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Abstract

Suppose the elementary abelian group A acts on the group G where A and G have relatively prime
orders. If CG(a) belongs to some formation fffor all non-identity elements a in A, does it follow that
G belongs to ff ? For many formations, the answer is shown to be yes provided that the rank of A is
sufficiently large.

1980 Mathematics subject classification (Amer. Math. Soc): 20 D 10.

Suppose A is an elementary abelian /--group of order r" which operates on the
finite /-'-group G. A frequently used method to study this situation is to look at
the subgroups Cc(a) for the non-identity elements a G A and to ask whether the
structure of these subgroups gives any information about the structure of G as a
whole. In this paper, we are interested in the following type of question: If
Cc(a) G f, where "f is some "nice" class of groups, for all a G A*, does it follow
that G G f ? For this question to have any hope of receiving an affirmative
answer, we usually have to exclude certain small values of n. Thus we are trying
to prove theorems of the following sort: If CG(a) G ^ for all a G A* and if
n s* n0 (where n0 depends only on <5), then GG J . The solvable signalizer
function theorem [5] implies such a result with <3 the class of all finite solvable
groups and nQ — 3. Another example may be found in [14] where ?Fis the class of
finite nilpotent groups and n0 — 3. We will say that a class <? is admissible
provided that such a result is true.

The main thrust of this paper is to determine sufficient conditions for a
formation and, in particular, for a subgroup-closed saturated formation to be
admissible. If 'S is a subgroup-closed saturated formation we find sufficient
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conditions for *$ to be admissible in terms of the local formations determining <$
(Theorems 3.12 and 3.17). The basis of our results is the following theorem:

Assume 'S is an admissible subgroup-closed formation and define 6 by

@= {G\G/K<=<5}.

(Here K is some specified characteristic subgroup of G. Examples of some of the
possibilities for K which are covered by this paper are F(G), Z(G), OJ^G), and
O^ v(G) where -n is any set of primes.) Then Q is an admissible subgroup-closed
formation.

Using this, we may construct many admissible formations. For example, if
K = Z(G) and ^consists of all nilpotent groups of class at most c, then § consists
of all nilpotent groups of class at most (c + 1). In this way, an easy induction
yields that

{G | G is a finite nilpotent group of class < c)

is admissible. (For c — \, this had been done in [8].)
The groups G we consider need not be solvable. Here, we make use of a simple

but rather striking consequence of the classification of all finite simple groups.
Namely, if n > 2, we show that any composition factor group of G is isomorphic
to a composition factor group of Cc(a) for some a G. A* (Theorem 3.1). All of
our theorems may be made independent of the classification by adding the
hypothesis that each composition factor group of G is one of the known simple
groups. (In this paper, simple does not necessarily imply non-abelian.)

Although most of our results deal with formations, we also prove that certain
other classes are admissible. For example, if 'S is the class of all finite cyclic
groups or if <$ consists of all finite groups G such that a Sylow ^-subgroup of G
may be generated by at most d elements (where p and d are fixed), then ®s is
admissible. Neither of these examples is a formation and the second is not
subgroup-closed if d> 1. On the other hand, we give an example in 3.18 of a
subgroup-closed saturated formation which is not admissible. Two subgroup-
closed formations whose admissibility is still open are the following:

(1){G\G" = 1}. (More generally, {G | G(m) = 1}.)
(2) {G | xp — 1 for all x G G) where p is an odd prime.

2. Notation and introductory results

All groups considered in this paper are finite. G* denotes the set of non-iden-
tity elements of G while F(G) and $ ( < J ) denote the Fitting and Frattini subgroup,
respectively, of G. Ln(G) is the «-th term of the lower central series of G, that is,

https://doi.org/10.1017/S1446788700019777 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019777


[3] Admissible formations 73

L{(G) = G and Ln+l(G) = [Ln(G),G]. If G is a solvable group, then l(G)
denotes its nilpotent length. If G is a nilpotent group, then cl(G) denotes its class.
Aut(G) is the automorphism group of G while m(G) is the smallest number of
elements necessary to generate G. If x is a positive real number, then [x] is the
largest integer < x. If Fis a vector space, then d(V) is its dimension. •

Throughout, it denotes a set of primes. If it is neither empty nor the set of all
primes, then it is said to be non-trivial. As usual it' is the set of primes not
belonging to it. If G is a group, then KJfi) = O^G)O^(G). Clearly Kn(G) =
K^.(G). If it (or it') consists of a single prime/?, then we write Kp(G). As in [5], a
group G is called IT- separable if each composition factor group of G is either a
77-group or a w'-group. The w-length, /„((/), of the w-separable group G is defined
in [6, page 226]. In our examples, we repeatedly use the fact that in a solvable
group G, l,(G) < [(1{G) + l)/2].

The Greek letter A is reserved to denote a partition of the set of primes, that is,
the members of A are non-empty sets of primes and each prime belongs to exactly
one member of A. If each member of A is a singleton set, then we call A the
discrete partition. The group G is A-separable if G is ^-separable for each it G A.
The subgroup KA(G) is defined by

KA(G) = Pi K^G) = I] O,(G).
TTEA IEA

If A consists of just 2 sets, one of which is it, then KA(G) = Kn(G). If A is the
discrete partition, then KA(G) — F(G) and a group is A-separable if, and only if,
it is solvable.

Following [9], a group G satisfies Q if G has exactly one conjugacy class of
Hall 77-subgroups. If, in addition, each 77-subgroup of G is contained in a Hall
7r-subgroup of G, then G satisfies Dv. If G has a normal Hall w-subgroup
(equivalently, if G/OJ^G) is a w'-group), they we say that G is 7r-closed.

