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Nonnormal phenotypic distributions introduce sig-
nificant problems in the estimation and selection

of genetic models. Here, a semiparametric
maximum likelihood approach to analyzing non-
normal phenotypes is described. In this approach,
distributions are explicitly modeled together with
genetic and environmental effects. Distributional
parameters are introduced through mixture con-
straints, where the distribution of effects are
discretized and freely estimated rather than assumed
to be normal. Semiparametric maximum likelihood
estimation can be used with a variety of genetic
models, can be extended to a variety of pedigree
structures, and has various advantages over other
approaches to modeling nonnormal data.

Nonnormal distributions are frequently encountered
in genetic modeling, in the analysis of pathological as
well as nonpathological phenotypes. The importance
of nonnormal distributions in making inferences
about genetic models, moreover, has been well
demonstrated: inappropriately assuming that a distri-
bution is normal may lead to biased parameter
estimates (van den Oord et al., 2000) and to selection
of overly complex models, in terms of relative as well
as absolute fit (Allison et al., 1999; Markon &
Krueger, 2004; van den Oord et al., 2000).
Nonnormality is ubiquitous and greatly impacts
model inference, underscoring the importance of
methods for modeling nonnormal data.

Although existing methods for modeling nonnor-
mal data have numerous advantages, they also have
various disadvantages. Normalizing transformations
(e.g., log, Blom), for example, are often preferable in
cases where the scale of variables is arbitrary, but do
not always eliminate nonnormality, leading to the
problem that initially motivates their use. Adjusted fit
statistics (Satorra & Bentler, 1994), similarly, are
attractive in modeling nonnormality, but do not
account for parameter estimation bias, and may be
inappropriate when used for purposes other than was
assumed in their original derivation (e.g., as a value in
the calculation of another statistic). Nonnormal para-
metric methods (e.g., parametric Poisson models) are

appealing, but may be analytically complex, and
require specification of an appropriate distribution,
which may be difficult. Finally, simulation methods
(e.g., bootstrap, Monte Carlo) are powerful, but can
be computationally prohibitive in terms of time as
well as memory.

Here, a semiparametric maximum likelihood
(SPML) approach to modeling of nonnormal pheno-
types is described. Although it has proven valuable in
other areas of statistical inference, SPML estimation
has not been widely applied in genetic modeling. In
the approach explored here, nonnormal distributions
are explicitly modeled together with genetic and envi-
ronmental effects. Distributional parameters are
introduced through mixture models, where the distri-
bution of an effect is discretized and freely estimated
rather than assumed to be normal. SPML estimation
can be used with a variety of genetic models, can be
extended to a variety of pedigree structures, and has
various advantages over other approaches to model-
ing nonnormal data. The performance of the SPML
estimator is illustrated using a small-scale simulation,
and an example using the approach is presented.

Background
Density Estimation Using Normal Mixture Models 

One particularly attractive approach to modeling an
unknown distribution is to represent the distribution
using a normal mixture model (Hoff, 2000; Roeder &
Wasserman, 1997). Under this approach, a density is
represented using a mixture of normal subdistribu-
tions (Figure 1). Normal mixture model density
estimation is similar in logic to many other nonpara-
metric methods for representing densities, in that the
distribution of interest is approximated by a mixture
of some type of subdistribution. Histogram density
estimates, for example, represent a density using a
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mixture of rectangular subdistributions rather than a
mixture of normal subdistributions.

In the normal mixture model approach to density
estimation, an unknown density is estimated by esti-
mating the location and size of each normal
subdistribution in the mixture. Specifically, the mean
vector of each normal subdistribution, the
variance–covariance matrix of each subpopuation,
and the proportion of individuals in each subdistribu-
tion, is estimated. Each of these sets of parameters can
be assumed to differ across subdistributions, or can be
assumed to be the same.

