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GROWTH CONDITIONS AND DECOMPOSABLE 
OPERATORS 

M E H D I RADJABALIPOUR 

Throughout this paper T will denote a bounded linear operator which is 
defined on a Banach space 3? and whose spectrum lies on a rectifiable Jordan 
curve / . 

The operators having some growth conditions on their resolvents have been 
the subject of discussion for a long time. Many sufficient conditions have been 
found to ensure that such operators have invariant subspaces [2 ; 3 ; 7 ; 8 ; 12 ; 
13; 14; 21; 27; 28; 29], are 5-operators [14], are quasidecomposable [9], are 
decomposable [4 ; 11], are spectral [7 ; 10 ; 15 ; 17], are similar to normal operators 
[16 ; 23 ; 25 ; 26], or are normal [15 ; 18 ; 22]. In this line we are going to show that 
many such operators are decomposable. More precisely we will prove among 
other things, that if / is a smooth Jordan curve with no singular point and if 

||(* - D~i | | ^ exp(exp([dist(2, J)]-*)) 

for z $ J and some p £ (0, 1) then T is a strongly decomposable operator. 

I gratefully acknowledge stimulating conversations with Ali A. Jafarian. 

1. Main theorems. Recall that since <r(T) is a nowhere dense subset of the 
plane, the operator T has the single valued extension property [7], i.e., if x(z) 
is an analytic function from an open subset of the plane into $T with 

(z - T)x{z) = 0 

then x(z) = 0. 
For a closed subset F of the plane and an operator 5 in some Banach space Y 

define 

XS(F) = {x G Y: there exists an analytic function 

fx:C\F-+ F such that (z - S)fx(z) = xj . 

It is shown in [4] that if S has the single valued extension property and XS(F) 
is closed, then XS(F) is a maximal spectral subspace of S, i.e., XS(F) is an 
invariant subspace of 5 and if M is another invariant subspace of 5 with the 
property that a(S\M) C a(S\Xs(F)) then M C XS(F). Moreover, XS(F) is a 
hyperinvariant subspace of S and a(S\Xs(F)) C a(S) H F. (See also [5, 
Lemma 5].) 

For convenience, we allow singletons in the collection of closed arcs. 
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LEMMA 1. Let XT(F) be closed for any closed subarc F of J. Let Fi and F2 be 
two disjoint closed subsets of the plane. Then XT(Fi), XT(F2) are closed and 
XT(F1 U F2) = XT(F!) 0 XT(F2). 

Proof. Since every closed subset of J is the intersection of a countable set of 
closed subarcs of / , it follows that XT(F) = (XT(Fr\J)) is closed for all 
closed subsets F of the plane. Therefore XT(F\ \J F2) is closed and thus by 
[1, Proposition 1.2.3] we have 

XriF, U F2) = XT(F!) 0 XT(F2). 

LEMMA 2. Let S be a bounded linear operator defined on some Banach space F. 
Let F be a closed subset of C. Assume S has the single valued extension property 
and Xs(F) is closed. Then a(S) = a(S\Xs(F)) U a(SF) where SF denotes the 
operator induced on the quotient Y/Xs(F) by S. Moreover, a(SF) cannot be the 
disjoint union of two non-empty closed sets Ei and E2 with E± Ç F. 

The first part of Lemma 2 is proved in [1, Lemma 1.3.1] (or in [6, Proposi­
tion 1]) ; the second part follows from the Riesz decomposition theorem, 
[1, Lemma 1.3.1 and Proposition 1.3.2(1)], and the maximality of the spectral 
subspace Xs(F). (See also Step II of the proof of Proposition 1 below.) 

PROPOSITION 1. Assume that for any closed subarc F of J 
(1) XT(F) is closed, and 
(2) a(TF) Q J\F where TF denotes the operator induced on&/XT(F) by T. 

Let Fi and F2 be two closed subarcs of J with the property that F\ C\ F2 contains no 
isolated point. Then XT(Fi U i^) = XT(Fi) + XT{F2). 

Proof. In view of Lemma 1 we may and shall assume without loss of generality 
that ,Fi U F2 is connected. By Lemma 1, XT(F) is closed for all closed subsets F 
of G. In particular L = XT(Fi VJ ^2) is a closed invariant subspace of T and the 
operator 5 = T\L is a bounded operator defined on L. Obviously, 
XS(F) = XT(F H (Fx U ^2)) which is closed for all closed subsets F of C. We 
continue the proof of the proposition in three steps. 

