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Abstract

Introduction: Identifying predictors of patient outcomes evaluated over time may require
modeling interactions among variables while addressing within-subject correlation.
Generalized linear mixed models (GLMMs) and generalized estimating equations (GEEs)
address within-subject correlation, but identifying interactions can be difficult if not hypoth-
esized a priori. We evaluate the performance of several variable selection approaches for
clustered binary outcomes to provide guidance for choosing between the methods. Methods:
We conducted simulations comparing stepwise selection, penalized GLMM, boosted
GLMM, and boosted GEE for variable selection considering main effects and two-way inter-
actions in data with repeatedly measured binary outcomes and evaluate a two-stage approach to
reduce bias and error in parameter estimates.We compared these approaches in real data appli-
cations: hypothermia during surgery and treatment response in lupus nephritis. Results:
Penalized and boosted approaches recovered correct predictors and interactions more
frequently than stepwise selection. Penalized GLMM recovered correct predictors more often
than boosting, but included many spurious predictors. Boosted GLMM yielded parsimonious
models and identified correct predictors well at large sample and effect sizes, but required
excessive computation time. Boosted GEE was computationally efficient and selected relatively
parsimonious models, offering a compromise between computation and parsimony. The two-
stage approach reduced the bias and error in regression parameters in all approaches.
Conclusion: Penalized and boosted approaches are effective for variable selection in data with
clustered binary outcomes. The two-stage approach reduces bias and error and should be
applied regardless of method. We provide guidance for choosing the most appropriate method
in real applications.

Introduction

It has been hypothesized that many common diseases result from interactions among genetic,
clinical, and environmental factors [1–4]. Identifying predictors of patients’ disease status may
necessitate modeling interactions among predictors [5, 6]. Clinical studies also often evaluate
patient outcomes over time requiring methods that can account for within-subject correlation.
Generalized linear mixed model (GLMM) and generalized estimating equations (GEEs) address
the correlation between repeated measures collected on a patient within a linear model frame-
work [7]. GLMMs incorporate a subject-specific random effect to account for correlation
between outcome measures on the same patients, while GEEs account for this correlation in
the residual variance matrix. The random subject effect in the GLMM allows for subject-specific
inference, and fixed effects are interpreted conditional on the subject-specific effect, while GEEs
yield a marginal model focused on the average population response given the covariates.
Although both GLMMs and GEEs can model interactions, interactions should be specified a
priori and sufficient sample size must be available to include interactions and main effects
[8]. In exploratory studies, interactions are not generally hypothesized a priori, and failure
to examine interactions may result in failure to identify predictors associated with the outcome.
In such cases, application of variable selection techniques can be employed to identify main
effects and interactions most strongly associated with the outcome.

Methods for selecting variables in regression models fall into two categories: traditional step-
wise variable selection methods and sparse model solutions. Traditional variable selection
approaches include forward, backward, and stepwise algorithms that select variables for inclu-
sion in a model based on statistical significance or measures of model fit. However, such
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approaches yield unstable parameter estimates, particularly in data
with correlated predictors or outcomes [9, 10].

Sparse model solutions simultaneously evaluate all potential
covariates and shrink regression coefficient estimates toward zero.
Penalized regression techniques penalize coefficients the further
their estimated value is from zero by including a penalty term in
the likelihood. Lasso regression, a popular penalized regression
approach, includes the sum of the absolute values of the regression
coefficients in the likelihood (referred to as the L1 penalty) which
shrinks many coefficients to zero providing a means of variable
selection [11]. Schelldorfer et al. [12] extended lasso to the
GLMM setting, a method referred to as glmmLasso. Boosting,
originally proposed to improve classification procedures by com-
bining estimates based on iteratively reweighted residuals [13, 14],
can also be used for variable selection by applying a component-
wise approach [15]. Tutz and Groll [16] extend this component-
wise boosting approach to the GLMM setting, a method referred
to as GMMBoost. The GEE approach offers an alternative formod-
eling correlated binary outcomes without focusing on the within-
subject covariance structure by estimating the population-average
responses using amarginal approach. Similar to GMMBoost,Wolfson
[17] developed a boosted estimating equation approach, EEBoost,
for variable selection based on minimizing the L1-constrained pro-
jected likelihood ratio. Brown et al. [18] further extend EEBoost to
the GEE setting. The glmmLasso, GMMBoost, and GEEBoost
methods provide a means of variable selection in data with large
number of predictors and repeated measures in order to achieve
a sparse model. Of note, all three methods yield biased estimates
of the regression parameters [15, 19, 20]. In order to address bias
in parameter estimates, one could use a two-stage approach in
which predictors are selected in the first stage using a sparse mod-
eling approach followed by refitting a GLMM (or GEE) using the
predictors selected in the first stage. However, such an approach
has not been evaluated using sparse model solutions in data with
repeatedly measured binary outcomes.