Any class ^ of groups is to be understood to be closed under isomorphisms
(that is, if G G <% and G = H, then H G f ) . The empty class is denoted by <>
while any other classes will be denoted by script letters. A class 5" is subgroup-
closed if G G ^and H < G always implies H G <5. A class ^Tis admissible if there
is a positive integer n such that the following statement is always true.

Suppose A is an elementary abelian group which operates on the group G. If
(| ^ I , I G |) = 1, CG(a) G f /w all a G A*, and m(A) > n, then G e f .

If ^ is admissible, then the smallest positive integer which will work for n is
denoted by n(f) .

A formation <? is a class of groups which is closed under taking homomorphic
images and subdirect products. The 'S-residual of the group G is denoted by G<$
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and is the intersection of all normal subgroups whose factor groups belong to <S. *§
is saturated if a group G belongs to ^whenever G/$(G) belongs.

Now suppose that ^(p) is a formation for each prime/; and let n = [p\<S{p)
¥= 0 } . Define £ by

£ = [GI G is a 7r-group and G/Op,p(G) G <»(p) for all/? E IT) .

Gaschiitz showed that £is a saturated formation [10, VI. 7.5]. Conversely, Schmid
[11] proved that every saturated formation can be obtained in this way. For the
purposes of this paper, better results may sometimes be obtained by working with
a slightly different formation. Namely, define % by

% = {G | G is a 77-group and G/Kp(G) G Sr( p) for allp G w}.

To distinguish between them, we will say that £ is locally defined by {^(p)}
while 5C is ^generated by {^(p)}. It is shown in 2.7 that % is also a saturated
formation. Furthermore, given any saturated formation ?F, it is always possible to
find formations §(p) such that S7 is both locally defined by {§(/>)} and also
/^-generated by (S(/?)}. This does not mean that £ and % are always the same.
For example, if W(p) is the formation of all /?'-groups for each p, then % is the
class of all nilpotent groups while £ consists of all solvable groups G satisfying
lp(G) < 1 for each p. Thus the group S3 belongs to £ but not to %. It is always
true that % C £.

We now list some basic results needed later. Most of these are well-known,
easily proved, and require no comment.

2.1. The class of all m-separable groups is closed under taking subgroups, factor
groups, direct products, and extensions.

2.2. / / G is ir-separable, then G satisfies both Dn and Dn,.

PROOF. This follows from the Feit-Thompson Theorem [3] and [6, Theorems
6.3.5 and 6.3.6].

2.3. (i) UH<G, then KA(G) n H< KA(H).
(ii) IfH <G, then KA(G)H/H < KA(G/H).
(iii) KA{GX X G2) = KA(GX) X KA(G2).
(iv) KA(G) > $(G) and KA(G/^(G)) = KA(G)/<t>(G).
(v) Kp(G) < Op,p(G) and Op(G/Kp(G)) = Op,p(G)/Kp{G).

2.4. / / G is A-separable, then CG(KA(G)) < KA(G).

PROOF. Let K = KA(G) and C = CC(K). UC=£Z(K), then C/Z(K) contains
a minimal normal subgroup H/Z{K) of G/Z(K). Since G is A-separable,
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H/Z{K) is a w-group for some m G A. By 2.2, / / must have a Hall 7r-subgroup L.
Then, since [# , Z(K)] = 1, / / = L X OT,(Z( A:)). It follows from this that L < G.
Then L < O^(G) < A"A(G). Hence H < K and we have a contradiction.

2.5. Suppose A is an abelian group which operates on the group G with {\A\ ,\G\)
= 1. Then the following are true:

(i) G = [G, A]CG(a).
(ii) If H is an A-invariant normal subgroup of G, then CG/H(a) — Cc(a)H/H.
(iii) If A is not cyclic, then G = (CG(a) | a G A*).
(i'v) / / G satisfies Q , then there is an A-invariant Hall ir-subgroup H in G and

CH(a) is a Hall -n-subgroup of Cc(a) for all a G A*.
(v) / / G is simple, then A/CA(G) is cyclic.

PROOF. Section 6.2 of [6] contains (i), (ii), and (iii). The first part of (iv) is
well-known and so let H be an ,4-invariant Hall w-subgroup of G. If p G IT, then
H must contain an A -invariant Sylow /^-subgroup S of G. Similarly, since CG{a) is
/4-invariant, there is an yl-invariant Sylow/^-subgroup P of CG(a). Then there is
an JC G CG(A) such that x'lPx < S [6, Theorem 6.2.2]. But CG(A) is contained in
Cc(a)and so

x'xPx < S n CG(a) < H n CG(a) = CH(a).

Hence CH(a) is a vr-subgroup of CG(a) and CH(a) contains a Sylow/^-subgroup
of CG(a) for all/) G IT. This implies that CH(a) is a Hall w-subgroup of CG(a).

Now (v) depends upon the recently completed classification of all simple
groups. For if B = A/CA(G), then B =£ Aut(G) and (| B \ , | G |) = 1. If G is a
sporadic group or an alternating group, then this forces B = 1 (see [1] and [4] for
a description of Aut(G) when G is a sporadic group). If G is a Chevalley group,
then it follows from [13] that B is isomorphic to a group of automorphisms of
some finite field. Hence B is cyclic in this case.

2.6. Assume that <3 is a non-empty formation. Then
(i) IfH <G, then (G/H)9 = G^H/H.
(ii) If'Sis subgroup-closed and H < G, then H9< H n Ggr.
(iii) If§ = {G | G/OV(G) G <?}, fAen § is a formation and § is subgroup-closed if

$ is.

