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In order to study the effectiveness of factor analytic methods, a pro- 
cedure was developed for computing simulated correlation matrices which 
are more similar to real data correlation matrices than are those matrices 
computed from the factor analysis structural model. In the present investi- 
gation, three methods of factor extraction were studied as applied to 54 
simulated correlation matrices which varied in proportion of variance derived 
from a major factor domain, number of factors in the major domain, and 
closeness of the simulation procedure to the factor analysis structural model. 
While the factor extraction methods differed little from one another in 
quality of results for matrices more dissimilar to the factor analytic model, 
major differences in quality of results were associated with fewer factors 
in the major domain, higher proportion of variance from the major domain, 
and closeness of the simulation procedure to the factor analysis structural 
model. 

Questions as to the power of factor analytic research studies to reflect 
relations within a domain of psychological phenomena are of considerable sci- 
entific importance due to the wide use made of factor analysis in psychology. 
The basic formulation of factor analysis involves a particular mathematical  
system which may parallel to a better or poorer degree the relations existing 
in various domains of psychological phenomena. Further, different experi- 
ments within any one domain of phenomena may differ with respect to im- 
portant  characteristics which affect the parallelism between the factor analytic 
model and the observed data. Undoubtedly, such lack of parallelism has an 
effect on the capability of a factor analytic research study to obtain results 
relevant to the structure of relations in the domain of phenomena under study. 

* The research was jointly supported by the University of Illinois and the office 
of Naval Research under contracts Nonr 1834(39) and N00014-67-A-0305-0003. 
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More precise knowledge is needed as to the nature and extent of such effects 
as related to the nature and extent of lack of parallelism between the formal 
factor analytic model and the relations in the domain of phenomena. 

The mathematical model basic to factor analysis has been presumed in 
many theoretical and methodological developments, and various theorems 
have been developed which may have relevance to the analysis of observed 
data. Strictly, however, the truth of such theorems has been proven only 
within the constraints of the mathematical model, and their relevance in the 
analysis of data may be a function of the degree of parallelism between the 
mathematical model and the structure of relations in the data. For example, 
Guttman [1954], Harris [1962], and Kaiser [1961] have developed and ad- 
vocated use of several measures of the lower bound to the number of common 
factors involved in a correlation matrix. These theorems are strictly true for 
correlation matrices constructed from the mathematical factor analytic model. 
However, questions exist as to their relevance to the analysis of a correlation 
matrix based upon observed data. 

Mathematical statistical developments such as Lawley's [1940] method 
of maximum likelihood factor analysis and Rao's [1955] canonical factor 
analysis are attempts to solve some of the problems generated from the 
analysis of data from a sample of individuals. These developments, however, 
presume the mathematical model for factor analysis so that the relevance of 
these methods in the analysis of observed data may be a function of the 
degree of parallelism between the mathematical model and the structure of 
the phenomena and properties of the experiment giving rise to the data. 

In contrast to the theoretical developments and methodological studies 
based on the mathematical model as discussed in the preceding paragraphs, 
other studies may attempt to demonstrate the usefulness of factor analytic 
research in its application to real data. Thurstone [1938], for example, con- 
sidered many of his studies as such examples in addition to the contributions 
to knowledge about the structure of abilities. Others, for example Spearman 
[1939], Holzinger and H a m a n  [1938], Kaiser [1960], and Zimmerman [1953], 
have compared results obtained by two or more factorial techniques applied 
to the same data. This type of study, however, is beset by the problem of 
validity for interpretation of the results and is forced to subjective judgment 
as to the nicety of results. No true or target solution is known with which to 
compare the results obtained. 

Three studies, Thurstone's [1940] box problem, Cattell and Dickman's 
[1962] ball problem, and Cattell and Sullivan's [1962] cups of coffee problem 
have possessed a solution to this validity problem. In all of these cases, the 
domain of phenomena was chosen in the physical world and such that pre- 
vious knowledge indicated the structure of relations existent. Each of these 
studies involves a single demonstration of the power of the factor analytic 
approach to represent relations in a domain of observations. 
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In order to evaluate the effectiveness of proposed methods and the rele- 
vance of derived theorems from the factor analytic mathematical model, there 
is a need for a broad program of methodological studies involving data that 
possess the following attributes: 1) the structural relations underlying the 
data are known so that the validity of the factor analytic results may be 
checked; 2) the degree to which the relations underlying the data are paral- 
leled by the factor analytic mathematical model may be varied so as to facili- 
tate the study of dependence of effectiveness of method to degree of 
parallelism; and 3) experimental planning and execution may be varied both as 
to general nature and to quality (from poor to good). The present program of 
studies attempts to meet these three criteria by the use of a computer pro- 
cedure to produce correlation matrices which might be obtained from real 
data. This program does not solve the ultimate validity problem which still 
exists in the relation between the computed correlation matrices and those 
that might be obtained from real data. This procedure, however, should 
yield information on the power of the factor analytic methods when applied 
to data for which the factorial model is not precisely appropriate. 

A point of considerable importance is that the present group of studies 
envisages data on a population of individuals. Problems arising from analyses 
based on samples of individuals are not being considered at this time. In case 
some of the problems associated with sampling of individuals are to be 
studied in some project, the simulated correlation matrices developed by the 
present procedure could be considered as the population correlation matrices. 
Sample correlation matrices could be developed by any of several techniques 
(see, for example, Odell and Feiveson, [1966]). Linn [1968] has followed this 
approach. However, the present studies attack the separable problem of 
relevance of various theorems and procedures developed from the mathemati- 
cal model for factor analysis for population data uncomplicated by the sam- 
pling of individuals problems. 

As discussed by Cliff and Hamburger [1967], the present simulation 
model represents one type of psychometric conceptualization of factor analytic 
theory. One type of psychometric conceptualization of factor analytic theory 
advocated and utilized by Guttman [1953, 1954, 1955, 1956], Tryon [1957(a), 
1957(b), 1958], and Kaiser and Caffrey [1965] involves the postulations of a 
population of measures combined with the sampling of measures to form the 
batteries analysed. Loevinger [1965] has criticized this type of psychometric 
conceptualization when applied to mental test theory as being unrealistic 
in its postulation of a population of measures or items. In contrast to the 
sampling of measures concept the simulation model conceives of each measure 
involving a sampling of influences on the behavior of the individual. The 
mixture of this sampling is taken to be partially under the control of the 
designer of the measuring instruments and of the experimenter during the 
collection of observations on individuals. 
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The research reported here concentrates on a procedure to simulate 
correlation matrices, a partial attack on two data analysis problems, and 
methodological problems in comparing output factors with the input factors. 
The two data analysis problems are: 1) the communality problem, and 2) the 
number of factors problem. 

1. Procedure for Simulation of Correlation Matrices 

The procedure developed for simulation of correlation matrices involves 
a mathematical, probabilistie model (hereafter called the simulation model) 
possessing many features similar to the mathematical model for factor analysis 
(hereafter called the formal model). In fact, the simulation model contains 
the formal model as a special case. Both models presume the existence of a 
major domain consisting of those influences on observed scores of individuals 
for the phenomena which the experimenter wishes to study. Both models 
presume other factors or influences outside the major factor domain. The two 
models differ in the conception of these other influences. An important simi- 
larity between the models is that both are linear in that they involve addition 
of contributions to correlations from the various presumed influences on the 
scores of individuals. A curvilinear model for simulation of correlation mat- 
rices could be constructed which would include the formal model and the 
present simulation model as special cases and which would be more general. 
However, in our opinion, the procedure described here represents a valuable 
first step and will provide valuable information concerning methodological 
problems in analysis of data. 

The major departure of the simulation model from the formal model is in 
the conception of many minor factors in the simulation model in addition to 
the postulation of unique factors composed of specific influences and errors 
of measurement for each variable. Subjectively, the postulation of many minor 
influences, or factors, which affect the values of the observed scores seems 
to make considerable sense as a description of the real world. Loadings of 
variables on these minor factors are taken as random variables somewhat out 
of the control of the designer of the variable and the experimenter collecting 
the data, Parameters are included in the simulation model to regulate the 
general nature of these random vMues. 

The three types of factors considered are designated by the subscript s 
with values of 1 for major factors, 2 for minor factors, and 3 for unique 
factors. The number of factors of each type is designated by Mo and the 
factors of each type are designated by the subscript m~ such that: 

m, = 1 , 2 , 3 , - - - , M o .  

Variables are designated by  the subscript j or j '  with the number of. variables 
being J ,  thus: 

j or j ' - -  1 ,2 ,3 ,  . . .  , J .  

https://doi.org/10.1007/BF02290601 Published online by Cambridge University Press

https://doi.org/10.1007/BF02290601


LEDYARD R TUCKER, RAYMOND F. KOOPMAN AND ROBERT L. LINN 425 

For each type of factor, there is a matrix A, with entries of "actual input 
factor loadings." There is a row in A. for each variable and a column for 
each factor in section s of factors; thus, A. is a matrix of order J × M . .  
Two sizes of major factor domains were used in the present studies: three 
factor major domains and seven factor major domains (i.e., M, = 3 and 
Mt = 7). All batteries contained twenty variables. 

A matrix A* is defined for each matrix A. by adjusting the rows of A. 
to unit length vectors. A matrix P,  is defined from each A* by: 

(1) p. = A'A* '  

Matrix P .  is square of order J and is symmetric, positive, semidefinite. Since 
each row of A* was defined as being of unit length, 

(2) Diag (P,) = I, 

where Diag (P.) is to be read as the diagonal matrix formed from the diagonal 
entries in matrix P ,  . The simulated correlation matrix R is defined by: 

(3) R = BIPtB, + B2P2B2 + BaPaB3 

where B, , B2 , and B3 (in general B.) are diagonal matrices with entries 
bt i ,  b~ ,  and b3i (in general b.i). These entries b.i are restricted to being real, 
positive numbers such that: 

(4) b~i + b~f + b~i = 1. 

A consequence of the restriction on rows of the matrices A* to being unit 
vectors and, thus, of the diagonal entries in matrices P° being unities as stated 
in (2) is that 

(5) r ,  = 1; 

Diag (R) = I .  

The matrix A. of actual input factor loadings may be defined in terms 
of the matrices B. and A* by: 

(6) A° = B . A * .  

From (1), (3), and (6): 

(7) R = A~A~ + A2A'~ + A3A~ 

= ( A t ,  A2 ,  A3)(A1, A2 ,  A~)' 

where (At , A~, As) is a supermatrix containing the matrices A1, As ,  and A3 
as horizontal sections. Note that the constructed matrix R has the formal 
properties, required for a correlation matrix, of having unit diagonal entries 
and being symmetric, positive, and semi-definite. 

Coefficients in the B, matrices are important parameters of the simula- 
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tion model, functioning to regulate the proportions of the variances of the 
variables derived from the three types of factors. When B2 is zero, the simula- 
tion model is identical ~Sth the formal model and B~ contains the comunali- 
ties while B~ contains the uniquenesses of the variables. These coefficients 
in the B, matrices may be interpreted as reflecting the design of the measures, 
both as to individual variables and as to the battery of variables, utilized in a 
factor analytic study as well as reflecting the care exercised in collection of 
the observations. Values of the coefficients B~; used are given in Table 1. 

The central feature of the simulation model is the development of the 
matrices A, of "actual input factor loadings." Corresponding to each matrix 
A o is a matrix ,~, of "conceptual input factor loadings" which represents 
the ideas of the designer of the variables. Comments about the matrix ~ 
for factors in the major factor domain and a procedure used in the present 
studies are given in following paragraphs. The matrices ~ and Xa for minor 
factors and unique factors were set to zero, which represents the only sensible 
idea that the designer of the measures could have for these factors. The actual 
input factor loadings differ from the conceptual input factor loadings due to 
imperfections in the design of the variables and in the plan and conduct of the 
experiment. These imperfections may be conceptualized for the major and 
minor factor domains as involving some random processes. Possible forms of 
these processes, one form for each of the two types of factors, are discussed in 
following paragraphs. The effect of the imperfections on the unique factors 
is taken to make the ma rix A*3 an identity matrix. 

