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ABSTRACT

In this paper, we study the optimal asset allocation problem under a discrete
regime switching model. Under the short-selling and leveraging constraints, the
existence and uniqueness of the optimal trading strategy are obtained. We also
obtain some natural properties of the optimal strategy. In particular, we show
that if there exists a stochastic dominance order relationship between the
random returns at different regimes, then we can order the optimal proportions
we should invest in such regimes.
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1. INTRODUCTION

Portfolio selection problem is one of the key topics in finance. Markowitz’s
mean-variance model (see Markowitz (1959)) is a one period model of port-
folio selection. Samuelson (1969) extended the work of Markowitz to a dynamic
model and considered a discrete time consumption investment model with the
objective of maximizing the overall expected consumption. He advocated a
dynamic stochastic programming approach and succeeded in obtaining the
optimal decision for a consumption investment model. Merton (1969) first
used the stochastic optimal control method in continuous finance. He was able
to obtain a closed form solution to the problem of optimal portfolio strategy
under specific assumptions about asset returns and investor preferences. He
showed that, under the assumptions of geometric Brownian motion for the
stock returns and HARA utility, the optimal proportion invested in the risky
asset portfolio is constant through time. Later, Grauer and Hakansson (1982,
1985) used a discrete time approach to determine optimal asset allocations.
They updated the joint distribution of asset returns every period and were
able to incorporate time variation in the return distribution. Their conclusion was
that active re-balancing among the major asset classes can substantially improve

ASTIN BULLETIN, Vol. 34, No. 1, 2004, pp. 99-111

https://doi.org/10.2143/AST.34.1.504957 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.1.504957


investment performance. Cox and Huang (1989) and Pliska (1986) introduced
the martingale technique to deal with the consumption portfolio problem in
continuous time under uncertainty. For a fairly general class of utility func-
tions, Cox and Huang showed that in order to prove the existence of optimal
controls, it suffices to check whether the parameters of a system of stochastic
differential equations, derived completely from the price system, satisfy a local
Lipschitz and uniform growth condition. This approach takes care of the non-
negativity constraint on consumption in a simple and direct way.

Recently, people in finance and actuarial science have also started paying
attention to regime switching models. Di Masi et al. (1994) considered the
European options under the Black-Scholes formulation of the market in which
the underlying economy switches among a finite number of states. Buffington
and Elliott (2001) discussed the American options under this set-up. Hardy (2001)
used monthly data from the Standard and Poor’s 500, and the Toronto Stock
Exchange 300 indices to fit a regime-switching lognormal model. The fit of the
regime-switching model to the data was compared with other econometric
models. Zariphopoulou (1992) considered an investment consumption model
with regime switching. Zhang (2001) derived an optimal stock selling rule for
a Markov-modulated Black-Scholes model. Yin and Zhou (2003) studied a
discrete-time version of Markowitz’s mean-variance portfolio selection problem,
where the market parameters depend on a finite-state Markov chain. In Zhou
and Yin (2003) considered a continuous-time version of the Markowitz mean-
variance portfolio selection problem for a market consisting of one bank account
and multiple stocks. The market parameters depend on the market mode that
switches among a finite number of states.

In this paper, we consider a discrete market consisting of one bank account
and one risky asset. We use the Markovian regime switching formulation to model
the risky asset’s return. This model can capture the feature of possible change
of the distribution of the stock return if the economical or political environment
changes. The rest of the paper is arranged as follows: Section 2 provides the
formulation of our model; Section 3 introduces an auxiliary function that is
useful in this paper; Section 4 obtains the existence and uniqueness of the opti-
mal strategy; Section 5 investigates some properties of the solution; Section 6
concludes the paper with some remarks.

