÒΛt) + lim
t!0

X8532(4ÒEžÒΛt)

For t 6= 0, consider the component

X8631(2ÒEžÒΛt) = fH 2 Ω8631Ežj dim H \ E6 \ Λt ½ 1g

When t 6= 0, fK 2 Ω68Ežj dim K \ Λt ½ 1g is irreducible. To describe this as t ! 0,
let ï := limt!0(Λt \ E6) = he7Ò e9Ò e10i. Then fK 2 Ω68Ežj dim K \ ï ½ 1g has two
components:

n
K ² hïÒE8i = E7

o
= Ω87Ež and fK jK ¦ ï \ E8 = E9g = Ω96Ež

Thus, since

X8631(2ÒEžÒΛt) = p
�
ô
�1
�
fK 2 Ω68Ežj dim K \ Λt ½ 1g

��
Ò

we see that
lim
t!0

X8631(2ÒEžÒΛt) = Ω8731Ež + Ω9631Ež
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Similarly,

lim
t!0

X8541(3ÒEžÒΛt) = Ω8641Ež + Ω9541Ež

lim
t!0

X8532(4ÒEžÒΛt) = Ω8542Ež + Ω8632Ež + Ω9532Ež

These Schubert varieties, plus Ω10 531Ež, are the summands of Y8531Ò 2(EžÒM) =P
ç28531Ł2 ΩçEž, which proves

lim
t!0

Y8531Ò 1(EžÒΛt) =
X

ç28531Ł2
ΩçEž

Since Y8531Ò 1(EžÒΛt) = Ω8531Ež \ΩΛt , this proves this instance of Pieri’s formula.

THEOREM 3.8 (PIERI’S FORMULA). Let ã 2
�

[n]
m

�
, Fž be a complete flag in V, and

K 2 Gn+1�m�bV be a subspace which meets Fž properly. Then the cycle ΩãFž \ ΩK, a
generically transverse intersection, is rationally equivalent to

P
ç2ãŁb ΩçFž. Thus, in the

Chow ring AŁGmV of GmV,

[ΩãFž] Ð [ΩK] =
X

ç2ãŁb
[ΩçFž]

Moreover, let G ² Chow GmV be the set of cycles arising as generically transverse
intersections of the form ΩãFž\ΩK for K 2 Gn+1�m�bV. Then one may give b+1 explicit
rational deformations inducing this rational equivalence, where the cycles at the i-th
stage are of the form YãÒi(FžÒM), with M 2 UãÒb+1�iFž, and all are within Ḡ.

Hodge [9] also described deformations of ΩãFž \ΩK into a sum of distinct Schubert
cycles. However, these intermediate cycles are not contained in the Zariski closure of G,
and there could be as many as maxfmÒ n � mg deformations. Theorem 3.8 uses fewer
(b � maxfmÒ n � mg) deformations and the structure of the deformations reflects the
Bruhat order on Schubert cells.

3.9. Proof of Pieri’s formula using Theorem 3.6. Let b Ù 0, and ã 2
�

[n]
m

�
. For 1 � i �

b, let Ui := UãÒb+1�iFž and Gi := GãÒb+1�iÒiFž. Let U0 ² Gn+1�m�bV be the (dense) set of
those L which meet Fãm properly and for 1 � j Ú m, dim Fãj \L Ú n +2�ãj� j�b. By
Theorem 2.4, if L 2 Gn+1�m�bV, then ΩãFž\ΩL is generically transverse and irreducible
if and only if L 2 U0. Let G0 ² Chow GmV be the set of cycles ΩãFž \ ΩL for L 2 U0.