Conceptual input factor loadings for factors in the major factor domain 
represent the experimenter's ideas as to what he hopes is the factorial com- 
position of the variables. His ideas may be more or less precise depending 
upon the extent and precision of his knowledge of the phenomena consti- 
tuting the major domain. At the low end of a scale of extent of knowledge 
about the phenomena, the experimenter may have only a vague idea as to the 
nature of the phenomena and the influences constituting the major factors. 
From this vague idea he may be able to construct a number of measures, or 
variables, that seem to depend upon whatever influences may exist. Further, 
he may be able to judge that the variables appear to be somewhat related to 
or different from each other. He may be able to judge that the battery of 
variables represents the various aspects of the domain. An important aspect 
of judgment is whether the variables are simple or complex in the sense of 
depending on few or many influences so that the experimenter may be able 
to design and select variables judged to be simple. The existence of simple 
structures for the battery of variables depends on this judgment. As knowl- 
edge about the phenomena increases, the precision of design of measures 
should increase so as to enable experimenters to have more precise ideas about 
the conceptual input factor loadings of the variables. 

The procedure adopted for development of the matrices Xl in the present 

https://doi.org/10.1007/BF02290601 Published online by Cambridge University Press

https://doi.org/10.1007/BF02290601


0 0 

L "
~ 

~
.' 

~'
o 

b 
h 

~,
 

b 
b 

b 
b 

~ 
~.

 
b 

b 
~ 

~-
 

b 
b 

b 
b 

b 
b 

b 
~ 

~'
 

I,~
,° 

~
o 

I ~
 

t-
= 

I-
' 

I-
-' 

F-
' 

I-
' 

I-
-' 

I -
~ 

I ~
 

I "
~ 

~
. 

C
'I 

rt
 

0 

0 

gx
. 

I"
° 

0 ~
h 

ef
 

C
3 

0 ~
h 

0 C
 

ca
 

c~
 

i..
~°

 

r.I
- 

0 0 0 N
 

N
 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

07
/B

F0
22

90
60

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1007/BF02290601


428 PSYCHOMETRIKA 

studies was considered as representing the case when only vague ideas exist 
about the major factor domain. Each variable in each battery was developed 
independently from every other variable. First, relative conceptual input 
loadings were developed for the variable which constituted a row vector; 
then, the vector was adjusted to unit length by a multiplying factor. The 
relative conceptual loadings were integers developed by the following pro- 
cedure. For a three-factor major domain, the loading on a randomly selected 
one of these factors was a 0, 1, or 2 chosen at random with equal probability. 
A limit of 2 was placed on the sum of loadings for the variable, so that  if the 
first loading obtained was 2, the other two loadings were recorded as 0. If 
the first loading obtained was 1, a loading of 0 or 1 was chosen at random with 
equal probability for one or the other of the remaining factors, also chosen at 
random. In case the first loading was 0, the second loading obtained was 
0, 1, or 2 chosen at random with equal probability for one or the other of the 
remaining factors. The loading of the variable on the third factor was chosen 
so that  the sum of loadings was 2. A similar procedure ~;as used for obtaining 
relative loadings for each variable in a seven factor domain. The sum of load- 
ings for each variable was controlled at 6. The first loading was an integer in 
the range 0 through 6 (with equal probability) on a randomly chosen factor. 
The second loading was in the range from 0 through a value of 6 -- a, where a 
is the value of the first loading, on one of the remaining factors, etc. I t  is to 
be noted that this procedure tended to produce a fairly strong simple structure 
for the conceptual input factors. 

An interesting result of the foregoing procedure was that  some of the 
factors are much more represented by loadings of variables in a battery than 
are other factors. Table 2 presents the sums of squares of conceptual input 
factor loadings on each of the factors for each of the batteries developed. 
This result appears to be similar on a subjective impression level to the 
relative importance of factors in many studies of actual data early in the 
investigations of domains of phenomena. This trend in representation of 
factors in the batteries has a strong effect in the results of the analyses to be 
reported. 

A three step procedure was utilized to develop the matrix A1 of actual 
input factor loadings for the major factor domain from the matrix AI of 
conceptual input factor loadings. In the first of these steps, the conceptual 
input factor loadings are combined with random normal deviates to represent 
discrepancies that  might occur in the actual construction of measuring in- 
struments. Let (~1)i~. be the entry in row j and column m~ of matrix ~1 
and xi~, be a random normal deviate (~ = 0, ~ = 1) drawn independently 
corresponding to each (5~);~, . Let (y,);~, be the output from the first step 
and defined by: 

(8) (y~),,, -- (5~),~.c~. -I- d ~ x i , , , , ( I  - -  c~ . )  ~/2 
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Table 2 

Sums of Squares of Conceptual Input Factor Loadin~s 

Major Domain, on Factors in the Batteries Studied 

429 

Three Factor Major Domain 

Batteries 

Fac to r  1 2 3 

1 7.03 6.02 10.05 

2 7.54 7.03 6.04 

3 5.51 6.02 4.02 

Seven Factor Major Domain 

Batteries 

F a c t o r  1 2 3 

1 3 .48 2 .12 3 .14 

2 5 .83 4 .49 4.39 

3 2.33 3 .43  4 .44  

4 4.22 3.43 5.00 

5 4.51 5.72 2.78 

6 2.42 7.52 2.44 

7 2.93 1.16 5.77 

where c=, is a constant for each factor ml and dl; is a constant for each variable 
1. The constant d~i normalizes each row of xis, to a unit  length vector and is 
defined by: 

(9) d,, ( ~  ~ ~ - ~  
f a t  

The constants c~  are conceptualized as representing the general control an 
experimenter has on the loading of actual variables on the factors. The 
c, ,  are limited to vMues in the range of 0 to 1, inclusive. Values of c=, used 
in the present studies were .7, .8, or .9, chosen at  random with equal proba- 
bility for each factor. These vMues are given in Table 3. 

V a l u e s  o f  cml 

Three  Factor Major Domain 

Batteries 

Factor I 2 3 

i .8 .7 .7 

2 .8 .8 .9 

S .9 .8 .8 

Table 3 

~sed in the Batteries Studied 

Seven Factor Major Domain 

Batteries 

F a c t o r  1 2 3 

1 .7 .8  .9  

2 .8  . 8  .7  

3 .7  .9  .8  

4 .8  .9  .9  

5 . 9  .9  .8  

6 . 8  .7  ,7  

7 .7  .8  .8  
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Table 4 

Sums of Squares of Actual Input Factor Loadings, Ha~or Domaia 

Three Factor Major Domain Seven Facto~ Majov Domain 

Factors Batteries Factors Batteries 

1 2 3 1 2 3 

High Range of b 2 zj 

1 5.17 ~.72 3.82 1 2.21 1.59 1.6~ 

2 4 ,16  ~.80 5.25 2 3.22 1.83 1 .53 

3 4.38 ~.18 4.63 3 .71 1.71 1.87 

2.56 1.80 3.12 

5 2.52 2.48 1.83 

6 1.47 3.45 1.3~ 

7 1.32 !.04 2.67 

Wide Range of b 2 
zj 

1 2.37 3.10 3.05 1 1.61 1.50 1.61 

2 3.57 4.06 3.95 2 2.52 1.67 1.61 

3 4.17 2.9~ 3.09 3 .66 i.~9 .95 

4 1.67 i.i~ 2.88  

5 2.26 3.26 .97 

6 i.~6 2.48 1.31 

7 1,82 .47 2.66 

Low Range of b 2 
zj 

1 2.18 2.20 2.93 1 .90 .~9 .63 

2 2,25 2.05 1 ,54  2 .93 .98 .9~ 

3 1.97 2.15 1.82 3 .74 .83 .66 

1.02 .66 ,91 

5 .78 .96 .65 

6 .55 1.60 .83 

7 .77 .16 1.08 

The second step in developing the actual input factor loadings involves 
use of a "skewing function" which was introduced to reduce and limit the 
negativity of the factor Ioadings (~1)~=, • This function produces coefficients 
(z0 ~., as follows: 

k) (y~)j~,[(y,)~, +___~)_t,-,I + k] 
(10) (z,),~, -- (2 + k) [---~(Y0,~i + kl 
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where k is a parameter with a value to be chosen within the range of 0 to 
infinity, inclusive. A value of k = .2 was used in the present studies. This 
function was introduced to limit the actual input factor loadings to approxi- 
mating a positive manifold. This step was necessitated by the possibility 
tha t  the operation in (8) might produce fairly negative values of (y~)i~, • 
Each vector of (z~)~1 was adjusted to a unit  vector by: 

(11) (a*)i,~. = gli(z,)i,,1 

where 

(12) 9,, = [~'~- (z,)~-,] -'/2- 
rex 

The third, and final, step in developing the matrices A1 of actual input 
factor loadings for the major domains was to premultiply the matrices A* 
by the matrices B1 described previously. This step corresponds to (6). 

Table 4 gives the sums of squares of the entries in columns of the mat- 
rices A1 . These sums of squares may be interpreted as measures of the 
strengths of representation of the factors in the several batteries. Similarly, 
as for the conceptual input factor loadings, there is a wide range of sums of 
squares of actual input factor loadings for the factors in each of the batteries. 
To obtain further information on the differential strengths of dimensions of 
the input factor matrices, each of the matrices was rotated to principal axes 
factor matrices. Table 5 gives the sums of squares of the loadings on the princi- 
pal axes. For the seven factor major domain and low range of b~ t the sums of 
squares of loadings on the seventh principal axis are quite small. An effect of 
this wide range which may be anticipated is tha t  the weaker input factors may 
not be represented in the output  from the data  analysis. This point will be 
considered further in subsequent discussion. 

Development of loadings of the variables on factors in the minor factor 
domain involved random normal deviates (t~ = 0, a -- 1) drawn independently 
for each cell in the matrix As .  These normal deviates are designated by x;~, .  
A first operation on these normal deviates was to multiply those for each 
factor by a constant which formed a decreasing geometric series in the pro- 
gression of minor factors. That  is, x~'m. is defined by: 

(13) x*.. = x ; . . ( l  -- e) (''-1) 

where e is a parameter of the simulation model and is restricted to the range 
of values 0 through 1, inclusive. Consider the possibility of an infinite series 
of minor factors. Consider, also, the sum of squares of x*~. for variable j 
over the infinity of minor factors. I t  is interesting to note tha t  the expected 
value of this sum of squares is not infinite when e is greater than zero. This 
expectation turns out to be: 

(14) E x'm. = 1 -- (1 -- ~)2" 
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Factors 

Table 5 

Sums of Squares of Loadings on Principal Axes of 

Major Domain Actual Input Factor Matrices 

Three Factor MajOr Domain Seven Factor Major Domain 

Batteries Factors Batteries 

1 2 3 1 2 

High Range of 52 lj 

7.55 7.68 8.83 1 4.95 5.58 

3.46 3.82 2.67 2 2.95 2.74 

2.69 2.20 2.21 3 1.93 1.73 

4 1.71 1.31 

5 1.06 I.i0 

6 .93 .96 

7 .47 .60 

Wide Range of b 2 

5.10 4.95 q.99 1 4.71 5.19 

3.41 3.47 3.15 2 2.24 2.16 

1.59 1,68 1.96 3 1.98 1.75 

4 1.21 !.37 

5 .81 .73 

6 .68 ~58 

7 .37 .2~ 

Low Range of b 2 lj 

4.15 3.14 3.97 1 2.02 2.69 

1.27 1.95 1.48 2 1.00 .92 

.99 1.30 .95 3 .79 .88 

4 .71 .53 

5 .56 .33 

6 .41 .27 

7 .20 .08 

3 

4.12 

2.86 

2.14 

1.84 

1.54 

1.03 

.48 

4.23 

2.53 

1.98 

1.36 

.88 

.59 

.43 

2.13 

1.05 

.73 

,57 

.52 

.40 

.30 
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Thus, if the x*~. were considered as relative loadings on an infinite series of 
minor factors, the expected squared length of a vector of these loadings would 
not be infinite. Such a vector, even in an infinite dimensional space, may be 
shortened to a unit length with coordinates (y2);~, where: 

