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A variational principle is proposed to derive the governing equations for the problem of
ocean wave interactions with a floating ice shelf, where the ice shelf is modelled by the full
linear equations of elasticity and has an Archimedean draught. The variational principle
is used to form a thin-plate approximation for the ice shelf, which includes water–ice
coupling at the shelf front and extensional waves in the shelf, in contrast to the benchmark
thin-plate approximation for ocean wave interactions with an ice shelf. The thin-plate
approximation is combined with a single-mode approximation in the water, where the
vertical motion is constrained to the eigenfunction that supports propagating waves. The
new terms in the approximation are shown to have a major impact on predictions of ice
shelf strains for wave periods in the swell regime.
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1. Introduction

Flexural waves are known to propagate through floating ice from classical experimental
studies (e.g. Press et al. 1951), and it is known from observations that the flexure can be
forced by ocean waves (e.g. Holdsworth 1969). For over half a century, thin elastic plates
(Lamb 1916) floating on water have been the benchmark model for ocean wave-induced
flexural motions of sea ice (Evans & Davies 1968; Wadhams et al. 1988; Meylan & Squire
1994; Vaughan, Bennetts & Squire 2009; Montiel, Squire & Bennetts 2016; Pitt et al.
2022) and ice shelves (Holdsworth & Glynn 1978; Vinogradov & Holdsworth 1985; Fox
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& Squire 1991b; Williams & Squire 2007; Papathanasiou et al. 2015; Meylan et al. 2021).
The benchmark model, which dates back to Greenhill (1916), assumes the vertical ice
displacements are uniform with respect to thickness (i.e. a thin plate), and the water is a
potential-flow fluid. The plate appears in the model through flexural and inertial restoring
forces at the water surface, which manifest as high-order derivatives in the dynamic surface
condition. The high-order boundary condition supports so-called flexural-gravity waves,
plus wave modes that have no analogue in open water (i.e. where the water surface
is in contact with air), which are typically oscillatory decaying waves but can become
purely decaying in certain regimes (Williams 2006; Bennetts 2007), as well as evanescent
(exponentially decaying) modes.

In both sea ice and ice shelf applications, the canonical wave–ice interaction problem
involves a two-dimensional water domain (one horizontal dimension plus depth), which
has half of its surface covered by ice, and where motions are excited by an incident wave
from the open (non-ice-covered) water (Evans & Davies 1968; Tkacheva 2001; Linton
& Chung 2003). The incident wave is partially reflected at the ice edge and partially
transmitted into the ice-covered domain. The model is used to predict, e.g. strains in
landfast sea ice (Fox & Squire 1991b, 1994) and ice shelves (Fox & Squire 1991a), and
is the basis for models of wave attenuation in the marginal ice zone (Bennetts & Squire
2012a,b). Although the Archimedean draught of ice is ≈90 % of its thickness, the thinness
of sea ice has been used to justify the so-called shallow-draught approximation, in which
the ice floats at the water surface with no submergence. Therefore, the ice edge experiences
no loading, and free edge conditions are applied (i.e. zero bending moment and shear
stress). The water and ice are coupled along the underside of the ice only.

Methods have been developed to accommodate Archimedean ice draught, whilst
retaining the free edge conditions (Williams & Porter 2009; Montiel, Bennetts &
Squire 2012; Papathanasiou, Karperaki & Belibassakis 2019). The methods address the
geometrical corner created by the partial submergence of the ice edge, but not the
additional water–ice coupling created by the bending moment applied by the water motion
on the ice edge and the kinematic coupling between the ice edge and the water (equality of
the normal water and ice displacements at their interface). Notably, Porter & Porter (2004),
and subsequently Bennetts, Biggs & Porter (2007), derived the free edge conditions as the
natural conditions of a variational principle, but where the thinness of the plate was already
applied in the underlying Lagrangian, i.e. a one dimensional body was partially submerged
in a two-dimensional fluid.

Although ad hoc, the use of the shallow-draught approximation and/or free edge
conditions at a sea ice edge seems unlikely to have a major impact on model predictions, as
the ice thickness (typically tens of centimetres to a few metres) is much smaller than other
characteristic lengths. Relevant wavelengths are in the swell regime (tens to hundreds of
metres; wave periods 10–30 s) and wave–sea ice interactions typically occur in the deep
ocean (>1 km, i.e. much greater than wavelengths). In contrast, ice shelves are hundreds of
metres thick, occur on continental shelves and the sub-ice shelf water cavities are typically
hundreds of metres deep. Ice shelves vibrate in response to ocean waves from long swell
(wavelengths on the order of hundreds of metres) to infragravity waves (wavelengths on
the order of kilometres to tens of kilometres; wave periods 50–300 s) and longer (Chen
et al. 2019). Therefore, the jump in water depth created by the ice draught affects model
predictions (Kalyanaraman et al. 2019).

For the ice shelf application, water–ice coupling at the submerged portion of the shelf
front (i.e. the ice edge) appears likely to influence model predictions for incident swell.
There is compelling evidence that swell forced shelf front strains strong enough to trigger
runaway ice shelf disintegrations, which makes this missing aspect of the benchmark
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thin-plate model conspicuous (Massom et al. 2018). Abrahams et al. (2023) recently
analysed a numerical time domain simulation, in which the ice shelf is modelled using the
full (linear) equations of elasticity. In addition to flexural waves, they identified extensional
waves in the shelf that are generated by water–ice coupling at the shelf front. There
is also observational evidence of ocean waves forcing extensional waves in ice shelves
(Chen et al. 2018). (See Hunkins (1960), for observations of extensional waves in sea ice.)
Further, Abrahams et al. (2023) showed that extensional wave displacement amplitudes
exceed those of the flexural waves for low frequencies, with the extensional to flexural
amplitude ratio tending to infinity as the frequency tends to zero. Kalyanaraman et al.
(2020) analysed numerical computations in the frequency domain of an ice shelf (of finite
length) modelled using the full equations of elasticity (although neglecting gravity), but
applied free edge conditions at the shelf front. They found that the flexural displacement
profiles were similar to those predicted by the benchmark model, at least for two wave
periods in the infragravity regime. The finding is broadly consistent with the results of
studies using the shallow-draught approximation and thick-plate models (Fox & Squire
1991a; Balmforth & Craster 1999).

In this article, we outline a variational principle that derives the governing equations
of the ice shelf problem, where the shelf has an Archimedean draught and is modelled
by the full equations of elasticity, i.e. no simplifying assumptions are made about the
ice displacements. We use the variational principle to derive a thin-plate approximation by
constraining the ice displacements to low-order subspaces, with the underlying assumption
that the ice thickness is small with respect to the wavelengths it supports. The thin-plate
approximation extends the benchmark model by including extensional waves in the
shelf and coupling water and ice motions at the shelf front. We combine the thin-plate
approximation with a single-mode approximation in the water, which involves averaging
with respect to depth, similar to Porter & Porter (2004) and Bennetts et al. (2007). We use
the approximations to investigate the influence of coupling at the ice edge and extensional
waves on ice shelf strains, across the swell and infragravity wave regimes.

2. Preliminaries

Consider a two-dimensional domain of homogeneous, inviscid and irrotational water,
which has an (undisturbed) finite depth H and infinite horizontal extent (figure 1). An ice
shelf of finite thickness h and semi-infinite length covers the surface of the right-hand
side of the water domain. Let the Cartesian coordinate system (x, z) ≡ (x1, x2) define
locations in the water and ice shelf. The horizontal coordinate, x ∈ R, has its origin set
to coincide with the shelf front. The vertical coordinate, z, has its origin set to coincide
with the undisturbed water surface, such that the (flat) bed is located at z = −H.