2.7.1.^Mwwe ffotf ^( /O is a formation for each prime p. Let {^(p)} locally
define £ and K-generate %. Let IT — {p\($(p) ¥= 0 } .
Then the following are true:

(i) £ and % are both saturated formations.
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(ii) £ D X
(iii) If&(p) is subgroup-closed for each p G w, then both £ and % are subgroup-

closed.
(iv) Define §(/>) by §(p) =0ifp<£m and §(p) = {G\ G/Op(G) G <$(p)} if

p G 7T. 77ie« £ is both locally defined and K-generated by {§(/?)}.
II. If ^ is a non-empty saturated formation, then there are formations £(/?), owe

for each prime p, such that ^ is both locally defined and K-generated by {£(/;)}.

PROOF. Using 2.3 and [10, VI.?], we easily derive (i), (ii) (since G/Opp(G) is a
homomorphic image of G/Kp(G)), and (iii). Now Op(G/Opp(G)) — 1 and so
G/Op,p(G)E@(p) if, and only if, G/Op,p(G) G $(p). Hence {§(/>)} locally
defines £. Since Op(G/Kp(G)) = Op,p(G)/Kp(G), we see that G/Kp(G) G §(/>)
if, and only if, G/Op[p(G) G f(/?). This implies that {§(/>)} /^-generates £. Thus
I is proved.

Now any saturated formation is locally defined [12]. Using I(iv), we see that II
follows.

The next result follows immediately from the definitions but is very useful in
determining whether a class is admissible.

2.8. Let I be a non-empty set and suppose that for each i G /, C5i is an admissible
class of groups. Assume that {/i(^) | / G / } has an upper bound. If<$= f^ier%,
then ̂  is admissible and n(Sr) < sup{«(^) | / G / } .

PROOF. Suppose that A is an elementary abelian group which operates on the
group G with {\A,\G\)= 1. Assume that Cc(a) G ^for all a G A*. If m(A) >
n(%) for all / G /, then the admissibility of % implies that G G % for all / G /.
But then G 6 f .

For our next results in this introductory section, we present two simple
methods of producing new admissible classes from old ones.

2.9. Suppose that & is an admissible class of groups such that every group in &
satisfies Cv. Let © be an admissible class of groups and define S by

<S= { G | G G & and a Hall -n-subgroup of G belongs to%).

Then § is admissible and ni^) < Max{«((£), n(

PROOF. Assume A acts on G, (| A \ , | G |) = 1, A is elementary abelian, CG(a) G
f for all a GA*, and m(A) > Max{«((£), «(<S)}. Since Cc(a) G Sand m(A) 3=
n(&), G must belong to 6E. Then G satisfies Q. By 2.5(iv), G has an ^4-invariant
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Hall 77-subgroup H and CH(a) is a Hall w-subgroup of CG(a). Since CG(a)
satisfies Q (since CG(a) G 6E), CH{a) must belong to "35 for all a G .4*. Since

= n{%), i / £ i But then G £ <3r.

REMARK. If 77 = {/>}, then (£ may be the class of all groups.

2.10. Suppose that T(G) is a characteristic subgroup of G for each group G.
Assume that the following hold:

(i) / / a is an isomorphism of G onto H, then

T(H) = (T(G))°.

(ii) IfH < G, then T(G) D H < T(H).
Assume that &• is an admissible subgroup-closed class of groups and define "35 by

%= {G\T(G) e<2}.

Then % is admissible and n(9>) < n(&).

PROOF. First, note that there are many choices for T(G) that satisfy (i) and (ii).
For example, T(G) could be any of the following: Z(G), F(G), O^G), KA(G),

Now suppose A acts on G, (| A \ , | G |) = 1, A is elementary abelian, Cc{a) G <•$
for all a G A*, and w(/l) > n(&). If H = T(G), then CH(a) = H C\ CG(a) <
T(CG(a)). Since CG(a) G S and (£ is subgroup-closed, CH(a) G (£ for all a G /**.
Since m(A) > n(a), we see that H & & and G e l

To illustrate 2.10, consider groups whose center is the identity. Now if (2 is the
identity class, (that is, G G 6E if, and only if, \G\= 1), then 6E is subgroup-closed
and it follows from 2.5(iii) that «((£) = 2. If

® = {G|Z(G) = 1},

then 2.10 implies that "35 is admissible and n(%) < 2.
Virtually all of the admissible classes to be considered later are subgroup-closed.

The example just given is an exception. (If H < G and Z(G) = 1, it does not
follow that Z(H) — 1.) Another exception is given in 2.12 below. This depends
upon the following easy result about modules for elementary abelian groups.

2.11. Let A be an elementary abelian r-group and let F be a field of characteristic
¥= r. Let s be the degree of X over F where A is a primitive r-th root of unity in the
algebraic closure of F. Assume that V is an FA-module and that d(Cy(a)) *£ n for
alia G A*. Ifm(A) 3= 1 + (n + \)/s, then d(V) =£ n.
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PROOF. If U is any irreducible Tvl-module and CA(U) ¥= A, then our assump-
tions imply that d(U) — s. If a £ A#, then Cv{a) is the direct sum of irreducible
i^-submodules. It follows that if n<s, then Cv{a) = CV(A) for all a G A*. But
then each element of A acts fixed point-freely on V/CV(A). This is impossible if
V¥^ Cv( A) since A is not cyclic (m( A) > 1). Hence if n <s,V= CV(A) = Cv(a)

and so d{V) < n.
Assume now that n > s and proceed by induction on n. If CA(V) =£ 1, then

K< Cv(a) for some a G A* and the result is trivial. Thus assume CA(V) = 1. V
must contain a non-trivial irreducible F/1-submodule U. Then d(U) = s and
|y4/C4(f/) |= r. If B = CA(U), then m(B) = m(A) - 1 > (n + l)/s. Also
CV(Z>) D t/for all b £ B*. Hence

d(cy/u(b)) = d(Cv(b)) - d(U) *

By induction then, d(V/U) < n — s and so <i(F) =£ n.
n — s.