(15) 

and 

(16) 

(17) 

with entries 

(is) 

I¢1 I 

Let the matrix Y~ contain the (y~)~,, and consider the matrix product 

Q = Y,Y'~ 

q,, ,  = E 
m s  

While the expected value of Q over many samplings of random normal deviates 
xim. is an identity matrix, each Q matrix is not restricted to being an identity 
matrix. Consider the expected value of q~, when j ~ j'. An estimate of this 
expectation may be obtained from the expected value of ( ~  ~* ** ~ , ~ t m j ~ i , m a j  • 

This expectation turns out to be: =' 

1 
(19) E[(~.. x*.,.z~,,.,) ~1 = 1 -- (1 -- ~)~ 

From (15), (16), and (18), 

(EX.* X* ,~2 2 x ~ t  , v a l  i ' t ' ~ m l  

(2o) q;" = i 5 :  x , , . . )  

Taking as an estimate of the expectation of 2 q,~. the ratio of the expectations 
of the numerator and denominator of (20) yields: 

1 - -  ( I  - -  e)  ~ 
(2I) Estimated Eqi ~, = 1 q- (1 e)~" 

I t  is clear that as e becomes very small, approaching zero, this estimate ap- 
proaches zero, also. Thus, as e approaches zero, each Q matrix should ap- 
proach an identity matrix; but, for a finite e, each Q matrix is not expected 
to be an identity matrix. The consequence of this observation in the present 
context is that for any particular developed battery, the minor factors may 
be expected to affect the off-diagonal correlations when ~ is chosen as a finite 
value. A value of .02 was used for the present studies. 

A second step was taken in development of the matrices A* using the 
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same "skewing function" on the (y2)ira, as was employed for the major factor 
domain and is given in (8). The resulting (z2)i~, were reduced to unit  length 
vectors for each variable by steps parallel to (11) and (12). 

In the computations, loadings on minor factors were computed on 180 fac- 
tors, stopping quite short of the infinite number considered in the preceding 
discussion, since the loadings became of very trivial size beyond this point. 
Also, the expected contributions to the correlations became very small. 

The matrices Ps were taken to be identi ty matrices, a result tha t  could 
be obtained by either of two definitions of A* . In  the first such definition, 
the matrix A* could be defined as an identity matrix. This corresponds to 
the common conception of one unique factor for each variable in a battery.  
A second definition could be similar to the procedure followed for loadings of 
the variables in the minor factor domain but  using an infinitesimal value of 
~. This might be considered as more realistic for errors of measurement in 
tha t  it  implies a very large number of random influences on the measures. 
There is no argument to be made here for one or the other conception since 
they both result in P~ being an identity matrix. 

2. S tudy Plans  

The study plans may be conceptualized in terms of three factors in the 
sense of the use of this word "factor" in experimental design. These factors, 
along with levels employed, are listed below. 

1) Range of values of coefficients b~t : 
high range: b~i = .6, .7, or .8; 
wide range: b~ t -- .2, .3, .4, .5, .6, .7, or .8; 
low range: b~ = .2, .3, or .4. 

2) Size of major domain: 
three ]actors in major domain; 
seven ]actors in major domain. 

3) Relation between coefficients b~ and b~; : 
]ormal model: b~,. = 0, b~t -- (1 -- b~i); 
middle model: b~i = b~i = (1 -- b~;)/2; 
simulation model: b~i = (1 - b,,.),~ b~;2 = 0. 

For each range of b~; a matrix B1 was drawn for each size of major domain 
as given in Table 1. For  each size of major domain, three matrices ~1 were 
developed. For each -~1, three matrices A1 were computed, one for each range 
of b~;, thus yielding a total of 18 matrices A~ . For each of these matrices, a 
matrix A* was developed. The matrices A* were taken as identi ty matrices. 

The factor of relation between coefficients b~ i and b~, is represented by 
three levels of ratio. The first level of ratio may be termed the formal model 
since, as discussed previously, correlation matrices constructed with b~ set 
a t  zero satisfy, exactly, the formal model for factor analysis. The third level 
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of ratio may be termed the simulation model, while the second level of ratio 
may be termed the middle model. For each of the eighteen matrices A1 and 
associated matrices A* and A* , three correlation matrices were computed, 
one for each class of relation between coefficients b~i and b~i . t 

While there are three correlation matrices for each cell of this factorial 
design, these replications are not independent from cell to cell. The correla- 
tion matrices for all cells for a given size of major domain were developed 
from the same three matrices ~1 • The same matrix B1 was used for all cor- 
relation matrices in each cell for the three classes of relation between coef- 
ficients b~t and b~i and a given size of major domain. This design was chosen 
to facilitate major comparisons between ceils by reduction of between cell 
variation due to random effects. A more completely balanced design would 
have resulted in many more correlation matrices and would have increased the 
computational work inordinately. 

Analytic methodological problems considered in the present group of 
studies include: 1) the communality problem, and 2) the number of factors 
to be extracted problem. Principal axes factoring was used in all analyses 
performed. For the communality area of problems, each simulated correla- 
tion matrix was factored three times: 1) with unity in every diagonal cell 
(designated as RwU), 2) with the matrix of correlations rescaled to a variance- 
covariance matrix so that the variance of errors of predicting each variable 
from all other variables is unity (designated as C), and 3) with the squared 
multiple correlation of each variable with all other variables in the diagonal 
cell for each variable (designated as RwSMC). 

A number of workers, starting with Hotelling [1933] and Kelley [1935], 
have advocated the principal components factoring represented by the first 
procedure. The second procedure was proposed by Harris [1962] and is related 
both to Guttman's lower bound for the communality and to the maximum 
likelihood factor method of Lawley [1940] and to Rao's [1935] canonical 
factoring procedure. The matrix C used in this procedure is defined by (22): 

(22) C = S - 1 R S  -1 

where S is a diagonal matrix containing the standard errors of estimating 
each variable from the remaining variables. The output factor matrix, F, , 
for r factors is obtained by (23): 

(23) F ,  = S V , ( f l ,  - -  1) 1/2 

where f/, is a diagonal matrix containing the r largest characteristic roots of 
C and V, contains, as column vectors, the corresponding characteristic vectors 
scaled to unit length. The third procedure is the result of Guttman's theorem 
that the squared multiple correlation of each variable with all remaining 

t The 18 matrices A~ of actual output factor loadings and the 54 correlation matrices 
are on file at the American Documentation Institute as document number 10060. 
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variables is a lower limit to the communality of that variable. This procedure 
is widely used in computations with digital computers. 

Results from the analyses were inspected for indications of relevance of 
Guttman's [1954] lower bounds for the number of factors to be extracted. Fur- 
ther, the series of characteristic roots obtained from each factoring was in- 
spected for indications to a solution for the number of factors to be extracted 
problem. 

Output factor spaces were compared with the input factor spaces for the 
major factor domain by the procedures described in the next section. 

3. Methods for Comparison o/Output Factors with Input Factors o] the Major 
Factor Domain 

A major procedural problem involves the comparison of output factors 
with the actual input factors of the major factor domain. A rephrasing of this 
problem is: how well do dimensions in the output factor space represent di- 
mensions in the actual input factor space? Two alternatives are considered: 
joint rotations of the actual input factors and the output factors to optimal 
matching, and rotations of the output factors only to optimal matching with 
each of the actual input factors. Note that the matrices A1 of actual input 
factor loadings were used in these comparisons. 

The first of these alternatives yields indications whether or not corres- 
ponding subspaces exist in the input factor space and the output factor space 
which are highly related. If r factors are extracted for the output factor space, 
a subspace of dimensionality Q', equal to or less than r, may be highly related 
to a Q' dimensional subspace of the input factor space; but, the r -- Q' di- 
mensional complementary subspace in the output factor space may not be 
highly related to a corresponding subspace of the input factor space. Thus, 
the answer to the question would be that the output space included a sub- 
space that represented a subspace of the input space, but  that the output 
space included a complementary subspace which did not represent a subspace 
of the input space. 

The second of the alternatives involves the representation of each input 
factor in the output factor space. If the output space projects onto a subspace 
of the input factor space, it would be desirable for this input subspace to be 
defined by a subset of the input factors. Since the method for construction of 
the input factor matrix involved a procedure which tended to produce a simple 
structure, the projection of the output space onto a subspace defined by a sub- 
set of the input factors would permit rotation of the output factor matrix to 
simple structure which, in turn, would permit identification of the individual 
input factors which define the input subspace. This is an important possibility 
for factor analytic procedures. 

In order to investigate the problem of number of factors to extract for the 
output factor matrix, comparisons between the input and output factor spaces 
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were computed for a series of number of factors extracted, in most cases r = 1, 
2, . . .  , M1, the number of input factors in the major domain. For a few of the 
correlation matrices, the series of number of factors extracted was extended be- 
yond M1 • 

Let Fr represent the output factor matrix for r factors extracted. Note 
that the methods of extraction of the factors result in matrices F, of full 
column rank. In the following comparison techniques, it will be presumed 
that the input factor matrix A1 is of full rank, this being true in fact for the 
matrices used in this study as demonstrated in Table 8 by none of the sums 
of squares of loadings on principal axes being zero. Rotation of axes for the 
output and input factor spaces are accomplished by (24) and (25). 

(24) J~l, = A I T~, 

(25) Pr = F~T~,, 

where ~ , ,  and P~ are the rotated matrices for r factors extracted, and where 
T~, and TF, are the corresponding transformation matrices to accomplish 
the rotations. Since coefficients of congruence, as described shortly, are 
used to compare columns of )l~r with columns of iOr , the scaling of the col- 
umns of TA, and TF, is immaterial. Arbitrarily, the columns of the trans- 
formation matrices are defined as unit length vectors. 

As mentioned in the preceding paragraph, the coefficient of congruence is 
used as a measure of similarity between a column of loadings in matrix J~,, and 
a column of loadings in matrix i 0 .  This coefficient, which was first suggested 
by Burt [1949], named and used by Tucker [1951], and used by Wrigley and 
Neuhaus [1955], is the cosine of the angle between two column vectors of 
factor loadings in a space having an orthogonal axis for each variable. The 
form of this coefficient is given by (25). 

a;.f;, 
( 2 5 )  Coefficient of Congruence = 2 ~ /  2: 

V Z a,. Z I,. 

and is analogous to a coefficient of correlation, but not identical since the 
loadings are not converted to deviations from their means. 

In (25), no indication was given as to rotation of axes for either the input 
factor loadings a,m or the output factor loadings ],~. Rotated output factor 
loadings were considered for all cases used in the present study. In the first 
alternative method of comparison of the input and output factors, both the 
input and output factor matrices were rotated so as to maximize the squared 
coefficient of congruence which is designated for this case as ¢2. This solution 
is analogous to a canonical correlation solution and yields as many rotated 
dimensions as the number of factors in the input factor matrix or in the output 
factor matrix, whichever of these number of factors is less. Let Q be the 
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lesser of M1 and r. The matrices ~1, , Fr ,  TAr , and Tpr will have Q columns 
which may be denoted by the subscript q -- 1, 2, . . .  , Q. There will be Q 
values of ¢2, one corresponding to each value of q, which may be designated 
¢2 and be entered as diagonal entries in a matrix ~2. 