The ice shelf is assumed to be a homogenous, isotropic, purely elastic solid without
gravitational pre-stress (see Appendix A for simplified calculations suggesting the
gravitational pre-stress has little effect on wave propagation). It has an Archimedean
draught, such that its (undisturbed) lower surface is located at

z = −d ≡ −ρih
ρw
, (2.1)

where ρi = 922.5 kg m−3 and ρw = 1025 kg m−3 are the ice and water densities,
respectively, such that ρi/ρw = 0.9. The ice/water domain is partitioned into the ice shelf,
the sub-shelf water cavity and the open ocean (figure 1), respectively,

Ωsh = {(x, z) : 0 < x < ∞;−d < z < h − d}, (2.2a)
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Figure 1. Schematic (not to scale) of the equilibrium geometry.

Ωca = {(x, z) : 0 < x < ∞;−H < z < −d}, (2.2b)

and Ωop = {(x, z) : −∞ < x < 0;−H < z < 0}. (2.2c)

The sub-domains (2.2) are assumed to be the equilibrium state of the ice/water system,
about which motions are forced by incident waves.

Small amplitude (linear) motions of the ice–water system are considered. Let the
displacement field be

u(x, z, t) = [U(x, z, t); W(x, z, t)] ≡ [U1(x, z, t); U2(x, z, t)]. (2.3)

The displacement in the y-direction (or x3-direction; which points out of the page in
figure 1) is V or U3 ≡ 0. In the ice, the infinitesimal strain tensor, ε(x, z, t), is defined
as

εij ≡ 1
2(Uj,xi + Ui,xj) for i, j ∈ {1, 2, 3}. (2.4)

The Cauchy stress tensor, σ (x, z, t) (i.e. the stress tensor under infinitesimal deformation),
is related to the strain tensor via the standard constitutive relations, such that

εij = − ν
E
δij

3∑
r=1

σrr + 1 + ν

E
σij for i, j ∈ {1, 2, 3}, (2.5)

where E is Young’s modulus and ν is Poisson’s ratio, and E = 11 GPa and ν = 0.3 are
used as standard values for ice shelves. Plane strain is assumed in the x–z plane, i.e. ε3i =
εi3 = 0 (for i = 1, 2, 3) but σ33 is non-zero.

In the water, which is modelled as inviscid, the stress tensor has components

σij = −Pδij for i, j ∈ {1, 2, 3}, (2.6)

where P(x, z, t) is the pressure field. Assuming the water undergoes irrotational motions in
the x–z plane (with no motion in the y-direction), the displacement field is expressed as the
gradient of a scalar displacement potential, Φ(x, z, t). At this stage, no relation is assumed
between the pressure and the displacement potential, i.e. the Bernoulli equation is not
applied. The functions ζ•(x, t) denote the vertical displacements of the water–atmosphere,
water–ice and ice–atmosphere interfaces (• = w–a,w–i, i–a, respectively). They are not
yet related to the ice displacements (u), water pressure (P) or displacements (through Φ).

The relative hydrostatic pressures in the open ocean, ice shelf and sub-shelf water cavity
are, respectively,

Pop(z) = −ρwgz, Psh(z) = P0 − ρig(z + d) and Pca(z) = P0 − ρwg(z + d) = −ρwgz,
(2.7a–c)
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where
P0 = Psh(−d) = Pca(−d) = Pop(−d) = ρigh = ρwgd, (2.8)

and g = 9.81 m s−2 is the constant of gravitational acceleration. Note that Psh(h − d) =
Pop(0) = 0, so (2.7a–c) represents the true hydrostatic pressure minus the constant
atmospheric pressure, Pat, and that the hydrostatic pressure is continuous going from the
open ocean into the sub-shelf cavity.

3. Variational principle

3.1. Lagrangian
The Lagrangian for the ice–water system is

L{u, Φ,P, ζ , τ } = Lsh{u, ζi–a, ζw–i, τ } + Lca{Φ,P, ζw–i, τ } + Lop{Φ,P, ζw–a, τ },
(3.1)

where Lsh, Lca and Lop are the Lagrangians for the ice shelf, sub-shelf water cavity and
open ocean, respectively.

The (linearised) Lagrangian for the ice shelf is expressed as Lsh = Tsh − Vsh, where Tsh
and Vsh are the kinetic and potential energies in the ice shelf, respectively. The kinetic
energy is

Tsh{u} = ρi

2

∫∫
Ωsh

{U2
t + W2

t } dx dz. (3.2)

The potential energy is the integral of the strain energy density plus the gravitational
potential over the shelf domain, plus integrals from linearisation of the moving boundaries
and normal stresses applied to the boundaries (denoted τii; applied shear stresses, τij for
i /= j, are neglected as the surrounding water and air do not support them). The strain
energy density is

ve(ε) = 1
2

2∑
i=1

2∑
j=1

σijεij, (3.3)

which depends only on the strain since (2.5) can be inverted to write the stress in terms of
the strain.

The gravitational potential is calculated relative to the upper surface of the shelf (z =
h − d), as

Psh(z − W) = ρig(W − z + h − d). (3.4)

Therefore, the potential energy in the ice shelf is

Vsh{u, ζi–a, ζw–i, τ } =
∫∫

Ωsh

⎛
⎝1

2

2∑
i=1

2∑
j=1

σijεij + ρig(W − z + h − d)

⎞
⎠ dx dz

+
∫ ∞

0

[
ρigW ζi–a − 1

2
ρigζ 2

i–a − τ22W
]

z=h−d
dx

−
∫ ∞

0

[
(P0 + ρigW) ζw–i − 1

2
ρigζ 2

w–i − τ22W
]

z=−d
dx

−
∫ h−d

−d
[τ11U]∞x=0 dz. (3.5)
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The atmospheric pressure, Pat, appears implicitly in (3.5) via the applied stresses

[τ11]x=0,0<z<h−d = [τ22]x>0,z=h−d ≡ −Pat. (3.6)

The Lagrangian for the sub-shelf water cavity is expressed as Lca = Tca − Vca, where
the kinetic energy in the water cavity is

Tca{Φ} = ρw

2

∫∫
Ωca

{Φ2
xt +Φ2

zt} dx dz. (3.7)

For the potential energy, a term that is analogous to the strain energy density in the ice is

ve(P, Φ) = −P∇2Φ, (3.8)

and the gravitational potential is relative to the water surface (without the ice shelf; z = 0),
i.e.

Pca(z −Φz) = ρig(Φz − z). (3.9)

Therefore, the potential energy is

Vca{Φ,P, ζw–i, τ } =
∫∫

Ωca

{−P∇2Φ + ρig(Φz − z)} dx dz

+
∫ ∞

0

[
(P0 + ρwgΦz) ζw–i − 1

2
ρwgζ 2

w–i − τ22Φz

]
z=−d

dx

−
∫ ∞

0
[−τ22Φz]z=−H dx

−
∫ −d

−H
[τ11Φx]∞x=0 dz. (3.10)

Similarly, the linearised Lagrangian for the open ocean is Lop = Top − Vop, in which

Top{Φ} = ρw

2

∫∫
Ωop

{Φ2
xt +Φ2

zt} dx dz, (3.11)

and

Vop{Φ,P, ζw–a, τ } =
∫∫

Ωop

{−P∇2Φ + ρig(Φz − z)} dx dz

+
∫ 0

−∞

[
ρwgΦz ζw–a − 1

2
ρwgζ 2

w–a − τ22Φz

]
z=0

dx

−
∫ 0

−∞
[−τ22Φz]z=−H dx

+
∫ 0

−H
[−τ11Φx]0

x→−∞ dz. (3.12)
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Again, the atmospheric pressure appears implicitly, via

[τ22]x<0,z=0 ≡ −Pat. (3.13)

Small variations are applied to all unknowns, such that the Lagrangians become

Tsh{u + δu} = Tsh{u} + δTsh{u : δu} + o(δu), and so on. (3.14)

The first variation of the full Lagrangian, δL{u, Φ,P, ζ , τ : δu, δΦ, δP, δζ , δτ }, is

δL = δLsh + δLca + δLop = δTsh − δVsh + δTca − δVca + δTop − δVop. (3.15)

3.2. Action
The action, A, is the integral of the Lagrangian over an arbitrary time interval, t0 < t < t1,
i.e.

A{u, Φ,P, ζ , τ } =
∫ t1

t0
L{u, Φ,P, ζ , τ } dt. (3.16)

Its first variation is

δA{u, Φ,P, ζ , τ : δu, δΦ, δP, δζ , δτ } =
∫ t1

t0
δL{u, Φ,P, ζ , τ : δu, δΦ, δP, δζ , δτ } dt.