The goals of this paper are to provide an overview of variable
selection methods for data with repeatedly measured binary out-
comes and to evaluate the performance of each approach for recov-
ery of interactions and main effects associated an outcomes to
provide guidance for choosing from among these methods in appli-
cation. We present a simulation evaluating the relative performance
of stepwise selection, glmmLasso, GMMBoost, and GEEBoost for
correct identification of nonzero regression parameters, model par-
simony, and bias in the regression parameters. Additionally, we
examine the ability of a two-stage approach to reduce bias in regres-
sion estimates from the three penalized and boosting methods. We
apply eachmethod to two clinical data sets and explore differences in
the models returned by each method. The first data set examines a
set of protein biomarkers for predicting treatment response in lupus
nephritis. The second explores clinical and patient characteristics
associated with risk of hypothermia over time in hip or knee arthro-
plasty patients. We conclude by summarizing advantages and dis-
advantages of each variable selection method and provide
recommendations about the most appropriate choice of methods
for variable selection in practice.

Variable Selection Algorithms for Repeatedly Measured
Binary Outcomes

There are several methods proposed in the literature for identifying
the best subset of predictors in a GLMM or GEE setting for a
repeatedly measured binary response. In this section, we describe

these methods in greater detail and discuss the advantages and dis-
advantages of each method.

Forward Variable Selection Algorithm

Stepwise algorithms iteratively evaluate predictors for inclusion in
a regression model using forward, backward, or stepwise elimina-
tion. At each iteration, a variable is added or removed from amodel
based on a model performance metric such as an F-statistic, AIC,
or BIC. The selection process ends when addition or removal of a
variable no longer improves model fit. In traditional GLMMs,
interactions are not typically included unless main effects are
already in the model; thus, consideration must be given as to when
interactions are considered in a model using a stepwise approach.
Neerchael et al. [21] propose a stepwise selection algorithm in the
GLMM setting and selects variables based on F-statistic and asso-
ciated p-values. Their proposed algorithm also examines predictor
interactions for inclusion or removal from the model once main
effects are entered in the model. While traditional stepwise
selection is commonly used in practice, there are issues with this
approach [8, 22–27]. Specifically, variable subset selection is unsta-
ble in that small changes in the data can result in very different
predictor subsets being selected [22, 26, 27], particularly when
the number of candidate predictors is large.

Penalized Regression for GLMM

Penalized techniques introduce a penalty term in the likelihood
that penalizes regression coefficients the further they are from zero.
Penalized regression methods estimate regression parameters by
maximizing the penalized log-likelihood:

Mð�Þ ¼ lð� j xÞ � lPð�Þ (1)

whereM �ð Þ is a general objective function, l � xj .ð Þ is the log-likelihood,
P �ð Þ is a penalty parameter, and l is a regularization parameter
determining how much weight the penalty term carries. Common
choices of P �ð Þ in (Eq. (1)) include the L1 penalty,
P �ð Þ ¼ Pp

j¼1 βj
�� ��,j ¼ 1,2, . . . ,p, referred to as lasso regression, and

the L2 penalty, P �ð Þ ¼ Pp
j¼1 β

2
j ,j ¼ 1,2, . . . ,p, referred to as ridge

regression. Unlike the L2 penalty, applying the L1 penalty yields a
solution in which some of regression coefficients shrink to zero
resulting in simultaneous model fitting and variable selection.

Schelldorfer et al. [12] extend lasso regression to the GLMM
setting. The glmmLasso approach uses the log-likelihood function
for a GLMM for l � xj .ð Þ and introduces a L1 regularization param-
eter λ for the fix-effects vector β in the likelihood function. Thus,
M �ð Þ becomes L1-penalized minimizing function of the log like-
lihood and the glmmLasso estimator is then identified by minimiz-

ing
^
� ¼ argmin�Mð�Þ. Prior to fitting a model, the regularization

parameter λ is selected by evaluating a range of possible λ’s and
choosing the value that yields the minimum AIC or BIC.