Step I. We show that if E is the disjoint union of two closed subarcs E\ and E2 

of / then <j(TE) Ç J\E. Let Aj = T\XT(Ej), Bj be the operator induced on 
XT(E)/XT(Ej) by T\XT(E), Cj be the operator induced on T/XT(Ej) by Z\ 
and let D = TE. (To make the proof clearer note that if Sfc is a Hilbert space 
then 

'A, * *]!,(£,) 
0 Bj * \XT(E)/XT(Ej) 

. 0 0 D\&/XT(E) 

for j = 1, 2.) Since XT(Ej) is a maximal spectral subspace of T\XT{E) 
[1, Proposition 1.3.2(1)] and XT(E) is a maximal spectral subspace of T, it 
follows that XT(E)/XT(Ej) is a maximal spectral subspace of Cj [1, Proposi­
tion 1.3.2(3)] and thus <y{B3) U a(D) = a(Cj) Ç J\JEj, j = 1,2 (see Lemma 2 
and the paragraph preceding Step I). Hence a(D) Ç J\E because E\C\E2 = 0. 
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Step II. We prove that 3T = X^F,) + XT(F2) if F1U F2^ *(T). Let 
F = Fi(~\ F2, A = r | X r Ç O , and let B = TF. It follows from Condition (2) 
and Step / that <J(B) C J\F and therefore o-(^) is the disjoint union of two 
closed sets Ej C o-(5) P\ ^-, j = 1,2. Thus by the Riesz decomposition theorem 

sr/xT(F) = ̂ (Ei) e XB(E2). 

Let Mj = <trl(XB(E3)) where </> is the canonical mapping from 3C onto 
9E/XT(F). Obviously Mj is closed and thus XT(F) is a maximal spectral sub-
space of T\Mj [1, Proposition 1.3.2 (1)]. Hence a(T\Mj) = o-(^) U E, C Fj 

which implies that Mj C XT(F3), j = 1,2. Now it is an easy matter to show 
that every element x £ <3Tis of the (not necessarily unique) form x = y -\- u -\- v 
where y eXT(F), u £ XT(F{) and v Ç X r (F 2 ) . T h u s ^ Ç X ^ ) + X r (F 2 ) 
which completes the proof of Step II. 

Step III . In view of Step II, the proof of the proposition is complete as soon as 
we prove 5 ( = T\L) satisfies the Conditions (1) and (2) of the proposition. 
Condition (1) is proved in the paragraph preceding Step I. Now we prove 
Condition (2) forS. Let M = XS(F), N = L/M, A = S\M(= T\M), B(= SF) 
be the operator induced on N by S, and let C be the operator induced on S£ /L 
by T, where F is a closed subarc of / . By a proof similar to the proof of Step I 
we see that a(A) C FH (Fx \J F2), a(S) = a(A) U a(B) Ç Fx \J F2 and 
a(B) VJ a(C) = a(D) where D is the operator induced on3F/M by T. In light 
of Condition (2) and Step I we have a(D) Ç J\(F Pi ( ^ U F2)) and thus 
o-(^) C; (A^7) ^ ({a» M ^ ^) where a, b are the endpoints of Fi VJ F2 (assume 
Fi U F2 ^ J ) . But Lemma 2 implies that if a (respectively b) is an element of 
<r(B) then a (respectively b) cannot be an interior point of F. Thus a(B) C J \ F 
and hence the proof of the proposition is complete. 

By induction we can prove the following corollary. 

COROLLARY 1. Let T be as in Proposition 1. Let Fjj = 1,2, . . . ,n, ben closed 
arcs on J with the property that Ft C\ Fj contains no isolated point for all, i,j. Then 
XT(U Fj) = XXTW). 