(3.17)

From (3.1)–(3.15), the first variation is evaluated as

δA = −
∫ t1

t0

∫∫
Ωsh

{δU(ρiUtt − σ11,x − σ12,z)

+ δW(ρiWtt − σ21,x − σ22,z + ρig)} dx dz dt

+
∫ t1

t0

∫∫
Ωca

{δP∇2Φ + δΦ∇2P̂} dx dz dt

+
∫ t1

t0

∫∫
Ωop

{δP∇2Φ + δΦ∇2P̂} dx dz dt

−
∫ t1

t0

∫ ∞

0
[δζi–aρig(W − ζi–a)

+ δW(σ22 + ρigζi–a + Pat)+ δUσ12]z=h−d dx dt

+
∫ t1

t0

∫ h−d

0
[δWσ12 + δU(σ11 + Pat)]x=0 dz dt

+
∫ t1

t0

∫ ∞

0
[δζw–i{ρig(W − ζw–i)− ρwg(Φz − ζw–i)}

+ δW(σ22 + ρigζw–i − Sbt)+ δUσ12

− δΦP̂z + δΦz(P − ρwgζw–i + Sbt)− δSbt(W −Φz)]z=−d dx dt

+
∫ t1

t0

∫ 0

−d
[δWσ12 + δU(σ11 − Sfr)− δΦP̂x

+ δΦx(P + Sfr)− δSfr(U −Φx)]x=0 dz dt
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+
∫ t1

t0

∫ ∞

−∞
[δΦP̂z − δΦz(P + Sbd)− δSbdΦz]z=−H dx dt

−
∫ t1

t0

∫ 0

−∞
[δζw–aρwg(Φz − ζw–a)+ δΦP̂z

− δΦz(P − ρwgζw–a − Pat)]z=0 dx dt

+
∫ t1

t0

∫ −d

−H
[δΦP̂x − δΦx(P + Sfr)]0+

x=0− dz dt

−
∫ t1

t0

∫ −d

−H
[δSfr 〈Φx〉]x=0 dz dt. (3.18)

Here, 〈•〉 denotes the jump in the included quantity over x = 0, and the notations

P̂(x, z, t) ≡ P + ρw(Φtt + gz), Sfr(z, t) ≡ [τ11]x=0, (3.19a,b)

Sbt(x, t) ≡ [τ22]z=−d and Sbd(x, t) ≡ [τ22]z=−H (3.19c,d)

have been introduced for convenience, where the subscripts fr, bt and bd indicate stresses
on the shelf front, shelf bottom and seabed, respectively. Vanishing of the first variations of
the applied stresses from the atmosphere have been incorporated, as the stresses are known
from (3.6) and (3.13). All variations are assumed to vanish in the far field x → ±∞.

3.3. Governing equations

Enforcing δA = 0 for arbitrary variations, δu and so on, P̂ must satisfy Laplace’s equation

∇2P̂ = 0 for (x, z) ∈ Ωop and (x, z) ∈ Ωca (3.20)

(from domain integral terms proportional to δΦ in (3.18)), with boundary conditions

P̂x = 0 for x = 0, −d < z < 0, P̂z = 0 for − ∞ < x < 0, z = 0, (3.21a,b)

P̂z = 0 for 0 < x < ∞, z = −d and P̂z = 0 for − ∞ < x < ∞, z = −H
(3.21c,d)

(from the terms proportional to δΦ in the respective boundary integrals). Equations (3.20)
and (3.21) for P̂ are uncoupled from the other unknowns, and can be solved to give

P̂ = Cop(t) for (x, z) ∈ Ωop and P̂ = Cca(t) for (x, z) ∈ Ωca, (3.22a,b)

where Cop and Cca are arbitrary functions.
Water pressures in Ωop and Ωca can be deduced from (3.22a,b), respectively. Setting

Cop = Cca ≡ Pat (3.23)

(implicitly using the freedom of an arbitrary function of time in the potentialΦ), the water
pressure is given as the sum of the hydrostatic pressure (introduced earlier) and a dynamic
pressure, such that

P = Pat − ρw(Φtt + gz) for (x, z) ∈ Ωop ∪Ωca. (3.24)

Therefore, Bernoulli’s equation (3.24) appears as a natural condition of the variational
principle, rather than it being imposed as an essential condition. From the remaining

984 A48-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

20
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.200


A thin-plate approximation for ocean waves

conditions given by δA = 0, it is possible to deduce the field equations of the full linear
problem

ρiUtt = σ11,x + σ12,z for (x, z) ∈ Ωsh, (3.25a)

ρiWtt = σ12,x + σ22,z − ρig for (x, z) ∈ Ωsh, (3.25b)

and ∇2Φ = 0 for (x, z) ∈ Ωca ∪Ωop, (3.25c)

where continuities at the ocean–cavity interface 〈Φ〉 = 〈Φx〉 = 0 have been used.
Equations (3.25a,b) are the full equations of linear elasticity in the ice shelf, and (3.25c) is
Laplace’s equation in the water, resulting from the standard assumptions of potential flow
theory. Further, δA = 0 derives the interfacial equations of the full linear problem

W = ζi–a, σ12 = 0 and σ22 + ρigζi–a = −Pat for 0 < x < ∞, z = h − d,
(3.26a–c)

σ12 = 0 and σ11 = −Pat for x = 0, 0 < z < h − d, (3.26d,e)

W = Φz = ζw–i, σ12 = 0, σ22 + ρigζw–i = Sbt

and P − ρwgζw–i = −Sbt for 0 < x < ∞, z = −d, (3.26f –i)

U = Φx, σ12 = 0 and Sfr = −P = σ11 for x = 0,−d < z < 0, (3.26j–l)

Φz = 0 and Sbd = −P for − ∞ < x < ∞, z = −H, (3.26m,n)

Φz = ζw–a and P − ρwgζw–a = Pat for x < 0, z = 0. (3.26o,p)

Equation (3.26) contains conditions at the interfaces between (a–e) the ice shelf and
the atmosphere, ( f –l) the ice shelf and the water, (m,n) the water and the seabed and
(o, p) the water and the atmosphere. Equations (3.26a, f, j,m,o) are kinematic conditions,
i.e. matching of displacements at common boundaries. Equations (3.26b,d,g,k) are
continuities of shear stress (only non-zero in the ice shelf), and (3.26c,e,h,i,l,n, p) are
continuities of normal stresses. Equation (3.26n) is an identity for the applied stress at
the seabed, which may be evaluated once the other unknowns have been calculated from
the boundary value problem defined by the field equations (3.25a–c) and the remaining
interfacial conditions in (3.26), plus radiation conditions.

4. Thin-plate approximation

A thin-plate (depth-averaged) approximation for the ice shelf displacements, u = (U,W),
is derived using the ansatzes

U(x, z, t) ≈ Ū(x, t)− (z + d − h/2)W̄x(x, t) and W(x, z, t) ≈ W̄(x, t), (4.1a,b)

which include a simplified form of extensional motions, via Ū, as well as flexural motion,
via W̄. Equation (4.1b) and the term proportional to W̄x in (4.1a) are the standard
assumptions of flexural waves in thin plates, i.e. points initially normal to the mid-plane
(z = h/2 − d in equilibrium) remain normal after deformation.

The components of the strain tensor (2.5) reduce to

ε11 = Ūx − (z + d − h/2)W̄xx and ε12 = ε21 = ε22 ≡ 0. (4.2a,b)

Thus, σ12 = 0, and assuming σ22 = 0 (i.e. plane stress), (2.5) and (4.2b) imply

σ33 = νσ11 ⇒ σ11 = Mpsε11, (4.3a,b)
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L.G. Bennetts, T.D. Williams and R. Porter

where Mps = E/(1 − ν2) is the plane stress primary wave (P-wave) modulus. As noted by
Fung (1965), ansatz (4.1b) is technically inconsistent with the assumption σ22 = 0, since
ε22 = −ν(1 + ν)σ11/E, i.e. there should be an extension (contraction) in the z-direction
whenever there is a contraction (extension) in the x-direction. This effect is neglected in
order to follow the standard thin-plate approximation.