Boosting for Variable Selection in the GLMM and GEE Settings

Boosting was originally proposed to improve prediction perfor-
mance of weak classifiers [13], and general boosting algorithms
generate a set of models by iteratively fitting models based on a
selected performance metric of the model from the previous iter-
ation. Component-wise boosting iteratively estimates regression
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parameters in a linear model by maximizing the score equation
based on parameter estimates from the prior iteration and then
updating only the jth regression parameter that yields the maxi-
mum score equation [28, 29]. This approach can be used for model
selection by choosing the optimal model from among models gen-
erated at each iteration based on a measure of model fit. Tutz and
Groll [16] propose use of a component-wise boosting algorithm,
GMMBoost, for variable selection in the GLMM setting.
GMMBoost estimates the Fisher matrix and the penalized score
functions for the p predictors at the lth iteration based on the inter-
cept, the jth regression coefficient ( j= 1, 2, : : : , p), and random
effects from the (l-1)th iteration. The predictor, j, that yields the
smallest AIC or BIC is updated by adding the resulting product
of the jth Fisher matrix and jth score equation to the estimates
for the intercept, jth regression parameter and random effects from
the (l-1)th iteration. All other parameter estimates are set to the val-
ues from the (l-1)th iteration.

The estimating equation approach has also been recently
incorporated within a boosting framework for variable selection,
a method referred to as EEBoost [17] and has been further
extended to repeatedly measured binary outcomes [18]. Unlike
the GLMM setting, there is not a closed form solution for the
score equation in an estimating equation setting. Therefore,
EEBoost and GEEBoost replace the score equation at each itera-
tion with a set of estimating equations. Wolfson [17] showed that
the proposed EEBoost algorithm, and by extension the GEEBoost
algorithm, closely approximates the path generated from mini-
mizing the L1-constrained projected artificial log-likelihood ratio
but without necessitating a constrained optimization algorithm.
The optimization for both EEBoost and GEEBoost is based on
functional gradient descent optimization. GEEBoost can be used
for variable selection by choosing the model from the entire path
of solutions that yields the smallest QIC, although alternative cri-
terion could also be used.

Two-Stage Approach for Bias Correction of Parameter
Estimates

Penalized and boosted regression models are known to yield
biased regression parameter estimates [15, 19, 20]. We propose
a two-stage approach to correct the bias in the parameter esti-
mates from each method. Similar two-stage approaches using
lasso for finding interactions have been described though the
focus of is on model stability, whereas our goal is bias reduction
[30]. In the first stage, a glmmLasso, GMMBoost, or GEEBoost
model is fit to the data including all main effects and interactions.
In the second stage, a traditional GLMM is fit using all coeffi-
cients with nonzero values in the first stage. Heredity conditions
are generally used in linear models to maintain hierarchy between
main effects and interactions; GlmmLasso, GMMBoost, and
GEEBoost do not impose hierarchical restrictions. Under strong
hierarchy, all main effects corresponding to interaction terms are
included in the model [31–34]. However, there are cases where
predictors are associated with an outcome through their interac-
tion, for example, certain genetic epistasis models [35]. Thus, we
considered two approaches for the two-stage GLMM: (1) impose
the heredity constraint fitting a GLMM with nonzero terms from
the penalized model plus all main effects that are zero in the
penalized model but are in ≥1 nonzero interaction and (2) ignore
the heredity constraint fitting a GLMM with only nonzero terms
ignoring main effects if they are zero.

Methods: Simulation Study

A simulation study was conducted to evaluate the ability of each
method to (1) correctly recover predictors and interactions asso-
ciated with a repeatedly measured binary outcome, and to evaluate
)2 ) reduction in bias in regression parameter estimates using the
two-stage approach, (3) model parsimony and (4) computational
efficiency (average time to develop models). Simulation parame-
ters including variable distributions, covariate effect size, number
of observations per subject, sample size, the model used to generate
the response, and the model fit using each method are defined in
Table 1. Data included 14 predictors, X1-X14, yielding 91 possible
two-way interactions, a random subject effect, and a repeatedly
measured binary response. Correlation for time-varying covari-
ates, Σ, was compound symmetric with ρ= 0.25. Potential predic-
tors and interactions generated in the data included a mix of
categorical and continuous variables as well as fixed-time and
time-varying covariates to mimic what might be observed in a
clinical data set. Binary response variable Y was generated from
a Bernoulli distribution where the probability depended on varia-
ble X5, the interaction X1X2, and the interaction X2X5. Dependence
of Y on the time-varying covariates X1 and X2 created a correlated
response within subject. Effect sizes for nonzero parameters in the
true model were selected to represent weak, moderate, and strong
effects and yield odds ratios of 1.2, 2.0, and 4.5 for a one unit
increase in X5, the interaction X1X2, and the interaction X2X5.