2.12. Le/ p be a prime, let d be a non-negative integer, and let ®s be the class of all
groups G such that m{P) =£ d where P is a Sylow p-subgroup of G. Then <? is
admissible and

ifp¥=2,

PROOF. If d = 0, then the requirement on P is that P = 1. Since «({identity})
= 2, the result follows from 2.9 in this case. Assume now that d s* 1 and that
m = </ + 2 if /? is odd and m = [ J/2] + 2 if /? = 2.

Assume that A acts on G, (| ̂ 4 | , | G |) = 1, A is an elementary abelian r-group,
Cc(a) G ?T for all a G /!*, and m(A) > w. Then by 2.5(iv), there is an A-in-
variant Sylow/^-subgroup P and CP(a) is a Sylow /7-subgroup of CG{a). Hence
m(CP(a)) < c? for all a G ^*.

Let V be P/${P) written additively. Then V is a GF(p)A-module and
^(C^a)) < d for all a G A*. Let ̂  be the degree of a primitive r-th root of unit
over GF(p). Then s > 1 and so

1 + ^-^ < 1 + (d + 1) = m < w(/l).

if /> =̂ 2. Hence, if /? ^ 2, it follows from 2.11 that | P/$(P) \<pd and so G G ff.
If/? = 2, then ^ must be at least 2. In that case

Hence, again by 2.11, | P/^CP) |^/?rfand so G G
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So far, we have proved that ?Fis admissible and that «(?F) < m. To prove that
n{^) cannot be any smaller, we construct some examples.

If p ^ 2, let r be any prime dividing p — 1 (r = 2, for example). Let G be an
elementary abelian group of order p d + l . Then Aut(G) contains an elementary
abelian /--group A of order rd+'. Then, if a £ A*', CG(a) < G and so m(Cc(a)) <
d. Thus C c (a ) G 'Jfor all a £ A* but G & f.

\l p = 2, let n = [d/2] and let G be an elementary abelian group of order
2 2 " + 2 . Then Aut(G) contains an elementary abelian 3-group A of order 3 " + i .
Since for all a G A*, a must act faithfully on G/CG(a), we must have | CG(a) |*£
22". Then CG(o) G # for all a G A* but G £ <3\

REMARK. If </ > 1, then 5', the class in the above result, is not subgroup-closed.
Nor is ®i a formation since 'f is not closed under direct products.

3. The main results

The next result is a direct consequence of the classification of all simple groups.
The theorem could be made independent of the classification by adding the
assumption that the composition factor group in question is a known simple
group.

3.1. THEOREM. Suppose that A is an abelian but not cyclic group which operates on
the group G with (| A \ , \ G |) = 1. Then any composition factor group of G occurs as
a composition factor group of some Cc(a) with a EL A*A#

PROOF. Replacing A by one of its subgroups, if necessary, we may assume that
A is elementary abelian and m(A) = 2. Let M be a minimal /i-invariant normal
subgroup of G. By induction, any composition factor group of G/M occurs as a
composition factor group of CG/M(a) for some a G A*'. Now CG/M(a) =
CG(a)/CM(a) and so the theorem will be proved once we show that any
composition factor group of M occurs as a composition factor group of CM(a) for
some a G A*. Thus it suffices to prove the theorem when M — G.

Hence G is a minimal normal subgroup of GA. Thus, if G is abelian, all
composition factor groups of G and of any subgroup of G are the same. Since
G - (Ca(a) | a G A*), there is an a G A* such that CG(a) ^ 1. The theorem now
follows.

Assume, therefore, that G is non-abelian. Then

G = S, X • • • X Sn
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where 5 , , . . . ,Sn are isomorphic, simple, non-abelian groups and A must permute
{ 5 , , . . . , Sn) transitively. Since A is abelian, we must have

NA(S,) = NA(S2)= ...=NA(Sn).

Thus if n > 1, there is an a 6 A* such that

(a)nNA(S,)=\

for all i. But then CG(a) is the direct product of (n/\ (a) | ) copies of Sx and so
certainly the theorem is true in this case.

Finally, assume n = 1. Then G is a simple group and so by 2.5(v), A/CA(G) is
cyclic. Then CA(G) =£ 1 and so Cc(a) — G for some a £ A*. Thus the theorem is
proved.

3.2. C O R O L L A R Y . nC$) < 2 / / ^ w any o / the following classes: {G\G is

solvable}, [G\\G\= 1}, {G \ G is a n-group], {G \ G is T-separable).

PROOF. For each of these classes, G G ̂ if, and only if, each composition factor
group of G belongs to C5. The corollary now follows.

More generally, suppose S is a class of simple groups (and here simple does not
necessarily imply non-abelian) and let 'S consist of those groups G such that each
composition factor group of G belongs to S. Then "Jis admissible and n(^) < 2.

The next result is the main theorem of this paper.

3.3. THEOREM. Let $ be an admissible subgroup-closed formation. Let § = {G|
G/KA(G) G J } . Then § is an admissible, saturated, subgroup-closed formation and

PROOF. Using 2.3, we easily conclude that § is a subgroup-closed saturated
formation. Assume now that A acts on G, (\A \ , | G\) — 1, A is elementary
abelian, Cc(a) G § for all a G A*, and m(A) > n ( f ) + 1. We need to prove that
G G § . Suppose that G is a minimal counterexample. Let M = G§ and K — G$.
Then M and K must be non-identity characteristic subgroups of G. Let IT be some
member of A such that 77 contains at least one prime dividing \M\ . We now
proceed in a series of steps.