Let the columns of ~ ,  and F, be so ordered that the ~b~q form a decreas- 
ing series. Note that each pair of corresponding columns of .~ ,  and F, are 
unrelated to all other columns in these two matrices. Thus the series of cor- 
responding pairs of columns of ~1, and Fr defines rotations in the input 
factor and output factor spaces which are maximally related. Further, con- 
sideration of any subset of pairs of columns for pairs q = 1, 2, . . .  , Q' with 
QP < Q defines subspaces of dimensionality Q~ in the two factor spaces which 
are maximally related. When one or more ¢~ are zero, say Q"  of them, the 
corresponding columns of )l~, and F, define Q'~ dimensional subspaces which 
are unrelated to each other as well as to the complementary subspaces in 
~ , ,  and F , .  Consequently, this subspace of dimensionality Q" in the output 
factor matrix F~ is unrelated to the entire major factor input factor matrix 
AI . Low values of ~b~ would indicate dimensions in the output factor space 
with low relations to the major factor input factor matrix. 

In the second alternative for comparison of the output factors with the 
input factors, only the output factors were rotated so as to obtain a maximum 
coefficient of congruence with each of the input factors. This solution is anal- 
ogous with a multiple regression solution using the output factors as predictor 
variables to predict each of the input factors, in turn, as a criterion variable. 
The squared coefficient of congruence, denoted R~,  , with input factor m~ 
is analogous to the squared multiple correlation. 

A high value of R~m, indicates that a rotation of axes is possible in the 
output space to a factor with loadings highly related to the loadings on a 
given input factor. A low value of R~,, indicates that  only a low relation may 
be obtained between a rotated output dimension and the given input factor. 
In case the number of factors, r, extracted in the output factor matrix is less 
than M~ , the number of input major factors, and, in case there are r input 
factors for which the R~=, are high, then a rotation is possible of this output 
space to the selected input factors. In case the preceding were possible for 
several different selections as to number of output factors, the number of 
factors to extract problem would not be highly critical. The possibility exists 
that  the very weak input factors would not be easily matched by output di- 
mensions; low values of R~,  for these input factors would result. 

4. Resu l t s  

The squared multiple correlation (commonly designated SMC) of each 
variable with all other variables in each battery was obtained for all twenty 
variables in all 54 batteries. These SMC's are summarized in Table 6 which 
presents the mean and standard deviation of the SMC's for each value of b~; 
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Table 6 

Summary of SMC's 

Three Factors in Major Domain 

Hean SMC 

Formal Middle Simulation 
Number Model Model Model 

2 
High Range of blj 

15 .749 .777 ,83~ .010 
21 .651 .679 .749 .021 
2q .556 ,605 .709 .014 

Wide Range of b 2 lj 

12 .7i6 .746 .820 .027 
12 .624 ,670 .774 .Q20 

3 .510 .577 .697 °053 
9 .452 .509 .659 .009 
3 .364 °438 ,626 .006 
6 .268 .338 .505 .003 

15 .176 .252 .467 .010 
2 

Low Range of blj 

24 .294 .353  .530 .023 
24 .226 .243 .491 .014 
12 .152 .232 .~37 .010 

Standard Deviation 

Formal Middle Simulation 
Model Model Model 

. 021  . 0 3 7  

.026  . 04~  

. 025  . 048  

.026  ,0~3  

. 020  ,025  

.061 .ll7 

.032 .073 

.013 .015 

.033 ,091 

.033 ,073 

.045 .095 

.042 .138 

.040 .092 

S e v e n  Factors in Major Domain 

Mean SMC 

Formal Middle Simulation 
Number Model Model Model 

High Range of b 2 

12 .658 .584 ,747 ,056 
18 .577 .615 .701 .053 
21 .504 .548 .635 .035 

Wide RanKe of b 2 

12 .628 .656 .720 ,093 
15 .558 . 593  .685 . 058  
15 .472 .519 .620 .038 
6 .360 .400 .507 .055 
6 .327 .380  .513 . 034  
3 .235  .315  .502 .026  
3 .157  .229 .419 .023  

Low Kan~e of b 2 zj 

15 .189 ,254 .415 .038 
21 .153 .220 .396 .032 
24 .109 .185 .377 .105 

Standard Deviation 

Formal Middle Simulation 
Model Model Model 

°063 .075 
°056 .070 
.035 °054 

.096 .123 

.063 .053 

.038 .052 

.051 .069 

.060 .089 

.037 .081 

.029 ,031 

.054 

.050 

.027 

.09~ 

.089 

.066 
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for each model in each range of b~ used for each size of major domain. 
As indicated by Guttman's [1954] proposition, every SMC for the formal 

model is less than the input b,~ which are the theoretical communalities for this 
case. The mean differences between the b~; and the corresponding SMC's are 
greater for the seven factor major domain than for the three factor major do- 
main. Further, the standard deviations of these differences, which equal the 
standard deviations of the SMC's given in TabIe 6, are Iarger for the seven 
factor major domain than for the three factor major domain. I t  appears, then, 
that  the SMC's may be less adequate estimates of the communalities for the 
formal model for analyses involving larger ratios of number of common factors 
to number of variables than for analyses involving smaller such ratios. 

A major feature of the SMC's is the progression in mean magnitude for 
each size of major domain, range of b~ , and value of b~ i from least for the 
formal model to largest for the simulation model. This progression exists for 
every row in Table 6 without exception. While all SMC's for the formal model 
are less than the corresponding b~ i , some of the SMC's for the middle model 
and many of them for the simulation model are greater than the input b~.  I t  
is not possible, however, to equate the b~'s in the latter two cases with "true" 
communahties and to make statements as to whether the SMC's are over- 
estimates or under-estimates as can be done in the case for the formal model. 
An appropriate question is whether the SMC's are effective coefficients to be 
inserted into the diagonals of correlation matrices as a step in factor analyses 
so that the results of the factor analyses reflect the input factors in the major 
domain. Some answers to this question are given by the results of the factor 
analyses of the correlation matrices for the middle and simulation models 
to be discussed in subsequent paragraphs. 

A decreasing relation of the SMC's to the b~; from the formal model to 
the middle model to the simulation model for a given size of major factor 
domain and range of b[~ is shown by two features of the results given in Table 
6. First, while the mean SMC appears linearly related to the b~i for each size 
of major domain, range of b~, and model, the slope of the regression of SMC 
on b,2~ appears to reduce from the formal model to the middle model to the 
simulation model. Second, the standard deviations of the SMC's for each 
gi~ren value of b~, range of b,~, and size of major domain tend to increase from 
the formal model to the middle model to the simulation model. This progres- 
sion is true for the majority of the rows in Table 6. 

As already indicated, the mean SMC's for the formal model tend to be 
larger for the three factor major domain than for the seven factor major do- 
main. This relation is true also for the middle model and for the simulation 
model. This observation, while noted here, will receive no further attention 
in this report. I t  deserves further intensive study as a separate subject. 

A summary of the series of characteristic roots obtained in the principal 
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axes factoring of the correlation matrices is presented in Table 7. Inspection 
of the series of roots obtained for the three correlation matrices in each cell 
of the experimentM design indicated that mean values of corresponding roots 
over the three replications could be used without loss of general features of 
the series. 

Guttman's [1954] lower bounds for the number of factors have been 
indicated by asterisks after the appropriate roots for all series of roots in 
Table 7. For the series of roots for factoring the correlation matrices with 
unity in the diagonal cells (designated RwU) the lower bound is the last root 
equal to or greater than unity, while for factoring the correlation matrices 
with squared multiple correlations in the diagonal cells (designated RwSMC) 
the lower bound is the last non-negative root. The lower bounds for factoring 
the C matrices and for factoring the RwSMC matrices must be identical and 
are Guttman's stronger lower bounds for the number of factors. 

Each series of roots was inspected for breaks in the rate of decrease of 
the roots and such breaks have been indicated by lines drawn between two 
roots. In several of the series for factoring the C and RwSMC matrices, two 
breaks in the rate of decrease of the roots were observed and have been in- 
dicated. These breaks in the rate of decrease of the roots have been used as 
indications of the number of factors in the correlation matrices. 

For the high range of b~ and three factors in the major domain, Gutt- 
man's weaker lower bound (asterisked root in column RwU) is three factors 
for all three models while Guttman's stronger lower bound (asterisked roots 
in columns C and RwSMC) is 3, 8, and 12 factors for the formal model, 
middle model, and simulation model, respectively. The breaks in the series of 
roots appear after three factors for all these series of roots. I t  appears, then, 
that both Guttmau's lower bounds and the breaks in the series of roots indicate 
correctly there are three common factors for the formal model. In contrast, for 
the middle model and simulation model, Guttman's weaker lower bound and 
the breaks in the series of roots are accurate indicators of the number of factors 
in the major domain while Guttman's stronger lower bound indicates a num- 
ber of more factors. This result, undoubtedly, is due to the inclusion of the 
influences of the many minor factors oa the correlations which result in there 
being many more common factors. However, if the purpose of the analyses is 
to explore the factor structure in the major factor domain, the output of more 
factors than the number in the major domain may be undesirable. Conse- 
quently, Guttman's stronger lower bound would result in "over-factoring". 

For the high range of b~i and the seven factor major domain, Guttman's 
weaker lower bound indicates six factors for all models; Guttman's stronger 
lower bound indicates 7, 8, and 12 factors for the three models. Breaks in the 
series of roots indicate seven factors for all models. Thus: Guttman's weaker 
lower bounds understate, Guttman's stronger lower bounds overstate, and the 
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Facto~ 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

lO 
ii 
12 
13 
14 
15 
16 
17 
18 
19 
2O 

Factor 
Number 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
!2 
13 

15 
16 
17 
18 
19 
2O 

Table 7 

Characteristic Roots for Principal Axes Factoring 
Mean Values over Three Replications 

2 
High Range of DIj 

Three Factors in Major Domain 

Formal Model Middle Model Simulation Model 
RwU C RwSMC RwU C RwSMC RwU C RwSMC 

8.32 25.67 7.98 8.56 29.39 8~25 8.79 41.73 8.56 
3.61 10.86 3.23 3.62 12.13 3.31 3.65 16.h3 3.41 
2.71~ 6.89 n 2.31 ~ 2.69 ~ 7.58 2.32 2,66 ~ 10.32 2.39 
.40 .94 -.03 
.40 .93 -.03 
.40 .91 -.03 
.40 ,90 -.03 
.40 .90 -.03 
.38 .90 -.04 
.36 .89 -.04 
.32 .88 -.04 
.30 .87 -.04 
.30 .86 - . 0 5  
.30 .85 - . 0 5  
.30 .84 - . 0 5  
.26 .83 - . 0 5  
.23 .82 - . 0 6  
.21 .81 -.06 
.20 .80 -.07 
.20 .76 -.07 

Seven Factors in Major Domain 

For~l Model Middle Model 

.53 1.47 ~ .~ ~ 

.48 1.32 ,ll .58 2.29 .31 

.43 1.21 .07 .50 1.98 .24 

.38 I.i0 .03 ,40 1.66 .15 

.38 1.05 ~ .O1 ~ ,38 1.48 .12 

.34 .88 - . 0 0  

.32 .95 - . 0 2  

.30 .91 - . 0 3  

.28 .87 - . 0 4  

.27 .81 -.06 

.26 .79 -.07 

.24 .78 -.07 

.23 .72 -.08 

.20 .71 -.09 

.17 .66 -.i0 

.16 .64 -.12 

.15+ .62 -.13 

.34 1.36 .08 
,31 1.2~ .05 
.28 1.13 .03 
,25 1.01 ~ .00 e 
.23 .85 -.04 
.20 .83 -.04 
.18 .78 -.05 
.15 .64 -.07 
.13 .61 -.09 
.I0 .50 -.ii 
.09 .~5 - . 1 3  
.08 .37 -.15 

