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A CLASS OF GENERALIZED HYPERGEOMETRIC
FUNCTIONS IN SEVERAL VARIABLES

ZHIMIN YAN

ABSTRACT. We study a class of generalized hypergeometric functions in several
variables introduced by A. Kordnyi. It is shown that the generalized Gaussian hyper-
geometric function is the unique solution of a system partial differential equations.
Analogues of some classical results such as Kummer relations and Euler integral
representations are established. Asymptotic behavior of generalized hypergeometric
functions is obtained which includes some known estimates.

0. Introduction. In the case of positive definite matrices, generalized hypergeo-
metric functions (with a definition based on Laplace transforms) were introduced by
C. Herz [5], and their series expansion is due to A. Constantine [1]. Further properties
and applications in statistics were given by A. James and R. Muirhead [11]. The case of
positive Hermitian or quaternion matrices was studied by K. Gross and D. Richards [4].
Generalized hypergeometric functions associated with arbitrary symmetric cones were
considered by J. Faraut and A. Korényi [3]. A more general class of hypergeometric
functions was introduced by A. Korényi [7]. In this paper we shall study that class of
generalized hypergeometric functions.

In §2 we prove that ZFﬁd)(a, b; ¢; xy, . . ., xy) is the unique solution of the system of the
partial differential equations
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subject to the conditions that

(a) F is a symmetric function of xi, ..., x, and

(b) Fis analyticat x; = --- =x, =0 and F(0) = 1

(1) is a generalization of the classical hypergeometric equation. This result was
claimed in [7], but the proof was incomplete.

In §3 we obtain some analogues of classical results about hypergeometric functions
and, in particular, establish integral representations of the generalized hypergeometric

functions. In §4 we obtain the asymptotic behavior of il F;,d) As an application, we get
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1318 ZHIMIN YAN

the generalized Rudin-Forelli inequalities in function theory on a bounded symmetric
domain, which are due to J. Faraut and A. Koranyi for 2Fﬁ‘”(a. b;c;ty....,t,) with some
special a, b and ¢ [2]. Our results also include, in a unified way, the estimates obtained
by J. Mitchell and G. Sampson [9], [10].

Some other results are announced in [13].

1. Notation, definitions and basic facts. A partition is any finite or infinite se-

quence
(2) k= (ki kayoooskpy.o)
of non-negative integers in decreasing order k; > k; > --- > k, > --- containing

only finitely many non-zero terms. The non-zero &; in (2) are called the parts of k. The
number of parts is called the length of k, denoted by /(x); and the sum of the parts is
the weight of k, denoted by |k| = ky + ko + - - - + kys). When I(k) < r, we simply write
k as & = (ki,...,k,). We say that x is a partition of k if || = k. For a partition &,
hereafter, we use k to denote |«|. The partitions of k are ordered lexicographically, that
is, if k = (ky, k2, .. .), A= (U1, b, .. .), we write k > X if k; > [; for the first index i for
which the parts are unequal. Let y;, ..., y, be r variables; if & > X and I(k), [(A) < r, we

say that the monomial yi' - - - y* is of higher weight than the monomial y! - - - y/".
For a partition x, we define its diagram by

Gr)={G.): 1 <i<Ur)1<j<k}

If A\, k are partitions, then we write A C k if \; < k; for all i. If A C &, then n/)\ is
defined to be the difference k — X\ of diagrams.
Foreachj,j=1,2,...,k;, let

ki = max{i | (i,)) € G(x)}.
For s = (i,j) € G(k), and a parameter «, let

a(s) =k —j
Is)=k; —i
R(s) = I(s) + (1 + a(s)x
hi(s) =1l(s)+ 1 +a(s)x
We simply write s € x instead of s € G(k).
Let A, be the vector space of symmetric polynomials in xi, .. ., X, pr = Yo, X and

P. = pi, - - Pk, then {Py, for all k} forms a basis of /. For each a > 0, one defines
an inner product on A, by

<Pm PA)O( = 5;;)\21{0([(”

where z,, = (1"™2™ .- -)m ! my! - - - and m; = the number of k; which are equal to j. Let
J: (15 ..., yr; @) be the Jack polynomial indexed by the partition x and parameter «. The
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GENERALIZED HYPERGEOMETRIC FUNCTIONS IN SEVERAL VARIABLES 1319

Ji. are gotten by orthogonalizing the monomial symmetric polynomials with respect to
(, )o- Notations are as in [8], [12].
The following results about Jack polynomials are known. See [12].
@) Qs yn)=0ifl(k) > r.
() SOy v ) =JiOns -y 0500
(iii) 1+ +y)k = £ kI 1s oo s Q)
(iv) Ju(l, ... L) = Tijen (r— (i — D+ o — 1))
(v) Let vox(a) = ITsex HE(s); then, Vﬁﬂ(a)y'f‘ -+ y* is the term of the highest weight in
Jﬁ(yl7 ooy Vrs (X).
(vi) Jx(y1, ...,y o) is an eigenfunction of the differential operator
3 T TR S S e
TR P e e P T KA
with the eigenvalue p, = p. + k(2r — 1), where p, = $L, kitk; — 2i), if (k) < r.
(vii) Jr = <Jm-]n'> = [lsex h';(s)h:(s)
One defines, for a partition x and a positive number d,