(ii) / / / / w awy non-identity A-invariant normal subgroup of G, then H > M.
(iii) / / / / w any A-invariant proper subgroup of G, then / / £ § .
(iv) Either KA(G) = \ or KA(G) = O^G) ^ M.
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PROOF. If CA(G) =t 1, therTfor-some a G A*, G = CG(a) G g. If 1 < H < GA
and H *£ G, then the minimality of G implies that G/H G §. But then H > M.
The minimality of G together with the fact that g is subgroup-closed imply (iii).
Finally, suppose KA(G)^ 1. Then KA(G)^M from (ii). Since ATA(G) is the
direct product of a vr-group and a w'-group, it follows from (ii) that KA(G) is
either a w-group or a m '-group. Since M is not a w'-group, (iv) follows.

2.

PROOF. Suppose CC(M) ¥= Z{M). then CG{M) is a non-identity /1-invariant
normal subgroup of G. Then CC{M) 3= Af and so M is abelian. Then M < F(G)
<A"A(G) and so KA(G) ^ 1. This implies that M < OW(G) = KA(G). Since
G/M G g and K - G$, we must have K/M < KA(G/M). However, G £ <J and
so K 4 KA(G). It follows from this that AT/M is not a vr-group. Since K must be
77-separable (since K/M < KA(G/M)), 2.2 implies that AT satisfies D .̂. Then there
must be an A -invariant Hall w'-subgroup 5 in K. Then SM/M — O^,(K/M). It
follows from this that SM < G. Then G = MNC(S). Since S ¥= I, NG(S) ¥= G.
Since M is abelian, A/ n NG(S) is an yl-invariant normal subgroup of G. Then we
must have NG(S) C\ M = I. Then CG(M) n 7VG(S) is an ^-invariant normal
subgroup of G which does not contain M. Hence CG(M) n NG(S) = 1. It now
follows that CG(Af) = Af.

3.LetB= CA(G/M). Then
(i) IfafEA- B, then CG(a)KA(G)/KA(G) G ^.
(ii) w(5) > 2.

PROOF. Let a G A - B, H - CG(a)M and L = H9. Since a <£B,H < G. Then,
from (l(iii)), / / G g. Hence L < KA{H). Now if L = 1, then i/ G 'f, and, since S"
is subgroup-closed, CG(a) G 5" and (i) follows. Assume now that L ¥= I. Then
KA(H) ¥= 1 and

[M, KA(H)] < M n ^A(/f) < KA{M) < A"A(G).

Now if M n A"A(#) = 1, then KA(H) < CG(M) < M which contradicts /
^ 1. We now see that KA(G)¥=\. But then KA(G) = O^G) ^ M. Now
[Ow,(//), M] = 1 and so A:A(#) = O^(7/). Thus L is a w-group. Since L = H9<
Gj=K and AT/M < KA{G/M) (since G/ME<S), we must have LM/M =£
O^G/M). It follows from this that L < O^(G). This implies that
CG(a)KA(G)/KA(G) G ^.

Now suppose m(.B) < 2. Then /I contains a subgroup fi0 such that A = B X Bo

and w(B0) > m(A) - 1 > wC^). Since, by (i), CG(b)KA(G)/KA(G) G ^ for all
b & B*, this would imply that G/KA(G) G ?Fand so G G g.
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4. Let C = CC(B) and D = Q . Then
(i) G = CM.
(ii) C G g.
(iii) IfKA(G) # 1, t/ten
(iv)

PROOF. 5 centralizes G/M and so G = CM. CA(G) = 1 and so C < G. Then,
by (l(iii)), C G g. Therefore, Z) < A"A(C). Suppose now that KA(G) ¥= 1. Then
#A(G) = O,(G) s* M. Now D = 0W(£>) X O,,,(Z)), M = (CM(b) | fc £ 5#>, and,
since Cc(fe) > C, D < {CG{b))9 for ft G B*. Since Cc(fc) G g, we have O^{D) <
Ow-(Cc(fo)). This implies that

[0AD),CM(b)] <[0ACc(b)),0n(CG(b))] = 1.

Hence O^D) centralizes M. Since CG(M) < M *z O^G), O^.(D) = 1. Then Z) is
a 77-group. But D <G9= K and tf/M < KA(G/M). It now follows that D <

If /CA(G) ^ i( w e have just shown that CO7r(G)/O7T(G) belongs to f. But
G = CM = COW(G) and so G/OJ^G) G <?. Since this would mean that G G g, we
must have KA(G) = 1.

5. M — Sx X • • • XSn where 5 , , . . . ,Sn are isomorphic, simple, non-abelian groups
which are permuted transitively by CA. Also, CG(M) = 1.

PROOF. M is a minimal normal subgroup of GA = MCA. If M' = 1, then
M < KA(G). Since /sTA(G) = 1, M' ^ 1. (5) now follows. (CG(M) = Z(M) = 1.)

6.LetBx = A^(5,). 77jen
(i) 5, = NB(Sk)forallk, 1 < A: < n.
(ii) Q(S*) = 1 /or all k, I < k < n.
(iii)w(5,) ^ 1.
(iv) Ifb<EB~Bu then KA(CM(b)) = [D, CM(b)} = 1.

PROOF. CM permutes {5,,. . . ,Sn} transitively and B < Z(C^4). It follows from
this that Bx = NB(SK) for all k and that Ca(S,) = CB(S2) = • • • = C^S'J. Since
CB{M) centralizes both M and G/M, CB(M) =e Q(G) = 1. Thus (i) and (ii) are
proved. Using 2.5(v), we obtain (iii).

Now suppose b G B — Bv Then (b) permutes {S,,...,Sn} semi-regularly.
Then CM(b) is the direct product of (n/\ (b)\) copies of 5,. Now 5, is not
A-separable since KA(G) - 1. It now follows that KA(CM(b)) = 1. But Cc(b) s* C
and so D = C9^ (Cc(b))w< KA(CG(b)) since CG(b) G S. Then [A C
KA(Cc{b)) n Cw(ft) < KA{CM{b)) = 1.
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7. D= 1.