2. MODEL FORMULATION

We will study the optimal asset allocation problem in a discrete-time, finite-horizon
setting. We assume that there are only two assets being traded in the market:
a risk-free bond and a risky stock. The risk-free bond will earn a determinis-
tic return R over a single time period (say, one year). The random return of
the risky stock over different time periods will depend on the state of a finite-
state Markov Chain {zn} at the beginning of that time period. The wealth of
an investor at time n will be denoted as Wn, and the random return in time
period [n, n + 1] given zn = i as Ri

n. An investor at time n has to decide the pro-
portion of his/her wealth to be invested in the risky stock, and this proportion
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is denoted as �n. We will constrain this proportion to lie in the unit interval
[0,1], which means that short-selling and leveraging are prohibited. This restric-
tion is to avoid the possibility of the wealth becoming negative. The wealth will
evolve as

n , , ..., ,� �W R R n N1 1 2n n n n
z

1 1 1 1
n 1= + - =- - - -

-W ^ h8 B (1)

where N is the investment horizon (number of investment periods). Given that
the initial wealth is W0, and the initial state of the regime is z0, the objective of
the investor is to maximize the expected power-utility of the terminal wealth WN :

Nmax � Wg
1

, ,..., ,� � � 0 1
0

N
N

0 1 1 3-

g

5

;
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E
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over all the admissible investment strategies {�0, …, �N – 1}, where g is any con-
stant that is strictly less than one but not equal to zero: g ∈ (–∞,0) � (0,1),
and �0 is the expectation operator given the information at time 0, i.e. given
(z0, W0). Specifically, an admissible investment strategy {�0, …, �N – 1} is a feed-
back policy in which each �n maps the wealth Wn and regime zn at time n into
the decision variable �n = �n(Wn, zn) ∈ [0,1]. The optimal feedback policy that
maximizes the above expression is called the optimal trading strategy, and is
denoted as {�̂0, �̂1, …, �̂N – 1}.

We make the following assumptions throughout this paper:

1. {zn} is a discrete-time and time-homogeneous Markov Chain with state space
S = {1,2,…,S} and transition probability matrix P = (pij);

2. for fixed i ∈ S, the random returns Ri
0, Ri

1, …, Ri
N – 1 are identically distribu-

ted, with distribution function Fi ; they are assumed to be strictly positive and
integrable;

3. the single-period return of the risk-free bond R is a deterministic constant
that is strictly greater than 1;

4. in different time periods, the random returns are independent, i.e. ∀i, j ∈ S,
Ri

n is independent to Rj
m for m ≠ n;

5. the Markov Chain {z} is independent to the random returns in the following
sense:

,� � �j R B j R Bz zn n n n n n n

z z
1 1

n n! != = =+ +` ^ `j h j

for all j ∈ S, B ∈ �(�) and n = 0,1,…, N – 1, where �n is the probability given
the information up to time n.

3. AN AUXILIARY FUNCTION

The following auxiliary function turns out to be useful in studying our dynamic
maximization problem.
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Definition 1. Fix any i ∈ S, and assume that Ri is a random variable with distri-
bution function Fi. Define function Q“

i (·) : [0,1] $ � by

Q“
i (�) = � [(�Ri + (1 – �)R)g].

The next proposition summarizes some basic properties of the function Q“
i . Fur-

ther properties will be explored later.

Proposition 1. For fixed i ∈ S, the function Q“
i (·) is

1. well-defined on [0,1] when 0 < g < 1, i.e. for any � ∈ [0,1], the random variable
(�Ri + (1 – �)R)g is integrable; when g < 0, it is well-defined if we impose the
extra condition that (Ri)g is integrable;

2. non-negative on [0,1];
3. strictly concave (strictly convex resp.) on [0,1] when 0 < g < 1(g < 0 resp.);
4. continuous on [0,1].

Proof (1): We prove the case of 0 < g < 1 first. For any 0 ≤ � ≤ 1, note that 0 <
(�Ri + (1 – �)R)g ≤ (Ri + R)g ≤ max{1,Ri + R} ≤ 1 + Ri + R, which is integrable by
our assumption that Ri is integrable. For g < 0, we have 0 < (�Ri + (1 – �)R)g ≤
(min{Ri,R})g = max{(Ri)g,Rg} ≤ (Ri)g + Rg, which is integrable under the extra
assumption that (Ri)g is integrable.