COW1e sy = QDK T, -y 2/ )

DEFINITION. For ay,...,ap,by,...,b, € C, such that (b)), # 0, for all &, j, the
hypergeometric functions associated with the parameter d > 0 are defined by

) pFe @ apibi, . by )

= S (al)ﬁ-”(ap)'i Cfcd)(yh“'ayr)
k=0 K (bl)n"'(bq)rc k!

where 3., denotes the summation over all partitions of k,

(k)

(@x = [[(a— @i —Dd/2),

i=1

and

(@m=ala+1)---(a+m—1), (a)=1.

REMARK 1. From (i), we have C9(yy, .. .,y,) = 0 for k with I(x) > r; therefore the
summation in (4) is only over those partitions with length not greater than r.

REMARK 2. Let Y be an r X r symmetric matrix with latent roots yj, .. ., y,; then itis
known that the zonal polynomial C(Y) of Y corresponding to a partition x, defined in
[11], is equal to C{(Y).

Throughout this paper, we denote (yi,...,y,) by Y, or simply by ¥ whenever no
confusion is caused.
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2. Partial differential equations for hypergeometric functions. It is well known
that the classical Gaussian hypergeometric function ,fj(a, b; c; z) is the unique solution
of the second order differential equation

z(1 —z) f stlc—(a+b+ l)z]-I = abf
subject to the conditions that

(a) fis analytic at 0

(b) fO)=1

For the hypergeometric functions of a real matrix argument, a generalization of this
classical result was given by Muirhead [11]. A more general result is the following

(cf. 17D

THEOREM 2.1. 2F(ld)(a7 b,c;y1, ..., y,) isthe unique solution of the system of r partial
differential equations

a°F d d r y,(l yi)| 9F
A=y +le— S —[ th+1—2 Al} :
yil y)ay[; c—5r=D—la 5(r=Dlyi+ IZ = |
d I, y(1—y)oF
——Zu—me i=l...r
2554 Yi—y 0y
(5)
subject to the conditions that
(a) Fis a symmetric function of yy, .. .,y, and
(b) Fisanalyticaty, =---=y, =0and F(0)= 1.

The remainder of this section is devoted to the proof of Theorem 2.1. Our proof
follows closely that of Muirhead with some modification and clarification.

Let
r 92 r r y2 9
(6) A=Yy —+d L
,ZT ay? ; j:lz#,- i — Y 9V
r 9 2 r r Vi 9
@) 6 =Y iz +d =
; Iy ;,-:IZN —yj 0y
a 9
8 E, = it
®© Zi:y 9yi
.9
9 r=), —
® ) Z 9yi
For simplicity, we denote (yy,...,y,) and (1,...,1) € R" by Y, and I, respectively.
We define the generalized binomial coefficients by
CO+Y,) & Ky CO(Y,)

10 Kk T -
(1 (650 A }Z; 0)'00"%1,)

where k = |k|, r > I(k).
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REMARK. We note that the generalized binomial coefficients depend on r by the
definition. But in the case of symmetric cones, one can readily show that they are
independent of . In the following, we prove that it is still true for some special generalized
binomial coefficients. We expect such a result in the general case.

For a partition k = (ky, ..., k) of k, r > l(k), let

(r)_(kl,.. ki1 ki+ 1, kisy, ... k)
ﬂ(r)z(klv"wkifhki—l,ki+1,...,kr)

whenever these are partitions of k+1 and k— 1 respectively. Since we can also write k as
(ki ...,k 0),k\"” depends on r. But when r > I(k) + 1, k" = k™*" then, we simply
write «; instead of ng). It is easy to see that né,) does not depend on r, thus, we omit the
subscript r.

As a consequence of (vi) in §1, we have

LEMMA 2.2.
ACOY,) = [ps + k(dr — DICO(Y,)

The following two lemmas can be proved in the same way as in [11].