PROOF. Suppose D ¥= 1. Then [D, M] ¥= 1. Then, without loss of generality, we
may assume that [D, S1,] ¥= 1. Since m{B) > 2 > m{Bx) there exists an element
b & B — Bx. Then, without loss of generality, we may assume that' (fo) transi-
tively permutes {Sx, S2,- • • ,Sr). Then there is a diagonal subgroup 5 of S, X S2

X • • • XSr which is a direct factor of CM(2>). Then, from (6(iv)),JD, 5] = 1. It
follows from this that D normalizes 5, X S2 X • • • X Sr. Now if D and b denote
the permutations induced on {S , , . . . ,S r } , then (b) is an abelian regular group
and since [D, b] = 1, it follows that D *s (b). But (| D | , | (Z>>|) = 1. Hence D
must normalize Sk for 1 < A: < r. Then, since Z) centralizes S and Z) normalizes
5,, we must have [D, S,] = 1.

8. Contradiction.

PROOF. A must contain a subgroup Ax such that 4̂ = Ax X 2?,. Then m(Ax) =
m(A) - m(Bx) > m{A) - 1 ^ n ( f ) . Now G ^ ^ . then there must be an a G ^ f
such that CG(a) ^ f. But if a ^ 5 , then it follows from (3(i)) (since KA(G) = 1)
that CG(a) £ 'f. Hence a G B D Ax. Then CG(a) > C and so CG(a) = CM(a)C.
Since Q = D - 1, we have CG(a)/CM(a) G ?F. Since Cc(a) G g by hypothesis,
we must have

))ff < cw(a) n

Since ATA(CM(a)) = 1 by (6(iv)), we have CG(a) G ?Fand so the proof is complete.

The next result, which was proved in [8] and independently by Jones [11], now
follows immediately.

3.4. COROLLARY. For each non-negative integer k, let 91^. denote the class of all
solvable groups of nilpotent length < k. Then c%k is admissible and n(?fik) = k + 2.

PROOF. 9L0 is the class of identity groups and so «(9l 0 ) = 2. Now let A be the
discrete partition. Then KA(G) = F(G), and, for k > 1, G G GJlk if, and only if,
G/F(G) G 9Lfc_,. Using the theorem and induction on k, we obtain n(9lfc) < k
+ 2 for all k. Examples in [8] show that n(^JLk) cannot be less than k + 2.

REMARKS. 1. ?fLx is the class of all nilpotent groups and so the corollary
includes Ward's result [14].
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2. By analogy with nilpotent length, one could define a A-length for any
A-separable group (that is Ko = 1 and Kn+x{G)/Kn(G) = KA(G/Kn(G)). Then
the same argument as in 3.4 may be used to prove that n({G \ Kk{G) — G}) < k
+ 2.

The special case 77 = {p} of the next result appears in [15].

3.5. COROLLARY. / / 77 is non-trivial and if & is the class of all it-closed groups,
then & is admissible and n(&) = 3.

PROOF. Let A = {77,77'} and let ^Fbe the class of all 77'-groups. Then n{^) = 2
by 3.2 and & - {G | G/KA(G) G f } . The theorem now yields n(&) < 3. Example
1 in §4 shows that «((£) cannot be any smaller.

3.6. COROLLARY. If < is a total ordering of the set of all primes and if & is the
class of all groups which have a Sylow tower of type < , then n{&) = 3.

PROOF. Sylow tower of type -< is defined in [10, VI.6.13] where it is shown that
G G (2 if, and only if, G is 77,-closed for all i = 1,2,... and 77,, ir2,... are sets of
primes depending on < . Thus & is the intersection of classes of the type in the
previous corollary. Using that result and 2.8, we easily obtain the result.

3.7. THEOREM. Let 'Sbe an admissible, subgroup-closed formation and let

§ = {G\G/Z(G) G 1 ?}.

Then § is an admissible, subgroup-closed formation and n(§) =£ «(?F) + 1.

PROOF. It is easily verified that § is a subgroup-closed formation. Now suppose
A acts on G, (| A \ , | G |) = 1, A is elementary abelian, CG(a) G § for all a £ / 4 * ,
and m(A) s* n(^) + 1. Assume that G is a minimal example such that G £ §. Let
M be the g-residual of G. Then M ^ l .

1. (i) If H is a non-identity A-invariant normal subgroup of G, then H > M.
(ii) G^/M < Z(G/M).

PROOF. In (i), G/H G % by the minimality of G. This implies H > M. Now
G £ § and so G £ *?. Then GoT > Af by (i). Now G/M G S and so G?/M =£
Z(G/M).

2. Z(G) = 1.
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PROOF. Suppose Z(G) ¥= 1. Then M < Z(G). Then M is an irreducible ^-mod-
ule and so A/CA(M) must be cyclic. Then m(CA(M)) > n(^). Let a G (CA(M))*,
C = Cc(a), and D - Qf. Then C G g and so D ^ Z(C). Also D < GF and so
[G,D]<M. Then [G, D, (a)] < [M, (a)] = 1. Also [Z>, <a>, G] = 1. Hence
[G, (a>, £>] = 1. Since G = [G, <a)]C and since [D, C] = 1, we obtain [D, G] = 1.
This implies that Cc/Z(C)(a) G S7 for all a G (^(M). This in turn implies that
G/Z(G) G 5", contrary to G <£ g. Hence Z(G) = 1.

3.IfB<A and m(B) s* 2, r^e« Cc(5) G f.

PROOF. Let C = CG(B) and Z) = Q . Let ft G 5*. Then CG(b) > C. Since
CG(b) G g,

Thus [D, CG(b)] = 1 for all b G 5*. Since m(B) 3= 2, G = <CC(6) | ft G 5*).
Hence [D,G]= 1. Since Z(G) = 1, we obtain Z) = 1 and so C G f.