It is interesting to note that Proposition 1 is no longer true if F\ C\ F2 has an 
isolated point. In [19] we have constructed a bounded operator T on a Hilbert 
space 9? with the following properties : 

(1) a(T) is a countable subset of {ete: - T T / 2 <: 6 S v/2], 
(2) ||(3 - T)~l\\ ^ g(\z\ - l ) 2 for \z\ T* 1 and some g > 0, 
(3) T is decomposable (in fact in view of [4, Theorem 5.3.2] T is an °tt-

unitary operator), 
(4) XT({eie: -TT/2 =" 6 ^ 0}) + XT({ei9:0 = 0 ^ TT/2}) is not closed. 
For convenience we accept the following definition of a decomposable oper­

ator [4, p. 57] : 

Definition. An operator T is called decomposable if for every finite open 
covering Gt(i = 1, 2, . . . , n) of a(T) there exists a set of maximal spectral 
subspaces F, of T such that 
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(1) a(T\ Yt) C Gui = 1, 2, . . . , n, and 
(2) <T = Y1 + Y* + . . . + Yn. 
Moreover, T is called strongly decomposable if its restriction to an arbi t rary 

maximal spectral subspace is again decomposable [1]. 

Now we prove the following key theorem. 

T H E O R E M 1. Let T be as in Proposition 1. Then T is decomposable. 

Proof. Let Gt1 i = 1, 2, . . . , » , be an arbi t rary open covering of <r(T). Since 
a(T) is compact and every open subset of J is a disjoint union of a (countable) 
set of open arcs, we may and shall assume without loss of generality t h a t for 
each i the set Gt C\ J is a finite union of a set of open arcs (atj, btj), j = 
1, 2, . . . , niy for some positive integer nt. Also, assume tha t whenever necessary 
we have shortened the arc interval (atj, btj) on one or both sides to ensure t h a t 

(aw btJ) H (akh bki) 

contains no isolated point for all i, j , k, I. (This is possible wi thout violating the 
requirement t ha t a(T) C (J (aij} btj),) 

Now let Ftj = (aijy btj) and Yt = XT(Gt). Then Yt is closed, a(T\ Yt) Ç G<, 
and E F< = E ^ r ( ^ ) = X T ( U ^ ) = Xr(cr(3T)) = ^ (see Lemma 1 and 
Corollary 1). Since each Yt is a maximal spectral subspace of T, the proof of the 
theorem is complete. 

T h e proof of the next lemma is essentially the same as the proof of its special 
cases given in [12 ; 14 ; 20] with minor differences. We give a proof for complete­
ness. 

L E M M A 3. Let J be oriented. Suppose that for each point a £ J there exists a pair 
of open piecewise smooth Jordan arcs Lay La*, and a pair of non-zero functions fa 

fa* with the following properties : 
(a) LaC\ J = La* P\ J = {a}, and La lies on the positive side of La* (see 

figure). 
(/3) For each b Ç J, b ^ a, there exists a piecewise smooth Jordan curve Jab 

(respectively Ja^) such that La VJ L&* CI Jab (respectively L* U L & C / a & * ) , the 
arc interval (a, b) (respectively (b, a)) on J lies inside Jab (respectively Jab*), and 
fa (respectively fa*) is analytic inside J a 6 (respectively /«&*) and has a continuous 
extension to the boundary. 

M \\fa(*K* - T)-i\\ + \\fa*(z)(z - T)-'\\ S Mforz e ( I f lWL f l*)\{a) where 
M is a positive constant independent of z. 
Then for any closed arc F on J we have 

(i) XT(F) is closed, 
(ii) XT(F) * {0} if F° H a(T) 9* 0 

where F° is the open arc whose closure is F. 

Note. T h e functions /„ , fa* need not be defined on an unbounded domain 
(cf. [14, Formula (2.2.13)]). 
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Proof of Lemma 3. Let [a, b] be an arbitrary closed subarc of / in the comple­
ment of a given closed arc F C / . Assume without loss of generality that 
Jab = Jha*- Let xn be an arbitrary Cauchy sequence in XT(F) with lim xn = x. 

By imitating the proof of [7, Lemma XVI.5.4] we are able to show that 
y(z) = lim(2 — a)(z — b)fa{z)f^{z)xn{z) is analytic inside Jab and 

(S 1] (z-a){z-b)fa{z)fh*(z)-X 

for all s inside Jab> where xn(V) is the analytic function satisfying (s — T)xn(z) = xn 

for z (£ F. This shows that x £ XT(J\(a, b)) for all open arcs (a, Z>) in the 
complement of F and thus x £ XT(F). Hence XT(F) is closed. 

