
TPLP 24 (2): 394–420, 2024. © The Author(s), 2023. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-
tion and reproduction, provided the original article is properly cited.
doi:10.1017/S1471068423000054 First published online 25 April 2023

394

Distributed Subweb Specifications
for Traversing the Web∗

BART BOGAERTS, BAS KETSMAN, YOUNES ZEBOUDJ
Vrije Universiteit Brussel, Belgium

(e-mails: Bart.Bogaerts@vub.be, bas.ketsman@vub.be, younes.zeboudj@vub.be)

HEBA AAMER
Universiteit Hasselt, Hasselt, Belgium

(e-mail: heba.mohamed@uhasselt.be)

RUBEN TAELMAN and RUBEN VERBORGH
Ghent University – imec – IDLab, Belgium

(e-mails: ruben.taelman@ugent.be, ruben.verborgh@ugent.be)

submitted 1 April 2022; revised 2 December 2022; accepted 6 March 2023

Abstract

Link traversal–based query processing (ltqp), in which a sparql query is evaluated over a web of
documents rather than a single dataset, is often seen as a theoretically interesting yet impractical
technique. However, in a time where the hypercentralization of data has increasingly come under
scrutiny, a decentralized Web of Data with a simple document-based interface is appealing, as
it enables data publishers to control their data and access rights. While ltqp allows evaluating
complex queries over such webs, it suffers from performance issues (due to the high number of
documents containing data) as well as information quality concerns (due to the many sources
providing such documents). In existing ltqp approaches, the burden of finding sources to query
is entirely in the hands of the data consumer. In this paper, we argue that to solve these issues,
data publishers should also be able to suggest sources of interest and guide the data consumer
toward relevant and trustworthy data. We introduce a theoretical framework that enables such
guided link traversal and study its properties. We illustrate with a theoretic example that this
can improve query results and reduce the number of network requests. We evaluate our proposal
experimentally on a virtual linked web with specifications and indeed observe that not just the
data quality but also the efficiency of querying improves.

KEYWORDS: sparql, link traversal–based query processing, web of linked data

1 Introduction

The World-Wide Web provides a permissionless information space organized as in-
terlinked documents. The Semantic Web builds on top of it by representing data in

∗ This research received funding from the Flemish Government under the “Onderzoeksprogramma Ar-
tificiële Intelligentie (AI) Vlaanderen” programme and SolidLab Vlaanderen (Flemish Government,
EWI and RRF project VV023/10). Ruben Taelman is a postdoctoral fellow of the Research Founda-
tion – Flanders (FWO) (1274521N). Heba Aamer is supported by the Special Research Fund (BOF)
(BOF19OWB16).

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068423000054
https://orcid.org/0000-0003-3460-4251
mailto:Bart.Bogaerts@vub.be
mailto:bas.ketsman@vub.be
mailto:younes.zeboudj@vub.be
mailto:heba.mohamed@uhasselt.be
mailto:ruben.taelman@ugent.be
mailto:ruben.verborgh@ugent.be
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068423000054&domain=pdf
https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 395

a machine-interpretable format, fueled by the Linked Data principles. In contrast to
more complex data-driven apis, the simplicity of document-based interfaces comes with
multiple advantages. They scale easily, and can be hosted on many different kinds of
hardware and software; we can realize the “anyone can say anything about anything”
principle because every publisher has their own domain in the Web, within which they
can freely refer to concepts from other domains; and complex features such as access
control or versioning are technically easy to achieve on a per-document basis.

However, decentralized interfaces are notoriously more difficult to query. As such, the
past decade has instead been characterized by Big Data and hypercentralization, in which
data from multiple sources becomes aggregated in an increasingly smaller number of
sources. While extremely powerful from a query and analytics perspective, such aggrega-
tion levels lead to a loss of control and freedom for individuals and small- to medium-scale
data providers. This in turn has provoked some fundamental legal, societal, and econom-
ical questions regarding the acceptability of such hypercentral platforms. As such, there
is again an increasing demand for more decentralized systems, where data is stored closer
to its authentic source, in line with the original intentions of the Web (Verborgh 2020).

As with Big Data, query processing on the Semantic Web has traditionally focused on
single databases. The sparql query language allows querying such a single rdf store
through the sparql protocol, which places significantly more constraints on the server
than a document-based interface (Verborgh et al. 2016). While federated query processing
enables incorporating data from multiple sparql endpoints, federated queries have very
limited link traversal capabilities and sparql endpoints easily experience performance
degradation (Buil-Aranda et al. 2013).

Fortunately, a technique was introduced to query webs of data: Link Traversal–based
Query Processing (ltqp) (Hartig et al. 2009; Hartig 2013a), in which an agent evaluates
a sparql query over a set of documents that is continuously expanded by selectively
following hyperlinks inside of them. While ltqp demonstrates the independence of queries
and selection of sources (on which these queries need to be executed), it has mostly
remained a theoretical exercise, as its slow performance makes it unsuitable for practical
purposes. The fact that ltqp can yield more results than single-source query evaluation,
gave rise to different notions of query semantics and completeness (Hartig and Freytag
2012). While more data can be considered advantageous, it can also lead to doubts
regarding data quality, trustworthiness, license compatibility, or security (Taelman and
Verborgh 2022). Together with performance, these concerns seem to have pushed ltqp
to the background.

In this article, we identify two limitations of existing ltqp approaches. Essentially,
all existing ltqp approaches identify a subweb of the web of linked data on which a
query needs to be executed. The first limitation is that the responsibility for defining
how to construct this subweb is entirely in the hands of the data consumer, from now on
referred to as the querying agent (which can be an end-user or machine client). In other
words, existing approaches make the assumption that the querying agent can determine
perfectly which links should be traversed. However, since every data publisher can freely
choose how to organize their data, we cannot expect a single agent to possess complete
knowledge of how such traversals should proceed. A second restriction is that current
ltqp formalisms provide an all-or-nothing approach: a document is either included in
the subweb of interest in its entirety or not at all, while for data-quality reasons, it would

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

396 B. Bogaerts et al.

be useful to only take parts of documents into account. For instance, an academic who has
moved institutions might specify that the data provided by institution A is trustworthy
up to a certain date and that for later information about them, institution B should be
consulted. More radically, a certain end user might wish to specify that Facebook’s data
about who her friends are is correct, without thereby implying that any triple published
by Facebook should be taken into account when performing a query.

In this paper, building on the use case of the next section, we propose an approach
for guided link traversal that overcomes these two limitations. In our proposal, each
data publisher has their own subweb of interest and publishes a specification of how it
can be constructed. They can use this for instance to describe the organization of their
data, or to describe parties they trust (as well as for which data they trust them). The
data consumer can then construct a subweb of interest building on the subwebs of the
publishers, for example, deciding to include parts of a subweb, or to omit it. As such,
the data publishers guide the data consumer toward relevant data sources. We focus on
the theoretical foundations and highlight opportunities for result quality and performance
improvements. We implemented our proposal and experimentally validated it on a crafted
web of linked data, annotated with subweb specifications in our formalism.

The rest of this paper is structured as follows. In Section 2, we present a motivating
use case; afterward, in Section 3 we recall some basic definitions. From our use case, in
Section 4, we extract several desired properties. Related work is discussed in light of the
use case and the derived desired properties in Section 5. Our theoretical formalism is
presented in Section 6, and a concrete web-friendly syntax for it is discussed in Section 7.
In Section 8, we investigate to which extent existing link traversal formalisms can “simu-
late” the behaviour of our formalism. The answer is that even for very simple expressions,
such simulations are not possible, thereby illustrating the expressive power of our new
formalism. We evaluate the effect of using subweb specifications on performance and on
query result quality in Section 9. We end the paper with a discussion and a conclusion.

Publication history. A short version of this paper was presented at the 2021 RuleML+RR
conference (Bogaerts et al. 2021). This paper extends the short version with proofs and
an experimental evaluation.

2 Use case

As a guiding example throughout this article, we introduce example data and queries
for a use case that stems from the Solid ecosystem (Verborgh 2020), where every person
has their own personal data vault. Let us consider 3 people’s profile documents, stored in
their respective data vaults. Uma’s profile (Document 1) lists her two friends Ann and
Bob. Ann’s profile (Document 2) contains links to her corporate page and various other
pages. Bob, a self-professed jokester, lists his real name and email address in his profile
(Document 3), in addition to a funny profile picture and a couple of factually incorrect
statements (which he is able to publish given the open nature of the Web). Note how
Ann provides additional facts about herself into the external document she links to
(Document 4), and Uma’s profile suggests a better profile picture for Bob (Document 1).

Next, we consider an address book application that displays the details of a user’s
contacts. At design time, this application is unaware of the context and data distribution

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 397

<https://uma.ex/#me> foaf:knows
<https://ann.ex/#me>, <https://bob.ex/#me>.

<https://bob.ex/#me> foaf:img <bob.jpg>.

Document 1: Contents of https://uma.ex/

<https://ann.ex/#me> foaf:isPrimaryTopicOf <https://corp.ex/ann/>.
<https://ann.ex/#me> foaf:weblog <https://ann.ex/blog/>.
<https://ann.ex/#me> foaf:maker <https://photos.ex/ann/>.

Document 2: Contents of https:// ann.ex/

<https://bob.ex/#me> foaf:name "Bob";
foaf:mbox <mailto:me@bob.ex>;
foaf:img <funny-fish.jpg>.