4. Cc(a) G f/or a// a G ^1#.

PROOF. Let a G A* and / / = CG(a). A has a subgroup 4̂, such that A = (a)X
Av If ft G A?, we have CH(b) = CG((a, ft)) G <?by (3). Since w(^,) > nCf) and
since CH(b) G S'for all ft EAf, H must belong to S\

5. Contradiction.

PROOF. Since Cc(a) G f for all a E A* and since w(^) > n^), G G vr. But
then G/Z(G) G fand so G G g.

3.8. COROLLARY. For A: > 0, define <3k by

Gk- (G | G nilpotent andcl(G) < A:}.

77ze« (2^ w admissible and n(Qk) — k + 2.

PROOF. For A: = 1, this was proved in [7]. Now Qo is the identity class and so
n(eo) = 2. If Jfcs* l.then

It now follows by induction on k and by the theorem that n(Qk) < A; + 2.
Example 2 in §4 shows that n(Qk) is no smaller.

3.9. COROLLARY. Le? 6E denote the class of all cyclic groups. Then 3 is admissible
and n(&) - 3.
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PROOF. G G ($, if, and only if, G is abelian and m{P) < 1 for each Sylow
subgroup P in G. Putting 3.8 together with 2.12 and 2.8 yields n{&) < 3. Example
3 in §4 shows that n(&) is at least 3.

The next result was first proved by Ward [ 15].

3.10 COROLLARY. If&={G\G' is nilpotent), then n(&) = 4.

PROOF. & = {G \ G/F{G) is abelian} and so «((£)< 4 using 3.8 together with
3.1 (with A being the discrete partition). The last example in [16] shows that
n(<3)>4.

The next result is useful in proving the admissibility of the class of supersolva-
ble groups.

3.11. COROLLARY. Let n be a positive integer and let <3L— [G\G' = 1 and x" = 1
for all x G G}. Then & is admissible and n(&) < 3.

PROOF. Suppose A acts on G, (\A | , | G |) = 1, A is elementary abelian, CG(a)
G (J for all a G A*, and m{A) ^ 3. Then G is abelian by 3.8. Since G is generated
by the subgroups CG(a) with a G A*, we see that x" = 1 for all x G G.

3.12. THEOREM. Let *$be K-generated by {^(p)} where each non-empty ^(p) is
an admissible subgroup-closed formation. Assume further that {nC$(p)) | ̂ (p) ¥=
0 } has an upper bound. Then <3r is admissible and

n(<5) < 1 + svp{n(<»(p))\$(p) # 0 } .

PROOF. Let -n — {p\^(p) ^ 0} and let ?P be the class of all w-groups. For
p G 77, define §(/?) by

Then «(§(/?))< n(<5(p)) + 1 by 3.1. Since n(^P) < 2, and since 5r=<3'n
), the result now follows from 2.8.

The next result was first proved in [8].

3.13. COROLLARY. / / S is the class of all supersohable groups, then S is
admissible and «(S) = 4.

PROOF. For each prime p, let ^(p) be the class of all groups G such that G is
/̂ -closed and a Hall //-subgroup of, G is abelian of exponent dividing (p — 1). It
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follows from 3.5, 2.9, and 3.10, that nC$(p)) < 3. Now it is straight forward to
verify that {^(p)} AT-generates §. Hence «(S) < 4. The reverse inequality follows
from an example in [8].

We now prove the necessary machinery to handle formations defined in terms
of 77-length.

3.14. LEMMA. Let *$ be an admissible, subgroup-closed formation. Let § = [G\
G/OJ^G) G S7}. Then § is an admissible, subgroup-closed formation and n(§) *£
«(<f) + 1.

PROOF. It is straightforward to verify that § is a subgroup-closed formation.
Assume now that A acts on G, (| A | , | G |) = 1, A is elementary abelian, CG(a) G §
for all a G A*, and m(A) > «(§") + 1. Assume that G is a minimal example such
that G £ (3. Let Af be the 9-residual of G. Then M ^ 1 and every non-identity
,4-invariant normal subgroup of G must contain M. In particular, since G cannot
belong to <5, G9 3= M. Since G/M G S, G^/M < OW(G/M).

Now K,(CG(a)) > Ow(CG(a)) and so Q ( a ) / ^ ( C G ( a ) ) G ?F for all a G ,4*.
Then 3.3 implies that G/KW(G) G S7. Hence G^^K^G) and so #„((?) ¥= 1. then
A:W(G) ^ M. Now G ^ g and so G/O^G) £ f. It follows that ATW(G) is not a
77-group. Since OW(G) and O^(G) cannot both be different from the identity, we
must have O^(G) = 1 and O^(G) — K^(G). Then G9 is a w'-group.

If a G ^ 1 # , then C c (a ) /0 , (C c (a ) ) e ^ . Hence (Cc(a)) .7< Ow(Cc(a)). Since Vf
is subgroup-closed, (C G (a)) ? < G s < O^(G). We now obtain CG(a) G 5" for all
a G A*. But since m(A) > n(^), this implies that G E f and the proof is
complete.

3.15. THEOREM. Let § be an admissible, subgroup-closed formation. Let § = {G\
G/O^Jfi) G 5F}. Then § is an admissible, subgroup-closed, saturated formation

(S)<«(Sr) + 2.

PROOF. Let % = {G \ G/OW(G) G (S). Then § = {G \ G/On.(G) G %} and so 2
applications of 3.14 yield the result.

3.16. COROLLARY. Suppose IT is non-trivial and let 6Jk denote the class of all
^-separable groups of m-length «£ A:. Then ^k is admissible and n(6}k) = 2k + 2.

