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1. Introductory. The following two integrals will be established in § 2.
If mis a positive integer, if/? ^q+l and if R(ar+k,) > 0 (r = 1, 2, ...,/>, t = 1, 2, ..., m),
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where co is 1 or e±'ir according as m is even or odd, the dash denotes that the factor sin (k,—k,)n
does not appear and the asterisk that the parameter kt—k,+1 is omitted. Ifp ^ q the result
holds if the integral is convergent.

Ifw is a positive integer, if p ^^+l,andif/?(/ :+war) > 0 (r = 1, 2, ..., m),
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where co is 1 or e±lV according as w is even or odd, A(m; a) denotes the set of parameters
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and the asterisk indicates that the parameter 1H is omitted. Up ^ q the result holds if the

integral is convergent.
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When m = 1 each of these integrals reduces to an integral previously given by Ragab
[2, p. 408, 3, p. 192].

The proof depends on the expression in terms of is-functions of the generalised ^-function

qiP.\l;*,+r ) 2ni) rt
s=l r= l

where / and m are positive integers; and the contour passes up the f/-axis from — oo to + oo,
with loops, if necessary, to ensure that the poles of the integrand at the origin and at
p q + 1 — 1, ..., Pq+m — 1 lie to the left and the poles at al5 ..., ap to the right of the contour;
when necessary the contour is bent to the left or the right at both ends till it is parallel to the
£-axis.

This expansion is [2, p. 419]
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where the dash and the asterisk denote that the factor sin(p,+s—pq+s)n and the parameter
pq+s—pq+s+1 are omitted; and co is equal to 1 or e±w according as l+m is even or odd.

If in (3) m is replaced by m — \ and then £, ar and ps by {, — pq+m + \, ar — pq+m+l and
ps—pq+m+l respectively, the function, on being multiplied by zp«+m~', becomes Meijer's
function [1, pp. 206-222]
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From (4) it follows that
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where co is equal to e±iv or 1 according as l+m is even or odd.
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The following formulae will also be required.

If m is a positive integer,
m-l / ~ \

T(mz) = (2nf-imnr^ f[ T[z+ - . (7)
s-Q \ mJ

If m is a positive integer,
m-l fk+1 \
n Sin JL.n = 21 -« sin fat. (8)
s=o V ™ /

If j = 1,2, . . . , / w - l ,
. 571 . (5—1)71 . 7 C . 7 C . 2 7 C . ( m —5—1)7C . m , „ .

sin — sin ... sin — s in—sin—.. . s in = 2 w. (9)
mm m m m m

2. Proofs. On the left of (1) replace the ^-function by

Then, on changing the order of integration and evaluating the integrals, the multiple
integral becomes

and, on applying (4) with / = 0 and pq+, = 1 —k, (t = 1, 2,..., m), the expression on the right
of (1) is obtained.

Again, on substituting for the ^-function on the left of (2) and changing the order of
integration, the integral is found to be equal to
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Here apply (7) to T{m^ + k), and the integral becomes

• , » - . 1 1 — L- 1 *•

Hence, on applying (4), (8) and (9), formula (2) is obtained.
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