Applying (4.1) in the ice shelf Lagrangian, Lsh, the first variation of the associated
action,

Ash =
∫ t1

t0
Lsh dt, (4.4)

becomes

δAsh = −h
∫ t1

t0

∫ ∞

0
{δŪ(ρiŪtt − MpsŪxx)} dx dt

−
∫ t1

t0

∫ ∞

0

{
δW̄

(
ρihW̄tt + h3{MpsW̄xxxx − ρiW̄xxtt}

12

+ ghρi + Sbt + Pat + gρi(ζi–a − ζw–i)

)}
dx dt

+
∫ t1

t0

∫ ∞

0
{gρiδζw–i(W̄ − ζw–i)− gρiδζi–a(W̄ − ζi–a)} dx dt

−
∫ t1

t0

∫ ∞

0
{δSbtW̄} dx dt

+
∫ t1

t0

[
δŪ

(
hMpsŪx −

∫ h−d

−d
Sfr dz

)]
x=0

dt

+
∫ t1

t0

[
δW̄

(
ρih3

12
W̄xtt − h3MpsW̄xxx

12

)]
x=0

dt

+
∫ t1

t0

[
δW̄x

(
h3Mps

12
W̄xx +

∫ h−d

−d

(
d − h

2
+ z

)
Sfr dz

)]
x=0

dt

−
∫ t1

t0

∫ 0

−d

[
δSfr

(
Ū −

(
d − h

2
+ z

)
W̄x −Φx

)]
x=0

dz dt. (4.5)

Combining (4.5) with the relevant components of δAca = ∫ t1
t0
δLca dt, the vertical

component of the shelf displacement is coupled to the cavity via the conditions

W̄ − ζi–a = 0, [Φz]z=−d − W̄ = 0, P − ρwgζw–i + Sbt = 0, (4.6a–c)

gρi(h + W̄ − ζw–i)− (P0 + ρwg([Φz]z=−d − ζw–i)) = 0, (4.6d)

and

ρihW̄tt + h3{MpsW̄xxxx − ρiW̄xxtt}
12

+ ghρi + Sbt + Pat + gρi(ζi–a − ζw–i) = 0, (4.6e)
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A thin-plate approximation for ocean waves

for x > 0. As P0 = ρigh, it follows from (4.6a,b,d) that

W̄ = ζw–i = ζi–a = [Φz]z=−d. (4.7)

Substituting (4.7) into (4.6c,e), and using the Bernoulli pressure (3.24) and Archimedean
draught, results in a thin-plate equation for the ice shelf flexure, forced by the water motion
(given below in (4.8a)). In contrast, the thin-plate equation for the extensional motion
(from the first integral in (4.5)) is not coupled to the cavity directly.

Therefore, the approximate δAsh (in (4.5)) combined with δAca derives the thin-plate
approximation field equations

ρw([Φtt]z=−d + gW̄)+ ρihW̄tt + h3{MpsW̄xxxx − ρiW̄xxtt}
12

= 0, (4.8a)

and ρiŪtt − MpsŪxx = 0, (4.8b)

for x > 0. Equation (4.8a) is similar to the benchmark thin-plate equation, i.e. a Kirchoff
plate with fluid loading, but also contains rotational inertia, as with a Timoshenko–Mindlin
plate (Fox & Squire 1991a; Balmforth & Craster 1999). Equation (4.8b) is the standard
field equation for extensional waves in an elastic plate that travel at the P-wave speed√

Mps/ρi, i.e. the extensional Lamb wave speed, consistent with Abrahams et al. (2023).
Coupling (4.5) with δAop = ∫ t1

t0
δLop dt, derives the shelf front conditions for the

thin-plate approximation

h3Mps

12
W̄xx +

∫ h−d

−d

(
d − h

2
+ z

)
Sfr dz = 0, (4.9a)

MpsW̄xxx − ρiW̄xtt = 0, (4.9b)

hMpsŪx −
∫ h−d

−d
Sfr dz = 0, (4.9c)

and Φx −
(

Ū −
(

d − h
2

+ z
)

W̄x

)
= 0 for − d < z < 0, (4.9d)

for x = 0, where Sfr = −[P]x=0 for z ∈ (−d, 0) and Sfr = −Pat for z ∈ (0, h − d).
Equations (4.9a–d) represent, respectively, continuity of bending moment, shear stress,
normal traction and horizontal displacement. As in the full linear problem, the potentialΦ
satisfies Laplace’s equation in the water domain, the impermeable seabed condition and
the free surface conditions, i.e. (3.25c) and (3.26m,o, p).

5. Frequency domain

5.1. Governing equations and single-mode approximation
Assume all dynamic components are time harmonic at some prescribed frequency,
ω ∈ R+, so that the extensional and flexural components of the ice displacements are,
respectively,

Ū(x, t) = u(x) e−iωt and W̄(x, t) = w(x) e−iωt, (5.1a,b)

and the interfacial displacements are

ζ•(x, t) = η•(x) e−iωt for • = w–a,w–i, i–a, (5.2)
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where u,w, η• ∈ C and it is implicitly assumed from here on that only the real parts are
retained for the time-dependent variables. For the water, prescribe Bernoulli pressure via

P(x, z, t) = Pat − ρw{Φtt + gz} for (x, z) ∈ Ωop ∪Ωca ⇒ P̂ = Pat, (5.3)

and constrain the vertical dependence of the potential, such that

Φ(x, z, t) ≈ g
ω2ϕ(x)

cosh{k(z + H)}
cosh(kH)

e−iωt for (x, z) ∈ Ωop, (5.4a)

Φ(x, z, t) ≈ g
ω2ψ(x)

cosh{κ(z + H)}
cosh{κ(H − d)} e−iωt for (x, z) ∈ Ωca, (5.4b)

for wavenumbers k, κ ∈ R+ to be defined, i.e. a single-mode approximation (Porter &
Porter 2004; Bennetts et al. 2007), noting that (5.4) creates a jump in the potential over the
interface z ∈ (−H,−d) for x = 0. The stresses at the shelf bottom and front are prescribed
as

Sbt(x) = −[P]z=−d + ρwgζw−i for x > 0, (5.5a)

and Sfr(z) = Pat − ρw{[Φtt]x=0 + gz} for − H < z < 0. (5.5b)

Applying these constraints to δA in (3.18), using δAsh in (4.5), gives

δA =−h
∫ t1

t0

∫ ∞

0
e−2iωtδu {−ρiω

2 u − Mps u′′} dx dt

−
∫ t1

t0

∫ ∞

0
e−2iωtδw

{
−ρihω2w + h3{Mpsw′′′′ + ρiω

2w′′}
12

+ gρw(ηw–i − ψ)+ gρi(ηi–a − ηw–i)

}
dx dt

+ ρwg2

ω2

∫ t1

t0

∫ ∞

0
e−2iωtδψ

{∫ −d

−H
(ψ ′′ + κ2ψ)

cosh2{κ(z + H)}
cosh2{κ(H − d)} dz

+
{
ω2

g
w − κ tanh{κ(H − d)}ψ

}}
dx dt

+ g
∫ t1

t0

∫ ∞

0
e−2iωtδηw−i (ρi − ρw)(w − ηw−i) dx dt

− ρig
∫ t1

t0

∫ ∞

0
e−2iωtδηi−a(w − ηi−a) dx dt

+ ρwg2

ω2

∫ t1

t0

∫ 0

−∞
e−2iωtδϕ

{∫ 0

−H
(ϕ′′ + k2ϕ)

cosh2{k(z + H)}
cosh2(kH)

dz

+ tanh(kH){ϕ − ηw−a}
}

dx dt

− ρwg2

ω2

∫ t1

t0

∫ 0

−∞
e−2iωtδηw−a

(
k tanh(kH)ϕ − ω2

g
ηw−i

)
dx dz

+ δCop−ca + δCop−sh, (5.6)

984 A48-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

20
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.200


A thin-plate approximation for ocean waves

–2 –1 0
–6

–5

–4

–3

–2

–1

lo
g 1

0(
•) 

(m
–1

)

log10(k) log10(κ) log10(q)

log10 (      ) (rad s–1)2π�

ω

Figure 2. Wavenumbers for the open water (k), flexural-gravity wave (κ) and extensional wave in the shelf (q)
vs frequency for shelf thickness h = 200 m and water depth H = 800 m, along with the standard parameter
values ρi = 0.9ρw, E = 11 GPa, ν = 0.3 and g = 9.81 m s−2.

where δCop−ca and δCop−ca contain contributions on the interfaces between the open water
and the shelf front and cavity, respectively.