Simulation Model 
RwU C RwSMC RwU C RwSMC RwU C RwSMC 

5.18 13.63 4.77 5.43 15.75 5.06 5.69 22.14 5.40 
3.13 8.46 2.75 3.11 9.16 2.75 3~09 11.80 2.81 
2.23 5.54 1.81 2.24 6.07 1.85 2.25 7.95 1.95 
1.91 4.42 1.46 1.89 4.32 1.48 1.87 6.24 1.55 
1.54 3.41 1.08 1.52 3.74 i.ii 1.49 4.70 1.17 
1.28 ~ 2.86 .82 1.29 ~ 3.12 .87 1,31 ~ 3.94 .97 
.81 1.80 ~ .36 ~ .80 1.98 .39 ,80 2.56 .47 
.40 .Ub -.06 
.39 .84 -.07 .41 1.00 -.00 
.37 .82 -.08 .37 .94 -.02 
.37 .78 -.08 .35 ,89 -.04 
.35 .77 -.09 .33 .82 -.08 
.32 .75 - . 1 0  .30 .78 - . 0 8  
.30 .73 -.i0 .28 .72 -.i0 
.28 .71 -.12 .25 .59 -.12 
.27 .70 -.12 .24 .62 -.14 
.24 .67 -.14 o21 .59 -.15 
.23 .65 -.15 .20 .58 -.16 
.20 .60 -.16 .18 .53 -.18 
.20 .56 -.19 .15 .~9 -.19 

.46 1.13~ --/6T-~ ~ 1.76 .Tit 
,46 1.44 .13 
.40 1.34 .I0 
.37 1.17 o06 
,32 1.01 ~ .00 ~ 
.29 .90 - . 0 3  
.25 .79 -.07 
.22 .71 -.09 
.17 .58 -,12 
.15 .55 -.14 
.13 .47 -.15 
.ll .41 -.16 
.08 .35 -.19 

https://doi.org/10.1007/BF02290601 Published online by Cambridge University Press

https://doi.org/10.1007/BF02290601


LEDYAB/) R TUCKF_~R, RAYMOND F. KOOPMAN AND ROBERT L. LINN 443 

F a c t o r  
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
ii 
12 
13 
14 
!5 
16 
17 
18 
19 
2O 

Factor 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
l l  
12 
13 
14 
;s 
16 
17 
18 
19 
2O 

Table 7 (Continued) 

Characteristic Roots fo~ P~ineipal D~es Factoring 
Mean Values over Three Replications 

Wide Range of b~. ~3 

Three Factors in Major Domain 

Formal Model Middle Model Simulation Model 
RwU C RwSMC RwU C RwSMC RwU C RwSMC 

5.40 14~19 4o95 5.75 16.60 5=33 6°12 28.04 5.82 
3073 9o11 3028 3o71 10.22 3.30 3069 14.89 3040 
2.21 ~ 4°55" 1.67 ~ 2o21" 5031 lo74 2.25 8.13 1o93 

- °02 
.80 °97 - °02 
°79 °97 - . 0 2  
.76 096 - . 0 3  
.73 .96 - °03  
.68 °95 - . 0 3  
.61 .95 - °04  
.55 .92 -.04 
°50 .91 -o05 
.48 °90 - . 0 5  
.40 °86 - . 0 6  
.33 .83 -,08 
.30 o81 - . 0 7  
.28 .78 -,07 
.23 .75 - °08  
.22 °73 - . 0 9  
°20 °70 -.12 

Seven Factors in Major Domain 

Formal Model Middle Model 

,98 1.50 .30 i°18 2.93 .72 
=89 1.41 °23 1.06" 2.62 .61 
°82 1 . 3 0  °17 .90 2 .24  .48 
.74 1.19 .I0 .78 i~94 .34 
.56 1o12 °05 .69 1.77 026 
o60 1o05" .02* °55 1.57 °17 
.56 .99 - . 0 0  
.52 .92 - °04  
.45 °88 -006 
°40 085 - °07  
,35 .79 - . 0 9  
°30 .75 -o11 
.27 °72 -.12 
°23 °67 -.13 
,21 .64 -°15 
o19 °62 -.17 
.16 °57 -.19 

.51 1038 .13 

.42 1.19 °06 

.38 1.05~ .02e 
°30 .98 -°01 
.28 .85 -.04 
.22 .73 - . 0 8  
°19 .66 -010 
°15 .55 -o14 
°13 .48 -o15 
oli .43 -o18 
°07 °33 -.22 

Simulation Model 
RwU C RwSMC KwU C RwSHC KwU C RwSMC 

5°05 11.64 4.58 5.31 13o32 4.88 5.59 17.99 5.26 
2065 6oll 2.18 2.67 6,68 2o24 2.72 8070 2,38 
2,26 4.63 1o77 2.26 5 ° 0 2 '  1.79 2026 6,~6 1.88 
1.'70 3o13 1o14 1o71 3.46 io19 1o73 ~048 1o32 
1o23" 2022 °66 lo23  2.44 o71 1.28 3.27 .87 
1.05 e 1.87 .47 1o07 e 2012 054 i0084 2o80 .67 
°83 1.31* o18 ~ °84 io38 .21 .87 1.92 .40 
068 o93' $°O5' .6-~ i°20 °10 °77 lo81 .32 
~57 o89 -.07 
.54 °87 -.08 
°48 °84 -.09 
°44 °79 -°i0 
o41 .77 -.ll 
.37 .74 -°ll 
°35 °73 -ol2 
°32 °71 -ol3 
o80 °69 -o14 
°28 .66 -°16 
°25 °63 - . 1 7  
°21 °60 -.19 

.61 i.li* °06 # 064 1.55 .22 

.51 .98 -.01 
°46 °86 -.05 
.40 083 -°07 
°37 .78 -.10 
.35 °74 -012 
.33 ~71 -.14 
o30 .68 -.15 
.27 .65 -017 
024 .59 -o!9 
. 2 !  o55 -020 
.!8 .50 - °22  

.51 1.31 012 

.43 /~lO ~ .03" 

.36 099 -.00 
°34 o91 -o03 
.30 082 -007 
.26 .72 -.ll 
.25 ~68 - . 1 2  
o21 058 -.15 
016 .W8 -.L9 
o13 o~2 -°20 
.io .34 -=2~ 
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FactoP 
Number 

1 
2 
3 

5 
6 
7 
8 
9 

i0 
ii 
12 
13 

15 
16 
17 
18 
18 
2O 

FactoP 
Number 

1 
2 
3 

5 
5 
7 
8 
9 

i0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Table 7(Continued) 

Characteristlc Roots for Princlpal Axes Factoring 
Mean Values over Three Replications 

Low RanEe of b 2 

Three Factors in Ma~or Domain 

Formal Model Middle Model Simulation Model 
RwU C RwSMC RwU C RwSMC RRU C RwSMC 

~.42 5.96 3.67 4.89 7.37 4.22 5.40 11.84 4.92 
2.23 2.95 1.47 2.29 3.36 1.60 2.40 5.08 1,90 
1.74 ~ 2.30~ .98 ~ 1.68 2.45 .99 1.69 ~ 

~ L .o~ i.o?~ ~ ~ 1.41 3.o5 .93 
.79 .94 -.05 
.78 .94 -.05 
.77 .93 -.06 
.70 .92 -.06 
.70 .91 -.07 
.70 .91 -.07 
.70 .90 -.07 
.70 .89 -.08 
,68 .89 -.08 
.66 .88 -.08 
.63 .88 -.09 
,60 .87 -.09 
.60 .86 -.i0 
.60 .86 -.IO 
.60 .84 -.12 
.60 .82 -.13 

Seven Factors in MajOr Domain 

Formal Model Middle Model 

.97 1.41 .27 1.19 2.40 ,67 

.90 1.24 .17 1.05 ~ 2.04 .52 
,84 1.19 ,13 .96 1.86 .44 
.77 1.12 .08 .84 1.63 .32 
.74 1.05 ~ .03 ~ .77 1.45 ,24 
.68 .97 - . 02  
.63 .9O - . 0 7  
.60 .87 - .09  
,58 ,84 - , 1 1  
.55 .81 -.13 
.55 .78 -.15 
.51 .75 -.17 
°48 .72 -.19 
.45 .69 -.21 
.43 .66 -.23 
,41 .63 -.25 

.67 1.25 .13 

.59 1.064 .04* 

.51 .99 -.01 

.48 .91 -.05 
,42 .84 -.08 
.39 .75 -.13 
.34 .70 -.15 
.30 .61 -.20 
.24 .52 -.22 
.19 .45 - . 26  
.16 .37 - . 3 0  

Simulation Model 
RwU C RwSMC RwU C RwSMC RwU C RwSMC 

2.98 3.57 2.14 3.z~2 4.49 2.65+ 3.92 5.96 3.3W 
1~69 1.99 .84 1.77 2,32 1.00÷ 2,07 3.64 1.49 
1.48 1.75 .63 1.53 1.95 .75- 1.7i ~ 
1.30 1.50 .43 1.38 1.74 .59 1.50 2.51 .89 
1.17 1.36 .31 ~ ~ ~ 1,29 2'I0 .67 
I.i0 ~ 1.24 .21 i.07 ~ .26 1.15 1,92 .55 

.93 1.072 .06 ~ 1.00 ~ 1.26 .20 i.I0 ~ 1.76 ,47 

.8o .~Y 

.79 .90 - . 09  

.79 .90 -.09 

.78 .88 -.i0 

.76 .87 -.ii 

.75 .86 -.12 
°72 .85 -.13 
°70 .84 -.14 
.70 ,82 -.15 
.67 .80 -.16 
.65 ,79 -,18 
.64 .77 -.19 
.62 .76 -.20 

.96 1.20 .16 .99 1.60 .37 

.88 I.i0 .08 .91 1.48 .29 
,84 1.05 ~ .04~ ,83 1,33 ,20 
.77 .98 -.01 
.71 .90 -.08 
.67 .87 -.i0 
.64 .81 -.15 
.60 ,78 -.17 
.57 .72 -.22 
.53 .69 - . 24  
,52 .67 -.26 
.50 .64 -.28 
.45 .61 -,30 

.76 1.23 o1~ 

.64 1.05 ~ .03 t 

.59 .96 - . 03  

.51 .83 - . 1 1  

.47 .79 -.13 

.41 °66 -.21 

.35 .58 -.25 

.31 .52 -.28 

.27 ,~7 - . 32  

.21 .39 - . 3 5  
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breaks in the series of roots give an accurate indication of the number of fac- 
tors in the major domain. 

For the wide range of b~ i and three factors in the major domain, Gutt- 
man's weaker lower bound indicates three factors for the formal and middle 
models but  indicates five factors for the simulation model, thus, indicating an 
over-estimate of the number of factors in the major domain. Again, Guttman's 
stronger lower bound yields over-estimations of the number of factors in the 
major domain for the middle and simulation models. The breaks in the series 
of roots are all accurate at three factors for all models. For the wide range of 
b[; and seven factors in the major domain, Guttman's weaker lower bound 
indicates six factors for all models, thus being an under-estimate, while Gutt- 
man's stronger lower bound yields over-estimates for the middle and simula- 
tion models of the number of factors in the major domain. Breaks in the 
series of roots has become a more ambiguous judgment than for the previous 
cases considered with two breaks seeming to occur for a number of the series. 
The breaks appear to be more obvious for the series for factoring the matrices 
C and RwSMC than for factoring the matrix RwU. It  appears that the breaks 
in the series for the formal model for factoring the matrices C and RwSMC 
give accurate indications of the number of factors while the breaks for all 
series for the middle model and simulation model yield under-estimates of 
the number of factors in the major domain. 

Results for the low range of b~ for the formal model, for both the three 
factor major domain and the seven factor major domain, appear to be quite 
similar to the results for the high range of b,~ in yielding accurate indications 
of the number of factors. For the middle model and the simulation model, 
results for the low range of b~ are even more ambiguous than for the wide 
range of b~.  Guttman's lower bounds all yield over-estimates of the number of 
factors in the major domain while the breaks in the series of roots are ambigu- 
ous except for the middle model and three factors in the major domain. These 
breaks yield under-estimates of the number of factors in the major domain 
with the previous exception of the middle model and three factors in the 
major domain. 