(2): Obvious.

(3): When 0 < g < 1, choose arbitrarily �1, �2 ∈ [0,1] with �1 ≠ �2, and 0 < b < 1,
we have

Q“
i (b�1 + (1 – b)�2)

= �[{(b�1 + (1 – b)�2)Ri + (1 – (b�1 + (1 – b)�2))R}g ]
= �[{(b�1 + (1 – b)�2) (Ri – R) + R}g ]
= �[{b(�1(Ri – R) + R) + (1 – b)(�2(Ri – R) + R)g ]
> �[b{�1(Ri – R) + R}g + (1 – b){�2(Ri – R) + R}g ]
= bQ“

i (�1) + (1 – b)Q“
i (�2),

where the inequality follows from the strict concavity of the function xg on (0, ∞).
This shows the strict concavity of Q“

i (·) when 0 < g < 1. When g < 0, the func-
tion xg is strictly convex on (0,∞), hence the “>” sign becomes “<” in the above
equation, which is the required strict convexity of Q“

i (·).

(4): From the proof of Part (1), we know that the collection of random vari-
ables {(�Ri + (1 – �)R)g}0 ≤ � ≤ 1 is dominated by an integrable random variable.
Continuity follows from the Dominated Convergence Theorem. ¡

By the above proposition, we will hereafter make the extra assumption that (Ri)g

is integrable whenever g is negative. As a consequence of Proposition 1, Q“
i (·)

achieves its maximum (minimum resp.) on [0,1] at a unique point when 0 < g
< 1 (g < 0 resp.), which will be denoted as �*

i. The corresponding maximum
(minimum resp.) value Q“

i (�*
i ) is denoted as Q (1)

i
. Note that Q (1)

i
is non-negative.
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4. OPTIMAL TRADING STRATEGY

Now we can return to our problem. In order to employ the dynamic pro-
gramming technique, it is necessary to introduce the following concept:

Definition 2. The value function Vn(zn,Wn) is defined as

n N Nn
, ,max max� �V W W Wz g g

1 1
,n n n Wz= =

n

g g
^ h ; ;E E

where the maximum is performed over all the admissible investment strategies {�n,
�n + 1, …, �N – 1}.

Our objective is thus to compute V0(z0,W0) and find the associated optimal
investment strategy. By the theory of Dynamic Programming, we know that
the optimal trading strategy can be obtained by solving the following recursive
equation, known as Bellman’s Equation:

N

n

N N

n n n1 1+ +

,

, , , , ...,max �

V W W

V W V W n N

z

z z 0 1 1�

N

n n n

g
1

0 1 1n

=

= = -# # +

g
^

^ ^

h

h h6 @
*

Theorem 1. For n = 0,1,2,…,N, the value functions are given by

N n N n

N n

- -

-

N

,
, , ..., ,

,
V W

W Q n N

W n
z

1 2

0

( )

N n

n
g z

g

1

1

N n
=

=

=
-

-

g

g
^ h * (2)

where functions Q(·)
i

are defined recursively through

, ,...,Q Q p Q k N1 2 1( ) ( ) ( )
i
k

i ij j
k

j

S
1 1

1

= = -+

=

! (3)

for any i ∈ S.

The optimal trading strategy, which solves Bellman’s Equation, is given by

, ,..., ,
�

� n N

n

1 2

1 0
N n

zN n=
=

=
-

-

*

t * (4)

By Theorem 1, we can see that the optimal proportion of the wealth to be
invested in the risky stock in a certain time period will depend on the regime
at the beginning of that time period. However, it does not depend on the time
remains. This is because the current decision will not affect the transition prob-
ability of the regime, nor will it affect the future random returns.
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Proof of Theorem 1: Obviously, equations (2) and (4) are true for n = 0. We first
show that (2) and (4) are true for n equals 1, and then proceed by induction.