Let L 2 Ub and consider the cycle YãÒb(FžÒL) 2 Gb:

YãÒb(FžÒL) =
X
å2ãŁb

j(ãÒå)=1

ΩåFž +
X
å2ãŁb

j(ãÒå)Ù1

Xå

�
j(ãÒ å)ÒFž ÒL

�


We claim YãÒb(FžÒL) =
P
å2ãŁb ΩåFž, the cycle YãÒbFž of the Introduction. It suffices to

show Xå

�
j(ãÒ å)ÒFž ÒL

�
= ΩåFž for å 2 ã Ł b with j(ãÒ å) Ù 1. Suppose j = j(ãÒ å) Ù 1,

then
Xå( jÒFžÒL) = p

�
ô
�1(Ωåjj

Fžjåj \ΩFåj
\L)

�

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By Formula (3.2), dim Fåj\L = dim Fåj� j+1, asãj Ú åj Ú ãj�1 and s = 1. So ΩFåj
\L =

GjFåj , since any j-plane in Fåj meets Fåj \L non-trivially. Thus Xå

�
j(ãÒ å)ÒFž ÒL

�
= ΩåFž,

by the definition of p and ô in Section2.5.
Let G ² Chow GmV be the set of all cycles ΩãFž \ ΩL, where L 2 Gn+1�m�bV and

the intersection is generically transverse. Then by Theorem 2.4 and Remark 3.4, both
G0 and G1 are subsets of G. Arguing as in the proof of Lemma 2.10 shows G ² G0.
Theorem 3.6 implies Gi ² Gi�1 for 2 � i � b, so in particular, YãÒbFž 2 Gb ² Ḡ. Since
G0, and hence Ḡ, is rational, YãÒbFž is rationally equivalent to any cycle in G, including
ΩãFž \ΩK, proving Pieri’s formula.

More explicitly, one may construct a sequence of parameterized rational curves
ûi: P1 ! Ḡ for 1 � i � b witnessing this rational equivalence. For 2 � i � b, se-
lect subspaces Mi 2 Ui and pencils LiÒt of hyperplanes of Mi by downward induction on
i as follows: Choose Mb 2 Ub. Given Mi 2 Ui, let LiÒt be a pencil of hyperplanes of Mi

as in Theorem 3.6, let Mi�1 := LiÒ1, and continue. Then for each i, if t 6= 0, LiÒt 2 Ui�1.
Define Σi ² P1 ð GmV to be the family whose fibre over t 2 P1 � f0g is the variety
YãÒi�1(FžÒLiÒt).

Let †: P1 ! Ū0 = Gn+1�m�sV be a map with †(0) = M1 := L2Ò1, †(1) = K, and
†�1(U0) = P1 � f0g. Let Σ1 ² P1 ð GmV be the family whose fibre over t 2 P1 is
ΩãFž \ Ω†(t), a generically transverse intersection which is irreducible for t 6= 0, by
Theorem 2.4. Then for 1 � i � b, Σi ² P1 ð GmV is a family with equidimensional
generically reduced fibres over P1.

For 1 � i � b, let ûi: P1 ! Gi�1 be the map associated to the family Σi, as in
Section 3.1. Then ûi(0) = ûi+1(1) 2 Gi and ûi(t) 2 Gi�1 for t 6= 0, by Theorem 3.6.
Thus these parameterized rational curves give a chain of rational equivalences between
ΩãFž \ΩK and YãÒbFž.

Let å 2 ã Ł r and ç 2 ã Ł (r + 1). If ç 2 å Ł 1 with j(ãÒ ç) = j(åÒ ç), write å �ã ç.
For example, if ã = 8531 and å = 8631 2 ã Ł 1, then those ç 2 ã Ł 2 with å �ã ç are
9631 and 8731. Note these index the summands of limt!0 X8631(2ÒEžÒΛt) in the example
following Theorem 3.6.

3.10. Proof of Theorem 3.6. Let t 6= 0. Recall that Lt contains the subspace Fã1+s of M ž,
but not Fã1+s�1. Since M 2 UãÒs�1Fž, we have Fã1 \M = Fã1+s�1, but Fã1 \ Lt = Fã1+s,
thus Fi \ Lt is a hyperplane of Fi \M for any i � ã1. Then Lt 2 UãÒsFž, for t 6= 0, as

1. Fã1 \ Lt = Fã1+s.
2. For 1 � j � m, Fãj \ M = Fãj+1 \ M. So Fãj \ Lt = Fãj+1 \ Lt. Moreover,

dim Fãj \ Lt = dim Fãj \M� 1, which is n + 2� ãj � j� s.
Suppose t 6= 0 and recall that