Mixture Moment Structure Models

The moments (e.g., mean, variance) of any subdistrib-
ution of a mixture model can be parameterized
directly. Alternatively, the moments can be parameter-
ized indirectly through some structural model of
interest. In the latter case, the model is a form of
moment structure model (MSM; i.e., structural equa-
tion model) in which a structural model is assumed to
hold for each subdistribution of the mixture. The data
is modeled as a mixture of normal subdistributions,
each subdistribution described by a structural model.
Constraints can be placed on the parameters of the
MSM to equate or free parameters across subdistribu-
tions of the mixture.

SPML Variance Components Estimation

Mixture moment structure models provide a com-
pelling framework for SPML estimation, as they allow
for parameters representing an unknown distribution
as well as for parameters representing a causal model.
The structural model used for genetic variance compo-
nents estimation can be reformulated as a mixture
moment structure model, with certain parameters rep-
resenting the distribution of the data, and other
parameters representing the causal model of interest.

The data is then modeled as a mixture of distribu-
tions, with the distributional parameters (i.e., means,
proportions) allowed to differ across mixtures, but the
causal parameters (i.e., covariances, loadings) con-
strained to be the same across mixtures.

Variance Components Model

To understand the SPML formulation of a genetic vari-
ance components model, first consider the standard
parametric normal maximum likelihood (ML) variance
components model:

Σ = AΣaA' + CΣcC' + EΣeE' [1]
µ =  ν + Aµa + Cµc + Eµe

Here, Σ represents the observed phenotypic covariance
matrix for a set of relatives (e.g., twin pairs), and µ rep-
resents the observed phenotypic mean vector for that
set of relatives. Σa, similarly, represents the expected
correlation matrix among additive genetic factors for
the set of relatives (e.g., a matrix of ones for pairs of
monozygotic [MZ] twins, and a standardized matrix
with .5 on the off-diagonal for dizygotic [DZ] twins); Σc

represents the expected shared environmental correla-
tion matrix (a matrix of ones for relatives raised in the
same household), and Σe represents the nonshared envi-
ronmental correlation matrix (generally a unit diagonal
matrix). µa represents the mean vector for the additive
genetic factors, µc represents the mean vector for the
shared environmental factors, and µe represents the
mean vector for the nonshared environmental factors.
Generally, it is assumed that µa = µc = µe = 0, and the
phenotypic mean vector is therefore modeled solely by
the intercept ν. A represents the set of additive genetic
factor loadings, C represents the set of shared environ-
mental factor loadings, and E represents the set of
nonshared environmental factor loadings. The propor-
tion of variance due to each etiologic effect is estimated
through the magnitude of A, C, and E.

The SPML variance components model assumes
that nonnormal data can be represented using a
mixture of normal distributions. The parametric
normal ML model in Equation 1 is assumed to hold
for each subdistribution of the mixture, with some
constraints. Distributional parameters are allowed to
vary across subdistributions, but the causal parame-
ters are constrained to be equal:

Σ = AΣaA' + CΣcC' + EΣeE' [2]
µi =  ν + Aµai + Cµci + Eµei

The observed phenotypic distribution is thus modeled
as a mixture of normal subdistributions, each subdis-
tribution i having covariance matrix Σ and mean
vector µi. Note that the subdistributions vary only in
location, not in causal structure: while the subdistribu-
tion means µi are allowed to differ, the covariance
matrix Σ is the same for each subdistribution, as are
the loadings A, C, and E. The phenotypic means of

Figure 1
Mixture representation of a hypothetical nonnormal distribution.
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mixture subdistributions — which represent values of
the unknown distribution — are modeled in terms of
latent additive genetic, shared environmental, and
nonshared environmental means µai, µci, and µei.

In addition to the means of each subdistribution, the
proportions of individuals in each subdistribution, Pi,
are also estimated. The unknown distribution is there-
fore semiparametrically estimated through the locations
of each subdistribution — that is, the mean vectors µai,
µci, and µei — and the proportion of individuals in each
subdistribution, Pi. This corresponds to estimation of
the values and probabilities defining the distribution,
respectively. In this regard, in contrast to the parametric
normal ML model, the latent mean vectors µai, µci, and
µei will generally not equal zero.