For n = 1 and 0 < g < 1, we have

N N1-

N

N

N

N

N

1

1

1

1

-

-

-

-

g

N 1- , ,

.
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When g < 0, the argument is exactly the same as above, except that in the third
and the fourth lines, “max” is replaced by “min’’ because g is a negative number.

Now suppose that (2) and (4) are true for some k ∈ {1, 2, …, N – 1}, then
for 0 < g < 1 we have
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Again, when g < 0, the “max’’ in the fifth and the sixth lines are replaced by
“min’’. This shows that (2) and (4) are also true for n equals k + 1. This com-
pletes the induction step. ¡

5. PROPERTIES OF THE SOLUTION

We can see that the solution to our utility maximization problem is intimately
related to the functions Q(·)

i
and its maximizer (or minimizer, depending on the

sign of g) �*
i . We will therefore study their properties carefully in this section.

In particular, we will give a simple sufficient condition that will allow us to rank
the �*

(·)’s.

Proposition 2. For fixed i ∈ S, we have, when 0 < g < 1

...Q R Q R Q R( ) ( ) ( )
i i i

N Ng g g1 2 2# # #- - - . (5)

Similarly, when g < 0, we have

...Q R Q R Q R( ) ( ) ( )
i i i

N Ng g g1 2 2$ $ $- - - . (6)

Proof : We will prove equation (5) first. Note that, for any i ∈ S, we have the
simple inequality:

.max � �� �Q R R R R1( )

�i
i g g g1

0 1
$= + - =

# #
^_ h i9 7C A (7)

From this, we then have
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This completes the induction step and finishes the proof of equation (5).
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For the case where g < 0, we have the following instead of equation (7):

.min � �� �Q R R R R1( )

�i
i g g g1

0 1
#= + - =

# #
^_ h i9 7C A (8)

The proof is exactly the same as above, except that the “≥’’ signs in the inequal-
ities are replaced by “≤’’ signs. ¡

From this proposition and its proof, it directly follows that for i ∈ S :

• when 0 < g < 1,

... ,

;

Q Q Q

Q R

( ) ( ) ( )

( )

i i i
N

i
n ng

1 2# # #

$
*

• when g < 0,

... ,

.

Q Q Q

Q R

( ) ( ) ( )

( )

i i i
N

i
n ng

1 2$ $ $

#
*

From Theorem 1, we know that if N is the investment horizon of the investor,
then the maximum expected discounted utility (using R–1 as the single period

discount rate) is given by 0 Q R( )W N N
g z

g
0

-

g

. Therefore, Proposition 2 implies that as

long as the initial wealth and the initial regime remain unchanged, then the
expected discounted utility will increase as investment horizon lengthens.

Given any two random variables X and Y, we say that X is larger than Y
in the sense of second order stochastic dominance, denoted by Y ≤SSD X, if

( ) ( )� �f Y f X#6 6@ @ (9)

for any increasing concave function f provided that the expectations exist. Sim-
ilarly, if distribution functions of X and Y are denoted by F(x) and G(x), respec-
tively, and Y ≤SSD X, we say that G ≤SSD F. It can be seen that this order is a
partial order on the set of all random variables. (X = Y means that X =

d Y). For
detailed discussions on stochastic orders and their relationships, we refer the
readers to Shaked and Shanthikumar (1994).

Proposition 3. Let i, j be in S. If Fj ≤SSD Fi, then when 0 < g < 1 (g < 0 resp.)

.Q Q( ) ( )
j i
1 1# $^ h (10)

The intuitive meaning of the condition Fj ≤SSD Fi is that random investment
return in regime i is more favorable than that in regime j to a risk-averse investor

106 KA CHUN CHEUNG AND HAILIANG YANG

https://doi.org/10.2143/AST.34.1.504957 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.1.504957


who have an increasing concave utility function. Regime i thus represents a
more favorable investment environment than regime j. This proposition says
that, in a “better” investment environment, an investor can achieve a higher
expected utility over a single period.