YãÒr(FžÒLt) =
X
å2ãŁr

j(ãÒå)=1

Ωå+(s�1)é1 Fž +
X
å2ãŁr

j(ãÒå)Ù1

Xå

�
j(ãÒ å)ÒFž ÒLt

�


This defines a family Σ ² (P1�f0g)ðGmV with equidimensional (actually isomorphic)
fibres over P1�f0g. We establish Theorem 3.6, showing the fibre of Σ̄ at 0 is YãÒr+1(FžÒM)
by examining each component of YãÒr(FžÒLt) separately, then assembling the result.
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Let å 2 ãŁr. Consider a component of YãÒr(FžÒLt) in the first summand, so j(ãÒ å) = 1.
Then ç := å + é1 is the unique sequence satisfying å �ã ç. In this case, Ωå+(s�1)é1Fž =
Ωç+(s�2)é1Fž.

Now consider a component in the second sum, so j = j(ãÒ å) Ù 1. Let å0 := åj j ,
Fž

0 := Fžjåj , and L0t := Fåj \ Lt. For t 6= 0, Corollary 2.8 gives

Xå

�
j(ãÒ å)ÒFž ÒLt

�
= p

�
ô
�1(Ωå0Fž

0
\ΩL0

t
)
�


As ãj Ú åj Ú ãj�1, dim L0t = dim Fåj + 1� j� (s� 1), by formula (3.2). For 1 � i Ú j,
åi = ãi and so dim L0t \ Fåi = n + 2� åi � i� s. Thus, by Theorem 2.4(3), Ωå0Fž

0 \ΩL0
t

is generically transverse and irreducible. We study the ‘limit’ of these cycles as t ! 0,
in the sense of Section 3.1. Define L0 := limt!0 L0t = limt!0 Fåj \ Lt, which is Fåj+1 \M,
by Lemma 3.5. Then

(1) Fã1 \ L0 = Fã1 \M = Fã1+s�1.
(2) For 1 � i � j, Fåi \ L0 = Fåi+1 \ L0. This follows for i = j because we have

L0 ² Fåj+1 ² Fåj and for i Ú j, because åi = ãi and Fãi \ M = Fãi+1 \ M.
Moreover, for 1 � i � j, dim Fåi \ L0 = n + 2� åi � i� (s � 1).

Thus L0 2 Uå0Òs�1Fž

0 so Ωå0Fž

0 \ΩL0 is generically transverse, by Theorem 2.4(1). So,

lim
t!0

Xå

�
j(ãÒ å)ÒFž ÒLt

�
= p

�
ô
�1(Ωå0Fž

0
\ΩL0)

�


But hFåi�1ÒFåi \ Li ² Fåi+1, since L0 2 Uå0 Òs�1Fž

0. By Remark 2.5,

Ωå0Fž

0
\ΩL0 =

X
ç02å0Ł1

j( å0Òç0)=1

Ωç0+(s�2)é1Fž +
X

ç02å0Ł1
j( å0Òç0)Ù1

Xç0

�
j(å0 Ò ç0)ÒFž

0
ÒL0

�


And so limt!0 Xå

�
j(ãÒ å)ÒFž ÒLt

�
is the cycle

X
ç02å0Ł1

j(å0Òç0)=1

p
�
ô
�1(Ωç0+(s�2)é1 Fž

0)
�

+
X

ç02å0Ł1
j(å0Òç0)Ù1

p
 
ô
�1
�

Xç0

�
j(å0 Ò ç0)ÒFž

0
ÒL0

��!


We simplify this expression, beginning with the first sum. Let ç0 2 å0 Ł 1 satisfy
j(å0 Ò ç0) = 1. Then by Lemma 2.7, p

�
ô�1(Ωç0+(s�2)é1 Fž)

�
equals Ωç+(s�2)é1 Fž, where ç :=

å + é1 is the unique sequence with å �ã ç and j(ãÒ ç) = 1.
Consider terms in the second sum, those for which ç0 2 å0 Ł1 with j(å0 Ò ç0) Ù 1. Then

p
 
ô�1

�
Xç0

�
j(å0 Ò ç0)ÒFž

0ÒL0
��!

is the subvariety of ΩåFž consisting of those H such that

there exists K ² H with dim K = j, K 2 Ωç0Fž

0, and dim K \ F0
ç0

j( å0Òç0)
\ L0 ½ 1.

