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ON A RESULT OF SINGH

HonG-XuN Y1

In this paper relations between T'(r, f) and T(r,f(")) are established for a class
of meromorphic functions f(z), where T'(r, f) and T(r, f(")) are the Nevanlinna

characteristic functions f(z) and F®)(z) respectively. An example is provided to
show that a result of Singh is not true. The conclusions obtained here correct and
generalise the result of Singh.

We denote by C the set of all finite complex numbers and by C the extended com-
plex plane consisting of all (finite) complex numbers and co. Let f(z) be a transcen-
dental meromorphic function in the complex plane. We use with their usual definitions
the Nevanlinna functions T'(r,f), N(r,f), et cetera (see [1]). If f(z) — a has a finite
number of simple zeros, we say that a is an exceptional value Picard (e.v.P.) for simple
zeros of f(z). If f(z) has a finite number of simple poles, we say that oo is e.v.P. for
simple zeros of f(z). In [3] Singh obtained the following result:

Let f(z) be a transcendental meromorphic function of finite order with four (finite
or infinite) distinct e.v.P. for simple zeros. Then

T(rf) 3

) T(r, f) T2

Let f(z) = sn(z), where sn(z) is the Jacobian elliptic function (see [2]). We know
that f(z) is a transcendental meromorphic function of finite order and that (f')? =
(1- ) (1 - £2f?), where t(# 0, 1, —1) is a constant. It is easy to see that 1, —1, 1/¢
and —1/t are four distinct e.v.P. for simple zeros of f(z) and that

T(r, f')

m —/——= =2,
r—00 T(r, f)
This shows that the above result of Singh is wrong.

In this paper we obtain the following theorem which is a correction of the result of

Singh.
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THEOREM 1. Let f(z) be a transcendental meromorphic function of finite order
with four distinct e.v.P. for simple zeros.

(i) If oo is an e.v.P. for simple zeros of f(z), then

T('r, f’) 3 )
B T6D

(ii) If oo is not an e.v.P. for simple zeros of f(z), then

T ) _
r—oo T(r, f)

Instead of Theorem 1, we prove the more general theorem:

THEOREM 2. Let f(z) be a transcendental meromorphic function of finite order
with four distinct e.v.P. for simple zeros and k be a positive integer.

(i) If oo is an e.v.P. for simple zeros of f(z), then

T(r, f(")) 1

m —————= k+1
r—eo T(r,f)

(ii) If oo is not an e.v.P. for simple zeros of f(z), then

T(r, f®)
lim =k+1.
r—oo T(r,f)
In order to state our third theorem, we introduce the following notation.
Let f(z) be a meromorphic function and a € C. We denote by ni(r,a, f) the
number of simple zeros of f(z) —a in |2| < 7. Ny(r,a,f) is defined in terms of
ny(r,a, f) in the usual way. Further we define

81(a, f) = 1 - lim sup -N—lT({fgf’-)f—)

Yang [4] proved that there exists at most a denumerable number of complex num-
bers a for which 6:(a, f) > 0 and

E6l(a’f) <4

a€C
THEOREM 3. Let f(z) be a transcendental meromorphic function of finite order
and k be a positive integer. If

(1) D (e, f) =14,

a.E—C—
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then ( (k))
. T f 1
rlig:low =k+1- §k61(oo,f)

Obviously, if a is an e.v.P. for simple zeros of f(z), then §;(a,f) =1.
Thus Theorem 3 includes Theorem 2 as a very special case.

PROOF OoF THEOREM 3: Let {a;}2, be an infinite sequence of distinct elements
of C which includes every a € C satisfying 6,(a, f) > 0. By the second fundamental
theorem and noting that f(z) is a transcendental meromorphic function of finite order,

we have

(2) (¢— 1)T(r,f) < Y_N(r,a5,f) + N(r, f) + O(logr),

=1

where ¢ is any positive integer. Again

ot

(3) W(T’a’h f) —Nl(raaia f) + lN(r,a‘i’ f)

Ll ]

£ =Ny(r,ai, f) + T(r f) +0Q).

[\

From (2) and (3) we obtain

(4) (g-1)T(r, f) < 3 ZNI("' ai, f) + qT( ,f) +N(r, f) + O(logrr).

I"l

Thus

(5) liminf N f) 5 1 Eq:&(a,-,f) _1.

Since (5) holds for all ¢ > 1, letting ¢ — oo, we get

TS
(6) liminf 7ot > ;61( ) -

=1- %61(001 f)1

using (1).
On the other hand,

™ B ) < gMalr, ) + 5N )
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and hence
(8) N, 1) < gM(r £) + 570, ).
Thus
) N(r, f) 1
(9) hﬁsolzp m <1- 561(oo,f).
From (6) and (9) we obtain
T\f(r,f) _ 1
By (7) and (10) we have
(11) lim Y F) 4

e T(rf) T
using N(r,f) < T(r, f).

Since
N(r, f®) = N(r, f) + kN (r, f)
and m(r, f(")) < m(r, ) + O(logr),
thus we have
(12) N f)+ kN, ) <T(rf®) < T(r, ) + kN(r, ) + O(logr).
From (10), (11) and (12), we get
Jim :‘r;’(r;;)) =k+1- %kal(oo,f).
This completes the proof of Theorem 3. 1]
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