<https://uma.ex/#me> foaf:knows
<http://dbpedia.org/resource/Mickey_Mouse>.

<https://ann.ex/#me> foaf:name "Felix".

Document 3: Contents of https:// bob.ex/

<https://ann.ex/#me> foaf:name "Ann";
foaf:mbox <mailto:ann@corp.ex>;
foaf:img <me.jpg>.

Document 4: Contents of https:// corp.ex/ ann/

SELECT ?friend ?name ?email ?picture WHERE {
<https://uma.ex/#me> foaf:knows ?friend.
?friend foaf:name ?name.
OPTIONAL { ?friend foaf:mbox ?email.

?friend foaf:img ?picture. }
}

Query 1: Application query in sparql

?friend ?name ?email ?picture

1 <https://ann.ex/#me> "Ann" <mailto:ann@corp.ex> <https://corp.ex/ann/me.jpg>
2 <https://bob.ex/#me> "Bob" <mailto:me@bob.ex> <https://uma.ex/bob.jpg>
3 <https://bob.ex/#me> "Bob" <mailto:me@bob.ex> <https://bob.ex/funny-fish.jpg>
4 <https://ann.ex/#me> "Felix" <mailto:ann@corp.ex> <https://corp.ex/ann/me.jpg>
5 dbr:Mickey_Mouse "Mickey Mouse"@en NULL NULL

Results 1: Possible results of ltqp of the query in Query 1 with https://uma.ex/ as seed.

of the user and their friends. If we assume Uma to be the user, then the application’s
data need can be expressed as Query 1, which is a generic sparql template in which only
the url corresponding to Uma’s identity (https:// uma.ex/#me) has been filled out.

With traditional ltqp (under cAll semantics (Hartig and Freytag 2012)), results include
those in Results 1. However, the actually desired results are Rows 1 and 2, which contain
Uma’s two friends with relevant details. Rows 3–5 are formed using triples that occur in
Bob’s profile document but are not considered trustworthy by Uma (even though other
triples in the same document are). To obtain these results, a query engine would need
to fetch at least 7 documents: the profile documents of the 3 people (Uma, Ann, Bob),
the 3 documents referred to by Ann’s profile (Document 2), and the dbpedia page for
Mickey Mouse.

3 Preliminaries

As a basis for our data model of a Web of Linked Data, we use the rdf data model
(Cyganiak et al. 2014). That is, we assume three pairwise disjoint, infinite sets: U (for
uris), B (for blank nodes), L (for literals). An RDF triple is a tuple (s, p, o) ∈ T , with T
the set of all triples defined as

T = (U ∪ B)× U × (U ∪ B ∪ L);

if t = (s, p, o) ∈ T , then uris(t) = {s, p, o} ∩ U . A set of triples is called a triple graph or
an RDF graph. An RDF dataset is a set of tuples {〈ni, gi〉} such that ni ∈ U and gi an
rdf graph, where g0 is referred to as the default graph.

We assume another set D, disjoint from the aforementioned sets U , B, and L, whose
elements are referred to as documents. The rdf graph contained in each document is
modeled by a function data : D → 2T that maps each document to a finite set of triples.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://uma.ex/
https://ann.ex/
https://bob.ex/
https://corp.ex/ann/
https://uma.ex/
https://uma.ex/#me
https://doi.org/10.1017/S1471068423000054

398 B. Bogaerts et al.

Definition 1
A Web of Linked Data (WOLD) W is a tuple 〈D, data, adoc〉 where D is a set of documents
D ⊆ D, data a function from D to 2T such that data(d) is finite for each d ∈ D, and
adoc a partial function from U to D. If W is a wold, we use DW , dataW , and adocW
for its respective components. The set of all wolds is denoted W.

We aim to define parts of a web as subwebs. While existing definitions only consider the
inclusion of documents in their entirety (Hartig and Freytag 2012), we allow for partial
documents to enable fine-grained control about which data is to be used for answering
certain queries.

Definition 2
Consider two wolds W = 〈D, data, adoc〉 and W ′ = 〈D′, data ′, adoc′〉. We say that W ′

is a subweb of W if

1. D′ ⊆ D

2. ∀d ∈ D′ : data ′(d) ⊆ data(d)

3. adoc′(u) = adoc(u) if adoc(u) ∈ D′ and adoc′(u) is undefined otherwise.

We write subwebs(W) for the set of subwebs of W .

The simplest type of subwebs are those only consisting of a single document.

Definition 3
Let W be a wold and d ∈ D. We use singleton(d,W) to denote the (unique) subweb
〈{d}, data ′, adoc′〉 of W with data ′(d) = data(d).

Additionally, if two subwebs of a given wold are given, we can naturally define operators
such as union and intersection on them; in this paper, we will only need the union.

Definition 4
If W1 and W2 are subwebs of W , we define W1 ∪ W2 to be the unique subweb
〈D′, data ′, adoc′〉 of W with

• D′ = DW1
∪DW2

, and
• data ′(d) = dataW1

(d) ∪ dataW2
(d) for each d ∈ D′, where, slightly abusing notation,

we use dataWi
(d) = ∅ if d �∈ DWi

.

4 Requirements

From the use case, we extracted four requirements that motivate our definitions.

A declarative language for selecting data sources. Similar to existing ltqp approaches,
we need a language to describe which data sources to select (possibly starting from a
given seed). We want such a language to be declarative, that is, focus on which sources to
use, rather than how to obtain them. Formally, we expect a source selection expression
to evaluate in a given WOLD to a set of uris representing the documents to be included.

Independence of query and subweb specification. Motivated by principles of reusability
and separation of concerns, we want the query to be formulated independently from the

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 399

subweb over which the query is to be evaluated. While it might – to a certain extent – be
possible to encode traversal directions in (federated) sparql queries, what do I want to
know and where do I want to get my information are two orthogonal concerns that we
believe should be clearly separated, in order to improve readability, maintainability, and
reusability. For example, in the use case, the phone book application defines the query,
while Uma defines her own subweb of interest (consisting of her own document, as well
as parts of the documents of her friends). The application should be able to run with
different subwebs (e.g., coming from other users), and Uma’s subweb of interest should
be reusable in other applications.

Scope restriction of sources. One phenomenon that showed up in the use case is that we
want to trust a certain source, but only for specific data. We might for instance want
to use all our friends’ data sources, but only to provide information about themselves.
This would avoid “faulty” data providers such as Bob from publishing data that pollute
up the entire application, and it would give a finer level of control over which data is
to be used to answer queries. On the formal level, this requirement already manifests
itself in the definition of subweb we chose: contrary to existing definitions (Hartig and
Freytag 2012), we allowed a document in a subweb to have only a subset of the data of
the original document.

Distributed subweb specifications. Finally, we arrive at the notion of distribution. This
is the feature in which our approach most strongly deviates from the state-of-the-art in
link traversal. While the semantic web heavily builds on the assumption that data is
decentralized and different agents have different pieces of data to contribute, existing
link traversal–based approaches still assume that the knowledge of where this data can be
found is completely in the hands of the querying agent at query time, or at least that the
principles by which the web has to be traversed can be described by the querying agent.
However, as our use case illustrates, this is not always the case: Ann decided to distribute
her information over different pages; the agent developing the phone book application can-
not possibly know that the triple <https://ann.ex/#me> foaf:isPrimaryTopicOf <https://corp.ex/ann/>.

indicates that information from <https://corp.ex/ann/> is “equally good” as information from
Ann’s main document. Stated differently, only Ann knows how her own information is
organized and hence if we want to get personal information from Ann, we would want
her to be able to describe herself how or where to find this data. To summarize, we aim
to allow document publishers to publish specifications of subwebs in the same declarative
language as used by the querying agents and to allow querying agents to decide whether
or not to include the data from such subwebs.

Moreover, the fact that published subweb specifications can be used across different
applications forms an incentive for document publishers to actually build and publish
such specifications. For instance in our running example, if Uma publishes her sub-
web specficiations for the purpose of the described phone book application, and later
she wants to use a different application, for example, a social media app, to access her
friends (and their data), she can use the same specifications and simply link to her own
data pod.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

400 B. Bogaerts et al.

5 Related work

Web decentralization. To counter the various issues surrounding centralized data man-
agement, efforts such as Solid (Verborgh 2020), Mastodon (Zignani et al. 2018), and
others (Kuhn et al. 2021) aim to decentralize data on the Web. While approaches such
as Mastodon aim to split up data into several federated instances, Solid takes a more
radical approach, where each person can store data in a personal data vault, leading to a
wider domain of decentralization. Solid is built on top of a collection of open Web stan-
dards (Capadisli et al. 2020), which makes it an ecosystem in which decentralized appli-
cations can be built. This includes specifications on how data can be exposed through the
HTTP protocol (Speicher et al. 2015), how to manage authentication (Coburn et al. 2022)
and authorization (Capadisli 2022; Bosquet 2022), and representing identity (Capadisli
and Berners-Lee 2022). Our approach for enabling the publication of subwebs of interest
has precedent in the Solid ecosystem, since approaches such as Type Indexes (Turdean
2022) and Shape Trees (Prud’hommeaux and Bingham 2021) already exist that enable
data discovery in data vaults by type or data shape. Our approach differs from these
approaches in the fact that we use this published information for link pruning instead of
link discovery.