LEMMA 2.3. For s withl(k) <r,

s GO d,_ 1C9,)
(b brcimgy =3l 150 0] Dy’
, _c) 9,
12 i & .
(2 Ty Z:(H’)’Q‘.’)(m
LEMMA 24. Fork withl(k) <,
(13) Z_(”“ )d‘f),(l>=r(k+1)qd><1,>,
K - d d
(14) D), = 5= ca) = ks e,

(
(1) S50 6 - S 0] ean

d
= (k+1) [pﬂ + Skir+ 1)] 9.
PROPOSITION 2.5. The functionzF(ld)(a, b;c;yi, ..., y,) satisfies the differential equa-

tion

(16)  6,F — AF+ [c - g(r— 1)]5,F— [a+b+ | — g(rv 1)}E,F= rabF.

https://doi.org/10.4153/CJM-1992-079-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-079-x

1322 ZHIMIN YAN

PROOF. Let
F(Y,) =3 a,C(Y,)

Substituting the series into (16), applying Lemma 2.3 and equating the coefficients of
C'9(Y,) on both sides, we can see that if for all &, a, satisfies

(r)
an (" ) e+ ki = 5= D] Chua,
- [mb +k(a+b)+py + %’k(r + D] a,

then F(Y,) satisfies (16).
Now, it suffices to show that
. = (@)x (b))
T (ok!
is a solution of (17). We note that (@)« = (a)[a +k — (i — D)].
The problem is reduced to showing that

(r)

as o™ )r[a+k,~~;(i—l)”b+ki—g(i—l) )

i
d
= (k+ 1)[rab +pu+ka+kb+ Sk(r+ D] CO).
This is an immediate consequence of Lemma 2.4.

In the following, for simplicity, 1 stands for the partition (1,0, .. ., 0) in the subscripts
when partitions are involved.

LEMMA 2.7. Ifk is a partition of k, then, forallr > l(k),andi=1,.. ., r,
JuUrs1) Jxldy) ok :
1 —( "
{1 Jﬁi(1r+1)( K )’“ Ja(Ip) \ K ) + G

where G%. = gt j i~V and g% = (J,J;, J,).
PROOF. Let X = (xy,...,x,), by Proposition 4.2 in [12], we have

Tty X ) = YK 2/d)(zja‘g:a1a(xr+.;2/d)) !
= J.(X;2/d) + [Zj,:,]jflgﬁ,lJﬁf(X; 2/d)]x,+| + P(X, Xpi1 )02,

where P(X, x,,) is a polynomial of xi, .. s Xpy Xrsl -
Then, using (12) and §1 (ii), we have

Ji (X,
J~(1r+l);( :i)”lj,:T(]r:)) = Er+lJn(X,.Xr+l) Xp41=0
Ji
_J(,)Z< ),J S(;J'ZG i (X)
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Hence

Ji(Lr41) Ju(1y) .
l ( ", )r+| = Jn’(lr)<:i )r Kil®

Ji(Tpe1) MK
LEMMA 2.8. Suppose (k) = n, then
(20) (o), =G
forallr > n.
PROOF. Since l(k) = n,k = (ky, ..., kn), k, > 1, by (19) and §1(iv), we only have to
prove that
(on), =G

For a partition A of length < n, let m, be the symmetric polynomial
my(x1, ... X)) =y x%

The summation is over all distinct permutations o of A = (A1, ..., Ay).
On the one hand, §1 (v) gives

JeX + 1) = v (G + DR D ) 4
= terms of degree k + terms of degree k — 1
+ terms of lower degree
=I1+11+1IL

In I1, the term of highest weight is kv k' - - - xkn =1,
On the other hand, by definition and (iv) in §1

k Ky Juln)
JoXn+ 1) = Jo(Xn)
2*%%( oI Tnih)
and 1 5
ol = 1+ (ky — D)=,
Jutly =0T G
Equating the coefficients of J.»(X,) and applying §1 (v), we get

vee2/d) K )
v ard = 1+ = 03]

Now it is enough to show that

Vin(2/d)

T Gty [1 +(ky — 1)3].
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Theorem 6.1 in [12] gives

gZ"l = Z H A!\')\'"(S) H Bmf"(s)
d SER" SER
where A,.»(s) is defined to be h:j"(s), if K / k" does not contain an element in the same
column as s, . (s), otherwise; and By (s) is defined to be i} (s), ifrc/n" does not contain
an element in the same column as s, A% (s), otherwise.
A direct computation yields

g1+ (ky — 1)2] .
=k, [[ 1"
/D) Toow hintey ~ o L)

Hence, by §1 (v), we have

gl + k= DGl Then M) _ | vin(2/d)
Jwnfi "yen, B (s) " Vngn(2/d)

finishing the proof.

Let N(k) denote the number of partitions of k. When « runs over all partitions of %,
ki, I =1,...,1(k)+ 1, run over all partitions of (k + 1). We note that 2N(k) > N(k + 1).
Forn > k+1, let

Hn,k, ki) = .‘l;-,((]l,,)) ( ’: )"

We consider the system of linear equations

Z Glixy, = ax

H(n, K, Ki)x,, = by

(21

where the x, are independent variables indexed by partitions of k + 1, k runs over all
partitions of k, and a,, b, are given constants.

LEMMA 2.9. The 2N(k) x N(k+ 1) matrix formed from the coefficients of the left hand
side of (21) has rank N(k + 1).