Five-hundred data sets were generated for each combination of
sample and effect size for data with two observations per subject.
Similarly, 500 data sets with 10 observations per subject were
generated for each sample size for and effect size of 0.2. Forward
stepwise GLMM, glmmLasso, GMMBoost, and GEEBoost models
were fit to each simulated data set in R v 3.2.5 (Team RDC) using
the lme4, glmmLasso, GMMBoost, and threeboost [36–39].
GlmmLasso, GMMBoost, and GEEboost models considered all
main effects and interactions in the first stage. The forward stepwise
approach [21] considered interactions for inclusion or removal from
the model once main effects were entered in the model. Default
settings were used to fit GMMBoost and GEEBoost models.
GMMBoost and GEEBoost yield a series of models presenting the
“path” by which variables enter the model, and the best model
was selected based on AIC for GMMBoost and QIC for
GEEBoost. GlmmLasso requires tuning of the shrinkage parameter
λ and initial estimates of the fixed and random effects prior tomodel
fitting. Shrinkage parameter and initial estimates were selected by
choosing the λ that yielded the smallest AIC. Performance of each
method was evaluated based on (1) the proportion of times the
method correctly identified the parameters in the true underlying
model and the false discovery rate (FDR) of null predictors defined
as the number of null predictors selected divided by the total number

of predictors selected in the model, (2) the bias = β̂ � β
� �

for the

three predictors in the true model and the average bias for null pre-
dictors before and after using the two-stage approach, (3)model par-
simony defined by the number of nonzero parameters in the final
model, and (4) average computation time for model fitting. If one
or more of the predictors and/or predictor interactions in the true
model used to generate response Y where identified, the two-stage
approach was applied to evaluate how well this approach reduced
the bias in the parameter estimates. All simulations were conducted
in R 64 bit v 3.2.5 using a Quad Opteron 2.8 GHz processor with
96 GB Ram and 3 TB of HDD storage.
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Results

Predictor and Interaction Identification

Fig. 1 shows the proportion of times each method identifies the
true predictors associated with response Y and the FDR for null
predictors identified in data with two observations per subject
for the three effect sizes and four sample sizes. Identification of
the correct predictors and predictor interactions for all methods
improves with increasing sample size and effect size with the
exception of the stepwise selection method. The proportion of
times each method correctly identifies the true predictors also
increases when the number of observations per subject increases
for all methods (Supplementary Fig. S1).

The stepwise algorithm correctly identifies the main effect for
X5 significantly more often than the penalized regression
approaches for the smallest effect size (e.g. β = 0.2) for n ≥ 200.
However, the stepwise approach identifies the interaction terms
in fewer than 20% of models across all sample sizes, effect sizes,
and number of observations per subject.When sample size or effect
size is small, the glmmLasso approach recovers the correct predic-
tors and interactions more frequently than GMMBoost or
GEEBoost for n ≤ 300. However, for large sample size or effect
size (e.g. β ≥ 0.7 and n ≥ 200), glmmLasso, GMMBoost, and GEE-
Boost exhibit similar ability to recover the true predictors and

Table 1. Simulation study design

Variables

Fixed time
covariates

X5,X10,X12 �iid Nð0,1Þ

X6 � X9,X11 �iid Bernð0.05Þ
Time-varying
covariates

X1 � X4,X13,X14 �iid MVNtð0,SÞ
S,is compound symmetric;�ii ¼ 1,�ij ¼ 0.25 8 i 6¼ j

Binary
response

Yit �iid Bern �itð Þ

Simulation parameters

Effect size �5 ¼ �12 ¼ �25 ¼ 0.2,0.7,or 1.5
�j ¼ �j,k ¼ 0 8 j 6¼ 5 and 8 j, k =2 1,2ð Þ; 2,5ð Þ½ �

Number
repeated
measures

t= 2, 10

Sample size i= 100, 200, 300, 500

Models

Truth logit �itð Þ ¼ �5xi þ �12x1itx2it þ �25x2itx5i

Fitted logitðp̂itÞ ¼ �̂0 þ
P

14
j¼1 �̂jxitj þ

P
14
j¼1

P
k 6¼j �̂jkxitjxitk þ b̂i

Fig. 1. Proportion of times the true predictors, X5, X1X2, and X2X5 and the average false-discovery rate for null predictors (XNull) are selected by the four variable selectionmethods
by effect size and sample size for data with two observations per subject.
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interactions. For n ≥ 200 at moderate and large effect sizes,
glmmLasso, GMMBoost, and GEEBoost all recover the three pre-
dictors and predictor interactions in ≥85% of all models. The pro-
portion of times null predictors were selected was similar within
method across effect sizes. Stepwise regression and GMMBoost
were less likely to select a null predictor than glmmLasso and GEE-
Boost. GlmmLasso was significantlymore likely to select a null pre-
dictor at n= 100 than all other methods for β ≤ 0.7.