Setting δA = 0 for arbitrary variations (δu and so on) gives a set of governing equation
for the unknown functions of the horizontal spatial coordinate in (5.1)–(5.4), which
includes depth-averaged equations in the open water and cavity. In the open water (x < 0)

aop(ϕ
′′ + k2ϕ)+ tanh(kH){ϕ − ηw−a} = 0, (5.7a)

where aop =
∫ 0

−H

cosh2{k(z + H)}
cosh2(kH)

dz, (5.7b)

k tanh(kH)ϕ − ω2

g
ηw−a = 0 and ϕ − ηw−a = 0. (5.7c,d)

Equations (5.7c,d) imply

k tanh(kH) = ω2

g
, (5.7e)

so that k ∈ R+ used in (5.4a) satisfies the standard open water dispersion relation
(figure 2). Therefore, δA = 0 derives the field equation of the open water single-mode
approximation

ϕ′′ + k2ϕ = 0 for x < 0, (5.8)

which has the general solution

ϕ(x) = A(op) eikx + B(op) e−ikx, (5.9)

for as yet unspecified constants A(op) and B(op).
The depth-averaged equation in the cavity (x > 0) is

acaψ
′′ + {κ2aca − κ tanh{κ(H − d)}}ψ + ω2

g
w = 0, (5.10a)

where aca =
∫ −d

−H

cosh2{κ(z + H)}
cosh2{κ(H − d)} dz. (5.10b)
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The remaining equations in the shelf–cavity involving the flexural shelf displacement are

−ρihω2w + h3{Mpsw′′′′ + ρiω
2w′′}

12
+ gρw(ηw–i − ψ)+ gρi(ηi–a − ηw–i) = 0, (5.11a)

w = ηi−a and (ρi − ρw)(w − ηw−i) = 0 ⇒ w = ηw−i = ηi−a. (5.11b–d)

Therefore, enforcing δA = 0 derives the coupled field equations of the single-mode and
thin-plate approximations

(1 − mω2)w + Fw′′′′ + Jω2w′′ − ψ = 0, (5.12a)

acaψ
′′ + {κ2aca − κ tanh{κ(H − d)}}ψ + ω2

g
w = 0, (5.12b)

and G u′′ + mω2u = 0, (5.12c)

for x > 0, where

F ≡ Mpsh3

12ρwg
, G ≡ hMps

ρwg
, J ≡ ρih3

12ρwg
and m ≡ ρih

ρwg
. (5.13a–d)

Equations (5.12a,b) are identical to the single-mode approximation of Porter & Porter
(2004) and Bennetts et al. (2007), except for the appearance of rotational inertia. Therefore,
adapting Porter & Porter (2004) and Bennetts et al. (2007) to include rotational inertia, the
general solutions are

ψ(x) = A(ca) eiκx + B(ca) e−iκx +
∑

n=1,2

{A(ca)
−n eiκ−nx + B(ca)

−n e−iκnx}, (5.14a)

and w(x) = A( fl) eiκx + B( fl) e−iκx +
∑

n=1,2

{A( fl)
−n eiκ−nx + B( fl)

−n e−iκ−nx}, (5.14b)

for as yet unspecified constants A(ca), B(ca), A( fl) and B( fl), such that

A(ca) = ω2

gκ tanh{κ(H − d)}A( fl), (5.15a)

and A(ca)
−n = a−1

ca {F(κ2 + κ2
−n)− Jω2}κ tanh{κ(H − d)}A( fl)

−n (n = 1, 2), (5.15b)

and similarly for the constants related to the left-going waves. The wavenumber κ is a root
of the flexural-gravity wave dispersion equation

{Fκ4 − Jω2κ2 + 1 − mω2}κ tanh{κ(H − d)} = ω2

g
. (5.16)

For low frequencies, the flexural-gravity wavenumber, κ , is similar to the open-water
wavenumber, k, as restoration due to flexure (and rotational inertia) is negligible, but
is slightly larger due to the reduced water depth, i.e. H − d < H (figure 2). For high
frequencies, flexural restoring dominates and the flexural-gravity wavenumber becomes
much smaller than the open-water wavenumber. The wavenumbers κ−n ∈ R + i R+ (n =
1, 2) are roots of the quartic equation

aca(Fκ4
−n − Jω2κ2

−n + 1 − mω2)+ {F(κ2 + κ2
−n)− Jω2}κ tanh{κ(H − d)}} = 0,

(5.17)
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A thin-plate approximation for ocean waves

which typically satisfy κ−2 = −κ∗
1 , where ∗ denotes the complex conjugate (Williams

2006; Bennetts 2007).
Equation (5.12c), for the extensional component of the shelf motions, has the general

solution
u(x) = A(ex) eiqx + B(ex) e−iqx, (5.18)

for as yet unspecified constants A(ex) and B(ex). The extensional wavenumber, q, is

q = ω

√
m
G
, (5.19)

which is typically much smaller than the flexural-gravity wavenumber (and the open water
wavenumber; figure 2).

The contribution to δA on the interface between the open ocean and the cavity is

δCop−ca = −ρwg
∫ t1

t0
e−2iωt [δϕ]x=0

{∫ 0

−H
[ϕ′]x=0

cosh2{k(z + H)}
cosh2(kH)

dz

−
∫ −d

−H
[ψ ′]x=0

cosh{k(z + H) cosh{κ(z + H)}
cosh(kH) cosh{κ(H − d)} dz

−
∫ 0

−d

ω2

g
cosh{k(z + H)}
cosh{κ(H − d)}

{
u −

(
d − h

2
+ z

)
w′
}

dz

}
dt

+
∫ t1

t0
e−2iωt [δψ ′]x=0

{∫ 0

−H
[ϕ]x=0

cosh2{κ(z + H)}
cosh2{κ(H − d)} dz

−
∫ −d

−H
[ψ ′]x=0

cosh{k(z + H) cosh{κ(z + H)}
cosh(kH) cosh{κ(H − d)} dz

}
dt. (5.20)

Setting δCop−ca = 0 leads to the interfacial ‘jump’ conditions for the single-mode
approximation

aop−caϕ = acaψ and aopϕ
′ = aop−caψ

′ + ω2

g
{v0 u − v1w′}, (5.21a,b)

for x = 0, where

aop−ca =
∫ −d

−H

cosh{k(z + H)} cosh{κ(z + H)}
cosh(kH) cosh{κ(H − d)} dz, (5.22)

v0 =
∫ 0

−d

cosh{k(z + H)}
cosh(kH)

dz, (5.23)

and v1 =
∫ 0

−d

cosh{k(z + H)}
cosh(kH)

(
d − h

2
+ z

)
dz. (5.24)

Equation (5.21a) is a weak form of continuity of pressure between the open ocean and
sub-shelf water cavity. Equation (5.21b) is a weak form of continuity of horizontal water
velocity between the open ocean and combined water and shelf front. The jump conditions
are identical to the jump conditions derived by Porter & Porter (2004) and Bennetts
et al. (2007) (restricted to a piecewise constant geometry), except that (i) the integration
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Figure 3. Normalised coefficients of the (a) jump condition (5.21b) and (b) shelf edge conditions (5.26a,b),
which couple the open water to the shelf, vs frequency, for ice thickness h = 200 m (thin dashed curves)
and h = 400 m (thick solid) and water depth H = 800 m. Coefficients are normalised with respect to the
coefficients of the relevant leading term. Appropriate wavenumbers replace the derivatives and (5.15a) is used
to relate the amplitude of the flexural wave with the displacement potential.

of the coefficient vop extends to the free surface (z = 0) rather than the ice underside
(z = −d), and (ii) the ice displacements appear in (5.21b). For low frequencies, the
(normalised) coefficient of the cavity water velocity in (5.21b) is much greater than the
(normalised) coefficients of the ice displacement/velocity (figure 3a), indicating the jump
condition is dominated by the depth-averaged water velocities. The coefficients of the ice
displacement/velocity increase with frequency, whereas the coefficient of water velocity
decreases, such that the former become comparable to and then much greater than the
latter, which indicates the jump condition provides strong coupling between the open ocean
and shelf.