Link traversal–based query processing Over a decade ago, the paradigm of Link Traversal–
based Query Processing was introduced (Hartig et al. 2009), enabling queries over
document-oriented interfaces. The main advantage of this approach is that queries can
always be executed over live data, as opposed to querying over indexed data that may
be stale. The main disadvantages of this approach are that query termination and re-
sult completeness are not guaranteed, and that query execution is typically significantly
slower than database-centric approaches such as sparql endpoints. Several improve-
ments have been suggested to cope with these problems (Hartig 2013a). For example,
the processing order of documents can be changed so that certain documents are pri-
oritized (Hartig and Özsu 2016), which allows relevant results to be emitted earlier in
an iterative manner (Hartig 2013b), but does not reduce total execution time. In this
work, we propose to tackle this problem by allowing publishers to specify their subweb
of interest. These specifications are then used to guide the query engine toward relevant
(according to the data publishers at hand) documents. ltqp is related to the domain of
focused crawlers (Chakrabarti et al. 1999; Batsakis et al. 2009), which populate a local
database by searching for specific topics on Web pages. It is also related to SQL query-
ing on the Web (Konopnicki and Shmueli 1998; Mendelzon et al. 1996), which involves
querying by attributes or content within Web pages. In contrast to these two related
domains, ltqp is based on the RDF data model, which simplifies data integration due
to universal semantics.

Reachability semantics. The sparql query language was originally introduced for query
processing over rdf databases. Since ltqp involves a substantially different kind of
sources, a family of new semantics was introduced (Hartig and Freytag 2012), involving
the concept of a reachable subweb. When executing a query over a set of seed docu-
ments, the reachable Web is the set of documents that can be reached from these seeds
using one of different reachability criteria. These criteria are functions that test each

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 401

data triple within retrieved documents, indicating which (if any) of the uris in the triple
components should be dereferenced by interpreting them as the uri of a document that
is subsequently retrieved over http. The simplest reachability criterion is cNone, where
none of the uris from the seed documents is followed, such that the query will be exe-
cuted over the union of triples across the seeds. Query 1 under cNone with Document 1
as seed would thus not yield any results. The cAll reachability criterion involves following
all encountered uris, which is the strategy in the example of Results 1. A more elaborate
criterion is cMatch, which involves following uris from data triples that match at least
one triple pattern from the query. cMatch can significantly reduce the number of traver-
sals compared to cAll. However, evaluating Query 1 with cMatch semantics would not yield
results for Ann (rows 1 and 4). Her details are only reachable via a triple with predicate
foaf:isPrimaryTopicOf, which does not match any of the query’s triple patterns; hence,
the relevant document is never visited. So while cMatch can lead to better performance,
it comes at the cost of fewer results, showing that none of these approaches is optimal.

Delegation. The concept of subwebs is somewhat related to the presence of active rules in
rule-based languages for distributed data management. A particularly relevant project in
this context is Webdamlog (Abiteboul et al. 2011), a Datalog-based declarative language
for managing knowledge on the web with support for rule delegation. Here, delegation is
achieved by allowing rules to get partially materialized by different peers.

6 A formalism for subweb specifications

Inspired by the desired properties from Section 4, we now define a formalism to de-
scribe subwebs of interest. In our formalism, different agents will be able to provide a
description of a subweb of interest ; they will be able to specify declaratively in (which
parts of) which documents they are interested. We do not make any assumption here
about what the reason for this “interest” is; depending on the context at hand, different
criteria such as relevance, trustworthiness, or license-compatibility can be used. Such a
description of a subweb of interest can be given by the querying agent (an end-user or
machine client) which provides it at runtime to the query processor. Additionally, ev-
ery data publisher can use the same mechanism to make assertions about their beliefs,
such that other data publishers or querying agents can reuse those instead of requiring
explicit knowledge. For instance, a data publisher can express which sources they con-
sider relevant or trustworthy for what kinds of data: a researcher might indicate that
a certain source represents their publication record correctly, whereas another source
captures their affiliation history. A certain agent might or might not choose to take the
subweb of interest of a data publisher into consideration. In the use case of Section 2,
the application generates a query P as Query 1, and end-user Uma expresses that she
trusts her own profile for her list of contacts, and that she trusts those contacts for their
own details. Furthermore, each of these friends can indicate which other documents they
trust for which information. For instance, Ann could express that she trusts corp.ex for
her personal details. Essentially, in this case Uma partially delegates responsibility of
traversing the web to Ann, but only retains information about Ann from Ann’s subweb
of interest. This leads to the following definitions.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

corp.ex
https://doi.org/10.1017/S1471068423000054

402 B. Bogaerts et al.

Definition 5
A source selector is a function σ : W → 2U .

Definition 6
A filter is a function f : 2T × U → 2T such that f(S, u) ⊆ S for every S ⊆ T and
u ∈ U . For a wold W = 〈D, data, adoc〉 and uri u; we extend the notation and also
write f(W,u) to denote the subweb 〈D, data ′, adoc〉 of W with data ′(d) := f(data(d), u)

for each d ∈ D.

In our running example, if Uma wants for each of her friends to only include statements
they make about themselves, she can use a source selector σ that extracts her friends,
e.g, with σ(W) = {o | (s, foaf:knows, o) ∈ data(adoc(s)) with s = <https://uma.ex/#me>} and
with a filter that maps (S, u) to {(s, p, o) ∈ S | s = u}. If we assume that W is a wold
in which only a particular friend u of Uma provides triples, then f(W,u) is the subweb
of W in which friend u has only the triples making statements about him or herself.

Definition 7
A subweb specification, often denoted Θ, is a set of tuples of the form (σ, b, f), where σ

is a source selector; b is a Boolean; and f is a filter.

Intuitively, the Boolean b in (σ, b, f) indicates whether to include for each uri u ∈ σ(W)

(the filtered version of) the subweb of adoc(u) or only u’s document. Finally, this brings us
to the definition of a specification-annotated wold (sa-wold in short): a wold extended
with the knowledge of how to construct the subweb of all data publishers.

Definition 8
A specification-annotatedWOLD (sa-wold in short) is a tuple W = 〈W,Θ〉 consisting
of a wold W = 〈D, data, adoc〉 and an associated family Θ = (Θd)d∈D of subweb
specifications.

In a sa-wold, each data publisher declares their subweb specification that can be used
to construct their subweb of interest. The value of a subweb specification in a sa-wold
is defined as follows:

Definition 9
Let W = 〈W,Θ〉 be a sa-wold with W = 〈D, data, adoc〉, and Θ a subweb specification.
Then, �Θ�W denotes the subweb specified by Θ for W,

�Θ�W :=
⋃

(σ,b,f)∈Θ

⋃

u∈σ(W)

f
(
singleton(adoc(u),W) ∪

(
�(Θadoc(u))�

W if b
)
, u

)
,

where (S if b) equals S if b is true and the empty wold (the unique wold without
documents) otherwise. The subweb of interest of a document d ∈ D in W is defined as
soi(d,W) := singleton(d,W) ∪ �Θd�W .

Since not just the data publishers, but also the querying agents should be able to
specify a subweb of interest, we naturally obtain the following definition.

Definition 10
A specification-annotated query is a tuple P = 〈P,Θ〉 with P a sparql query and Θ a
subweb specification. The evaluation of P in W, denoted [[P]]W , is defined by [[P]]W :=

[[P]]�Θ�
W

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 403

Here, we use [[P]]W
′

to denote the evaluation of the sparql query in the dataset that
is the union of all the documents in W ′ (to be precise, this is the RDF dataset with as
default graph the union of all the data in all documents of the subweb, and for each uri
u with adoc(u) = d a named graph with name u and as triples the data of d (Cyganiak
et al. 2014)). Of course, we need a mechanism to find all those documents, which is what
Θ will provide.

In the next section, we propose a concrete sparql-based instantiation of the theoretical
framework presented here and illustrate our use case in that setting. Afterwards, we will
formally compare our proposal to existing ltqp approaches.

7 Expressing subweb specifications

In this section, we propose a syntax for subweb specifications (as formalized in Section 6),
named the Subweb Specification Language (swsl), inspired by ldql and sparql. In or-
der to lower the entry barrier of this syntax to existing sparql engine implementations,
we deliberately base this syntax upon the sparql grammar. This enables implementa-
tions to reuse (parts of) existing sparql query parsers and evaluators.

The grammar below represents the swsl syntax in Extended Backus–Naur form
(EBNF) with start symbol 〈start〉. The specifications begin with the FOLLOW key-
word, followed by a 〈sources〉 clause, an optional WITH SUBWEBS keyword, and an
optional 〈filter〉 clause.

〈start〉 |= FOLLOW 〈sources〉 [WITH SUBWEBS] [〈filter〉]
〈sources〉 |= 〈variables〉 { 〈GroupGraphPattern〉 } [〈recurse〉]

〈variables〉 |= ?〈VARNAME〉 | ?〈VARNAME〉 〈variables〉
〈recurse〉 |= RECURSE [〈INTEGER〉]

〈filter〉 |= INCLUDE 〈ConstructTemplate〉 [WHERE { 〈GroupGraphPattern〉 }]

Intuitively, a full swsl expression corresponds to a single subweb specification tuple
(σ, b, f) where the 〈sources〉 clause correspond to the source selection function σ, the
keyword WITH SUBWEBS corresponds to the Boolean b, and the 〈filter〉 clause cor-
responds to the filter function f . We explain each of these parts in more detail hereafter.