Proof of Proposition 3: Suppose Fj ≤SSD Fi. First, we note that

Q“
i (0) = � [Rg] = Q“

j(0), (11)

and for any fixed 0 < � ≤ 1, the function f(x) = [�x+(1 – �)R]g is increasing and
concave (decreasing and convex resp.) when 0 < g < 1 (g < 0 resp.). By the defi-
nition of stochastic domination, we have

Q“
i (�) = � [(�Ri + (1– �)R)g]

= � [ f (Ri)]
≥ (≤) � [ f (Rj)]

= � [(�Rj + (1– �)R)g]
= Q“

j(�). (12)

Combining equations (11) and (12), we have shown that Q“
j(�) ≤ (≥)Q“

i(�) for
all � ∈ [0,1]. Thus, we have Q(1)

i = Q“
i(�*

i) ≥ (≤)Q“
i(�*

j) ≥ (≤)Q“
j(�*

j) = Q(1)
j . ¡

Note that, in general, the condition Fj ≤SSD Fi is not sufficient to guarantee that
Q(n)

j ≤ Q(n)
i (or Q(n)

j ≥ Q(n)
i , depending on the sign of g) for n > 1. The structure

of the transition matrix P also plays a significant role. Given any m ≈ m matrix
A = (aij), supposing that its elements satisfy aij ≥ 0 and aijj

! = 1, it is said to
be stochastically monotone if

jka aik
k rk r

#
$$

!! (13)

for all 1 ≤ i, j, r ≤ m with j ≤ i. It is not difficult to prove the following lemma:

Lemma 1. Suppose A = (aij) is a m ≈ m matrix, aij ≥ 0 and aijj
! = 1, and assume

that A is stochastically monotone. Then, for any increasing (decreasing resp.)
column vector c = (c1, c2, …, cm), the column vector Ac is also increasing (decreasing
resp.).

For more details, see for example Rolski et al. (1999). The following proposi-
tion gives a sufficient condition to allows us to rank Q(n)

1 , …, Q(n)
S .

Proposition 4. Suppose for any i, j ∈ S with i ! j, we have either Fj ≤SSD Fi or
Fi ≤SSD Fj . By the transitivity of the stochastic dominance order, we may assume
without loss of generality that

F1 ≤SSD F2 ≤SSD F3 ≤SSD ··· ≤SSD FS. (14)
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If the transition matrix P is stochastically monotone, then whenever n > 1 and
i, j ∈ S with i > j, we have

( )Q Q( ) ( )
j
n

i
n# $ (15)

when 0 < g < 1 (g < 0 resp.).

Proof: We will only prove the case of 0 < g < 1, the case of g < 0 can be proved
similarly. By Proposition 3 and (14), we have

Q(1)
1 ≤ Q(1)

2 ≤ ··· ≤ Q(1)
S .

Suppose Q(k)
1 ≤ Q(k)

2 ≤ ··· ≤ Q(k)
S holds for k = 1,2, ..., N – 1. If P is stochastically

monotone, then for any j ≤ i, we have

j i ,Q Q p Q Q p Q Q p Q Q( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
j
k

j l l
k

j l l
k

i il l
k

i
k

l

S

l

S

l

S
1 1 1 1 1

111

# #= =+ +

===

!!!

in which the first inequality follows from Lemma 1. ¡

As we have discussed before, the stochastic dominance condition Fj ≤SSD Fi means
that the investment environment in regime i is better than that in regime j. It is
natural to ask whether we should invest a larger proportion of our wealth into
the risky stock. The following proposition gives an affirmative answer to this
question when 0 < g < 1.

Proposition 5. Let i, j be in S. If Fj ≤SSD Fi, then when 0 < g < 1,

�*
j ≤ �*

i . (16)

We need the following Lemma in order to prove this Proposition.

Lemma 2: Let i be in S, and 0 < g < 1.