Standardization of Parameters

Although the covariance matrix and mean vectors are
being fit to each subdistribution of the mixture, it is not
each subdistribution that is of interest, but rather, the
entire distribution that is being estimated semiparamet-
rically. It is important to note the means and
covariances within each subdistribution will be differ-
ent from the means and covariances taken across
subdistributions. If parameters are initially standardized
to the mean and variances within each subdistribution,
it will be necessary to restandardize to the mean and
variances of the entire distribution as a whole.

The mean of a latent nonshared distribution k
(e.g., the shared environmental distribution c), for
example, is given by

µk = ∑ iPiµki [3]

This is a standard formula for the mean — that is, the
sum of the values multiplied by their probabilities. It is
important to note in this regard that the latent means
of each subdistribution (e.g., µki) here represent values
of the unknown density that is being semiparametri-
cally estimated. The variance of the latent nonshared
environmental distribution, similarly, is given by

σk
2 = ∑iPi(µki – µk)

2

[4]
Σk = ∑iPi(µki – µk) (µki – µk)'

The means and variances for the additive genetic and
shared environmental distributions would be given by
similar equations. Using these means and variances, the
original parameter estimates can then be restandardized
using standard formulae (e.g., Bollen, 1989).

Parameter Constraints

Implicit in Equations 1 to 4 is an assumption that rela-
tives have identical latent values, and that each
subdistribution i is defined by a single value of the latent
distribution (i.e., for a mean vector µi = [µi1, µi2, µir ...],
the assumption is [µi1 = µi2 = µir ...], where r is an index
of the relative). This assumption may be reasonable
under certain circumstances, for example, when model-

ing the latent shared environmental distribution, where
relatives’ values are often assumed to be perfectly corre-
lated, and each family can be assigned to some
subdistribution i that reflects a value along the shared
environmental distribution. However, in general, it will
be necessary to relax the assumption to allow relatives
to have different values of the latent variable.

In the general case, the latent distribution is multi-
variate, not univariate, and a multivariate mixture
subdistribution is needed to represent each section of
the latent multivariate space (imagine, for example, that
the distribution in Figure 1 is bivariate rather than uni-
variate, and the mixture subdistributions are similarly
bivariate). If relatives’ latent values are assumed to be
perfectly correlated (e.g., a latent shared environmental
distribution) this multivariate distribution can be
reduced to a univariate distribution. If they are not
assumed to be perfectly correlated, however (e.g., a
latent genetic distribution), a multivariate distribution
must be modeled, and that multivariate distribution is
subject to nonlinear constraints of the model (e.g., with
DZ twin pairs, the latent bivariate genetic distribution
must be estimated subject to a constraint that the
implied latent correlation equals .5).

In cases where the relatives’ latent values are
assumed to be perfectly uncorrelated — as is typically
the case with the nonshared environmental distribu-
tion — parameterization can be simplified somewhat.
In that case, each relative can take on any value of the
latent distribution, but the possible latent values for
each relative are constrained to be the same, as are the
probabilities of each value. Assume that there are R
relatives in each pedigree, for example, and each rela-
tive can take on M possible values θ1, θ2, θm, ... θM of
the latent distribution, each value having probability
P(θ1), P(θ2), P(θm), ... P(θM). Then the total number of
subdistributions I in the mixture is I = MR, a subdistrib-
ution for each possible combination of relatives’ latent
values. Because the latent values are assumed to be per-
fectly uncorrelated, however, the probability of each
subdistribution i, Pi, is obtained simply by multiplying
the marginal probabilities of the latent values repre-
sented in subdistribution i. For example, the
probability of being in a subdistribution i where the
mean vector for two relatives is given by µi = (θ1, θ2), is
given by Pi = P(θ1) P(θ2). In this way, the multivariate
latent distribution is fully specified in terms of its mar-
ginal distributions, which are constrained to be equal.

When the relatives’ latent values are assumed to be
correlated at some specific value, as is typically the case
with the additive genetic distribution, parameterization
of a latent distribution can be more complicated. In this
case, nonlinear constraints must be placed on the possi-
ble values of the latent distribution and the
probabilities of those values in order that the estimated
latent distribution has an implied correlation equal to
what is assumed a priori. For example, if the two addi-
tive genetic values for two relatives are assumed to be
correlated .5, constraints must be placed on the
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values θ1, θ2, θm, ... θM of the latent distribution, and
on the probabilities P(θ1), P(θ2), P(θm), ... P(θM), such
that the implied correlation between relatives’ values
is equal to .5.