PROOE. Let A(1) <A(2) <--- < A(N(k+ 1)) and x; = x,, where A(j) is a partition
of k + 1. In the following, we want to produce a system of linear equations which is
equivalent to (21) and whose coefficient matrix has the form

cp ok ke *
0 ¢ *x .- *
0 0 ¢ - *
0 0 CN(k+1)

with¢; #0,j=1,...,N(k+1).
Foreachj,j=1,...,N(k+ 1), there are two possible cases for A(j).
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CASE 1.

A =iy .oy li1,1,0,...,0).

Set
H—([],.. ‘ ],0,...,0.)
then
s‘(llw-' V—|7170 O)=>‘(])
Since k; is not a partition for i > s, 3_; G’;"lxm = a, becomes
(22) Glxy, + 3 Glixy, = ay,
i<s

Set ¢; = G, then ¢; is positive.
Now we can write (22) as

CiXj+ Y CjXm = Ay
m>j

by observing that A(j) = k; < Ks—; < - -+ < k. So there is nothing to change; the j-th
equation is already “triangular”.
CASE 2.

)‘(])_(llv" s 191S7O 0)

with [y > 2. Let
k=W,.... i1, l,—1,0,...,0).

Then
Rssl = (lls .. -715'—1913' - 17 1709' . 70) = /\(I— D
Rs = (117 .. wlx—hl.ﬁov .. *?O) = )‘(])
From (21), we have two equations
(a) G:X]”xfsﬂm + Ghlxm +3i<s G ,.;]xn, =dag

(b) H(n, K, Ker )Xy, + H(n, K, KX, + Sics H(n, Ky KXy, = by
By Lemma 2.8 and §1 (iv)

Do) o,

G = [(n —s+1)+ 3(1“ - DG

H(n, Kk, K1) =

)

Hin, ) = 200

In the system of equations formed by (a) and (b) we can equivalently replace (b) by
the following equation

[1 + 3(1_‘. - 1)}0’2;)5,‘.‘, + Y [H(n, K, ki) — (n— )G 1x, = by — (n — $)ay

i<s
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1326 ZHIMIN YAN

Let ;= [1+2(l, — DIG}

", then ¢; > 0, we can write the above equation as

cjxj + Z CmjXm = d,..
m>j

Thus we have proved the lemma.

LEMMA 2.10. If a sequence {A,} indexed by all partitions satisfies

23) Z( f'ii) JN,(]k+l+r)Ahl

Y k+l+r-’r;(1k+l+r)
_d
T 2(k+ 1)

[(k+ 1 +r)ab+ph.,+k(a+b)+gk(k+r+2) A,

for all positive integer r > 2, then {A,} is uniquely determined by A.

PROOF. Applying Lemma 2.7, we have

@y [R5, ) g o,

Kkt Jn(1k+l)

i

d d
- m[(k+l+r)ab+p,{+k(a+b)+Ek(k+r+2) A,

for all r > 1. Equating coefficients of r on both sides of (24) gives

) d d
25) S G = 50 (ab+ Ek)AN
and equating constant terms gives
K Jy(Tes1) d d
26 Skel) g [ )b + p, + ka+b) + Skk +2)|A, .
QO 20 Dot Ity ™ = B |6+ Db+ ek by k)

By Lemma 2.9, we see that A,; is uniquely determined by Ao.

THEOREM 2.11. There exists a unique sequence {«} indexed by all partitions with
oo = | such that forr =23, ...

(27 FoOtseeyy) =2 anCO0y, .. yp)
satisfies

d
(28)  §,F — AF + [c —Sr— 1)]5,F— [a+b+ | — ‘2—1(r— DEF = rabF.

a)y(b)x

Moreover, o, = O
k!

REMARK. By §1 (i), we know that the summation in (27) is only over the partitions
with (k) < r.
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PROOF. Let «a, = (‘(’gg(iz", then Proposition 2.5 shows that for r = 2,3,...,
Y 0 CD(yy, .. ., y,) satisfies (28).
Next, suppose that {«,} is such a sequence. From the proof of Proposition 2.5, we

see that for all k, all r > I(k) + 1

>(% ),[e+hki— g(i = D|C)a, =[rab +ka-+b) + py + gk(r +1)|C)a.

Let a, = %, then the above becomes

(29) > 'Z" )rq.‘f)(l,)ﬁh.i =[mb +k(a+b)+p, + gk(n 1)] C1,)B, .

Since C(yy,...,y,) = (%)kk!J,i(yI, oo ¥n2/d)ji; ", we have

Ki JK,(II‘) —1 _ d 5_1 —1
a0y (), T4 B —2(k+1)[rab+p,{+k(a+b)+2k(r+1)}[3,,JH .

By Lemma 2.10, B! is uniquely determined by ﬁ(oli(o;» therefore a, is uniquely
determined by o).
The following theorem can be proved in the same way as the case d = 1 in [11].