(i) The function Q“
i(�) is differentiable with respect to � on the open interval (0,1);

(ii) If the function Q“
i(�) achieves its maximum at �*

i ∈ (0,1), then

� [(�*
i Ri + (1 – �*

i )R)g]

= R� [(�*
i Ri + (1 – �*

i )R)g –1]. (17)

Proof (i): Fix any 0 < e1 < e2 < 1. Recall from the definition that Q“
i(�) = �[(�Ri

+ (1 – �)R)g ], where Ri has distribution Fi. The derivative of the expression
inside the expectation with respect to � is given by

g (�Ri + (1 – �)R)g – 1(Ri – R).
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For e1 < � < e2, observe the following:
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R R

R
R R

R
R R

e

1 1

1

i

i i

i

g g

g

1 1

2

1

#

#

+ -

-
-

-

-

+

- -

-

^_ ^^

^^

h i h h

h h

where the last fraction is integrable by our assumption that Ri is integrable. This
implies that the collection of random variables

{(�Ri + (1 – �)R)g – 1(Ri – R)}e1 < � < e2

is uniformly integrable, and hence Q“
i(�) is differentiable on the open interval

(e1, e2). As e1 and e2 are arbitrarily chosen on (0,1), we conclude that Q“
i(�) is

differentiable on (0,1).

(ii): As Q“
i(�) is differentiable on (0,1), we may denote the derivative as

( ) ( )
�

�d
d D hQi

a h
i=

=

(18)

for 0 < h < 1, which is equal to g�[(hRi + (1 – h)R)g – 1(Ri – R)]. If the maximizer
�*

i lies in the open interval (0,1), we have the first order necessary condition

Di (�*
i ) = 0,

which means

g� [(�*
i Ri + (1 – �*

i )R)g – 1 (Ri – R)] = 0.

By multiplying both sides by 
a
g
i
*

, then adding the term R�[(�*
i Ri + (1 – �*

i )R)g –1]
to both sides, we can obtain (17). ¡

Now we can return to the proof of Proposition 5.

Proof of Proposition 5: In order to prove that �*
j ≤ �*

i , we consider the following
three cases: (i) �*

j = 0, (ii) 0 < �*
j < 1, and (iii) �*

j = 1. In fact, for case (i), (16)
holds trivially.

For case (ii), because of the concavity of Q“
i(·), it is enough to prove that

Di(�*
j ) is non-negative. This can be proved as follows, using (12) and (17):

�

� ��

D

R R R Rg 1

i j

j
i

j
ig 1

= + - -
-

*

* *

_

__ _

i

i i i9 C
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where the last inequality follows from (9) by noting that the function f (x) =
– (�*

j x + (1 – �*
j )R)g – 1 is increasing and concave on [0,∞).

For case (iii), due to the concavity of the function Q“
i(·) on the interval [0,1],

we have the following relationship:

Di (1) ≥ 0 + �*
i = 1 for i ∈ S. (19)

Thus, Dj(1) is non-negative if �*
j = 1. Define function h(x) = g(xg – Rxg – 1) on

(0, ∞). It is an increasing concave function, and �[h(Ri)] = Di(1). The condition
Fj ≤SSD Fi then implies

Di(1) = � [h(Ri)] ≥ � [h(Rj)] = Dj(1) ≥ 0.

Thus Di(1) is non-negative. By (19) again, we have �*
i = 1. ¡

6. CONCLUSION

In this paper, we have studied a multi-period utility maximization problem, in
which an investor can invest in either a risk-free bond or a risky stock. In dif-
ferent time periods, the return distributions of the risky stock are different,
and depend on the current regime. Different regimes may be interpreted as
different investment environments, and the switching between different regimes
is modeled by a time-homogeneous Markov Chain. Under the short-selling
and leveraging constraints, we have shown the existence and uniqueness of the
optimal trading strategy. Various properties of the solution have been examined,
and a sufficient condition to rank the optimal proportions of wealth invested
in the risky stock under different regimes has been given.
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