Selection of sources. The 〈sources〉 will be evaluated in the context of a set S of seed
documents. For subweb specifications provided to the query processor, this set of seeds
will be given explicitly, whereas for subweb specifications found in a document, the
set S is comprised of the uri of that document. A 〈sources〉 clause begins with a list
of sparql variables, followed by a source extraction expression defined as sparql’s
〈GroupGraphPattern〉 clause. The output is a set of bindings of the given variables,
indicating uris whose documents are to be included. For instance, when evaluating
the expression ?v1 . . . ?vn { G } in a wold W with seed set S, the resulting source
selection is

σ(W) =
⋃

u∈S

{μ(vi) ∈ U | 1 ≤ i ≤ n ∧ μ ∈ �G�data(adoc(u))},

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

404 B. Bogaerts et al.

where �G�DS is the evaluation of the GroupGraphPattern G on a dataset DS, that is, a
set of bindings μ (mappings from variables to U ∪ B ∪ L).

Recurring source selection. A 〈sources〉 clause may have at the end an optional 〈recurse〉
clause. If RECURSE is not used in a specification, then this latter will only apply to
the document in which it is defined; else, the specification will apply to that document,
and all output uris, taken as seed (recursively). In other words, the 〈sources〉 clause will
be applied to all documents that are obtained when following a chain of one or more
links using the specification. The 〈recurse〉 clause has an optional nonnegative integer
parameter, which indicates the maximum recursion depth. A depth of 0 is equivalent
to not defining the 〈recurse〉 clause. A depth of m means that all documents that are
obtained when following a link path of length m from the seeds are considered. This
recursion capability calls for the need to express the current document’s URI . To achieve
this, swsl syntax reuses sparql’s relative iri capability. Concretely, every time an swsl
specification is applied on a document, the document’s uri will be set as base iri to the
swsl specification, so that relative iris can be resolved upon this iri.

Inclusion of subwebs of selected sources. This is determined by the optional keyword
WITH SUBWEBS. Thus, if an swsl specification has the WITH SUBWEBS op-
tion, this is equivalent to a subweb specification tuple with b is true. Otherwise, b is
false.

Document filtering. The 〈filter〉 clause is an optional clause indicating that only cer-
tain parts of the document are considered. Without this clause, the entire document is
included. The 〈filter〉 clause is similar to sparql’s 〈ContructQuery〉 clause. It exists in
compact or extended forms; in the latter, filtering constraints can be added via WHERE
keyword.

Concretely, the extended form is defined by the sparql’s 〈ConstructTemplate〉 and
〈GroupGraphPattern〉 productions. The 〈ConstructTemplate〉 acts as a template of
triples to accept, while the 〈GroupGraphPattern〉 imposes conditions to do so. It is
also possible that in the bodies of the 〈GroupGraphPattern〉 and 〈ConstructTemplate〉
there are variables that are mentioned in the 〈GroupGraphPattern〉 of 〈sources〉 clause.
This implies that they should be instantiated according to the result of the first
〈GroupGraphPattern〉.

The compact form is defined by 〈ConstructTemplate〉, which acts as syntactical sugar
to the extended with an empty 〈GroupGraphPattern〉. Thus, to define 〈filter〉 clause’s
semantics, we only need the extended form. To illustrate this, consider an expression

FOLLOW ?v1 { G1 } INCLUDE C WHERE { G2 }.

We already saw that when evaluated in context u, this induces a source selector selecting
those v such that μ1(?v1) = v, for some μ1 ∈ �G1�data(adoc(u)). The associated filter is

f(S, v) =
⋃

μ1∈�G1�data(adoc(u))|μ1(?v1)=v

{t ∈ S | t ∈ �μ2(μ1(C))�S for some μ2 ∈ �μ1(G2)�S}.

Expressing document subwebs. In this work, we assume that each published document can
link to its own context where they indicate the documents they consider relevant using an

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 405

swsl subweb specification. For illustration, we consider the predicate ex:hasSpecification
that is attached to the current document. An ex:Specification is a resource that contains
at least a value for ex:scope, pointing to one or more swsl strings. This resource can also
contain metadata about the subweb specification.

Application to the use case. Listing 1 shows a part of Uma’s profile where she exposes
an swsl subweb specification to indicate that her friends can express information about
themselves. This specification states that all foaf:knows links from Uma should be fol-
lowed, and that from those followed documents, only information about that friend should
be included. By WITH SUBWEBS, she indicates that her friends’ subwebs must be in-
cluded in her subweb. Then, Ann can express in her subweb specification (Listing 2) that
she trusts documents pointed to by foaf:isPrimaryTopicOf links about triples over the
topic she indicates. With these subweb specifications, Query 1 produces only Rows 1–3
of Results 1. However, we still include the undesired1 profile picture from Bob in our
results (Row 3). Extending the notion of filter to also allow this is left for future work.

<https://uma.ex/#me> ex:hasSpecification <#spec1>.
<#spec1> ex:appliesTo <https://uma.ex/>;

ex:scope """
FOLLOW ?friend WITH SUBWEBS {
<https://uma.ex/#me> foaf:knows ?friend.

} INCLUDE { ?friend ?p ?o. }
"""^^ex:SWSL.

Listing 1: Subweb specification of https://uma.
ex/

<https://ann.ex/#me> ex:hasSpecification <#spec2>.
<#spec2> ex:appliesTo <https://ann.ex/>;

ex:scope """
FOLLOW ?page {
?topic foaf:isPrimaryTopicOf ?page.

} INCLUDE { ?topic ?p ?o. }
"""^^ex:SWSL.

Listing 2: Subweb specification of https:// ann.
ex/

8 Power and limitations of existing ltqp approaches

Since ldql is a powerful link traversal formalism that has been shown to subsume other
approaches such as reachability-based querying (Hartig 2012), this raises the question:
to what extent can ldql in itself achieve the requirements set out in Section 4? In
the current section we formally investigate this, after introducing some preliminaries on
ldql.

8.1 Preliminaries: LDQL

ldql is a querying language for linked data. Its most powerful aspect is the navigational
language it uses for identifying a subweb of the given wold. The most basic block that
constitutes ldql’s navigational language is a link pattern: a tuple in

(U ∪ {_,+})× (U ∪ {_,+})× (U ∪ L ∪ {_,+}).

Intuitively, a link pattern requires a context uri uctx , then evaluates to a set of uris (the
links to follow) by matching the link pattern against the triples in the document that
uctx is authoritative for. Formally, we say that a link pattern lp = 〈�1, �2, �3〉, matches
a triple (x1, x2, x3) with result u in the context of a uri uctx if the following two points
hold:

1. there exists i ∈ {1, 2, 3} such that �i = _ and xi = u, and
2. for every i ∈ {1, 2, 3} either �i = xi, or �i = + and xi = uctx , or �i = _.

1 Assuming Uma choosing a picture for Bob “overrides” the picture Bob has chosen for himself.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

foaf:knows
foaf:isPrimaryTopicOf
https://uma.ex/
https://uma.ex/
https://ann.ex/
https://ann.ex/
https://doi.org/10.1017/S1471068423000054

406 B. Bogaerts et al.

Table 1. Value of link path expressions
lpe �lpe�uW

ε {u}
lp {u′ | lp matches with t (with result u′ in context u for some t ∈ data(adoc(u))}
lpe1/lpe2 {v | v ∈ �lpe2�

u′
W and u′ ∈ �lpe1�

u
W }

lpe1 | lpe2 �lpe1�
u
W ∪ �lpe2�

u
W

lpe∗ {u} ∪ �lpe�uW ∪ �lpe/lpe�uW ∪ �lpe/lpe/lpe�uW ∪ ...
[lpe] {u | �lpe�uW �= ∅}

Link patterns are used to build link path expressions (lpes) with the following syntax:

lpe := ε | lp | lpe/lpe | lpe | lpe | lpe∗ | [lpe]

where lp is a link pattern. In a given wold W , the value of a link path expression lpe in
context uri u (denoted �lpe�uW) is a set of uris as given in Table 1.

An ldql query is a tuple q = 〈lpe, P 〉 with lpe a link path expression and P a sparql
query. The value of such a query q in a wold W with a set of seed uris S is

�q�SW := �P�W
′
where W ′ =

⋃

s∈S,u∈�lpe�sW

singleton(adoc(u),W),

that is, the query P is evaluated over the (RDF dataset constructed from the) data
sources obtained by evaluating the link path expression starting in one of the seeds.

Remark 1
Hartig and Pérez (2016) allow one other form of link path expression, where an entire
ldql query is nested in an lpe; for the purpose of this paper, we opt to use a strict
separation between query and source selection and omit this last option.2 Additionally,
they consider (Boolean) combinations of queries, thereby allowing to use different lpes
for different parts of the expression; we briefly come back to this when discussing scope
restriction.

8.2 LDQL and the requirements

A declarative language for selecting data sources. In ldql, the link path expressions
provide a rich and flexible declarative language for describing source selection. Here,
paths through the linked web are described using a syntax similar to regular expressions.
For instance, the ldql expression

〈+, foaf:knows,_〉, /〈+, foaf:knows,_〉,

when evaluated in a given uri u (the context) traverses to u’s friends f (as explicated
by triples of the form (u, foaf:knows, f) in adoc(u)) and subsequently to their friends f2
(as indicated by triples (f, foaf:knows, f2) in adoc(f)). The final result contains only such
friends f2. In other words, this example expression identifies the documents of friends of
friends of a given person.