THEOREM 2.12. There exists a unique function F which satisfies the system of r
partial differential equations "

a*F d d
yi(l —)’i)g}%—+ c—50r=1- [a+b+ I=30- 1)})’:’

d L yi(l—y)\oF d I y(1—y)doF
31) 45 u}___ A=k _ e
‘ 2_j=|J;([ Yi—y oy 2/‘:1,;';!1‘ Yi—Y 9y
i=1,...,r, subject to the conditions that
(a) F is a symmetric function of yy, ..., y, and
(b) Fis analyticatyy = --- =y, =0and F(0) = 1.

THEOREM 2.13. There exists a unique sequence {A.} with Agy = 1 such that

Fr(yrs..oyyr) = 2k AHCL.‘I)(y;, ...y yy) satisfies (31) for r = 2,3,.... Moreover, A, =
(a)s(b)y

(@)x(h)y
(c)xk! *

PROOF. If such a sequence {A.} exists, then A, = % since the sum of the r
partial differential equations of (31) is (28).

Therefore, we only need to establish the existence of {A, }. By Theorem 2.12 , there
exist F,, and F,,; which are solutions of (27) subject to (a) and (b) forr=nand r=n+1
respectively. Then, we have

Fais- oy 9n) = 2 BeCP01, .. oyn),  Uk) <n,

FutO1y - yne1) = 2 D CO1, oo ypnt)s (k) <n+ 1.
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Now it is enough to show that B, = D, if I(x) < n.
Let
Gn(ylv"wyn): Fn+1()’17-~7)’n70)-

We note that

9 Fpy G, )
IR n70=—_ yeeesVn)s ]S S
a)’i (yl Vi ) ayi (y; ,y), 1 n
92F,  9°G, _
= — (Vs ey 1 <i<n.
aylZ ay,2 (yl, yn)7 >0
Fori=1,...,n, we have
82F 1 d d
yill —yi) ay':; + C—En—[a+b+l——2—n}yi
RS ﬁ0~m+gwa—xqanﬂ
25954 i~y 2Yi—yn ) 0y

d & y(I—y)9Fu  dyna(l — ynit) 9 Fpy
2.5 i~y 0y 2 Yi— Yt OYna

= abF,,+| .

Suppose y; #0,j = 1,...,n,let y,,; — 0. We have

92F 41 d d
yi(l —y,-)—aF(yn, cey Y, O)+ {c— N [a+b+ 1— En])’i

d X y(1—-y) d }
+5 3 ()
%3% yi—y o2
4 &A=y 9Fn
2554 Yi—y o 9y

aFn+l
ayi

01y e v v5Yn, 0)

(32) (yl,...,y,,,O):abF,,H(yl,...,yn,O).

This is true for all y; # Vi, i, j = 1,...,n.(32) says that G,(yi, ..., y,) is a solution of
(31) for r = n with G,(0, . .., 0) = 1. By the uniqueness statement of Theorem 2.12, we
have
Gty -y Y) = Faiy oo yn)
So B, = D, forall k,l(rk) < n.
As a corollary of Theorem 2.13, we have Theorem 2.1 .

3. Generalized hypergeometric functions and their integral representations. In
this section, we shall establish some properties of generalized hypergeometric functions
and their integral representations.

Two special cases of the hypergeometric functions are given in the next proposition.

PROPOSITION 3.1. We have
(33) OF(Od)(yl P ,yr) = e)’|+'--+_v,

(34) FP@yry ey = 10—y
i=1
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PROOF. (33) follows from the definition and (iii) in §1.

Let b = ¢ = 1+ 4(r — 1) in (5). Since both ,F§(a; y1,...,y,) and [T, (1 — y)~°
satisfy (5), (34) follows from the uniqueness of the solution of (5).

Similarly we can establish analogues of the classical Kummer relations.

PROPOSITION 3.2. We have
P a by .y

(35) = f[(l — y,‘)_a2F(ld) (a, c—b;c,— l
=1

Y1 I )
_ yl 9 b l _ yr
,
(36) =110~ W TE e —a,c = bieyi, .y
i
The remainder of this section is to establish integral representations for the generalized

hypergeometric functions.
Foray,...,ap by, ...,by € C,such that (b)), #0 for all k, j, we define

p?'(;d)(al,...,a,,;b],...,bq;xl,...,x, | ¥iyenesyr)

_ (al)n o '(ap)rc CL‘d)(xlﬂ ‘e -»xr) Cfgd)(ylv .. -v)’r)
€N BRI MR-

REMARK. When r = 1, pﬂf‘;")(al, coeyapy by, ... by x | y) becomes the classical
hypergeometric function pfy(ay, ..., ap; by, ..., by xy), in particular, Oféd)(x | y) = €Y
and | 7@ x| y) = (1 —xy) 4.

In the following, we simply denote IT;<;<j<, |x; — xj|d dxy ---dx, by dV(X,d,r).

The following conjecture of Macdonald has been proved in [6].