While the indications as to number of factors have been discussed 
in the preceding paragraphs in terms of the number of factors in the major 
domains, further evaluations of these indications may be made in terms of 
the relations of the output factor matrices to the input major domain factor 
matrices. I t  is distinctly possible that as many factors are needed as indicated 
by Guttman's stronger lower bound in order to obtain a good representation 
of the input major domain factors in the output factor matrices. In contrast, 
stopping factoring at fewer factors such as indicated by the breaks in the 
series of roots may yield an output factor space that projects satisfactorily 
onto a subspace of the input major domain factor space. These possibilities 
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will be considered in connection with the results of matching the output 
factors with the input major domain factors. 

The output factor matrices were matched with the input factor matrices 
by the method of maximum congruence described in the procedures section. 
Consider Table 8: it presents mean coefficients over three replications for 
the factoring of matrices RwSMC for seven factors in the major domain and 
the low range of b~ i separately for the three models. When only the first 
output factor was considered for the formal model and a transformation of 
the input factors was performed to an input dimension having maximum 
congruence with this single output factor, ~b2's of .99975, .99976, and .99949 
for the three replication matrices were obtained. The mean of these values is 
.99967 which is listed at the left of the first row for the formal model in Table 8. 
When the first two output factors were considered and transformations were 
performed on both the input and output factors to two pairs of maximum 
congruent dimensions, the mean ~2's given in the second row of Table 8 were 
obtained. Thus, each row of Table 8 corresponds to utilization of the specified 
number of output factors and lists, in descending order, the mean ~b2's over the 
three replications. There are as many ¢~'s in each row as the number of output 
factors considered or as the number of factors in the major factor domain, 
whichever of these numbers is less. These tables are designated as the complete 
tables of ~ .  

An interesting property of the complete tables of ¢3 is that every column 
must be non-decreasing; that is, each entry is equal to or larger than the entry 
above it. A second interesting and important property is that  the entries in 
the diagonal from upper left to lower right of each table must be non-increas- 
ing. As a consequence of these properties and the listing of the values in 
decreasing order in each row is that the least value in the table is that last 
diagonal entry. Thus, for the formal model in Table 8 the least entry is .94191 
as an average over the three replications. 

The ~b2's in Table 8 for the formal model all appear to be relatively high 
so that  it may be concluded that  the seven factor output space has a close 
agreement with the input major domain factor space. However, for the middle 
model the ¢~'s in the diagonal decrease from a first entry of .98736 to a seventh 
entry of .32860, indicating a reducing agreement between the output factor 
space and the most related subspace of the input factor space. A judgment 
might be made that  the first five factors extracted define a space ~4th a satis- 
factory projection on a five dimensional subspace of the input factor space 
since the fifth diagonal is moderately high at .79695. I t  is interesting to note 
that for the series of roots in Table 7 for low range of b~,. , middle model, 
factoring of RwSMC there appears to be a possible break in the rate of de- 
crease in the roots after four or five factors. If factor extraction had been 
stopped at four or five factors, the ~b2's in Table 8 indicate that  an output 
factor space would have been obtained that projected satisfactorily on a 
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Table 8 

Complete Tables of ¢2 

Low Range of b 2 lj ' Seven Factor Major Domain, Factoring of RwSMC 

N u m b e r  o f  
O u t p u t  F a c t o r s  

1 
2 
3 
4 
5 
6 
7 

Number of 
Output Factors 

1 
2 
3 
4 
5 
6 
7 
8 
9 

i0 

Number of 
Output Factors 

1 
2 
3 
4 
5 
6 
7 
8 
9 

l0 
ll 
12 

Mean Values o v e r  T h r e e  Replications 

Formal Model 

Congruent Dimensions 
1 2 3 4 5 6 7 

.99967 

.99968 .99780 

.99968 .99809 .99528 

.99969 .99832 .99619 .99391 

.99973 .99852 .99715 .99440 .98727 

.99973 °99868 .99720 .99543 .99049 .98490 

.99974 .99885 .99724 .99576 .99148 .98638 .94191 

Middle Model 

ConGruent Dimensions 
1 2 3 4 5 6 7 

.98736 

.98921 .92439 

.99142 .95198 .91000 

.99314 .95961 .93144 .80W23 

.99352 .96079 .93994 .87644 .79695 

.99458 .97383 .94799 .89447 .82199 .63173 
,99601 .98299 .96296 .92184 .88086 .64929 .32860 
.99639 .98839 .97146 .93646 .90223 ,66629 .57828 
,99751 .99185 ,97670 .94546 ,90759 .82508 .59609 
.99868 .99438 .98508 .96597 °92150 .87775 .65108 

Simulation Model 

Congruent Dimensions 
1 2 3 4 5 6 7 

.96433 

.96866 .77418 

.97758 .84726 .53537 

.98144 .85504 .77521 .50045 

.98214 .87716 .79824 .62499 .38629 

.98581 .89480 .83424 .63605 .47240 .17910 

.98781 ,93726 ,87311 .76535 .59087 .32348 .00371 

.98882 .96598 ,90309 .81912 .72421 .39597 ,23882 

.99423 .97369 .90960 .86394 .78525 .45098 .30524 

.99687 .98487 .95308 ,89656 .80774 °63465- , ~ l l O I  
,99880 .9890g ,97017 .93586 .85479 .71068 .48631 
,99953 .99103 .97608 .95027 ,92629 .74975+ .56318 

subspace of the major factor domain input factors. Factor extraction was 
continued for the middle model, low range of b~ to ten factors, the stronger 
lower bound as to number of factors. The least ~ for ten factors is .65108 
indicating only moderate relation between the last dimension of a subspace 
of seven dimensions with the input factor space. With extraction of ten 
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factors, there appears to be a six-dimensional subspace adequately related 
to a corresponding subspace of the input factors. 

The ¢2's in Table 8 for the simulation model are much lower than for the 
other two models with the least ~2 getting down to .00371. Even with extrac- 
tion of 12 factors the least ~2 increases to only .56318. Inspection of the 
diagonal indicates a possible solution after extraction of four factors such that 
the least ¢2 is .60046. An inspection of the corresponding series of roots in 
Table 7 for the low range of b~ i , seven factors in the major domain, simulation 
model, factoring of RwSMC indicates a moderate break in the rate of decrease 
of the roots after four factors. In case factor extraction had been stopped 
after extraction of four factors, a factor space would have been obtained which 
projected moderately onto a four-dimensional subspace of the input factor 
space. 

Table 9 presents the diagonal entries of the complete tables of ~b ~ for 
all cells in the experimental design. These entries are the means over the 
three replications for each cell. 

For three factors in the major domain the dominant feature of the ~ ' s  is 
that almost all are high (greater than .94). Lower values of ~2 occur only 
for the low range of b~i for the simulation model and when three factors are 
considered in the output. The preceding is true for factoring of all three mat- 
rices: RwU, C, and RwSMC. If factor extraction had been terminated after 
two factors, which is the first break in the series of roots for this case, quite 
high ~2's in the range of .87-.89 would have been obtained for the two-dimen- 
sional output space as related to the corresponding two-dimensional sub- 
space of the major domain input factor space. In case factoring had been 
continued to four dimensions, the second break in the root series, the least ~b ~ 
for the three-dimensional subspace of the output factor space would be .78989, 
.71527, and .75001 for factoring of the RwU, C, and RwSMC matrices, 
respectively. In case factoring had been continued to the Guttman weaker 
lower bound of six factors, the corresponding three values of ~2 would have 
risen to .90244, .89214, and .90050. For this possibility there is a three-dimen- 
sional subspace in each output factor space which has zero relation with the 
input major domain factor space. A question not considered in the present 
analysis is whether rotational procedures applied to the output factor matrix 
which did not utilize the input factor information would be successful in 
separating the three-dimensional subspace which is related to the input 
factors from the three-dimensional space that has zero relation with the input 
factors. Answers to this question could be the subject of further research. 

One surprise in the ~2 results is that the procedures designed to correct 
for communalities failed to materially increase the ~2's over those obtained 
for factoring the correlation matrices with unity in the diagonal cells. The 
possibility exists that other procedures involving communality estimation 
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Table 9 

Diagonals of ¢2 Tables 
Means over Three Replications 

High Range of b 2 
zj 

Three Factors in Major Domain 

¢ongr~en% Formal Model Middle Model Sim~latlon t~edel 
Dimensions RwU C RwSMC RwU C RwSMC RwU C EwSMC 

1 .99991 .99999 .99999 .99953 .99973 .99971 .99869 .99890 .99891 
2 .99949 .99997 .99998 °99861 .99889 .99893 .99696 .99498 .99573 
3 .9992~ .89996 .89998 ,99807 ,99850 ,99855 .98~18 .99398 .99419 

Seven Factors in Major Domain 

Congr~en~ Formal Model Middle Model 
Dimensions RwU C RwSMC RwU C RwSMC 

1 .99977 .99998 °99995 ,99935 .99957 °99950 
2 .99925 .99986 .99989 .99872 ,99927 ,99922 
3 .99878 ,99962 ,99960 .99657 ,99801 ,99785 

.99741 ,99889 .99900 ,99390 ,99702 .99590 
5 .99621 .99818 °99814 .99275 .99338 .99354 
6 .99501 .99750 ,99770 .99133 .98975 .98919 
7 ,98324 ,99812 ,99130 ,96457 .96686 .96729 

Con Eruent 
Dimensions 

1 
2 
3 

Congruent 
Dimensions 

1 
2 
3 

5 
6 
7 

Wide Range of b 2 lj 

Three Factors in ilaSor Domain 

Formal Model |4iddle Model 
RwU C ~;SMC RwU C RwSMC 

.99875 .99996 .99997 .99444 .99804 .99708 

.99631 .98985 .99983 ,99270 .99759 ,99676 
°98503 .99891 ,99943 ,97985 .99029 .98934 

Seven Factors in Major Domain 

Formal Model Middle Model 
R~U C RwSMC RwU C RwSMC 

.9993~ .99992 .99993 .99749 .99881 .99832 
°99751 ,99950 .99972 .99374 .99749 .99705 
°99496 .99927 °99954 ,98957 ,99532 .99502 
.98304 .99672 ,99714 .97350 .98827 .98813 
.96845 .99372 ,99446 ,94186 ,97899 .97403 
.89071 °99741 o99165 ,8337~ ,94237 .93863 
.57157 .92378 °933~3 .4~213 .6~028 .68532 

ConEz./ent 
Dimensions 

1 
2 
3 

Congz~en% 
Dimensions 

1 
2 
3 

5 
6 
7 

2 
Low Range of blj 

Three Factors in ~jor Domain 

For~sal Model Middle Model 
RwU C RwSMC RwU C RwSMC 

.99967 .99995 .99997 °99357 ,99313 .99340 

.99805 .89958 °99964 °97066 .97501 .97~10 

.99492 .99915 ,99927 ,95496 .95064 .95319 

Seven Factors in Major Domain 

Formal Model Middle Model 
RwU C RwSMC RwU C RwSMC 

,99909 .99961 ,99967 .98764 ,98723 .98736 
.99644 .99756 ,99780 ,91972 .92680 .92~39 
.99011 .99488 ,99628 .87012 .91588 .91000 
.98574 .99317 .99391 .79914 .80102 .80423 
.97768 .98570 .98727 .78200 .79440 .79695 
.95347 ,98344 ,98U90 .60285 .53696 .53173 
.87802 .93202 .94191 .34950 .32819 .B2860 

Simulation Model 
F~U C RwSMC 

.99823 .99847 .99852 

.99577 .99715 .99698 

.99119 °99344 .99254 

.98576 .98831 ,88655 

.98172 .97175 .97825 

.97456 .95991 ,96395 

.90142 .81991 .86875 

Simulation Model 
RwU C RwSMC 

.98615 .99268 .98872 

.98337 ,99097 .98729 

.94283 .95610 .95058 

Simulation Model 
RwU C RwSMC 

.99380 .99588 .99485 

.98327 .98952 .97097 
,97436 .98333 .98096 
.93508 .95188 .94713 
.8~867 .88043 .88194 
.71541 .81729 .78698 
.30130 .06588 .21999 

Simulation Model 
R~U C RwSMC 

.97911 .97071 .97605 

.88784 ,87633 .88667 

.74501 .66242 .69711 

Simulation Model 
RwU C RwSMC 

.96671 .96199 .96433 

.76982 .78170 .77418 

.64485 .63258 .63537 

.60574 .58847 .60046 

.40616 .37465 .38629 

.23784 .16157 .17910 

.01256 .00267 .O0371 
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would be more effective. This possibility should be investigated in subsequent 
research. 