2 Notably, this option was also not present in the original work (Hartig 2015).

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 407

Independence of query and subweb specification. The design philosophy behind ldql does
not start from an independence principle similar to the one proposed here. That is, in
its most general form, ldql allows intertwining the source selection and the query. For
instance, the ldql query

〈lpe1, P1〉AND 〈lpe2, P2〉,
expresses the sparql query P1 ANDP2, and on top of that specifies that different parts of
the query should be evaluated with respect to different sources: P1 should be evaluated in
the documents identified by lpe1 and P2 in the documents identified by lpe2. In this sense,
ldql thus violates our principle of independence. However, independence can easily be
achieved in ldql by only considering ldql queries of the form 〈lpe, P 〉 with lpe a link
path expression and P a sparql query.

Scope restriction of sources The semantics of an ldql query 〈lpe, P 〉 is obtained by first
evaluating lpe starting from a seed document s, resulting in a set of uris �lpe�sW ; the
sparql query P is then evaluated over the union of the associated documents. That
is, to compute the result of 〈lpe, P 〉, for each document adoc(u) with u ∈ �lpe�sW , its
entire content is used. As such, ldql provides no mechanism for partial inclusion of
documents. However, while ldql cannot select parts of documents, it can be used, as
discussed above, to apply source selection strategies only to parts of queries and thereby
to a certain extent achieve the desired behaviour. For instance, the query

〈lpe1, (?x, foaf:knows, ?y)〉AND 〈lpe2, (?y, foaf:mbox, ?m)〉,

will only use triples with predicate foaf:knows from documents produced by lpe1. However,
this sacrifices the independence property, and for complex queries and filters, this is not
easy to achieve.

Distributed subweb specifications. This now brings us to the main topic of this section:
studying to which extent it is possible in ldql to distribute the knowledge of how to
construct the subweb of interest and as such to guide the data consumer toward inter-
esting/relevant documents. To answer this question, we will consider a slightly simplified
setting, without filters (all filters equal the identity function id on their first argument)
and where the Boolean b in (σ, b, f) is always true. That is, each agent states that they
wish to include the complete subweb of interest of all uris identified by σ. In this setting,
we wonder if data publishers can, instead of publishing their subweb specification in ad-
dition to their regular data, encode their subweb specification as triples in the document
(as meta-information), and use a single “meta” link path expression that interprets these
triples for the traversal. This is formalized as follows.

Definition 11
Let S be a set of source selectors, enc : S → 2T a function mapping source selectors σ

onto a set of triples enc(σ), and W = 〈W,Θ〉 a sa-wold (with W = 〈D, data, adoc〉) in
which each subweb specification is of the form (σ, true, id) with σ ∈ S. The encoding of
W by enc is the wold enc(W) = 〈D, data ′, adoc〉 with for each d ∈ D:

data ′(d) = data(d) ∪
⋃

{σ|(σ,true,id)∈Θd}
enc(σ).

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

408 B. Bogaerts et al.

Definition 12
Let S be a set of source selectors, enc a function S → 2T , and emeta an lpe. We say
that (enc, emeta) captures S if for each sa-wold W = 〈W,Θ〉 with W = 〈D, data, adoc〉
and in which subweb specifications only use triples of the form (σ, true, id) with σ ∈ S
and for each uri u,

docs(�emeta�uenc(W)) = soi(adoc(u),W),

where

docs(S) =
⋃

s∈S

singleton(adoc(s),W).

We will say that LDQL can capture distribution of functions in S if there exist some
enc and emeta that capture S.

What this definition states is that the lpe emeta , when evaluated in s identifies precisely
all uris needed to create the subweb of interest of s (including s itself). In case ldql
captures distribution of functions in a certain class S, this means that the knowledge of
selectors in S can be encoded as “meta-triples” in the documents to guide the querying
agent toward the relevant data sources. In what follows, we study for some concrete
classes whether ldql can capture distribution.

To define the encodings, we will make use of some “fresh” uris we assume not to occur
in any wold. In our theorems, we will make use of some specific sets of source selectors.
A source selector σ is constant if it maps all wolds onto the same set of uris, that is,
if σ(W) = σ(W ′) for all wolds W,W ′; the set of all constant source selectors is defined
as Sconst . If p and u are uris, we define the source selector allp∗,u as follows:

allp∗,u : W �→ �〈+, p,_〉,∗ �uW .

Intuitively, the function allp∗,u identifies the set of all ps of ps of of u. For instance,
by taking p = friend , we include all direct or indirect friends of u. For a fixed p, we write
Sp∗ for the set of source selectors allp∗,u. We write S∗ for the set of all source selectors
of the form allp∗,u for any p. The set S∗ allows each data publisher to choose her own
strategy for constructing the subweb, for example, one data publisher might include all
her friend∗s, another her colleague∗s and a third one only uris explicitly trusted (i.e.,
their trust∗s).

Our main (in)expressivity results are then summarized in the following Theorems.

Theorem 1
ldql captures the distribution of Sconst .

Proof
We will provide explicit pairs of encoding and meta-expression that capture the distri-
bution.

Consider the class Sconst ; for any (constant) source selector σ in this class, let U be
the set of sources defined by it. In this case, we take enc(σ) = {(a, a, u) | u ∈ U} and
emeta = 〈a, a,_〉,∗ with a a fresh uri. The link pattern 〈a, a,_〉, in emeta is used to
navigate to the u, while the star ensures that for each u that is found, also their subwebs
of interests are included.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 409

d1 = adoc(u1)

data = {(u1, p, u2), (u1, q, u3)}

“include p∗s of u1”
d2 = adoc(u2)

data = ∅

d3 = adoc(u3)

data = ∅

p

q

Fig. 1: Example wold used in ldql inexpressivity proof.

Theorem 2
ldql captures the distribution of Sp∗ .

Proof
We will provide explicit pairs of encoding and meta-expression that capture the distri-
bution, similar to the proof of Theorem 1, but now for the class Sp∗ .

We can take enc(allp∗,u) = {(a, a, u)} and emeta = (〈a, a,_〉, /〈+, p,_〉,∗)∗ with a a
fresh uri. In this expression emeta , the link pattern 〈a, a,_〉, is used to navigate to the
u as in the case of Sconst . Each of these uris is a source whose ps of ps of... we wish
to include; the part 〈+, p,_〉,∗ then navigates to all such p∗s. Again, the outermost star
ensures that for each u that is found, also their subwebs of interests are included.

Intuitively, ldql captured the classes Sconst and Sp∗ , because we wanted the encoding
to provide only one piece of information, which is the source to navigate to. Hence, the
usage of the meta-expression is to decode that source. In the case of the S∗ distribution,
there are two pieces of information that need to be provided by the encoding function
i) the source to navigate to, and ii) the property we need to follow from that source.
This can be encoded by some simple enc function. Hence, the meta-expression would
then need to decode both the source and the property. However, regardless of how the
enc function will be defined, there is no generic lpe that does this correctly. This is
proved in the following theorem.

Theorem 3
ldql does not capture the distribution of S∗.

Proof
For the sake of contradiction, assume that ldql captures the distribution of S∗. Then,
there exists some pair of encoding and meta-expression that captures S∗. Let this pair
be (enc, emeta) with U the set of uris mentioned in emeta . We can construct a wold
(see Fig. 1) that uses uris that do not occur in U in which only one document has
a nonempty subweb specification. As shown in Fig. 1, we have two triples (u1, p, u2)

and (u1, q, u3) in d1 where none of p, q, u2, or u3 is in U . Moreover, d1 has a subweb
specification whose source selector is allp∗,u1

. We can also make sure that neither u2 nor
u3 is mentioned in the triples added by enc. This can be safely assumed since enc does
not depend on the triples found in the W , rather it only depends on the source selector.

Now, if emeta is a correct meta-expression, �emeta�
u1

enc(W) should evaluate to {u1, u2}.
However, any emeta when evaluated at u1 in our W would either include u3 as a selected
source or exclude u2 from the selected sources. Thus, in the rest of the proof we verify
this claim.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

410 B. Bogaerts et al.

In order to verify this claim, we first need to show that given any uri u whose author-
itative document and subweb specification are empty in some W, then for every lpe e,
we have that

�e�uenc(W) ⊆ {u}
Intuitively, if we have an empty document without any associated subweb specification,
then any lpe evaluated at the source of this document would not result in any sources
except for the source of that document, which the context uri. This can be shown by
induction on the shape of the lpe e as follows:

• If e is ε or e is [lpe], it is clear that �e�uenc(W) ⊆ {u}.
• If e is lp, we have �e�uenc(W) = ∅ since the document is empty and u has no subweb

specification.
• If e is lpe1/lpe2, it follows by induction that �lpe1�uenc(W) ⊆ {u}. In case �lpe1�uenc(W)

is empty, then �e�uenc(W) = ∅ ⊆ {u}. Otherwise, �lpe1�uenc(W) = {u}. In that case, it
also follows by induction that �lpe2�uenc(W) = �e�

u
enc(W) ⊆ {u}.

• If e is lpe1 | lpe2, it follows by induction that both �lpe1�uenc(W) and �lpe2�uenc(W) are
subsets of {u}. Hence, �e�uenc(W) = �lpe1�

u
enc(W) ∪ �lpe2�uenc(W) ⊆ {u}.

• If e is lpe∗, then �e�uenc(W) ⊆ {u} follows by induction.