/' o /' 162/ T TIA — x)P ' dViX, d, r)
o Jo =1 izl
r Tk +a+4(r— NI+ 4(r—iNI(gi+1)

(38) = v v ar— i~ yrE+ D)

We define, for every s = (s1, ..., s,),
=) g u . d
(39) Tu(s) = (2m)"5 Hr(si i1 )—2-).
i=l

Fors = (s,...,s), we write I'y(s) instead of F((s, AU s)). We also define

oy TG+ D)
(40) co = (27) l:]l e 1)
(41) q0=l+g(rfl).
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PROPOSITION 3.3. Ifp < g+ 1, we have, for apy1 > 4(r—1).bgu1 — ap > $(r—1),

Ty(bgs1)
d) d\Ug+1
..... sbis . by
p+lF(q+l(al' Ap+1, D] q+1 Y)= l-‘d(ap“)]"d(bq” a,,+|)
1 |
/0 /O pqu(d)(al,....ap;bl ..... bq;Xl Y)
42) H Apr1=4o H(l x;)Pet 4140 M |x— xj|d dxy - - - dx,.
i=1 I<i<j<r

PROOF. (38) implies that the integral on the right side in (42) is equal to

ﬂ(al)n‘"'(ap)h' C(d)(Y) lC(d)(X) L (1 b —
K p+l 0 1 g+1 —Apr1 =40 dV X. d.

L o e R ok e U H( ) Kodn

(@) -~ (ap)s CO(Y)
Z(bl)n' '(bq)h' k!
i Tk + apa — 4= 1)+ 40r — (b1 — apet — r— D+ 4r— NI (Ei+ 1)
il Tki + bgey — (r— Dd+ $Qr—i— )¢ +1)

(al)h' o '(ap)r\' qd)(y)
Zn:(bl)h(bq)n k!

Ay Wk g 5= Dby — aps = 5 — DII(Fi+ 1)
i1 D(ki + bgr1 — $G— INDE + 1)
From (39) and (40) we have
1 'l
b [l apbi b X | D
r r
. ijz,m*llo H(l _ xi)bw—a,,,,l—q(, dV(X, d. r)
i=1 i=1
- R G — D)(bgs1 — apri — 56— (i +1)
il T(bger — S — NG + 1)
~p+lﬁfl?l(a|,...,a,,+l;b1 ..... bgr13 Y1523 r)
1 l—‘d(ap+l)ral(bq+l - ap+]) F(d)
=——-+ — ——  F(a,..., T S L T ).
co rd(qu) p+l l(al Ap+15 0] q+15 Y1 r)
In the classical case, there are the following well-known Euler integrals for ;f, and
2h
I'(b)

ila;byy) =
fora>0,b—a>0.

! xy a—1 _ y\ba-l
_——F(a)r(b—a)/o VX (1 —x) dx
I'(c)

1 _ —b_a—1 _ c—a—1
_——F(a)|r(c—a)-0(1 xy) X (1 —x) dx

ofila, bycyy) =

fora>0,c—a >0.

As remarked after (37), two special cases of Proposition 3.3 give the following
generalizations of Euler integrals.
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PROPOSITION 3.4. We have

Fa by, .y
Y O

— (d) 4 a—4o 4 . \P—a—qo
@) =ap o / /070 XTI 10 = )" avixX.d.n

ifa > %(r— 1),b—a> %(r— 1), and

2F<|d)(a»blC;)’h .. -7yr)

= —%)__. ! ! d)p. : a—qo g _\C—a—qo
@) =ap ot | |7 CEaR) | R | (R G

ifa>4(r—1,c—a>4r—1.

As a consequence of (34), (37), (38) and Proposition 3.4, we have the following
generalized Gaussian summation formula

COROLLARY 3.5. Ifa> 5'd,c—a—b > "5'd, then

Ly()g(c —a—b)
Tyc —a)Ty(c—b)

Fi'“%a,b;c;1,) =

Once we have Proposition 3.4, it is interesting to express o % and | Fy explicitly. In the
case of r = 2, we can express o % and | % in terms of classical hypergeometric functions.
See [14]. For general r, we have

PROPOSITION 3.6. We have

rd r B
l‘f(ﬁ‘“(—;xu,..-,xr | yls'-wyr) = [T —xy) 42
ij=1

PROOF. On the one hand, by Proposition 2.1 in [12], we have

1](1 — xy) 4 = ZJ (X;2/d)J(Y;2/d)j; !
ij=1

On the other hand, by §1 (iv), we have
) _ o rd
Jol;52/d)=(2/d) (—2 )N.

Hence, by the definitions, we have

k
(’d)ﬁ/—d)—J (X:2/d)Jo(V:2/d)j;"

rd
d) (=
f}— ( -xlw"‘7x7’|yl"”q ) J(lr‘z/d)

1- xlyj) d/2

>
- 1I¢

As a corollary, we have
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COROLLARY 3.7.

rd
2F‘1d)(a, ERE '-7Yr>

N VO N 42 e
T T @Tc—a) Jo /‘H“—W») Ih “HU X)DdV(X, d, )

ij=1
ifa > %(r—— ),c—a> ‘2—1(r— 1).