Among the three penalized approaches, GMMBoost tended to
yield more parsimonious models relative to glmmLasso and
GEEBoost for all samples and effect sizes (Table S1). GlmmLasso
had the largest average number of correct predictors across simula-
tions, though GEEBoost was similar for larger sample and effect
sizes. When sample sizes and effect sizes were large, GMMBoost
often exactly identified the correct model (i.e. the selected model
only included X5, X1X2, and X2X5). In contrast, glmmLasso and
GEEBoost tended to include more predictors in the model particu-
larly for small sample sizes, which likely explains why thesemethods
recovered the true predictorsmore frequently thanGMMBoost. The

FDR for glmmLasso and GEEBoost was between 65–81% and
68–88%, respectively (Fig. 1) and was larger for 10 observations/
subject (Supplementary Fig. S1). However, FDR for GMMBoost
decreased with increasing sample and effect size achieving
FDR= 0 for large n and β. Stepwise selection had smaller FDR rel-
ative to glmmLasso andGEEBoost due to inclusion of few predictors.

Bias and MSE of Regression Parameter Estimates

Fig. 2 shows box plots of the bias for regression parameter estimates
for X5, X1X2, X2X5 and the average bias across all null predictors for
each approach for simulationswith two observations/subject. Bias for
the true predictors was generally negative indicating values smaller
than the true β. Bias decreased with increasing sample size and
increased with increasing effect size across methods in data with 2
or 10 observations/subject (Figure 2; Supplementary Fig. S2 and
Table S2). Stepwise selection was an exception as MSE and bias were
consistent with increasing sample size (Fig. 2 and Supplementary
Table S2). Among the three penalized approaches, glmmLasso

Fig. 2. Boxplots of bias for the stage 1 models across all simulation runs for stepwise (Step), glmmLasso (Lasso), GMMBoost (GMMB), and GEEBoost (GEEB) models in data with
two repeated measures per subject. Boxes represent the 25th, 50th, and 75th percentiles, whiskers extend 1.5 × inner quartile range (IQR) from the 25th and 75th percentiles and
points are values outside 1.5 × IQR. The gray dashed line indicates bias= 0.
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yielded the smallest average bias and MSE for true predictors, fol-
lowed by GEEBoost and GMMBoost (Fig. 2). The only exception
for glmmLasso occurred at n= 100, which may result from over-
fitting as average model size for glmmLasso when n= 100 was
~40 predictors. The stepwise approach had larger bias and MSE
for X1X2 and X2X5, but similar bias to glmmLasso and GEEBoost
for X5. The average bias for the 102 null predictors was small for
a majority of the simulation scenarios (XNull, Fig. 2), though
glmmLasso exhibitedmuch largerMSE and average bias for null pre-
dictors at n= 100 (Supplementary Table S2). Results were similar for
10 observations/subject and effect size β= 0.2 though the observed
bias was less variable (Supplementary Fig. S3, row 1).

Two-Stage Approach for Bias Correction

We also evaluated the ability of a two-stage approach to reduce bias
in parameters estimates using the penalized selection approaches.
We considered two models: (1) the first model imposed the

heredity constraint and incorporated all nonzero terms from the
penalized model plus all main effects that are zero in the penalized
model but are in one or more nonzero interaction term and (2) a
second model in which heredity was ignored fitting a GLMM with
all nonzero terms ignoring main effects if they are zero in the
penalized models. Both approaches performed similarly in terms
of bias reduction and thus only results for the second method
are shown. The change in bias for each simulation run from stage
1 to stage 2 and the bias in stage 2 for estimates from the
glmmLasso, GMMBoost, and GEEBoost in data with two observa-
tions/subject are presented in Fig. 3 and Supplementary Fig. S2,
respectively.