The contribution to δA on the interface between the open ocean and the ice shelf is

δCop−sh =
∫ t1

t0
[δu]x=0

{
e−2iωt

(
hMps[u′]x=0 + ρwg[ϕ]x=0

∫ 0

−d

cosh{k(z + H)}
cosh(kH)

dz

)

+ e−iωt

(∫ 0

−d
Pat − ρwgz dz

∫ 0

−d
Pat dz

)}
dt

+
∫ t1

t0
e−2iωt[δw]x=0

(
−ρih3ω2

12
[w′]x=0 − h3Mps

12
[w′′′]x=0

)
dt
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+
∫ t1

t0
[δw′]x=0

{
e−2iωt

(
h3Mps

12
[w′′]x=0

− ρwg[ϕ]x=0

∫ 0

−d

(
d − h

2
+ z

)
cosh{k(z + H)}

cosh(kH)
dz

)

+ e−iωt

(∫ 0

−d

(
d − h

2
+ z

)
(Pat − ρwgz) dz

∫ 0

−d

(
d − h

2
+ z

)
Pat dz

)}
dt.

(5.25)

Setting δCop−sh = 0 leads to the (dynamic, ω /= 0) shelf front conditions

G u′ + v0ϕ = 0, Fw′′ + v1ϕ = 0 and Fw′′′ + Jω2w′ = 0, (5.26a–c)

for x = 0. (The static conditions are given in Appendix B.) Equations (5.26a,b) couple
the ice and open-water displacements. The ratios of the coefficients in the coupling
conditions (figure 3b) indicate (i) strong coupling in (5.26a) at low frequencies (−1 <
log10 |v0/(q G)| < 0 for both thicknesses when log10(ω/(2π)) < −1.5) degenerating
to uncoupled zero normal traction at high frequencies (log10 |v0/(q G)| < −2 for
log10(ω/(2π)) > −0.6), and (ii) (5.26b) is approximately the bending moment component
of the standard (uncoupled) free edge conditions over the frequency range considered
(log10 |ω2v1/(gFκ3 tanh{κ(H − d)})| < −1, except for the thinner shelf over a short
interval at low frequencies).

5.2. Scattering matrix
The jump conditions (5.21) and shelf front conditions (5.26) are applied to the general
solutions (5.9) and (5.14) to derive a system of relations between the amplitudes of the
waves that propagate/decay towards and away from x = 0, A(•) and B(•), respectively.
Restricting to propagating waves only, and using (5.15) to eliminate A(ca) and B(ca),
derives the scattering matrix, S , which relates the outgoing amplitudes to the incoming
amplitudes, such that⎛
⎝ B(op)

B( fl)

B(ex)

⎞
⎠ = S

⎛
⎝ A(op)

A( fl)

A(ex)

⎞
⎠ where S =

⎛
⎝ R(op→op) T ( fl→op) T (ex→op)

T (op→fl) R( fl→fl) R(ex→fl)

T (op→ex) R( fl→ex) R(ex→ex)

⎞
⎠,

(5.27a,b)

in which R• and T • are, respectively, reflection and transmission coefficients to be
found from the solution of the problem in § 5.1. In general,T (op→ex) /=T (ex→op), etc.,
as T (op→ex) is the coefficient of the extensional wave in the ice shelf forced by
a unit-amplitude incident wave from the open ocean, whereas T (ex→op) denotes the
amplitude of a wave transmitted into the open ocean by an incident extensional wave
from the ice shelf. The latter is typically not a physical problem considered in wave–shelf
interaction studies. Using standard methods (Porter & Porter 2004), it can be deduced that

S S∗ = I, (5.28)

where ∗ denotes the conjugate matrix and I is the 3 × 3 identity matrix, from which energy
balances can be derived (see below).
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Figure 4. Wave-induced strain fields up to 5 km from the shelf front, for ice thickness h = 200 m, water
depth H = 800 m and wave periods (a) T = 15 s and (b) T = 50 s.

6. Results

Consider the problem in which motions are excited by an ambient incident wave from the
ocean (A( fl) = A(ex) ≡ 0) at a prescribed period T = 2π/ω. Without loss of generality, a
unit incident wave amplitude is set (A(op) = 1 m). The primary quantity of interest is the
spatial component of the (non-zero) strain component

ε̂11(x, z : T) = u′ − (z + d − h/2)w′′, (6.1)

which is such that ε11(x, z, t) = ε̂11(x, z) e−iωt. Examples of the strain field due to incident
waves (figure 4) indicate that the extensional and flexural motions both contribute to the
strain for relatively short periods (in the swell regime), as it has nonlinear structure in
both spatial dimensions, whereas only the flexural motion contributes for longer periods
(infragravity wave regime and above), indicated by the vertical symmetry about the
unstrained mid-plane (z = h/2 − d). The shelf front experiences strains comparable to the
shelf interior for the shorter period and near-zero strain for the longer period, where the
latter is ensured by the exponentially decaying components of the flexural motion (with
wavenumbers κ−n in (5.14b)).

Example wave-induced strain profiles at the lower ice shelf surface (figure 5) show
the influence of the additional terms in the thin-plate approximation. Results from the
benchmark thin-plate model (without water–ice coupling at the shelf front and extensional
waves) are shown alongside results from an intermediate version of the model derived
in § 5 that includes water–ice coupling at the shelf front but no extensional waves, and
the full model that includes extensional waves. The differences between the intermediate
model (with water–ice coupling) and the full model (with extensional waves) highlight
the influence of the extensional waves on the shelf strains. The differences between the
benchmark model (in which hydrodynamic loads are imposed only at the lower shelf
surface) and the two new models highlight the influence of hydrodynamic forcing at
the shelf front on the shelf strains. In particular, the differences between the benchmark
and intermediate models isolate the effects of water–ice coupling at the shelf front
from the coupling at the lower surface on flexural waves. The strains are scaled by the
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Figure 5. Comparison of scaled wave-induced strain profiles predicted by three thin-plate models: (i) the
benchmark model without water–ice coupling at the shelf front and extensional waves (Porter & Porter
2004; Bennetts et al. 2007); (ii) an intermediate model in which water–ice coupling occurs at the shelf front
through the velocity jump condition (5.21b) and the bending moment condition (5.26b); and (iii) the full
model proposed in § 5 including extensional wave motion and water–ice coupling at the shelf front, for shelf
thicknesses (a,c) h = 200 m and (b,d) h = 400 m, and bed depth H = 800 m, in response to incident waves
with periods (a,b) T = 15 s and (c,d) T = 50 s.

shelf thickness, such that strains for different thickness values are of the same order of
magnitude for the different wave periods. In all four cases (figure 5a–d), the benchmark
model predicts the strain modulus increases from zero at the shelf front to a maximum
value after several kilometres, followed by a plateau at a slightly smaller value.