4. Asymptotic behavior of pHF;,d). It is known that ,, F,(Y) is convergent for ¥
with |y;| < 1,i=1,...,r. In this section, we study the asymptotic behavior of _ F, as
Y — [I. It turns out that some new phenomena appear when r > 1.

Let

p+l

ki —ki+ 4G — D) Bk — ki, 4G —i— 1)+ 1)
1<i<j<r 4G —1i) Bki — ki, 4G — i+ 1))
for all k with (k) <r.

dy =

PROPOSITION 4.1. 5k J
(45) SV, 12/d)) s
() /D= G
PROOE. For a partition &, let s(x) be the positive integer such that

ki > -0 > ko) > kye1 = =k, = 0.

We will prove (45) by induction on s(k).
Let s = s(x). When s = 1, a direct calculation gives (45).
Now we assume that (45) is true for all partition A with s(\) < s — 1.
Suppose s> 1. Let
@ = ks, if i <,
(b) l,—O,lfz >,
and A = (Iy,...,1).
Then ) is a partition of k — sk, with s(A) < s — 1, hence

2! B dy
46 — J(l,...,l;2d'l=
(40 (d> 4 /Dy (qo)x
with [ = k — sk;.
Let

s ks
A= HH[1+(r—l)d/2+k —Jl,

i=1 j=1
ki+j—;—ia' ks k_n+j_'_—%id
B= F .
1<icsri<jerLki — ks + 55 'd n=1 Ki — n+1—’127-‘d+1
CLAIM 1.
@7 (o)« = (go)rA.
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PROOF. A direct calculation.

CLAIM 2.
(48) dn = dAB.
PROOF.
o= p hobrEd Bli-l ey
isiger B(; — I, L d)
_ ki‘—kj'f%d.B(ki*kj’j—;—ld_'_l)
sigs B(ki — k. 5" d)
ks B B~k L
siciger i Bk — k;, = d)
dy = ki‘kj.+%d'3(ki~kj.ﬁ%d+l)
I<i<j<s j%d Bk — k;, ji;hld)
i i1
: ki+'d Bk, Sd+1)
1<i<s+1<j<r j%’d B(k;, ﬁ%ld)
ki + I%’d
=d, _hirogd
1<i<sH<j<r ki — kg + 50d
. B(ki, = d+ 1) Bk — k. 5 d)
Blki, 5ty Bki — ke, St + 1)
[ ki+id ko ok —n+itg
cicsolb kv 5 ke e
= d)\B.
Let

>~
B

[r—(i— 1)+§(ki—ks+j— 1)].

a
I
—

I
~
1

[s—i+§(1+k,-fj)],

.

I
—.
i

i
~.
i

x~

0
l
—.

1
~
1

| ][s—i+1+-3(k,-—j)].
From (iv) in §1 and [8], we have

(49) J,‘-(I,;2/d) =J4(I,;2/d)C;.
For a partition &, let

B (k) = [ his),

SEK

he(k) =[] hi(s).

SEK
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Then, a computation yields

h* (k) = h*(\)Cy,
h*(h) = h*()\)c3

By §1 (vii), we have
Ji = B (K)hi(K).

Hence
Jr = Ca2Ca,
Jx Jx C

By Claim 1, Claim 2, (46) and (50), we have

4 _ 4 B
(go)x  (qo)x A
JA(I,;2/d)B
= (2/d)=—""——
/ Ja A
- (z/d)k—xk,\‘]”(lr;z/d) C2C3§
.jn‘ Cl A'
Therefore, it is enough to show that
B C,
—=Q/d*—.
A ( / ) CrC5

In fact, a computation shows that

LT ke —j+ 1+ SEI T, T, [k — j + 2]

J

CTIL T [k =+ L+ ST, TS [ — o+ )

Thus,
B _ i T ki — j+ 25-d)
AL I T —j o+ 1+ 51V T TI [k — ) + 5]
=Q2/d™*Cc 'yl
This finishes the proof.

COROLLARY 4.2.

pr]d)(al,...,a,,;bl ..... bp;yis. .-y yr)

— Z (al)ﬁ e (ap)n drc

https://doi.org/10.4153/CJM-1992-079-x Published online by Cambridge University Press

K (al)fi e (ap)h' (QO)N '


https://doi.org/10.4153/CJM-1992-079-x

GENERALIZED HYPERGEOMETRIC FUNCTIONS IN SEVERAL VARIABLES 1335

Once having Corollary 4.2, we can use the I'-function to give the asymptotic behavior

d)
Ofp+lF}J .

Set 1
@m:{ﬂ]@+m

K =1

| TT =k + 17)¢
1<p<q<l
with (k) <0<t <.

First we have the following lemma.