Simulation
In order to evaluate the performance of SPML vari-
ance components estimation, a small-scale Monte
Carlo simulation was conducted. The goal of the sim-
ulation was to compare SPML variance components
estimation to parametric normal ML estimation in
cases where the population is nonnormal, to deter-
mine whether SPML improves the accuracy of
parameter estimates.

Methods

Data were simulated from two population conditions:
one in which the nonshared environmental (E) distrib-
ution was assumed to be normal, that is, ~N(0,1), and
another in which the E distribution was assumed to be
nonnormal, that is, ~Γ(.25,.50). In all conditions, the
additive genetic (G) and shared environmental (C) dis-
tributions were assumed to be normal, that is,
~N(0,1). The source of nonnormality was restricted to
E in the current simulations because it was relatively
tractable computationally, and represents an impor-
tant case where there is no a priori hypothesis about
the nature of the nonnormality. In all conditions the

proportion of A, C, and E variance was assumed to be
.3, .2, and .5, respectively.

Samples of simulated MZ and DZ twin data were
generated, each sample comprising a total of 250, 500,
1000, or 2000 twin pairs, with equal numbers of MZ
and DZ pairs. There were 500 Monte Carlo replications
in each of the eight conditions created by crossing pop-
ulation distribution with sample size. In each sample,
ACE models were fit using both estimation methods,
parametric normal ML estimation and SPML estima-
tion. SPML estimation was performed using five
mixture subdistributions to represent the E distribution.

Results

Table 1 presents the bias and variance of the paramet-
ric ML and SPML parameter estimates for each
condition. The bias and variance of SPML estimates
was comparable to that of ML estimates, especially
under conditions in which the population distribution
was nonnormal. Among nonnormal population condi-
tions, the bias and variance of SPML E estimates was
comparable to but slightly larger than that of ML esti-
mates. The bias and variance of A and C estimates, in
contrast, was generally comparable to or slightly
smaller than that of ML estimates. Among normal
population conditions, the bias and variance of SPML
estimates was comparable to that of ML estimates,
with the exception of the SPML E estimates, which
were notably larger in terms of bias and variance than

Table 1

Results of Monte Carlo Simulation

Bias Variance

Fit ν A C E ν A C E

Normal
250 ML .993 –.004 –.034 –.051 .000 .0027 .0415 .0437 .0018

SPML .007 –.004 –.054 –.054 –.058 .0027 .0573 .0477 .0099
500 ML .990 –.001 –.027 –.021 .003 .0015 .0195 .0226 .0010

SPML .010 –.001 –.039 –.019 –.076 .0015 .0271 .0235 .0098
1000 ML .985 .000 –.013 –.009 .001 .0008 .0091 .0107 .0005

SPML .015 .000 –.015 –.011 –.118 .0008 .0121 .0122 .0136
2000 ML .978 –.002 –.007 –.003 .000 .0004 .0045 .0053 .0003

SPML .022 –.002 –.006 –.003 –.159 .0004 .0043 .0051 .0170
Nonnormal

250 ML .000 –.001 –.035 –.042 –.002 .0017 .0307 .0365 .0012
SPML 1.00 –.001 –.017 –.031 –.075 .0017 .0141 .0189 .0048

500 ML .000 –.003 –.019 –.018 .002 .0008 .0161 .0168 .0006
SPML 1.00 –.002 –.005 –.014 –.040 .0008 .0048 .0072 .0018

1000 ML .000 .000 –.004 –.016 .001 .0004 .0067 .0089 .0003
SPML 1.00 .000 –.007 –.004 –.037 .0004 .0020 .0028 .0007

2000 ML .000 .000 .001 –.010 .001 .0002 .0031 .0040 .0001
SPML 1.00 .000 –.011 –.001 –.039 .0002 .0012 .0016 .0006

Note: Values in the table are the bias and variance of parameter estimates in each condition using each estimation method, as well as the proportion of replication samples 
in which each estimation method resulted in better fit according to the Bayesian Information Criterion (BIC). Conditions are described in detail in the text. ML indicates 
parametric normal ML estimation; SPML, semiparametric ML estimation. ν indicates intercept parameter; A, additive genetic path; C, shared environmental path; 
E, nonshared environmental path.
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the ML estimates. Inspection of individual replications
suggests that the larger bias and variance of SPML E
estimates under normal population conditions was
due to overfitting a single normal distribution with
multiple mixture subdistributions.