The bias in stage 2 was generally smaller for all effect and sam-
ple sizes than in stage 1 though similar to stage 1 estimates were still
predominantly downward biased (Fig. 3, an Supplementary
Fig. S2). Fig. 3 demonstrates that the two-stage approach generally
reduced the bias in the parameter estimates, particularly at larger
effect and sample sizes. The methods had difficulty identifying the

Fig. 3. Boxplots of change in absolute bias from Stage 1 to Stage 2 bias in regression estimates for the true predictors X5, X1X2, and X2X5 and average bias for null predictors (XNull)
for glmmLasso (Lasso), GMMBoost (GMMB), and GEEBoost (GEEB) for data with two measures per subject across effect and sample sizes. Boxes represent the 25th, 50th, and 75th

percentiles, whiskers extend 1.5 × inner quartile range (IQR) from the 25th and 75th percentiles, and points are values outside 1.5 × IQR. The gray dashed line indicates no differ-
ence in bias between stages.
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true predictors for β = 0.2, thus a majority of models had no
change in bias in stage 2. In cases where the true predictors were
selected for β = 0.2, the bias was smaller in stage 2 relative to stage 1
for all three approaches for n ≥ 300. MSE was similar in the first-
and second-stage models for glmmLasso and smaller for GMMBoost
and GEEBoost for β = 0.7 and 1.5 (Supplementary Table S1).
GlmmLasso exhibited larger bias andMSE in the second-stagemodels
at n= 100 for β = 0.2, likely due to the large number of
spurious predictors in themodels. Similar trends in bias were noted
for GMMBoost and GEEBoost in data with 10 observations/
subject, though glmmLasso did not show decreased bias for X5

(Supplementary Fig. S3).

Computation Time

Computation time was affected by both number of repeated
measures per subject and sample size. For all methods, models
fit to data with two measures/subject required less computation
time compared to data with 10 measures. Of the three sparse
methods, GEEBoost algorithm had the shortest computation
time followed by glmmLasso and then GMMBoost. For data with
two measures/subject, computation times for glmmLasso and
GMMBoost were similar. However, when the number of repeated
measures per subject increased to 10, GEEBoost has greatly improved
computational efficiency relative to glmmLasso and GMMBoost.
Average computation times for each method are presented in
Supplementary Table S3.

Results: Applications in Real Data

We applied all four variable selection approaches in data from two
clinical studies, treatment response in lupus nephritis and

hypothermia in total joint arthroplasty patients, to examine
differences between the methods in real data applications. The
two-stage approach was applied for the glmmLasso, GMMBoost,
and GEEBoost models.

Treatment Response in Lupus Nephritis

The goal of this study was to evaluate clinical and biological mark-
ers of treatment response over time in patients with lupus neph-
ritis. Clinical and demographic information collected on 140
patients with biopsy proven lupus nephritis (LN) included age,
gender, presence of anti-double-stranded DNA antibodies
(dsDNA), serum C3 complement levels (C3C), serum C4 comple-
ment levels (C4C), urine protein to creatinine ratio (UrPrCr), and
estimated glomerular filtration rate (EGFR). Urine samples were
collected at two times during the study for all subjects and were
analyzed for 15 novel urinary biomarkers. The final data include
22 demographic, clinical, or biomarker variables yielding 22 main
effects and 190 two-way interactions. Patient response to treat-
ment, determined using the criterion defined by [40] and was
evaluated at 3 and 12 months after the initiation of treatment.
For a full description of the study, see Ref. [41].

Predictors and interactions selected by each method for
response in LN are presented in Table 2. Variables identified
using stepwise algorithm are different from lasso and boosting
methods. The stepwise approach selected predominantly main
effects and one interaction. GlmmLasso and GMMBoost selected
predominantly interactions rather than main effects. The number
of predictors and interactions identified by glmmLasso and
GMMBoost was similar (6 vs. 5), and there are three variables
common to both methods. The regression estimates for the
second-stage model are comparable between glmmLasso and

Table 2. Models of treatment response over time in patients with lupus nephritis selected by each method. Values presented for each
predictor are the regression parameter estimates (standard error). Missing values indicate that the predictor was not selected in that
model. Parameter estimates for the glmmLasso, GMMBoost, and GEEBoost models are from the two-stage modeling approach

Stepwise glmmLasso GMMBoost GEEBoost

AIC 269.33 270.17 267.17 279.00

No. of predictors 5 6 5 1

Intercept −9.56 (2.01) −2.45(0.66) −2.12(0.40) −5.83 (1.16)

C3C 1.72 (0.77)

IL8 −1.74 (2.11)

PDGFBB 4.92 (2.01)

IL8 × PDGFBB −7.09 (5.36)

TWEAK 0.86 (0.44)

IL12 0.39 (0.29) 0.50(0.22)*

Age × NAG −1.35 (0.38)** −0.96(0.31)**

C3C × TWEAK 0.31 (0.32)

IFNα2 × IP10 0.48 (0.26) 0

IFNα2 × PDGFBB 0.28 (0.30) 1.47 (0.57)*

IL2rα × TWEAK 0.26 (0.30) 0.59(0.30) 0

Age×OPG −0.04(0.53)

OPG × GMCSF −2.09(1.09) 0

***p< 0.001;** p< 0.01; *p< 0.05; 0p< 0.1.
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GMMBoost (Table 2). GEEBoost yielded the sparsest model,
including only one predictor interaction, although this interaction
was also identified by glmmLasso. These results are in slight con-
tradiction to what was observed in simulations as GMMBoost
tended to give the most parsimonious model.