For the shorter wave period (figure 5a,b), the addition of water–ice coupling at the shelf
front (through (5.21b) and (5.26b)) causes a large relative increase in the strain, by factors
of ≈3 for the thinner shelf and ≈75 for the thicker shelf at the plateaus (approximately
x > 3 km). The strain at the shelf front is non-zero and, for the thicker shelf (figure 5b), the
greatest strain occurs at the shelf front, such that the wave–ice coupling causes a qualitative
change in the strain profile. The effect of wave–ice coupling on the strain profiles is almost
imperceptible for the longer wave period (figure 5c,d), although the strains are one to
two orders of magnitude larger than for the shorter period (h|ε̂11| is up to order 10−3

for T = 50 s vs order 10−5–10−4 for T = 15 s). Moreover, the change in scale masks the
similarity in the shelf front strain values for the respective thicknesses, as anticipated by
the coupling coefficient in the bending moment condition (figure 3b; yellow curves).

The addition of extensional waves changes the qualitative behaviour of the strain profiles
for the shorter wave period (figure 5a,b). Notably, the strain does not reach a constant
value away from the shelf front, due to interference in the underlying wave field between
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Figure 6. Transmitted energy proportions for flexural and extensional waves (blue and red curves, respectively)
vs wave period, for shelf thicknesses (a) h = 200 m and (b) h = 400 m, and bed depth H = 800 m.

the flexural wave (with wavenumber κ) and the extensional wave (q), both of which persist
into the far field, x → ∞. The extensional waves have a far smaller effect on the strain
profiles for the longer wave period (figure 5c,d), although their influence for the thicker
shelf (figure 5d) is greater than that of the water–ice coupling on the flexural waves.

The proportion of incident wave energy transmitted into the flexural and extensional
waves is used to assess their relative influence on the ice shelf motion vs wave period.
The distribution of incident wave energy is derived from (5.28), which gives the energy
balance

R + T ( fl) + T (ex) = 1, (6.2)

where

R = |R(op→op)|2, T ( fl) = |T ( fx→op)| |T (op→fl)| and T (ex) = |T (ex→op)| |T (op→ex)| (6.3a–c)

are the proportions of the incident energy in the reflected wave (R), and the flexural (T ( fl))
and extensional (T (ex)) waves transmitted into the shelf–cavity region.

For periods in the majority of the swell regime (here defined as wave periods from
10 to 30 s), the transmitted extensional waves carry more energy than the flexural waves
(figure 6). The difference is approximately an order of magnitude for the shortest periods
considered, and is greatest for the thinner shelf (figure 6a). The proportion of energy in the
flexural waves increases steeply as wave period transitions from the swell to infragravity
regimes, whereas the proportion of energy in the extensional waves slightly decreases. This
causes the flexural wave energy to exceed the extensional wave energy in the infragravity
wave regime, with the difference approximately two orders of magnitude at the longest
wave periods considered and greater for the thinner shelf. The wave period at which the
energies of the flexural and extensional waves are equal is longer for the thicker shelf than
the thinner shelf (≈30 s vs ≈23 s).
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Figure 7. (a,b) Maximum flexural strains due to incident waves at the upper (z = h − d) and lower (z = −d)
shelf surfaces, and (c,d) corresponding locations, for shelf thicknesses (a,c) h = 200 m and (b,d) h = 400 m,
and bed depth H = 800 m, with results of the benchmark model shown for reference.

For the cases tested with the full approximation outlined in § 5, the maximum shelf
strains due to incident waves are attained at either the upper or lower shelf surface, which is
similar to the benchmark model, where the maximum strains are attained at both upper and
lower surfaces due to symmetry about the mid-plane. In the swell regime, the maximum
strains predicted by the full model far exceed those of the benchmark model (figure 7a,b).
The maximum strains at the upper surfaces slightly exceed those at the lower surface
for the smallest wave periods considered. For longer periods, the maximum strains at
the upper and lower surfaces are almost identical, and they tend towards the maximum
strain predicted by the benchmark model, as wave period increases, such that they are
indistinguishable in the infragravity regime.

For the shortest wave period considered, the strain maxima at the upper surface occur
only hundreds of metres from the shelf front, and move closer towards the shelf front as
wave period decreases (figure 7c,d). In contrast, the maxima predicted by the benchmark
model occur more than a kilometre away from the shelf front, and the maxima at the lower
surface predicted by the full approximation occur even farther away. For shorter periods
and the thinner shelf, the strain maxima move between distinct regions of large strain at
the upper and lower surfaces (yellow patches in figure 4a), which causes the jumps in the
locations of maximum strain (figure 7c).

7. Conclusions and discussion

The governing equations for the canonical problem of incident waves from the open
ocean forcing motions of a floating ice shelf, in which the ice shelf is modelled by
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the full equations of elasticity and has an Archimedean draught, have been derived
from a variational principle. The variational principle was used to derive a thin-plate
approximation for the ice shelf. Previous derivations of the governing equations for ice
shelves (or other floating bodies) as thin floating elastic plates, including those based
on variational principles (Porter & Porter 2004; Bennetts et al. 2007), have assumed the
thin-plate approximation from the outset (i.e. depth averaging in the ice), thus resulting in
the ice shelf satisfying free edge conditions at the shelf front. In contrast, the variational
principle presented in this study derives shelf front conditions in which the water and
ice are coupled. The water–ice coupling allows extensional waves to be excited in the
shelf, further extending previous thin-plate approximations. The thin-plate approximation
was combined with a single-mode approximation in the water. Results have shown that
the water–ice coupling at the submerged portion of the shelf front and the extensional
waves significantly increase wave-induced shelf strains for wave periods in the swell
regime. In contrast, they have a negligible effect for periods in the infragravity wave
regime.

Variational principles are often used to derive approximations for water wave problems,
dating back to Luke (1967), and with the so-called (modified) mild-slope equations of
Miles (1991), Chamberlain & Porter (1995) and others of particular relevance to the
present study. The variational principle presented in § 3 can be viewed as an extension
of the variational principle of Porter & Porter (2004) to incorporate the full equations of
elasticity for the floating ice. However, there are notable differences in the approach used
here, which is more closely aligned to the ‘unified theory’ of Porter (2020) for open-water
waves. In particular, our use of a displacement potential in the water, for consistency with
the unknown displacements in the ice, is a major departure from Porter & Porter (2004)
and others before. Further, we include interfacial stresses in the variational principle,
so that all matching conditions arise as natural conditions of the variational principle,
and essential conditions do not have to be imposed. There is evidence from studies on
cognate problems (without water–ice coupling at the ice edge and extensional waves)
that the single-mode approximation is accurate (Bennetts et al. 2007; Bennetts, Biggs &
Porter 2009; Bennetts & Meylan 2021). In particular, Liang, Pitt & Bennetts (2023) give
evidence the single-mode approximation is accurate for ice shelf strains across a range of
relevant wave periods and for realistic geometries. However, in general, the single-mode
approximation becomes less accurate as frequency increases and the impedance mismatch
between the open water and the cavity water becomes more pronounced (figure 2).
Following Bennetts et al. (2007), the single-mode approximations (5.4) can be extended
to include a finite number of vertical modes that support evanescent waves, such that
continuities between the open ocean and sub-shelf water cavity are satisfied to an arbitrary
accuracy.

The primary motivation for present study was to derive a consistent thin-plate
approximation, in which the water and ice are coupled at the shelf front. Regimes have
been found in which the water–ice coupling has a major impact on ice shelf strains.
However, studies are still needed to test the validity of the thin-plate assumptions ((4.1)
or similar), particularly for thick shelves and incident swell. The studies could be based
on numerical solutions, for which the software presented by Kalyanaraman et al. (2021) is
available if the present model is modified to a finite length shelf and the gravitational
acceleration in the shelf is removed. Alternatively, similarly to the approach proposed
above to extend the single-mode approximation in water, the thin-plate ansatzes (4.1) could
be extended with additional terms to improve accuracy. For instance, higher-order terms
in the ansatz for the vertical displacement would remove an inconsistency between the
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low-order ansatz used in this study and the plane stress assumption (Fung 1965). Therefore,
the method outlined to derive the thin-plate approximation provides a framework to obtain
the full solution (3.25) and (3.26).