Table 1 also presents the per cent of samples in
which ML or SPML models fit better according to the
Bayesian Information Criterion (BIC). As is evident in
the table, with close to perfect accuracy in nearly all
conditions, the normal ML models fit better in samples
from normal populations, and the SPML models fit
better in samples from nonnormal populations.

Example
To illustrate differences between ML and SPML esti-
mation in a specific dataset, ML and SPML
approaches were used to estimate A, C, and E compo-
nents of variance in the Alienation scale of the
Multidimensional Personality Questionnaire (MPQ;
Tellegen, 2000). The Alienation scale measures a
general tendency to feel socially alienated, victimized,
or mistreated; some of its items have somewhat quasi-
paranoid content, reflecting the belief that others
intend harm of some sort. Alienation scores are typi-
cally highly skewed in representative samples,
providing a good example of a phenotype that poses
challenges to variance components estimation due to
violations of the normality assumption.

Data were obtained on 933 twin pairs (381 MZ
and 552 DZ) from the Minnesota Twin Registry
(Krueger & Johnson, 2002). Data were corrected for
the linear and quadratic effects of age and sex, and
were modeled using a univariate ACE variance com-
ponents model (Equation 2). The SPML model
assumed that nonnormality was due to nonnormality
in the E distribution, which was modeled using five
mixture subdistributions, the mean of the third distri-
bution being set to zero for identification purposes.

This model was also fit using normal ML estimation
in Mplus (Muthén & Muthén, 2004; an example
script is available upon request).

Table 2 presents the results of the ML and SPML
variance components estimation methods. Substantial
improvements in fit with SPML relative to ML estima-
tion are evident in values of the log-likelihood, AIC
(Akaike, 1973), and BIC (Schwarz, 1978), with the
log-likelihood being much greater, and AIC and BIC
being much lower, using SPML estimation. Parameter
estimates were similar, indicating that the two
methods converge on generally similar assessments of
the proportion of A, C, and E variance. However, the
estimates of A and E variance were slightly larger, and
the estimate of C variance smaller, using SPML rela-
tive to parametric normal ML estimation.

Discussion
In SPML estimation, a nonnormal distribution is
modeled simultaneously with effects of interest. In the
approach described here, nonnormal distributions are
parameterized using mixture models, where the distri-
bution corresponding to an effect is discretized and
freely estimated rather than assumed to be normal. In
contrast to many other approaches to nonnormality
which rely on transformations of distributions or fit
statistics, SPML estimation models nonnormality
directly, without making distributional assumptions
about the data.

Current results suggest that, in terms of bias and
efficiency of parameter estimates, SPML estimation is
comparable to normal ML estimation in the analysis
of normal and nonnormal data. An important excep-
tion to this is in the analysis of normal data, where use
of SPML may lead to overfitting and less accurate esti-
mates than parametric normal ML estimation. This
conclusion is intuitively reasonable, in that analysis of
normal data using normal models seems preferable.

In terms of model selection, simulation results
suggest that in nonnormal samples SPML estimation
may provide a more accurate assessment of model fit
than normal ML estimation. The current simulations,
however, were limited to comparisons between normal
and semiparametric models that were identical in terms
of the structural components of variance modeled.
Expanded simulations will be necessary to determine
whether or not SPML estimation affords more accurate
assessments of the relative fit of models differing in
structural complexity (e.g., AE versus ACE models, or
independent versus common pathway models).