Hypothermia Over Time in Total Joint Arthroplasty

This was an observational study examining patient, clinical, and
procedural variables associated with occurrence of hypothermia
in patients undergoing total hip or total knee arthroplasty (THA
and TKA). Participants’ temperatures were evaluated at eight
timepoints: (1) leaving holding; (2) operating room arrival; (3)
after anesthetic induction; (4) upper-body warmer initiation;
(5) incision; (6) every 30 min after incision; (7) leaving the oper-
ating room; and (8) arrival to PACU and hypothermia was
defined as temperature < 36.0°C. The data included 102 partici-
pants with 13 demographic, clinical, or procedural variables and

66 possible two-way interactions. Full study details are provided
in Ref. [42].

Similar to the lupus nephritis study, the model selected using
forward selection was quite different from the models selected
using the penalized regression and boosting approaches. The for-
ward selection model only included main effects, while the other
approaches included a mix of main effects and interactions. The
glmmLasso model included more predictors than GMMBoost
and GEEBoost (18 vs. 4 or 6, respectively; Table 3). Although
glmmLasso included the largest number of predictors, three of four
predictors identified by GMMBoost and four of six predictors
selected by GEEBoost were also selected by glmmLasso. The
glmmLasso, GMMBoost, and GEEBoost models had three terms
in common: the interaction between BMI and gender, between
procedure type and anesthesia type, and between procedure type
and phenylephrine dose. Regression estimates for these terms were
of similar magnitude between themethods although only the inter-
action between procedure type and phenylephrine dose was

Table 3. Models of incidence of hypothermia over time in patients undergoing total joint arthroplasty selected by each method. Values
presented for each predictor are the regression parameter estimates (standard error). Missing values indicate that the predictor was
not selected in that model. Parameter estimates for the glmmLasso, GMMBoost, and GEEBoost models are from the two-stage
modeling approach

Stepwise glmmLasso GMMBoost GEEBoost

AIC 777.47 783.44 774.70 774.30

# predictors 4 18 4 6

Intercept −2.86 (0.54) −5.57 (3.10) −2.01 (0.26) −1.97 (0.27)

Cumulative time −0.14 (0.10) −0.11 (0.10)

Age 0.74 (0.61)

Sex (Males vs. Female) −1.20 (0.38)

Anesthesia type (Spinal vs. General) 1.16 (0.51) 4.65 (3.61)

Procedure (TKA vs. THA) 1.10 (0.36)

Body Mass Index (BMI) −0.45 (0.18)

Operating Room (OR) Temperature −0.20 (0.25)

Age × Sex −0.49 (0.69)

Age × Procedure 0.15 (0.47)

Age × Anesthesia Type −1.32 (1.41) 0.32 (0.20)

Sex × BMI −0.15 (0.67) −0.50 (0.19)** −0.58 (0.19)**

Sex × Revision (Yes/No) −0.64 (0.97)

Sex × Procedure duration 0.22 (0.67)

BMI × Revision −0.17 (0.32)

BMI × OR temperature −0.28 (0.19)

BMI × Total IV fluid −0.33 (0.22)

BMI × OR humidity −0.22 (0.17)

Procedure × Phenylephrine Dose 0.62 (0.20)** 0.39 (0.17)* 0.46 (0.17)**

Procedure × Anesthesia Type −0.06 (0.98) 0.60 (0.11) 0.49 (0.41)

Revision × Total IV Fluid 0.01 (0.40)

Phenylephrine Dose × Anesthesia Type −0.46 (0.28)

Mattress Temperature × OR Temperature −0.05 (0.28)

OR Temperature × OR Humidity −0.14 (0.16)

***p< 0.001; **p< 0.01; *p< 0.05; 0p< 0.1.
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statistically significant for three methods, while gender by BMI was
only significant in the GMMBoost andGEEBoost models, and pro-
cedure type by anesthesia type was not significant in any model.