LEMMA 4.3. For0 <1<,
(i) Ifa+(l— Dd+1 <0, then, 1,(t) is bounded;
(ii) Ifa+1>0,
L) ~ (1 — t)——|1a+l+(lfl)§dl;

(iii) Ifa+({—j)d+1=0,
Io(t) ~ (1 _,)—ufwidlog_l_;
1—1t
(iv) [fa+(—pd+1>0>a+(—j—d+1,
L) & (1 — gy Tloct1+d=5-d),

(By A(x) &~ B(x), we mean that there exist two positive numbers C; and C; such that

C < ”;4(% < (C; as x varies.)

PROOF. On the one hand, we have

00 -1
L=y ¥ (Tk-k+1)
ki=0 ky > >k =
ki) >k,

(T 1t — k) = G~k + 1))

1<p<g<i-1

(lﬁ](k,- ko 1)d)t(k|~k1)+w+(k1,u—k1)+(1_l)k’}k;’tkl

=1

00 11
= Z[ Z H(kj + 1)a+d H (kp _ kq + l)dtk1+~~»+k,,.]k;1tlk,
k=0 k) > >k >0 j=1 1<p<g<i-1

11
=[ ¥ T&+nm

ky > >k 20 j=1

[t S

1<p<g<i-1 k=0

-2 C(i kir+(l—l)dtk|>

k=1

() (3 ke ) (S k).

ko= k=l k=1
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On the other hand, we can similarly show that

1) < (,20 k=D ) (éo k;+(1—2)dtkz) .. (k’i; k;i:rldtk,—l> (g) k;x,k,)ﬁ
Hence . . .
(51) Ly ~ (r; ma+(1—1)dtm) (g moz+(1—2)dtm) . <,§1 matm)'
Let

o0 -
Iaj(t) = Z moﬁ—(l—])dtm'
m=1

For—1 <t <1, we have
(a)if a+ (I —j)d+ 1 <0, then, I,j(t) is bounded;
®)ifa+(—j)d+1 >0, then,

Lo (1) R (1 — oD,

(c)if a+ (I —j)d+1=0, then,

1
IaJ(l) I~ log l_——t

Now the lemma follows immediately from (51), (a), (b) and (c).

PROPOSITION 4.4. Let Y = Zf:l] a; — b, bi. Suppose for all

(ape-- '(ap+l)/c

> 0.
(bl)/-a o '(bp)n
We have, for -1 <y; < 1l,i=1,...,r,
(i) ify > (r—1)d/2, then
pFpla . apaibi . bpyyis .y R ITA =y

i=l
(i) if Y < —(r — 1)d /2, then there exists a constant C such that
Folar,...,ap13b1y .. bpsy, . y) <G

p+l

(iii) ify=d(—5t+j— 1) j=1,....r then, fory =+ =y, =1, -1 <t <,

bt 1
paFpl@nsapribis byt R (L= log

(iv) fd(=5' +j— 1) <y < (=5 +pd j=1.....r— 1, then, fory, =---=y=
L-1<r<1,
it Fo(@1s @it bry o byit L ) A (1= ) TR,
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PrROOF. By Corollary 4.2,

(@)r--- (ap+1)n d. Ci(Y)
F,(ay,...,ap13by1,...,by V) = .
porf (@1 dpibiee b 1) =3 B - (bpe (qo)s Cely)

First,

TG —i—1d/2+1)
di = .
lggjg, T(d/2G—i+1)
1<i<j<r (j—i)d/2 F(k,w—kj+(j—i—l)d/2+l)'

By Stirling’s formula, as « varies

(52) de~ [l (k—k+17%

1<i<j<r

Secondly, if | 4%| > 0, again by Stirling’s formula, as # varies

(B)x
(A)x ! A_B
~ Ik + 1) 7.
(B)» ,Hl /
Hence, as k varies,
(53) (@) Gpede o f g 4 1y--vai2a,

BDx - bpa(@o)s i

(@) If v > (r — 1)d/2, then

(’Y)K ~ IrI(kj + 1)‘7—(r—l)d/2—1.

(@r g
Thus
Mk, Ce(Y) £ _
prfplan, . apibi, . by V)R ; o, d, " g(l ).
(b)) Ify < —(r — 1)d/2, let t = max{|yi|...., |y|}, then
ICP0n, ..y £ CO, ...
So, by (i) in Lemma 4.3,
|p+1Fp(a]w .o ..ap-fl;b] ..... bp', Y)! = IW*%(rfl)—l (t) S C
That is (ii).

(©) If —4(r— 1) <7y < 4(r — 1), then, Lemma 4.3 gives (iii) and (iv).
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REMARK. In the case of r > 2, we note that as Y varies in the interval [— 5 d. d],
the asymptotics of p+1F p» varies in such a way as described in the proposition, these fea-
tures are not shared by the r = 1 case in which the interval [~%‘d. %'d] is degenerated
to the point 0.
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