Let ç := å+é j( å0Òç0), the unique sequence with å �ã ç and j(ãÒ ç) = j(å0 Ò ç0). Then, as
çj(ãÒç) Ù åj, the definition of Fž

0 implies F0
ç0

j( å0Òç0)
= Fj(ãÒç) ² Fåj+1. Since L0 = Fåj+1 \M,

we see that F0
ç0

j( å0Òç0)
\ L0 = Fçj(ãÒç) \M. Thus if

H 2 p
 
ô
�1
�

Xç0

�
j(å0 Ò ç0)ÒFž

0
ÒL0

��!
Ò
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then H 2 ΩçFž and dim H \ Fçj(ãÒç) \ M ½ 1, so H 2 Xç

�
j(ãÒ ç)ÒFž ÒM

�
. The reverse

inclusion,

Xç

�
j(ãÒ ç)ÒFž ÒM

�
² p

 
ô
�1
�

Xç0

�
j(å0 Ò ç0)ÒFž

0
ÒL0

��!
Ò

is similar.
This shows that limt!0 Xå

�
j(ãÒ å)ÒFž ÒLt

�
is the cycle

(310)
X
å�ãç

j(ãÒç)=1

Ωç+(s�2)é1Fž +
X
å�ãç

j(ãÒç)Ù1

Xç

�
j(ãÒ ç)ÒFž ÒL

�


The sets fç j å �ã çg for å 2 ã Ł r partition the set ã Ł (r + 1). Thus

lim
t!0

YãÒr(FžÒLt) =
X

ç2ãŁ(r+1)
j(ãÒç)=1

Ωç+(s�2)é1Fž +
X

ç2ãŁ(r+1)
j(ãÒç)Ù1

Xå

�
j(ãÒ ç)ÒFž ÒM

�
Ò

which is YãÒr+1(FžÒM).

4. Link to Schensted insertion. The set
�

[n]
m

�
has a partial order, called the Bruhat

order: ã � å if and only if ΩåFž ² ΩãFž. Combinatorially, this is ã � å if ãi � åi for
1 � i � m.

We interpret the behavior of the components Xå

�
j(ãÒ å)Fž ÒL

�
of the intermediate

varieties YãÒi�1(FžÒL) in our proof of Pieri’s formula (Section 3.9) as the branching of a
certain subtree of

�
[n]
m

�
with root ã. This tree arises similarly in a combinatorial proof of

Pieri’s formula for Schur polynomials using Schensted insertion [5, p. 24]. We assume
familiarity with the notions of Young tableaux and Schensted insertion as found in [5, 19].
To simplify this discussion, assume further that n Ù ã1 + b.

Each rational equivalence of Section 3.9 is induced by a family Σi over P1 with
generic fibre in Gi�1 and special fibre in Gi. The components of cycles in Gi�1 are
indexed by å 2 ã Ł (i � 1), with å-th component Ωå+(b+1�i)é1Fž, if j(ãÒ å) = 1, and
Xå

�
j(ãÒ å)ÒFž ÒL

�
otherwise. In passing to Gi via ûi, the component Ωå+(b+1�i)é1Fž is

unchanged, but reindexed: Ωç+(b�i)é1Fž, where ç := å + é1 is the unique sequence in ã Ł i
with å �ã ç. By equation (3.10), the other components become

X
å�ãç

j(ãÒç)=1

Ωç+(b�i)é1Fž +
X
å�ãç

j(ãÒç)Ù1

Xç

�
j(ãÒ ç)ÒFž ÒMi

�


Thus the component of the generic fibre of Σi indexed by å 2 ã Ł (i� 1) becomes a sum
of components indexed by fç 2 ã Ł i j å �ã çg at the special fibre.