Discussion

Identifying predictors and predictor interactions associated with
repeatedly measured binary disease outcomes is important as
many common diseases are hypothesized to result from inter-
actions between patient, clinical, and environmental factors.
Statistical methods for variable selection, including penalized
and boosted regression approaches, have recently been developed
for repeatedly measured binary outcomes. This study compared
the ability of four variable selection techniques, forward stepwise
selection, glmmLasso, GMMBoost, and GEEBoost, to correctly
recover predictors and interactions associated with a repeatedly
measured binary outcome to provide guidance for choosing an
appropriate method in application. Additionally, we evaluated a
two-stage approach to reduce bias for regression parameter
estimates selected by glmmLasso, GMMBoost, or GEEBoost.
Our simulations corroborate previous findings regarding the poor
performance of the forward stepwise approach [9, 10] and showed
the effectiveness of boosting and penalized regression techniques
while demonstrating differences between the approaches.

The boosting and penalized regression approaches demon-
strated superior recovery of the correct predictors relative to
the forward stepwise selection approach. Among the penalized
and boosting regression approaches, glmmLasso recovered the
correct model terms more frequently than the other approaches,
particularly at smaller effect and sample sizes. However,
glmmLasso models often included many spurious terms yielding
a high FDR. GEEBoost performed similarly to glmmLasso for
predictor recovery and generated slightly more parsimonious
models though FDR was also large. GMMBoost had greater dif-
ficulty recovering the correct terms; however, it returned the
most parsimonious model, often selecting the exact model used
to generate the underlying response. The models selected in the
two applications were consistent with the simulations in that
glmmLasso selected the largest number of predictors followed
by GEEBoost and then GMMBoost. In terms of computation,
GEEBoost had the fastest computation time followed by
glmmLasso and GMMBoost. Of note, GMMBoost had much
greater computation time relative to the other two methods at
larger sample sizes, so much so that we were unable to conduct
simulations for GMMBoost with sample size n = 500 and 10
observations per subject.

The penalized and boosting regression approaches almost
always yielded regression parameter estimates biased toward zero.

The only exceptions occurred for glmmLasso at n= 100, where this
approach had difficulty selecting a reduced subset of predictors. In
all simulations, using a two-stage approach effectively reduced the
bias for all three methods regardless of sample sizes, effect sizes, or
observations/subject.

The simulations provide guidance for choosing an appropriate
method to identify predictor interactions without a priori knowl-
edge in data with a repeatedly measured binary outcome. Table 4
provides suggestions for choosing among glmmLasso, GMMBoost,
and GEEBoost based on study goals and computing efficiency. The
glmmLasso approach recovered the true regression parameters
most often but produced the least parsimonious models; thus, if
the goal is to select candidate predictors and interactions with
assurance that relevant parameters will be selected, then
glmmLasso is a most appropriate given sufficiently large sample
size (n ≥ 200). GMMBoost recovered the correct predictors
and interactions with similar frequency to glmmLasso and
GEEBoost at large effect and sample sizes and identified few spu-
rious predictors; thus, GMMBoost is a most appropriate if parsi-
mony is of importance. GMMBoost is the least computationally
efficient and may prove difficult in real applications. At smaller
sample sizes, GEEBoost had similar performance to glmmLasso
and tended to select a more parsimonious model thus offering a
good compromise between the computation time and model par-
simony. Finally, the two-stage approach effectively reduced the
bias for all three methods and thus should be applied regardless
of selected method.

There are extensions that could be considered to enhance the
applicability of each method. Elastic net uses both L1 and L2
constraints to yield a sparse solution while facilitating grouping
of collinear variables [43]. Additionally, several penalized regres-
sion approaches for data with independent observations exist that
impose heredity constraints to maintain hierarchy between main
effects and interactions [33, 44, 45]. These approaches improve
model error rate and to yield more parsimonious models relative
to traditional lasso. Given the large FDR observed for glmmLasso
and GEEBoost, extending these approaches to allow for grouping
or hierarchy would likely yield more parsimonious models and
reduce FDR.

Conclusion

In this paper, we describe four variable selection approaches for
data with repeatedly measured binary outcomes, with focus on
identifying predictor interactions without an a priori hypothesis.
Our results demonstrate a strong advantage of penalized and
boosted approaches over the traditional stepwise approach in these
types of data and provide guidance for choosing the most appro-
priate method in real applications. Furthermore, the two-stage
approach effectively reduces the bias and MSE for all methods
and should be applied regardless of choice of method.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/cts.2020.556.
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Table 4. Guidance for selecting the optimal variable selectionmethod in data with
a repeated binary outcome

Model parsimony

Predictor/
interaction
identification

Computational
efficiency Method

Moderate impor-
tance

Highly important Moderate glmmLasso

Highly important Moderate to high
importance

Limited GMMBoost

Moderate to high
importance

Moderate to high
importance

Excellent GEEBoost
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