The small-scale simulation results presented here
are generally consistent with previous studies in sug-
gesting that under conditions of nonnormality
different estimation methods produce similar parame-
ter estimates, but differ in assessments of model fit
(Lei & Lomax, 2005). Although more extensive simu-
lations and analysis are necessary, results of the
present simulation are consistent with those of previ-
ous studies, and suggest that SPML estimation

Table 2

ML and SPML Variance Components Estimates for the MPQ Alienation
Scale

ML SPML

ln(L) –3241.51 –2462.74
k 4 12
AIC 3255.18 2503.77
BIC 3245.51 2474.74
ν .002 .002
A .516 .533
C .248 .000
E .820 .846

Note: ML indicates parametric normal maximum likelihood estimation; 
SPML, semiparametric maximum likelihood estimation. 
ln(L) indicates log-likelihood; k, number of parameters; 
AIC, Aikaike’s Information Criterion; BIC, Bayesian Information Criterion; 
ν, intercept parameter; A, additive genetic path; C, shared environmental path; 
E, nonshared environmental path.
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provides a viable alternative to classical normal ML
estimation in parsing components of genetic and envi-
ronmental variance.

The general topic of SPML model selection and
inference is important and merits future research.
Information-theoretic methods provide a particularly
compelling approach to SPML model selection, as
they successfully discriminate between mixture models
is other contexts (McLachlan & Peel, 2000). The per-
formance of information-theoretic statistics in
selecting semiparametric variance component models
is not well understood, but theoretical arguments
(Barron & Cover, 1991; Vereshchagin & Vitanyi,
2004) suggest that they would likely exhibit similar
patterns of performance across a range of settings.
Another approach is to develop SPML fit statistics
based on asymptotic sampling distribution theory. The
distribution of likelihood-based statistics is increas-
ingly well characterized for mixture models (Lo et al.,
2001), and may provide a framework for semipara-
metric inference as well. One particularly important
question is how novel theoretically derived indices of
fit perform relative to existing nonparametric methods
for evaluating model fit, especially randomization-
based methods (e.g., bootstrap, permutation).

Another particularly important issue meriting
further research is the number of mixture subdistribu-
tions to use when modeling effect distributions of
interest. A nonnormal distribution can be approxi-
mated by an arbitrary number of values, and it is
important to determine how many values are adequate
to model the distribution. The approach implicitly
adopted here is to treat the number of subdistributions
as being arbitrarily large, as is done in quadrature
density estimation. Another possibility is to treat the
number of subdistributions as a model selection
problem, and select the number of subdistributions
based on a model fit statistic. Yet another possibility,
delineated by Skrondal and Rabe-Hesketh (2004), is
to treat the number of subdistributions as an opti-
mization problem, and incorporate it in the estimation
algorithm as an estimable parameter.

Finally, it is important to note that other methods
for SPML modeling exist; use of mixture models is
only one, albeit convenient, method of SPML estima-
tion. Diao and Lin (2005), for example, have
described a SPML variance components model for
linkage analysis in which the data distribution is
modeled indirectly through a transformation. Their
approach is similar to other transformation-based
approaches to modeling nonnormal data, except that
the transformation is unspecified and estimated along
with structural parameters of the model. Another
form of SPML estimation is fully nonparametric
maximum likelihood (NPML) estimation, where the
distributional parameters are saturated with regard to
available data, and the distribution is estimated non-
parametrically subject to constraints implied by the
structural model (Hoff, 2000; Owen, 2001).

Developing and integrating these different forms of
SPML estimation represents an important direction
for future research.

SPML estimation provides a compelling method
for modeling nonnormal data that complements other
methods in facilitating inference about genetic models.
Additional research is needed to clarify how SPML
estimation compares to existing methods for nonpara-
metric analysis, as well as to parametric nonnormal
models that specify more precisely how nonnormal
data is created. As a hybrid of fully nonparametric
and parametric approaches, SPML estimation relies on
assumptions that are more restricted than those of
nonparametric methods, but more relaxed than those
of parametric approaches. It will be important to
determine the impact of these assumptions, and to
clarify situations in which SPML estimation is more or
less preferable to other approaches to modeling non-
normal genetic data.
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