Now we show that X r ( F ) ^ {0} if F° C\ a(T) ^ 0. Let F = [a, 6] and 

By applying the techniques of Theorems 1 and 1' of [24] we can show that 
Ax 9^ 0 for some x ^ f " and 

(x - D f /a(f)/&*(-^ (0 - r ) " 1 ^ - ^ 
J Jab A — Z 

for all X outside Jab. This shows that Ax Ç X r ( F ) and thus X r ( F ) ^ {0}. The 
proof of the lemma is complete. 
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T H E O R E M 2. Let T be as in Lemma 3. Then T is strongly decomposable. 

Proof. In view of Lemmas 1 and 3, XT(F) is a closed invariant subspace of T 
for all closed subsets F ol C. Therefore <r{T\XT(F)) C / a n d thus T\XT(F) also 
satisfies the hypotheses of Lemma 3. Hence it suffices to show tha t any operator 
satisfying these hypotheses is decomposable. 

In light of Theorem 1 and Lemma 3 we need only to show tha t <r(TF) Ç J\F 
for all closed subarcs F of / , where TF as usual denotes the operator induced on 
&/XT{F) by T. Let M = XT(F), A = T\M, and let C = TF. Here again since 
M is a maximal spectral subspace of T, we have <r(A) W <r(C) = a(T) C / and 
thus <J{C) C / . Also since \\{z — C) _ 1 | | S \\{z — T)~l\\, the operator Csatisfies 
the conditions of Lemma 3. Now let N = XC(F). Then <j>~l{N) is a closed 
invar iant subspace of T, where <t> is the canonical mapping f r o m ^ onto ST/M. 
Since M is a maximal spectral subspace of <t>~l{N) [1, Proposition 1.3.2], we have 
(r{T\<t>-\N)) = cr(i4) \J <J{C\XC(F)) Ç F . T h u s ^ - ^ J V ) = i k f a n d X c ( ^ ) = {0}. 
Hence c(C) P\ F° = 0 and the proof of the theorem is complete. 

COROLLARY 2. Let J be a smooth Jordan curve with no singular point. Assume 
there exist a positive number e and a non-increasing function M(t) : (0, e) —> (0, oo ) 
such that 

I In In M(t)dt < oo 
J o 

and ||(z — r ) _ 1 | | ^ Af(dist(s, J)) for z d_ J. Then T is strongly decomposable. 

Note. As an example, M{t) = exp(exp t~p), 0 < p < 1. 

Proof of Corollary 2. In view of [14, Lemma 2.2.1 and Theorem 5] the operator 
T satisfies the conditions of Lemma 3 and hence, by Theorem 2, T is strongly 
decomposable. 

Remark. Corollary 2 is a generalization of [4, Theorems 5.3.6 and 5.4.3]. 
(See also [4, pp . 155, 159, 186].) T h e case M(t) = t~n and / = R is essentially 
due to H. Ti l lmann [27, § 2]. 

COROLLARY 3. LetS£ be a Hilbert space and let J be a C2 Jordan curve. Let A be 
a bounded linear operator in 5T satisfying \\{z — ^4) - 1 | | â K[dist(z, J)]~n for 
z $ J, where K,n are positive constants. Assume T = A + K where K Ç Cv ( the 
Sha t ten £-class). Then T is strongly decomposable. (Note t ha t <r{T) Ç jr.) 

Proof. In view of [2, proof of Theorem 3.5; 9, Theorem III.1.1] (see also [12] 
in case A is normal) for each a £ J and each closed bounded line segment L 
with a as endpoint which is not tangent to / and satisfies L C\ J — {a}, there is 
a cons tant M such t h a t 11 (z — r ) _ 1 | | g exp\M\z — a\-q} forz 6 L\{a}, where q 
is a positive constant independent of a. Let / be oriented. Let 0 < /3 < ir/(2q) 
and let y = y (a) G [ — T, T ) be the angle between the x-axis and the tangent to 
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the positive direction of / . Let 

La = {z:\ arg(z - a) - y\ = 0], 

La* = {z: | arg(z - a) - y - TT| = 0}, 

/«(s) = exp{ -eisv(z - a)"5}, and 

/a*(2) = e x p f - e ^ + ^ O - a)-sJ 

where q < s < ir/(2j8). By [23, Example 2] the functions / a , /a* satisfy the 
conditions of Lemma 3 and thus, in view of Theorem 2, T is strongly decom­
posable. 

Remark. As an example, in Corollary 3 the operator A can be a spectral 
operator of finite type whose spectrum lies on / [7, p. 2162]. 
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