Applying this to our example, we see that for any lpe e, it follows that �e�u2

enc(W) ⊆
{u2} and �e�u3

enc(W) ⊆ {u3}. Now we need to show that for every lpe e,

u2 ∈ �e�u2

enc(W) if and only if u3 ∈ �e�u3

enc(W)

This can also be verified by induction on the shape of the lpe e, however, it is easily
shown from the previous induction since in all the cases where �e�uenc(W) did not turn out
empty, the result did not depend on the shape of the link patterns used in the expression
rather it originally came from the lpe ε which is evaluated similarly in u2 and u3.

Now, in our example W, we show that for every lpe emeta that does not mention any
of the uris p, q, u2, or u3, we have that

u2 ∈ �emeta�
u1

enc(W) if and only if u3 ∈ �emeta�
u1

enc(W)

We verify this claim by induction on the possible shapes of emeta as follows:

• If emeta is ε and emeta is [lpe], it is clear that �emeta�
u1

enc(W) ⊆ {u1}.
• If emeta is lp, we have three cases to analyze:

— lp matching a triple that is added by enc. As mentioned, none of the triples added
by enc(allp∗,u1

) to d1 mentions u2 or u3. Hence, it is clear that u2 �∈ �lp�u1

enc(W)

and u3 �∈ �lp�u1

enc(W).
— lp of the form 〈l1, l2, l3〉, matching the triple (u1, p, u2) in d1. Since emeta mentions

neither p nor u2, we must have l1 ∈ {u1,+,_} and l2 = l3 = _ in order to
match this triple. Clearly, each of the three possible link patterns matches the
triple (u1, q, u3) as well. Thus, {u2, u3} ⊆ �lp�u1

enc(W).
— for any other lp, we have �lp�u1

enc(W) = ∅ since there are no other triples in the
document.

• If emeta is lpe1/lpe2, it follows by induction that u2 ∈ �lpe1�u1

enc(W) if and only if
u3 ∈ �lpe1�u1

enc(W). Accordingly, we have three cases to analyze:

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 411

— neither u1, u2 nor u3 belongs to �lpe1�
u1

enc(W). In this case, neither u2 nor u3 belongs
to �emeta�

u1

enc(W).
— u1 ∈ �lpe1�u1

enc(W). By induction, we have that u2 ∈ �lpe2�u1

enc(W) if and only if
u3 ∈ �lpe2�u1

enc(W).
— {u2, u3} ⊆ �lpe1�u1

enc(W). Thus, the expression lpe2 will be evaluated once at u2 and
once at u3. By our previous discussion, we can verify that u2 ∈ �lpe2�u2

enc(W) if and
only if u3 ∈ �lpe2�u3

enc(W).

Thus, in all three cases, u2 ∈ �emeta�
u1

enc(W) if and only if u3 ∈ �emeta�
u2

enc(W).
• If emeta is lpe1 | lpe2 or emeta is lpe∗, it follows by induction.

In all cases, we have showed that u2 ∈ �emeta�
u1

enc(W) if and only if u3 ∈ �emeta�
u2

enc(W).
Hence, a contradiction.

9 Experiments

In this section, we present an empirical evaluation of our proposed formalism. The
aim of these experiments is to evaluate what the possible gain is when using subweb
specifications. Since for the moment, there are no data publishers publishing their sub-
web specifications, we created a virtual linked web, in which agents do publish such
specifications, of which we assume they represent which data sources they trust. On
this virtual linked web, we will compare querying the annotated web in our new se-
mantics to querying it under existing reachability semantics. We expect to observe
the benefits of using subweb specifications in terms of completeness of the query re-
sults, data quality, and performance. As far as data quality and completeness go, we
assume here that, since each agent publishes their subweb specifications, the results
obtained by querying the subweb-annotated wold are considered the “gold standard”
(they are the results we wish to obtain since they take every agent’s specifications into
account). What we want to evaluate is how well existing link traversal can approximate
this gold standard: whether query results are missing (incomplete) or whether spurious
results are obtained (indicating the use of lower-quality data). We will also evaluate
performance: the time needed to traverse the web, as well as the number of traversals
required.

Our experiments are run on a virtual linked web constructed from the LDBC SNB
(Social Network Benchmark) dataset (Erling et al. 2015). The resulting dataset is then
fragmented into interlinked datasources resulting in a virtual web of around 301000 data-
sources with 1.5GB of data. The schema of the virtual linked web is illustrated in Figure 2.
To each document type, we attach a subweb specification with the intended meaning that
it identifies other data on the web it trusts. We use simple specifications that can nat-
urally arise in real-life scenarios. Most of the defined specifications use filters to only
include data that is related to the respective source and ignore other triples that provide
information about others. For instance, a person trusts (includes data from) other per-
sons they know, their university, the city where they live, and the company in which they
work. The experiments are then run in the annotated virtual linked web. The subweb
specifications used in the annotated linked web are listed in Appendix A.

We compare our semantics with the most common reachability semantics criteria
(Hartig 2012): cAll, cNone, and cMatch. Our expectation is that cAll, which follows all links it

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

412 B. Bogaerts et al.

Fig. 2: Schema of the virtual linked web used in the experiments (from https://www.npmjs.com/
package/ ldbc-snb-decentralized).

finds, will be too slow for practical purposes, and generate too many spurious results. For
cNone, which simply follows no links (and thus only queries the given seed documents),
we expect extremely fast querying, but almost no query results, due to the fragmentation
of the data. For cMatch, which follows all links that somehow “match” the query in ques-
tion will miss certain query results, but can also generate some spurious results. Indeed,
the traversal performed by cMatch is only informed by the querying agent, not by the
individual users on the web. The performance (in terms of runtime and number of links
traversed) of cMatch compared to subweb-annotated querying is hard to predict. Clearly,
the behavior of swsl itself differs with respect to the filters used in the specifications,
which will be elaborated in two of the experimented queries.

The virtual web is hosted locally using a (community3) solid server. Each document on
the web provides information in the form of a dump file, that is, the rdf dataset which
should be downloaded entirely prior to querying. We use the comunica query engine
(Taelman et al. 2018) as a sparql querying engine; the engine uses a caching mechanism
that avoids downloading the same file more than once. The experiments are conducted
on a personal computer with 16GB of memory and an Intel Core i7 with 2.6 GHz and 6
cores running macOS 12.6.

3 https:// communitysolidserver.github.io/CommunitySolidServer/ docs/

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://www.npmjs.com/package/ldbc-snb-decentralized
https://www.npmjs.com/package/ldbc-snb-decentralized
https://communitysolidserver.github.io/CommunitySolidServer/docs/
https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 413

9.1 Queries

For the evaluation, we used four different queries. The first query (Eval. Query 1) searches
for persons’ information, it retrieves for each person, the city where they are located
along with the country and the continent of this city. The second query (Eval. Query 2)
matches persons working in the same company, in which those persons’ are retrieved
along with the name of the company. In the third query (Eval. Query 3), we test fo-
rums members’ interests; we want to list members (and moderators) of a forum that
have no interest (tag) in common with the forum. The last query (Eval. Query 4) is
used to retrieve all persons having an interaction between them; an interaction here is
simply a person liking a comment of another; we also list the city where the person who
performed the like lives in. For the first two queries, we evaluated our semantics using
two different subweb specifications. We refer to the main subweb specification used in all
queries as swsl. The other subweb specification used in evaluating the first query will
be referred to as swsl1, while swsl2 is the other subweb specification used for the sec-
ond query. The main difference between swsl1 and swsl2 and swsl is the filters of the
subweb specifications attached to person-type documents. Simply, we allow more triples
to be included in the subwebs of person-type documents in the case of swsl1 and swsl2
than that of swsl, so the filters used in swsl are more restricted (see Appendix A for
details).

SELECT ?person ?country ?cont
WHERE {
?person voc:isLocatedIn ?city.
?city voc:isPartOf ?country.
?country voc:isPartOf ?cont.

}

Eval. Query 1: Person’s location.

SELECT ?person1 ?person2 ?namecomp
WHERE {
?person1 voc:workAt ?c1.
?c1 voc:hasOrganisation ?comp1.

?person2 voc:workAt ?c2.
?c2 voc:hasOrganisation ?comp2.

FILTER(?person1 != ?person2)

?comp1 foaf:name ?namecomp.
?comp2 foaf:name ?namecomp.

}

Eval. Query 2: Same company.

SELECT ?forum ?creator
WHERE {
{?forum voc:hasModerator ?creator.}
UNION
{?forum voc:hasMember ?creatorB.
?creatorB voc:hasPerson ?creator.}
?creator voc:hasInterest ?interest.

FILTER (NOT EXISTS {
SELECT ?tagForum WHERE {
?forum voc:hasTag ?tagForum.
FILTER (
bound(?interest) &&
?tagForum = ?interest)}})

}

Eval. Query 3: Forum member interests.

SELECT ?person ?creator ?city
WHERE {
?person voc:isLocatedIn ?city.
?person voc:likes ?message.
?message voc:hasComment ?comm.
?comm voc:hasCreator ?creator.

}

Eval. Query 4: Interaction.

Each query is executed 12 times with a different (random) seed uri for each run, and
the average is reported. We use the same set of seeds for all strategies to avoid bias
related to seeds selection, for instance, forums can have different number of members
and persons can have different numbers of posts, comments, or friends.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

414 B. Bogaerts et al.

9.2 Results

The results are displayed in Tables 2, 3, 4 and 5 (one table for each query). In all the
experiments, cAll and cNone behave as predicted, that is, the engine traverses a large
number of links when using cAll, while no links are traversed when cNone is used.