This suggests defining a tree TãÒb whose branching represents the ‘branching’ of
components of YãÒi�1(FžÒL) in these deformations. Let TãÒb ²

�
[n]
m

�
be the tree with

vertex set
S
fã Ł i j 0 � i � bg and covering relation å �ã ç. This is a tree as ã Ł i is

partitioned by the sets fç j å �ã çg for å 2 ã Ł (i � 1).
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For a decreasing m-sequence ã, let ï(ã) be the partition (ã1 � mÒ ã2 � m + 1Ò    Ò
ãm � 1). The association ã  ! ï(ã) gives an order isomorphism between the set of
decreasing m-sequences and the set of partitions of length at most m. This transfers
notions for sequences into corresponding notions for partitions.

To a (semi-standard) Young tableau T with entries among 1Ò    Òm, associate a mono-
mial xT in the variables x1Ò x2    Ò xm: the exponentof xi in xT is the number of occurrences
of i in T. This exponent vector is called the content of T. The Schur polynomial sï isP

xT , the sum over all tableaux T of shape ï. There is surjective homomorphism from
the algebra of Schur polynomials to the Chow ring of GmV defined by:

sï 7�!
(

[ΩãFž] if ï = ï(ã) for some ã 2
�

[n]
m

�
0 otherwise.

Special Schur polynomials are indexed by partitions (bÒ 0Ò    Ò 0) with a single row.
Schensted insertion gives a combinatorial proof of Pieri’s formula, providing a

content-preserving bijection between the set of pairs (SÒT) of tableaux where S has
shape ï and T has shape (bÒ 0Ò    Ò 0) and the set of all tableaux whose shape is in ï Ł b :
Insert the reading word of T into S. The resulting tableau has shape ñ 2 ï Ł b.

Consider the tableau S of shape ï(8531) = 421.

2 4
3

3 4
4

4

Schensted insertion of 1,2,3, respectively, 4 into S gives the following tableaux:

1
2
3

3
4

4 4

4
3
2 2

3
4 4 2

3
3
4

4

3 4 2
3
4

3
4

4 4

4
4

4
4

If we insert the sequences 12Ò 13Ò 14Ò 23Ò 24Ò 33Ò 34, and 44 into S, we obtain all
possible sequences of shapes. This is displayed in Figure 1 on the next page as a tree of
tableaux, where the edges are labeled by the integer inserted.

Converting the shapes into sequences, we obtain the tree T8531Ò 2 shown in Figure 2 on
the next page. This is exactly the branching of components in the example in Sections 3.3
and 3.7.

Let ï = ï0Ò ï1Ò    Ò ïb = ñ be the sequence of shapes resulting from the insertion of
successive entries of T into S. Since T is a single row, it is a property of the insertion
algorithm that ïi �ï ï

i+1, and so this sequence is a chain in the tree TãÒb.
The totality of these insertions for all such pairs of tableaux gives all chains in TãÒb.

Thus the ‘branching’ of shapes during Schensted insertion is identical to the branching
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1
2

3
3 4

2 4
4

3

3 4

4

1

3

1
2
3

3
4

1
2
3

3
4

4 4
2

2
3

4 4 3 4

4
3
2 2

3
3 4

4
3
2 2

3
4 4 2

3
3
4

4

3 3 2
3

3
4

4

3 4 2
3
4

3
4

4 4

1
2
3

3
4

4 4

1
2
3

3
4

4 4

4
3
2 2

3
4 4 2

3
4

3
4

4 42
3

3
4

4

3 4

4 4 4
4

4
4

4
4

4

4
4 4 4

4 4 4

4
4

4
4

FIGURE 1: INSERTION OF 12,13,14,23,24,33,34, AND 44 INTO S

8542 8632 9532 8641 9541 8731 9631 10 531

8541

8531

2
4 3 4

8532

3

2
1

3 4 4

3
4

8631 9531

FIGURE 2: CONVERSION OF THE SHAPES OF FIGURE 1 INTO SEQUENCES

of components in the rational equivalences of Section 3.9. We feel this relation to
combinatorics is one of the more intriguing aspects of our proof of Pieri’s formula and
that similar ideas may yield a geometric proof of the Littlewood-Richardson rule.
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to discuss other geometric proofs of Pieri’s formula.
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