Two important trends appear in the O2's in Table 9 for seven factors in 
the major domain. First, for each range of hi2; and matrix factored, there 
is a downward trend of the ¢2's from the formal model to the middle model 
to the simulation model. Second, for the middle model and for the simula- 
tion model, there is a downward trend in the ~b2's from the high to wide to 
low range of b~i . Corrections for communalities by factoring the matrices 
C and RwSMC as compared with factoring the matrix RwU leads to incresaes 
of corresponding low ~b~'s only for the wide range of b~t. The effect is greatest 
for the formal model, still strong for the middle model, and evident only for 
the fifth and sixth ~b ~ for the simulation model. The possibility of stopping 
factor extraction of the matrices for the low range of hi; has been discussed. 
A similar possibility appears for the results for the wide range of b~ , es- 
pecially for the simulation model for which the sixth ~2 appears to indicate a 
moderate correspondence with a six-dimensional subspace of the input 
factors, particularly for factoring of the C matrix or the RwSMC matrix. 
This possibility corresponds to a possible break in the rate of decrease of the 
corresponding series of roots in Table 7. Stopping factor extraction after four 
factors, the first break noted in the root series, would yield quite high ~ ' s .  
A possible similar effect occurs for the middle model for the wide range of b~. 

The second method for comparing the output factor spaces with the 
input major domain factors was to consider each input factor separately 
and determine a transformed output factor which had maximum congruence 
with the single input factor being considered. These coefficients of congruence 
are termed/~2 due to their similarity to squared multiple correlations of each 
input factor on the output factors as predictors. The only difference between 
the present R 2 and the squared multiple correlation is that  no corrections are 
made for mean Ioadings for the present R 2. In summarizing the R~'s as in 
Table 10, the entries for each number of factors extracted were ordered 
into a decreasing sequence separately for each factoring of the 54 correlation 
matrices. Mean R2's were obtained, then, over the three replications for each 
cell in the experimental design. Thus, the first entry in the first row for the 
formal model in Table 10 is the mean largest R 2 in the first row of the cor- 
responding three replications. The second entry in this row is the mean second 
largest R 2 in the first row of the corresponding replications. I t  is to be noted 
that the ordering of the R2's could involve a different ordering of the input 
factors from one number of factors extracted to another number of factors 
extracted for the same replication and from one replication to another. Table 
10 presents the complete tables of ordered R2's for the low range of b~,  seven 
factor major domain, and factoring of the RwSMC matrices. The three sec- 
tions are for the three models. 

Note that the entries in every column of each section of Table 10 form 
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an increasing sequence. It can be shown that these sequences must be at least 
non-decreasing, allowing for ties. 

Diagonal entries in each section of Table 10 have been underUned since 
they have special meaning in the present context. In case factor extraction is 

Table 10 

Complete Tables of Ordered R 2 
2 

Low Range of blj , Seven Factor Major Domain, Factoring of RwSMC 

Mean Values over Three Replications* 

Formal Model 

Num~ber of Input Factors O~dered by R 2 
Ot~tput Factors 1 2 3 4 5 6 7 

1 .66461 .47125 .40511 .34844 .29269 .23650 .15874 
2 ~ ,6931.,,~_? ,58637 °56540 °48231 ,35336 ,27251 
3 ,91421 ,84462 ,75559 ,69993 ,60402 ,49233 ,33773 
4 ,96572 ,93759 ~ ,82662 ,70697 ,62380 ,41999 
5 ,98395 ,96906 .95599 ~ ,88392 °75305 ,61093 
6 ,99474 ,98960 ,98058 ,96913 ~ .94054 ,78786 
7 .99766 ,99685 .99657 ,99540 ,99437 ,99285 ,98252 

Middle Model 

Number of Input Factors Ordered by R 2 
Output Factors 1 2 3 4 5 6 7 

1 .63526 .42985 ,41501 .35388 .27722 .23010 .18999 
2 .81827 .6204~ .57636 .46776 .41794 ,31227 .27625 
3 .91894 .78772 ,69943 .63525 .54299 .49126 .38613 
4 .93723 ,88072 ,78276 ,75336 ,66536 ,62258 ,43605 
5 ,94171 ,916?2 ,88327 ,86576 ,77297 ,74079 ,57768 
6 ,94931 .93718 ,91302 ,89221 ,87143 ,82233 ,68564 
? .96703 ,95853 ,92854 ,91162 ,89799 ~ ,76479 
8 ,97366 ,96320 ,96171 ,92911 ,92012 ,90149 ,--E07"33 
9 ,98112 .97492 ,95880 ,95033 ,93757 ,92925 ,84383 

lO ,98930 .97969 ,97483 ,96678 ,95?05 ,94204 ,85576 

Simulation Model 

Number of Input Factors Ordered by R 2 
Output Factors 1 2 3 4 5 6 7 

1 .59819 .42074 ,38331 .34174 ,26542 .23252 .20082 
2 .76910 .61481 ,47345 .40572 ,35764 .29656 .28521 
3 .84202 .69081 .60700 .55202 °45855 ,43124 ~34484 
4 .84798 .77712 .'~ .68324 .60030 .55069 ,41067 
5 .85032 .80156 .73481 .7268~ .65810 .50903 .43865 
6 .89422 .80503 .74051 .73331 ~ .65030 .53322 
7 .92202 .89833 .79341 .75798 .74109 ~ .59316 
8 .93016 .91828 .88111 .83575 .80068 .76480 .64803 
9 .94240 .92697 .89751 .86121 .83266 .79009 ,67988 
IO .96647 .94193 .93486 ,91343 ,88003 ,82007 .73703 
Ii .97430 .95553 .94513 .93583 ,91390 .$8620 .77093 
12 .97453 °96207 .955~8 .95023 .93703 .91467 .77180 

* Fom each battery analysed (replication), the input factors were arranged in 
decreasing order of R 2 , separately for each number of output factors. The 
mean values of R 2 were computed followlna this ordering. 
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terminated after some particular number of factors less than the number of in- 
put factors, then the R2's in that row of the table from the left to, and includ- 
ing the diagonal R ~ are indicative of degree of correspondence between ro- 
tated output factors and the same number of unrotated input factors. For 
example, if factor extraction had been terminated for the formal model for the 
case considered in Table 10 after five factors, the first five entries in row 5 of 
this section of Table 10 give the mean R2's with five input factors ordered by 
decreasing value of R 2. Since all five of these entries are high, there exists a 
rotation in the five factor output space which represents quite well the five 
input factors. A consequence of this fact for the fifth row for the formal 
model is that valid psychological conclusions probably could be made con- 
cerning five of the input factors even though not all dimensions of the input 
space were represented. The diagonal entries give the lowest value for a group 
of R2's equal in number to the number of factors extracted when this group 
is selected as those having the highest R~'s possible from among the R2's 
for all input factors. Thus, the diagonal entries are usable indices for minimum 
relation between rotated output factors and selected input factors to which 
the rotated factors are maximally related. Table 11 presents the diagonal 
entries for the ordered R 2 tables for all cells in the experimental design. The 
entries are the mean values over the three replications for each cell. 

While the diagonal entries in the ordered R 2 tables do not necessarily 
form an increasing or decreasing sequence, there is a very strong tendency for 
them to form an increasing sequence with increasing number of factors. Major 
exceptions occur for the simulation model for seven factors in the major do- 
main for both the wide range and low range of b~.  In these cases the series of 
diagonal entries start increasing, seem to reach a maximum, and then de- 
crease. This effect appears to a lesser degree for the middle model, seven 
factors in the major domain, and wide and low ranges of b~ i . A most interest- 
ing observation is that these maxima in the series of ordered R* diagonals 
occur in the neighborhood of the number of factors for the last noted break 
in the series of roots in Table 7. A consequent possibility is that stopping factor 
extraction at the last observed break in the series of roots could lead to a 
rotation of the factors obtained so that the rotated factors correspond mod- 
erately to very well with an equal sized subset of the input factors in the major 
domain. I t  appears that extraction of one more or one fewer factors could still 
lead to rotated factors in the major domain. This statement must be limited 
to extraction of no more factors than exist in the major factor domain. At 
further note is that  the subset of matching input factors may differ from the 
analysis of one battery to the analysis of another battery. 

Resulting ordered R2's in Table 10 for the middle model and simu/ation 
model, seven factors in the major domain, low range of b~;, factoring of the 
matrix RwSMC, have been listed for extraction of more factors than existed 
in the major factor domain. The number of extracted factors was carried to 
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Table Ii 

Diagonals of Ordered R 2 Tables 

Mean Values over Three Replications 

Factors 

1 
2 
3 

Factors 

1 
2 
3 

5 
6 
7 

High RanEe of b 2 

Three Factors in Major Domain 

Foz~nal Model Middle Model 
RwU C RwSMC RwU C ~wSMC 

.72341 .70751 .72304 .72114 .70767 .72117 

.83188 .82958 .83017 .81534 .82810 .81861 

.99958 .99997 .99998 .99906 .99923 .99921 

Seven Factors in Major Domain 

Formal Model 
RwU C RwSMC 

.52037 .56594 .52010 

.72723 .73904 .72577 

.74905 .74268 .75052 

.80734 .79305 .81038 

.86187 .85695 .86320 

.92527 .93394 .93052 

.99338 ,99702 .99682 

Middle Model 
RwU C I<wSMC 

.52879 .55935 .52579 

.73319 .72753 .73195 

.76781 .75762 .75767 

.80720 .79067 .81107 

.86561 .84573 .85664 

.93229 .93854 .93572 

.98615 .98602 .95263 

Simulation Model 
RwU C RwSMC 

.70873 .710!7 .71912 

.81450 .83088 .81645 

.99707 .99668 .99696 

Simulation Model 
RwU C RwSMC 

.53466 ,55703 .53475 

.73905 .6822~ .73629 

.78354 .78862 .78247 

.80846 .82532 .80950 
,86628 .84059 .84742 
,93447 .93623 ,93482 
,95263 .93361 .9460~ 

Factoms 

1 
2 
3 

Wide Range oE b 2 

Three Factors in Ma~or Domain 

Formal Model Middle Model 
RwU C RwSMC RwU C RwSMC 

.55920 .67804 .55213 .55626 .65976 .55501 

.76957 .78725 .77310 .76041 .79906 .77187 

.99298 .99947 .99969 .98527 .99236 .99156 

Seven Factors in Major Domain 

.64310 .66871 .63847 .64839 .65372 .64589 

.83534 .77400 .82534 .83739 .79142 .83086 

.81674 .78526 .81140 .82899 .81118 .83265 

.92907 .8~328 .84017 .82444 .84753 .83303 

.8685~ .88586 .89271 .88685 .88667 .89612 

.93894 .93965 .94817 .91~31 .94523 .9~829 

.82849 .96279 .96451 .75516 .84513 .81723 

Simulation Model 
RwU C RwSMC 

.54912 .69613 .51835 

.74956 .82933 .75260 

.95843 .95698 .96364 

.65006 .63492 .64977 

.83371 .80259 .83080 

.82162 .83183 .83475 

.80926 .82174 .82313 

.87742 .88095 .88642 

.89150 .91708 .91128 

.69404 .62913 .67419 

Factors 

1 
2 
3 

Low Range of b 2 

Three Factors in Major Domain 

Formal Model Middle Model 
RwU C RwSMC RwU C RwSMC 

.71084 .72C21 .71476 .70225 .67728 .70371 

.86055 .85835 .85918 .86286 .85723 .86268 

.99789 .99963 .99968 .97798 .97699 .97819 

Seven Factors in Ma~or Domain 

Formal Model 
Factors RwU C RwSMC 

1 .66408 .66437 .66461 
2 .69555 .68949 .69317 
3 .73640 .76539 .75559 

.82089 ,82746 .82662 
5 °87971 .88546 .88392 
6 .92812 .93996 .94054 
7 .95935 .97912 .98252 