The first query (see Table 2) shows the best traversal performance for cMatch to the
detriment of query results. Using swsl1, the engine was able to yield on average 16
results, while cMatch was only able to find one of these results. In fact, for each correct
result retrieved by swsl1, a person entity is involved, and since no triple pattern in the
query links to other persons, cMatch only has the seed document to generate a result in
response to the query. On the other hand, swsl1 was able to traverse to other persons
using the subweb specifications of the seed document. It may seem weird to have no
results at all from swsl, but this makes sense since the defined filters are quite strong. In
order to be able to include the triple that links the country to its continent, which is of
the form (_:country voc:isPartOf _:continent), in the subweb of the current person,
this can only be done via the uri of the city where this person is located in. Although this
triple is included in the subweb of the city, the filter does not allow the necessary triple
to be included in the subweb of the person as it only allows for triples whose subject is
the city itself.

The second query shows similar behavior for swsl (see Table 3). The engine
did not yield any results using it. This is due to the structure of the data in-
side documents and the defined filters. A company, where a person works, is not
declared using one triple, instead, a blank node is used as an intermediate en-
tity. That is, we use two triples as in (_:person voc:workAt _:blankWork) and
(_:blankWork voc:hasOrganisation _:company). This makes the company inaccessible
from the subweb of the data publisher, the reason for this is the filter used by
the subweb specification published at the person’s data set. The filter only allows
triples having the person in the subject position, this will only include the triple
(_:person voc:workAt _:blankWork) which doesn’t refer to the actual company. As for
swsl2, on average eleven results are obtained. This change is due to the inclusion of
triples whose property is either voc:hasOrganisation or foaf:name from the subweb of
person. What this shows is that some care is required when using excessive filtering. As
for cMatch, the engine did not yield any results since no triple pattern links for other
persons is mentioned in the query.

In the third query (see Table 4), cAll, cMatch, and swsl generated the same results.
Nevertheless, cMatch has to do more link traversal to achieve the querying process, it has
also fetched more triples for this. This is mainly due to the fact that cMatch does the
traversal by using information from the query, the more triples patterns the query has,
the more links the engine will have to traverse.

In the last query, cMatch produces on average 18 results that seem to be missing from
swsl. This is not true, since all the extra tuples retrieved by cMatch are duplicates. Thus,
both cMatch and swsl obtained the same set of results, but cMatch did it in a more efficient
manner. The reason for this behavior of swsl is that defined subweb specifications for
persons include a lot of irrelevant data to the query, which are pruned earlier with
cMatch.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 415

Table 2. Performance results for (Eval. Query 1). In evaluating cAll for this query, the
experiment did not yield any results for one of the twelve tested seed sources. The reason
was that the number of triples collected from traversing the links phase was so huge, which
made the sparql query engine crash. Hence, the number of triples, the query evaluation
time, and the number of results for cAll are the averages of the other eleven runs.

Approach # traversed links traversal time # triples query evaluation time # results

swsl 8187 88 s 5124 1 s 0

swsl1 8187 98 s 5550 1 s 16

cMatch 4 0 s 703 1 s 1

cAll 29,969 474 s 698,126 11 s 1921

cNone 0 0 s 343 0 s 0

Table 3. Performance results for (Eval. Query 2). In evaluating cAll for this query, the
experiment did not yield any results for three of the twelve tested seed sources. The reason
was the same reason as the one mentioned in Table 2. Hence, the number of triples, the
query evaluation time, and the number of results for cAll are the averages of the other
nine runs.
Approach # traversed links traversal time # triples Query evaluation time # results

swsl 5294 53 s 3195 1 s 0

swsl2 5294 55 s 4703 1 s 11

cMatch 5 0 s 556 1 s 0

cAll 27,251 423 s 597,198 362 s 16372

cNone 0 0 s 279 0 s 0

Table 4. Performance results for (Eval. Query 3).

Approach # traversed links traversal time # triples query evaluation time # results

swsl 14 1 s 4567 1 s 134

cMatch 641 50 s 221,487 29 s 134

cAll 32,701 512 s 767735 135 s 134

cNone 0 0 s 36 0 s 0

Table 5. Performance results for (Eval. Query 4).

Approach # traversed links traversal time # triples query evaluation time # results

swsl 8287 87 s 3881 1 s 35

cMatch 95 2 s 1732 1 s 53

cAll 29,968 454 s 703,911 2.4 h 56,902

cNone 0 0 s 286 0 s 0

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

416 B. Bogaerts et al.

10 Discussion

So far, we have studied ltqp from the perspective of data quality; namely, we allow query-
ing agents and/or data publishers to capture a subweb of data that satisfies certain quality
properties for them. In real-world applications, such quality properties could for example
indicate different notions of trust, or something use-case-specific such as data sensitivity
levels. While our formal framework only associates a single subweb specification to each
agent, it is not hard to extend it to associate multiple subweb constructions with each
agent and allow the querying agent to pick a suitable one.

The same mechanism can be used to improve efficiency in two ways: the data publishers
can opt to not include certain documents in their subweb, and for the ones included, they
can use a filter which indicates which data will be used from said document.

Most prominently, every publisher of Linked Data typically has their own way of or-
ganizing data across documents, and they could capture this structure in their subweb
of interest. For example, in contrast to Bob (Document 3), Ann stores her profile in-
formation in multiple documents (Documents 2 and 4). If she were to declare this as a
subweb specfication, she can use filters to indicate which data can be found in which
documents. A query processor can then exploit this information to only follow links to
relevant documents (documents of Ann’s subweb for which the filter could keep triples
that contribute to the query result). For example, Uma’s querying agent can use Ann’s
subweb construction of Listing 2 to prune the set of links to follow, and as such perform
a guided navigation while maintaining completeness guarantees. Without even inspect-
ing https:// photos.ex/ ann/ , it knows Ann (and thus Uma) does not trust triples in
this document for data about her, so fetching it will not change the final query result.
Whereas ltqp under cAll semantics would require at least 7 http requests, the filters
allow us to derive which 4 requests are needed to return all 3 trusted results of the
specification-annotated query. Analogous performance gains were observed in work on
provenance-enabled queries (Wylot et al. 2015). In contrast, traditional ltqp cannot make
any assumptions of what to encounter behind a link. The work on describing document
structures using shapes (Prud’hommeaux and Bingham 2021) can be leveraged here.

As such, filters in subweb specifications serve two purposes: they define semantics
by selecting only part of a data source, and give query processors guidance for saving
bandwidth and thus processing time.

11 Conclusion

ltqp is generally not considered suitable for real-world applications because of its per-
formance and data quality implications. However, if the current decentralization trend
continues, we need to prepare for a future with multisource query processing, since some
data cannot be centralized for legal or other reasons.

Federated querying over expressive interfaces such as sparql endpoints only addresses
part of the problem: empirical evidence suggests that, counterintuitively, less expressive
interfaces can lead to faster processing times for several queries (Verborgh et al. 2016),
while being less expensive to host. A document-based interface is about the simplest
interface imaginable, and is thereby partly responsible for the Web’s scalability. Hence
the need to investigate how far we can push ltqp for internal and external integration
of private and public data.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://photos.ex/ann/
https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 417

Our formalization for specification-annotated queries creates the theoretical founda-
tions for a next generation of traversal–based (and perhaps hybrid) query processing, in
which data quality can be controlled tightly, and network requests can be reduced sig-
nificantly. Moreover, the efforts to realize these necessary improvements are distributed
across the network, because every data publisher can describe their own subwebs. Im-
portantly, the availability of such descriptions is also driven by other needs. For instance,
initiatives such as Solid (Verborgh 2020) store people’s personal data as Linked Data,
requiring every personal data space to describe their document organization such
that applications can read and write data at the correct locations (Prud’hommeaux
and Bingham 2021).

This article opens multiple avenues for future work. A crucial direction is the algorith-
mic handling of the theoretical framework, and its software implementation, for which
we have ongoing work in the Comunica query engine (Taelman et al. 2018); an important
open question here is how the expressed filters can be exploited for query optimization.
Also on the implementation level, the creation and management of subweb specifications
should be facilitated. This is because we don’t expect users to manually create these sub-
web specifications, but instead are to be created through a user-friendly user interface
or automatic learning-based approaches, similar to how today’s discovery mechanisms
(Turdean 2022; Prud’hommeaux and Bingham 2021) in Solid are managed. Empirical
evaluations will shed light on cases where subweb annotated wolds and queries result
in a viable strategy.

Acknowledgements

We thank the reviewers for their thorough review and comments on the earlier version
of this paper.

References

Abiteboul, S., Bienvenu, M., Galland, A. and Antoine, É. 2011. A rule-based language
for web data management. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2011, 293–304. ACM.

Batsakis, S., Petrakis, E. G. and Milios, E. 2009. Improving the performance of focused
web crawlers.

Bogaerts, B., Ketsman, B., Zeboudj, Y., Aamer, H., Taelman, R. and Verborgh, R.

Link traversal with distributed subweb specifications. In Rules and Reasoning - 5th Interna-
tional Joint Conference, RuleML+RR 2021, Leuven, Belgium, September 13-15, 2021, Pro-
ceedings 2021, S. Moschoyiannis, R. Peñaloza, J. Vanthienen, A. Soylu, and D. Roman, Eds.,
vol. 12851. Lecture Notes in Computer Science. Springer, 62–79.