PROOF. % is the class of all 77'-groups and so n(%) = 2. Now if k s» 1, then
G G 6Jk if, and only if, G/O^J^G) G 9k_v Using the theorem and induction on
k, we obtain n(9k) *s 2/c + 2 for all fc. Example 4 in §4 demonstrates that n(9k)
cannot be smaller than 2k + 2.
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3.17. THEOREM. Let 9 be locally defined by {^(p)} where each non-empty
p) is an admissible, subgroup-closed formation. Assume further that {«(Sr(/>

0} has an upper bound. Then ^ is admissible and « ("?)< 2
: 0}.

PROOF. The proof of 3.17 is identical with the proof of 3.12 except that Kp{G)
is replaced by Opp(G) and 3.16 is used instead of 3.1.

Note that although each saturated formation is both locally defined and
/C-generated, we may not get as good a bound for «(Sr) using 3.17 as compared
with 3.12. For example, suppose 'S(p) is the class of all abelian groups of
exponent dividing/? — 1. Then n (??(/>)) = 3 if p > 2 and {^(p)} locally defines
K the class of all supersolvable groups. Thus using 3.17 would yield «(S) < 5
which is weaker than w(S) < 4, the result we obtained using 3.12.

To show the necessity of requiring that {n{${p))} has an upper bound and
also to exhibit a subgroup-closed, saturated formation which is not admissible, we
have the following result.

3.18. THEOREM. Suppose f(p) is a positive integer for each prime p. Define *5by

°J= {G I G is solvable and Ip(G) < / ( p ) for all p) .

Then y is a subgroup-closed saturated formation. <% is admissible if, and only if,
{/(P)\P a prime) has an upper bound.

PROOF. § is certainly a subgroup-closed saturated formation and the only
question is whether or not § is admissible. Now if f(p) < N for all p, then
n(5) < 2N + 2 by 3.16 and 2.8.

Now suppose that {/(/>)} has no upper bound. Let n be any positive integer.
Then there must be primes p and q such that

Next let m = 2f(p) + 1 and let r be any prime distinct from p and q. If Q is an
elementary abelian /--group of order rm, then it follows from [7] that there is a
{p, g}-group G such that A acts in a fixed-point-free manner on G, l(G) = m,
and lp(G) = [{(m + 1)] = / ( / ? ) + 1. Hence G <£ CX Assume that a G A* andlp

C = CG(a). Then A/(a) acts without fixed points on C. Hence l(C) < m — 1 by
[2]. It follows from this that

lp(C)<[m/2]=f(p) and lq(C) < [m/2] =f(p) <f(q).

Therefore Cc(a) G Ly for all a G i * . Since G £ ff and m(A) = m > n, we see
that nO'O cannot be =£ n. Since n was arbitrary, iy cannot be admissible.
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4. Examples

1. Let 7r be non-trivial. Then there are primes/? and q with/? £ IT and q G IT'. If
r is any prime distinct from/? and q, then [7] implies that there is a {/?, q)-group
G such that Op(G) — 1, l(G) — 2, and G admits a fixed-point-free operator group
A which is an elementary abelian /--group of order r2. Then G is not w-closed but
CG(a) has a fixed-point free operator group A/(a) of prime order. Thus CG(a) is
nilpotent [6,10.2.1] and so CG(a) is 77-closed for all a G /I*. This example justifies
the equality in 3.5.

2. Let/? and q be primes with/? = 1 (mod q). Let k be any positive integer and
let Fbe an elementary abelian/>-group with m{V) — k + 1. Let / / = Aut(F), let
P be a Sylow /?-subgroup of //, and let G = KP. If TV = NH(P), then JV/.P is the
direct product of (/c + 1) copies of a cyclic group of order p — 1. Then N must
contain a subgroup A such that /I is an elementary abelian qr-group and m{A) —
k + 1. Since A normalizes P, A will operate on G. I assert that cl(Cc(a)) *s A: for
all a G A* while cl(G) > k. This justifies the equality in 3.38.

Now i f l < / t * s f c + l , then it is easy to verify that

\[V,P,P,...,P]\ = ,k+\-n

It follows from this that Lk+](G) ^ 1. Hence cl(G) > k. (Actually, cl(G) = k + 1
but we don't need this.) Suppose a G A*,C = CG(a), Q — CP(a), and U = Cv{a).
Then C = UQ and Lk+l(Q) = 1 [10,111.16.3] and so

Lk+l(C)=[U,Q,Q,...,Q].

ULk+l(C) ¥= 1, then we would have

U>[U,Q]>[U,Q,Q]> •••>[U,Q,...,Q] > 1.

This would imply that

I u\>pk+i =| V\ .

Since \ ¥= a G Aut(K), this is impossible. Hence Lk+l(C) = 1 and so cl(CG(a))
^k for alia E A*.

https://doi.org/10.1017/S1446788700019777 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019777


90 Fletcher Gross [20]

3. Let G be an elementary abelian group of order 9 with basis {x, y). Let A be
an elementary abelian group of order 4 with generators {a, b}. Have A operate on
G by x" = x~\ y" = y, xb = x, yb = y~x. Then Cc(c) is cyclic for all c G A* but
G is not cyclic. Thus we have the example needed for 3.9.

4. If w is non-trivial, then there exist primes/? and q with/? G 77 and q in m'. Let
r be any prime distinct from p and q, let k be any positive integer, and let A be an
elementary abelian /--group A with m(A) = 2k + 1. It follows from [7] that there
is a {/>,<?}-group G such that A operates in a fixed-point-free manner on G,
Oq(G) = 1, and l(G) = 2k + 1. Then l(G) = l,(G) + /„.((?) and l,(G) > /,.(G).
Hence we must have l7r{G) — kJt 1. However, if a G A* and C = CG(a), then
A/(a) acts in a fixed-point-free manner on C. It follows from [2] that l(C) < 2£.
But then

;(c) = ip(c) <[-

Hence ln(Cc(a)) «£ k for all a G A* but /W(G) > /c. This justifies the equality in
3.16.
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