The approximation derived in this study (§ 5) predicts extensional wave displacements
that are greater than flexural wave displacements for low frequencies (long periods),
and that the amplitude ratio becomes unbounded as frequency tends to zero, such that
T (op→ex) → ∞ as ω → 0 (not shown), which is consistent with the findings of Abrahams
et al. (2023). This property is a consequence of the elliptical trajectories of water particles
having aspect ratios that increasingly skew towards the horizontal axis as wavelengths
increase. However, our results show that extensional waves have a negligible impact on
shelf strains for long periods (e.g. figure 5). Further, flexural waves hold greater energy
than extensional waves for long periods, i.e. T ( fl) � T (ex) for T � 1 (figure 6), where
the small limiting values of T ( fl) are due to decreases in T (ex→op) compensating for
increases in T (op→ex). Intuitively, as incident waves get longer, the impact of the ice cover
decreases, resulting in κ ≈ k (figure 2) and most of the incident wave transmitting into a
flexural-gravity wave in the shelf–cavity interval (T (op→ex) ≈ 1).

The strain magnitudes presented in § 6 are one to two orders of magnitude smaller
for wave periods in the swell regime than in the infragravity wave regime. However,
swell amplitudes are typically much greater than infragravity wave amplitudes, such that
the benchmark model predicts they create strains of comparable magnitude (Bennetts,
Liang & Pitt 2022). In particular, flexural-gravity waves at periods in the swell regime
are amplified by crevasses in ice shelves (Bennetts et al. 2022), and, thus, our findings
highlight a potential, additional role of water–ice coupling and extensional waves in these
amplifications. Further, the thin-plate model presented could be extended to study whether
periodic thickness variations in the ice shelf block ocean wave energy propagation through
the shelf (Freed-Brown et al. 2012; Nekrasov & MacAyeal 2023).

The dynamic problem (ω /= 0) was considered in this study, so that the derived
approximation could be compared with the benchmark thin-plate approximation, in
order to identify the influence of water–ice coupling at the shelf front and extensional
waves. The static problem (ω = 0) can also be derived from the variational principle
(Appendix B). Static extensions are forced by traction at the shelf front (B2c), due to
atmospheric pressure and static water pressure (B3). The shelf front condition indicates
the extensional contribution to the non-zero strain is u′(0) = −p0/G, which is order 10−5

for h = 200 m and 400 m. It is comparable to the dynamic strains induced by infragravity
waves (figure 5c,d) and one to two orders of magnitude greater than the dynamic strains
induced by swell (figure 5a,b), although these are only for one metre amplitude incident
waves and mean daily swell amplitudes reaching ice shelves can be up to four–five times
larger (Teder et al. 2022). However, bounded static extensions require a finite shelf (B6).
In contrast, the semi-infinite shelf supports bounded static flexure (B5) forced by bending
at the shelf front (B2a) due to static water pressure (B3). The flexural contribution to
the non-zero strain is (z + d − h/2)w′′(0) = (z + d − h/2) p1/F, which has a maximum
value at z = −d on the order of 10−5 for h = 200 m and 10−4 for h = 400 m. Therefore,
the static problem indicates the static strains close to the ice edge can be comparable to or
larger than the dynamic strains caused by wave motion. This may motivate future studies
to consider interactions between the static and dynamic problems, i.e. pre-stress. Pre-stress
on the relatively short time scales of ocean waves could also result from long time scale
viscous creep (e.g. Weertman 1957).
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Appendix A. Finite deformation of an infinitely long ice shelf

Consider an infinitely long ice shelf of constant density ρi in the absence of gravity. Let
gravity be increased from zero, such that it compresses the ice shelf onto an incompressible
water base. This induces a finite initial stress (typically called a ‘pre-stress’) to the ice,
which can modify the properties of waves in the ice.

In Eulerian coordinates (relative to the ice shelf after being compressed), the strain
tensor is εfinite, with components (Spencer 2004)

ε
finite
ij = εij − 1

2

3∑
k=1

Uk,xiUk,xj, (A1)

where εij is the linearised strain tensor from (2.4). In order to consider infinitesimal waves
in the x–z plane, the displacement is split, such that

U1(x, z, t) = Û(x, z, t), U2(x, z, t) = Whs(z)+ Ŵ(x, z, t) and U3 = 0, (A2a–c)

where the superscript ‘hs’ indicates hydrostatic displacements and hats indicate dynamic
displacements due to waves. Substituting (A2a–c) into (A1), and ignoring second-order
terms involving Ûi, the strain is split into

εfinite(x, z, t) = εhs(z)+ ε̂(x, z, t), (A3)

where

εhs
22 = Wstatic

z

(
1 − 1

2
Wstatic

z

)
and ε̂ = 1

2

⎛
⎝ 2Ûx 0 Ûz + γ Ŵx

0 0 0
Ûz + γ Ŵx 0 2γ Ŵz

⎞
⎠ , (A4a,b)

in which

γ (z) = 1 − Whs
z and εhs

ij = 0 if i /= 2 or j /= 2 (i, j ∈ {1, 2, 3}). (A5a,b)

The factor γ induces coupling between the static and wave problems. The density after
compression is ρiγ (z), i.e. it is no longer constant. However, if Whs

z � 1, γ ≈ 1, hence
the coupling between the static and wave problems is removed and the ice has constant
density.

While the finite-deformation problem in this case is tractable, it is simpler and more
instructive to solve the linear problem and check the size of Whs

z a posteriori. From (3.25)
and (3.26), the static problem can be written

σ hs
22,z = ρig, (A6a)

σ hs
22 = MWhs

z , (A6b)
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σ hs
22(h − d)+ ρigWhs(h − d) = −Pat, (A6c)

Whs(−d) = 0, (A6d)

where

M = E(1 − ν)

(1 + ν)(1 − 2ν)
(A7)

is the P-wave modulus, which is typically 109–1010 Pa. Hence

σ hs
22 = MWhs

z = ρig(z + d)+ Shs
bt ∈ [Shs

bt , Shs
bt + ρigh], (A8a)

and MWhs = 1
2ρig(z + d)2 + Shs

bt (z + d), (A8b)

where Shs
bt is the unknown stress at the bottom of the ice. Here, Whs satisfies (A6d), while

(A6c) is satisfied if

− Shs
bt

M
= 2Pat + ρigh(2M + ρigh)

2M(M + ρigh)
= max{|Whs

z | for z ∈ [−d, h − d]}. (A9)

Since the atmospheric pressure Pat ≈ 106 Pa, |Whs
z | � 1 if the ice thickness h �

M/(ρig) ≈ 5 × 105 m or 500 km. Hence, for typical ice shelves, gravitational compression
should have only a negligible effect on wave motion.

Appendix B. Static version of thin-plate equations (ω = 0)

The static versions (ω = 0) of the thin-plate equations (5.12a,c) are, respectively,

Fw′′′′ + w = 0 and u′′ = 0 for x > 0. (B1a,b)

The corresponding static versions of the shelf front conditions (5.26a–c) are

Fw′′ − p1 = 0, w′′′ = 0 and G u′ + p0 = 0 for x = 0, (B2a–c)

where

p0 = 1
ρwg

{∫ 0

−d
(Pat + ρwgz) dz +

∫ h−d

0
Pat dz

}

= Path
ρwg

− d2

2
, (B3)

and p1 = 1
ρwg

{∫ 0

−d

(
d − h

2
+ z

)
(Pat + ρwgz) dz +

∫ h−d

0

(
d − h

2
+ z

)
Pat dz

}

= −d2

2

(
d
3

− h
2

)
. (B4)

The static flexure, w = wst, satisfying (B1a), has bounded solutions of the form

wst(x) = e−βx(C+ eiβx + C− e−iβx), (B5)

where β = (4F)−1/4 and C± are determined from (B2a,b). The general solution for the
static extension, u = ust, satisfying (B1b) is

ust(x) = Ax + B. (B6)

It has no bounded solutions satisfying the shelf front condition (B2c).
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