Bosquet, M. 2022. Access control policy (ACP). Editor’s draft, Solid.
Buil-Aranda, C., Hogan, A., Umbrich, J. and Vandenbussche, P.-Y. 2013. sparql Web-

querying infrastructure: Ready for action? In Proceedings of the 12th International Semantic
Web Conference 2013, vol. 8219. Lecture Notes in Computer Science. Springer, 277–293.

Capadisli, S. 2022. Web access control. Editor’s draft, Solid.
Capadisli, S. and Berners-Lee, T. 2022. Solid webid profile. Editor’s draft, Solid.
Capadisli, S., Berners-Lee, T., Verborgh, R. and Kjernsmo, K. 2020. Solid protocol.

Editor’s draft, Solid.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

418 B. Bogaerts et al.

Chakrabarti, S., Van den Berg, M. and Dom, B. 1999. Focused crawling: a new approach
to topic-specific web resource discovery.

Coburn, A., Pavlik, e. and Zagidulin, D. 2022. Solid-oidc. Editor’s draft, Solid.
Cyganiak, R., Wood, D. and Lanthaler, M. 2014. rdf 1.1: Concepts and abstract syntax.

Recommendation, w3c.
Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A., Pham,

M.-D. and Boncz, P. 2015. The LDBC social network benchmark: Interactive workload. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
619–630.

Hartig, O. 2012. sparql for a Web of Linked Data: semantics and computability. In Proceed-
ings of the 9th International Conference on The Semantic Web: Research and Applications.

Hartig, O. 2013a. An overview on execution strategies for Linked Data queries.
Hartig, O. 2013b. squin: A traversal based query execution system for the Web of Linked Data.

In Proceedings of the ACM Sigmod International Conference on Management of Data.
Hartig, O. 2015. LDQL: A language for linked data queries. In Proceedings of the 9th Alberto

Mendelzon International Workshop on Foundations of Data Management, Lima, Peru, May
6 - 8, 2015, vol. 1378. CEUR Workshop Proceedings. CEUR-WS.org.

Hartig, O., Bizer, C. and Freytag, J.-C. 2009. Executing sparql queries over the Web of
Linked Data. In Proceedings of the 8th International Semantic Web Conference. Springer.

Hartig, O. and Freytag, J.-C. 2012. Foundations of traversal based query execution over
Linked Data. In Proceedings of the 23rd ACM Conference on Hypertext and Social Media.

Hartig, O. and Özsu, M. T. 2016. Walking without a map: Ranking-based traversal for
querying linked data. In Proceedings of ISWC 2016, Part I, 305–324.

Hartig, O. and Pérez, J. 2016. LDQL: A query language for the web of linked data.
Konopnicki, D. and Shmueli, O. 1998. Information gathering in the world-wide web: The

w3ql query language and the w3qs system.
Kuhn, T., Taelman, R., Emonet, V., Antonatos, H., Soiland-Reyes, S. and

Dumontier, M. 2021. Semantic micro-contributions with decentralized nanopublication ser-
vices.

Mendelzon, A. O., Mihaila, G. A. and Milo, T. 1996. Querying the world wide web.
In Fourth International Conference on Parallel and Distributed Information Systems, 80–91.
IEEE.

Prud’hommeaux, E. and Bingham, J. 2021. Shape trees specification. Editor’s draft., W3C.
Speicher, S., Arwe, J. and Malhotra, A. 2015. Linked data platform 1.0. Rec., W3C.
Taelman, R., Van Herwegen, J., Vander Sande, M. and Verborgh, R. 2018. Comunica:

A modular sparql query engine for the web. In Proceedings of the 17th International Semantic
Web Conference.

Taelman, R. and Verborgh, R. 2022. A prospective analysis of security vulnerabilities within
link traversal-based query processing. In Proceedings of the 6th International Workshop on
Storing, Querying and Benchmarking Knowledge Graphs.

Turdean, T. 2022. Type indexes. Editor’s draft, Solid.
Verborgh, R. 2020. Re-decentralizing the Web, for good this time. In Linking the World’s

Information. ACM.
Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,

De Meester, B., Haesendonck, G. and Colpaert, P. 2016. Triple Pattern Fragments:
a low-cost knowledge graph interface for the Web.

Wylot, M., Cudré-Mauroux, P. and Groth, P. 2015. Executing provenance-enabled
queries over web data. In Proceedings of the 24th International Conference on World Wide
Web.

Zignani, M., Gaito, S. and Rossi, G. P. 2018. Follow the “Mastodon”: Structure and evo-
lution of a decentralized online social network. In Twelfth International AAAI Conference on
Web and Social Media.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

Distributed Subweb Specifications for Traversing the Web 419

Appendix A Virtual linked web annotation

In this section, we present the subweb specifications attached to the virtual linked web.
Table A 1 contains different subweb specifications used in the settings of the experiment,
specifically for swsl. As for the specifications used in swsl1 and swsl2, they are simple
modifications and they will be mentioned afterward. The symbol <> is used to refer to
the agent publishing the subweb. Person-type documents are the ones that have the most
information. A person includes information about his city, friends, university, and com-
pany. The WITH SUBWEBS directive is used by Persons’ subweb specifications for
friends, cities, and workplaces, this has the effect of also including the subweb specifica-
tions of these agents when evaluating the persons’ subwebs of interest. The INCLUDE
directive is used to allow information only about the agents to be included (triples having
the agent iri in the subject position). A forum includes (nonrecursively) the content of
its messages (posts and comments), members, and moderators.

Table A 1. The subweb specifications used in the experiment. The specifications at ∗ are
modified in swsl1 and swsl2.

Document Subweb specification Information retrieved
(# of Instances)

Person (1528)

FOLLOW ?city WITH SUBWEBS {
<> voc:isLocatedIn ?city.
} INCLUDE { ?city ?p ?o. }

City of the Person ∗

FOLLOW ?person WITH SUBWEBS {
<> voc:knows ?e.
?e voc:hasPerson ?person.
} INCLUDE { ?person ?p ?o. }

Friends of the Person ∗

FOLLOW ?univ WITH SUBWEBS {
<> voc:studyAt ?u.
?u voc:hasOrganisation ?univ.
} INCLUDE { ?univ ?p ?o. }

University of the Person

FOLLOW ?org WITH SUBWEBS {
<> voc:workAt ?w.
?w voc:hasOrganisation ?org.
} INCLUDE { ?org ?p ?o. }

Company where the Person works

FOLLOW ?comment {
<> voc:likes ?thing.
?thing voc:hasComment ?comment. }

Comments of the Person

FOLLOW ?post {
<> voc:likes ?thing.
?thing voc:hasPost ?post. }

Posts of the Person

Forum (13750)

FOLLOW ?message {
<> voc:containerOf ?message. }

Posts and Comments of the Forum

FOLLOW ?member {
<> voc:hasMember ?m.
?m voc:hasPerson ?member. }

Members of the Forum

FOLLOW ?mod {
<> voc:hasModerator ?mod. }

Moderator of the Forum

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

420 B. Bogaerts et al.

Table A 1. Conntinued.
Document Subweb specification Information retrieved
(# of Instances)

Comment (151043)

FOLLOW ?post {
<> voc:replyOf ?post. }

Post (or Comment) of the Comment

FOLLOW ?creator {
<> voc:hasCreator ?creator. }

Creator of the Comment

Post (135701) FOLLOW ?creator {
<> voc:hasCreator ?creator. }

Creator of the Post

City (1341) FOLLOW ?place RECURSE 1 {
<> voc:isPartOf ?place. }

Location hierarchy of the City

Country (111) FOLLOW ?continent {
<> voc:isPartOf ?continent. }

Continent of the Country

In swsl1, we use different specifications for the city and friends of person as follows:

• for the city of the person, the subweb specification is
FOLLOW ?city WITH SUBWEBS { <> voc:isLocatedIn ?city.}
INCLUDE { ?s ?p ?o. } WHERE { FILTER (?s=?city || ?p=voc:isPartOf). }

• for the friends of the person, the subweb specification is
FOLLOW ?person WITH SUBWEBS { <> voc:knows ?e. ?e voc:hasPerson ?person. }
INCLUDE { ?s ?p ?o. } WHERE { FILTER (?s=?person || ?p=voc:isPartOf). }

In the schema of the virtual linked web (Figure 2), the predicate voc:isPartOf is used
to indicate the information “a city voc:isPartOf a country” and “a country voc:isPartOf

a continent”, this allows a city document to refer recursively to the second informa-
tion using the RECURSE directive, which allows the inclusion of triples of the form
(?city voc:isPartOf ?country) and (?country voc:isPartOf ?continent) in the filtered
subweb of ?city, and hence, these triples are going to be included in the filtered subwebs
of persons.

As for the swsl2, we change only the specification for the friends of person to be as
follows:
FOLLOW ?person WITH SUBWEBS { <> voc:knows ?e. ?e voc:hasPerson ?person. }
INCLUDE { ?s ?p ?o. } WHERE { FILTER (?s=?person || ?p=voc:hasOrganisation || ?p=foaf:name). }

This will allow for knowing the (names of) universities and companies of persons, over-
coming the use of an intermediate literal.

https://doi.org/10.1017/S1471068423000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000054

	Introduction
	Use case
	Preliminaries
	Requirements
	Related work
	A formalism for subweb specifications
	Expressing subweb specifications
	Power and limitations of existing ltqp approaches
	Preliminaries: LDQL
	LDQL and the requirements

	Experiments
	Queries
	Results

	Discussion
	Conclusion
	References
	Appendix A Virtual linked web annotation