Middle Model 
RwU C RwSMC 

.63183 .63654 .63526 

.63891 .61738 .62044 

.71843 .69496 .69943 

.75603 .75510 .75336 

.74485 .78570 .77297 

.82183 .81805 .82233 

.78029 .76438 .76479 

Simulation Model 
RwU C RwSMC 

.68969 .65~64 .68880 

.83239 .80864 .82714 

.88145 .83890 .85827 

Simulation Model 
RwU C RwSMC 

.59533 .59456 .59819 

.80814 .61957 .61489 

.5~844 .60611 .60700 

.70255 .67438 .68324 

.66627 .66198 .66810 

.66644 .63253 .65030 

.61630 .58782 .59316 
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Guttman's stronger lower bound. With the addition of more factors extracted, 
the R2's increased to moderately high or very high values. This indicates 
that reasonably good matches could be obtained with the individual input 
major domain factors when a sufficient number of factors are extracted. The 
rotations made here, however, utilized knowledge of the input major domain 
factors and there remains a considerable question whether rotational proce- 
dures not using this information could determine the seven-dimensional sub- 
spaces which are congruent with the major domain input factors. This prob- 
lem is generated by the existence in the output factor space of a subspace not 
related to the mQor domain input factor space. 

A further interesting comparison is that of the diagonals of the ~2 tables 
in Table 9 with the diagonals of the ordered R ~ tables in Table 11. As pre- 
viously noted, the series of diagonals of ¢2 must be non-increasing and are 
usually decreasing. However, as previously noted, the series of diagonals of the 
ordered R 2 tables tend to be increasing with the exceptions previously noted 
when there appears to be a maximum followed by a decreasing effect. The ¢~ 
start out greater than the R 2. However, these two coefficients approach equal- 
ity at the number of factors for the maximum R 2. This number of factors, as 
previously noted, is in the neighborhood of the last observed break in the 
corresponding series of roots. For the more critical cells in the experiment, 
seven factors in the maj or domain, middle and simulation model, wide and low 
ranges of b~;, the ¢2 appear to drop off more rapidly after the number of factors 
for maximum diagonal R ~ than do the R 2. An implication of a much lower ~ is 
that the rotated factors for congruence with the individual input factors would 
be quite oblique. For an example, the seventh ~2 is .00000 for the second 
battery, simulation model, seven factors in the major factor domain, low range 
of b~ , and factoring of the RwSMC matrix. The seventh ordered diagonal 
for this battery is .67611. However, from a special analysis for this battery, 
it turns out that the transformation to dimensions matching the individual 
major domain input factors is so oblique as to be singular. In other cases when 
the ¢2 is not exactly zero but is very small, the rotated factors matching the 
individual input major domain factors are very correlated, approaching unity. 
When fewer factors are extracted and the rotation made to a subset of input 
factors for which the R 2 are moderately high and the ~2 is larger than in the 
preceding case, the correlations between the factors are lower. (More extensive 
studies of the correlations between factors have been deferred to inclusion 
with studies on rotation of axes.) 

5. Discussion 

In evaluating the results obtained from the analyses performed, the major 
criterion will be that of degree of reproduction of the major domain factors 
from the obtained factor matrices. Procedures for development of correlation 
matrices were devised to simulate various aspects and properties in the plan- 
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ning and execution of factor analytic experiments. Included in the planning 
and execution of factor analytic experiments was the design of the battery of 
variables and the care in construction of the measuring instruments and in 
the collection of data. Possible influences on the data were divided into three 
categories: 1) a maior factor domain representing the area of phenomena of 
interest to the experimenter, 2) a minor factor domain representing other 
influences outside the area of interest, and 3) specific and measurement error 
influences on the results for each variable. 0nly for the formal model which 
includes only the first and third of the preceding influences, does the major 
domain factor matrix coincide with a common factor matrix. For the middle 
model and simulation model, minor factor domain influences are added which 
are common factors. Therefore, the major question of inquiry in the present 
investigation is not the ability to reproduce the common factors by various 
techniques but is the extent to which results of the analyses may be informa- 
tive as to properties within the major factor domain. 

The present investigation has not included the sampling of individuals 
problems. All correlation matrices have presumed population parameters for 
the battery of variables. The problems attacked are of a psychometric nature: 
that  of design of measures, selection of measures, and collection of data. 

Observations were made in the preceding section on a number of technical 
points related to procedures of analysis. These will be reviewed briefly. 

The SMC's (squared multiple correlations of the variables with all other 
variables in the batteries) were less than and strongly related to the b~'s 
only for the formal model. The ~ ' b~i s are parameters in the simulation pro- 
cedure and are the proportion of the variances on the variables due to the 
major domain factors. The SMC's tended to increase from the formal model 
to the middle model to the simulation model accompanied by a reduction in 
the strength relation of the SMC's to the b~ t . 

Guttman's [1954] lower bounds for the number of common factors became 
less effective indicators of the number of factors in the major domain from the 
formal model to the middle model to the simulation model. The weaker lower 
bound of number of roots equal to or greater than unity for principal axes 
factors of the correlation matrices with unity in the diagonal cells proved to 
be superior to the stronger lower bound which consistently would lead to an 
over-estimation of the number of factors in the major domain for the middle 
and simulation models. Perceived breaks in the series of roots from principal 
axes factoring appeared to be superior in most cases in yielding estimates of 
the number of factors in the major domain. 

Two methods for matching the output factors with the input major 
domain factors were employed: 1) maximizing congruence when both input 
and output factors were transformed, 2) maximizing congruence of trans- 
formed output factors with each untransformed input factor. Excellent 
matches were obtained for the formal model when as many factors were 
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extracted as were contained in the major factor domain except for the cases for 
the wide range of b~ when the correlation matrix with unity in the diagonals 
was factored. In every case, and especially for the cases for the wide range 
of b~ , substitution of the squared multiple correlations into the diagonal 
cells of the correlation matrices improved the matching of the output factors 
with the input factors for the formal model. However, the substitution of the 
squared multiple correlations into the diagonal cells of the correlation matrices 
for the middle model and simulation model did not lead invariably to im- 
proved matches between output factors and input factors. When as many 
factors were extracted as the number of major domain input factors for the 
middle model and the simulation model some very poor matches were ob- 
tained between the output factors and the input factors. This was especially 
true for the low range of b~i and for seven factors in the major domain. 

When factor extraction was terminated at the last perceived break in the 
series of roots, excellent to moderately acceptable matches were found between 
the output factors and the input factors. This was true even when fewer factors 
were extracted than the number of factors in tim major domain in which case 
the match was between the output factor space and a subspace of the input 
factor space. A further observation was made that  in this latter case when 
fewer factors were extracted, moderately adequate matches were possible with 
each factor in a subset of the input factors equal in number to the number of 
extracted factors. In these cases when factor extraction was terminated at the 
breaks in the series of roots, there was some improvement in results when the 
squared multiple correlations were substituted for the unities in the diagonal 
ceils of the correlation matrices. 

Factor extraction was continued to the Guttman stronger lower bound for 
the middle model and the simulation model for seven factors in the major 
domain, low range of b~, and factoring of the matrices RwSMC. These were 
the cases for which the matches were poorest of the output factors with the 
input major domain factors when the number of factors extracted equalled 
the number of factors in the major domain. Improved matches were found for 
a subspace of the output factors when the larger number of factors were 
extracted. However, there may be considerable problem when the rotation of 
axes is not guided by knowledge of the input factors. Information imbedded in 
the output factor space may be inadequate for any rotational procedure us- 
ing only this imbedded information to separate the subspaee related to the 
major domain input factors from the subspace not so related. This is a prob- 
lem for further investigation. 

A point not brought out in the observations of the results is the possible 
relation between the strengths of the major domain factors and the number of 
usable extracted factors. As noted in the section on Procedure for Simulation of 
Correlation Matrices in connection with Tables 2, 4, and 5, the major factor 
input dimensions varied extensively in strength of representation as measured 
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by the sums of squares of loadings on the factors. This variation was most 
pronounced for the batteries for seven factors in the major domain and the 
low range of b~ t which corresponds with the batteries for which output results 
indicated fewer factors to be extracted according to the criterion of last per- 
ceived break in the series of roots and to the number of factors for which 
moderate matching was obtained of the output factors to dimensions of the 
major factor domain. 

Major points in these discussions relate to the quality of factor analysis 
output to the major factors in the experimental design of 1) range of b~,., 2) 
size of major factor domain, and 3) class of relation between b]; and b~i . 
The first fact is related to the ability of the experimenter to construct 
and use variables with high dependence on the major domain; the second of 
these experimental design factors is related to the ratio of the number of 
variables in the battery employed to the dimensionality of the major domain; 
the third of these experimental design factors is related to the control by the 
experimenter in reducing the relative effects of minor factors as compared to 
the measurements error effects. This last experimental design factor has been 
expressed in terms of the three models employed: formal, middle, and simula- 
tion models. These three factors resulted in a 3 X 2 X 3 experimental design. 
Ratings of the quality of factor analysis for each of the 18 cells of this design 
are given in Table 12. These ratings are subjective evaluations on a scale 
analogous to a grade scale from A, high to E, failure. 

From Table 12 it appears that all three experimental design factors 

Table 12 

Ratings ~ of Results from Facto~in~ of RwSMC 

2 Model Classified by Size of Major Domain, Range of blj, 

Rauge 

of b 2 

High 

Wide 

Low 

Formal 

A+ 

A+ 

A* 

Three Factors 

Model Range 

Middle Simulation of b 2 lj 

A A High 

A A- .Wide 

A- B Low 

Seven Factors 

Model 

Formal Middle Simulation 

A+ A- B+ 

A ~ C- 

C D 

Ratings are subjectively given on grading scale 

A - Excellent, B - Good, C - Marginal, D - Poo~, E - Failing 
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are influencing the quality of the results. Poorer  results are associated with 
seven factors in the major  domain (higher ratio of number  of variables to 
number  of dimensions of the major  domain), with the low range of b~ , and 
with the simulation model. While none of the results were rated as failing (E), 
the lowest rating given of D was for the cell for seven factors in the major  
domain, low range of b~i , and simulation model. Rat ings  of C, marginal, were 
given in two cells, both  for seven factors in the major  domain, one for the 
low range of by; and middle model and the other for the wide range of b~ i and 
the simulation model. 

A major  conclusion of the investigation is tha t  the quality of factor  
analytic results depends great ly upon the quali ty of the design and conduct 
of the factor analytic experiment.  While, for the formal model especially, 
communal i ty  corrections may  be effective in compensat ing for larger errors 
of measurement,  utilization of da ta  with large influences of minor factors 
will lower the quali ty of the output  of the factor  analysis. Further,  i t  appears  
tha t  the ratio of number  of variables to dimensionality of the major  domain 
should be high. A general conclusion would be of the form tha t  the major  
domain should be highly represented in the data.  This is very important .  The  
results very definitely demonstra te  tha t  poorly designed and conducted 
research cannot be salvaged by  efforts expended in da ta  analysis. 
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