
1
Introduction to Finite Difference Methods

1.1 A Few Historical Notes

Finite difference (FD)-type discrete approximations can be traced back much
earlier than when Gottfried Leibniz1 and Isaac Newton2 gave the first descrip-
tions of calculus (in 1684 and 1687, respectively). The introduction of FDs (at
first for interpolation) is often attributed to Jost Bürgi,3 around 1592. Finite
difference formulas of high orders of accuracy (especially for integration) were
used by James Gregory in 1670.4 Significant further early FD perspectives
were provided by Isaac Newton and later by Brook Taylor5 in 1715. Finite
difference formulas were quite widely used for solving ordinary differential
equations (ODEs) in the nineteenth century (notably for problems in fluid me-
chanics and for planetary orbit calculations). The pioneering work on the use
of FD for partial differential equations (PDEs) dates back to the study by Lewis
F. Richardson (1911)6 (on potentially dangerous stresses in the first dam over
the Nile in Aswan).

1.2 Finite Difference Formulas

The standard definition of the first derivative

𝑓 ′ (𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

(1.1)

1 1646–1716, German mathematician, philosopher, scientist, and diplomat.
2 1643–1727, English mathematician, physicist, astronomer, alchemist, and theologian; widely

recognized as one of the greatest scientists of all time.
3 1552–1632, Swiss mathematician, also a maker of clocks and astronomical instruments.
4 Described further in Section 7.3.
5 1685–1731, English mathematician, of Taylor series fame.
6 1881–1953, English mathematician and pioneer of numerical weather forecasting.

1

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

2 Introduction to Finite Difference Methods

is a simple example of an FD formula. Taylor expansion of (1.1) shows that

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

= 𝑓 ′ (𝑥) + ℎ
2!
𝑓 ′′ (𝑥) + ℎ

2

3!
𝑓 ′′′ (𝑥) + · · · = 𝑓 ′ (𝑥) +𝑂 (ℎ1), (1.2)

that is, the approximation 𝑓 ′ (𝑥) ≈ 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

is accurate to first order (at
the location 𝑥). The FD weights at the nodes 𝑥 and 𝑥 + ℎ can be abbreviated as
[−1 1] / ℎ. We will soon find it convenient to sketch FD stencils graphically.
In this case:

◦ ← entry for 𝑓 ′, weight {1},
□ □ ← entries for 𝑓 , weights {− 1

ℎ
, 1

ℎ
},

↑ ↑
𝑥 𝑥 + ℎ ← spatial locations.

(1.3)

The circle indicates the location in 𝑥 for a derivative entry, and the squares indi-
cate 𝑥-locations for function values (vertical spacing is here of no significance).
Each of these locations has a weight associated with it. While the simplicity
of this approximation is convenient (it uses only two adjacent function values
to produce a derivative approximation), its low order of accuracy (first order;
exact only for polynomials up through degree one) makes it almost entirely
useless for practical computing.

A significantly better approximation to the first derivative is provided by

𝑓 ′ (𝑥) =
− 1

2 𝑓 (𝑥 − ℎ) +
1
2 𝑓 (𝑥 + ℎ)

ℎ
+𝑂 (ℎ2). (1.4)

Figure 1.1 illustrates the two FD approximations (1.2) and (1.4). Although both
give the same approximation for the tangent slope in the limit ℎ→ 0, it is clear
also visually that the second-order approximation is the more accurate one for
small but nonzero ℎ.

Taylor expansions provide a helpful means of verifying the order of accuracy
if an FD formula is proposed. However, there are numerous more convenient
ways to generate such formulas, as described in Section 1.2.1. Since the value
of 𝑥 in (1.2) and (1.4) – and in general for FD formulas – has no influence on the
weights, we simplify the notation in Section 1.2.1 by approximating derivatives
at 𝑥 = 0.

1.2.1 Some Algorithms for Generating FD Weights
In all but the last of the five methods described in Sections 1.2.1.1–1.2.1.5,
the independent variable 𝑥 can just as well be a complex variable 𝑧 (with node
points distributed in the complex plane rather than along the real axis).

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

1.2 Finite Difference Formulas 3

 x x + h x – h x x + h

Figure 1.1 Graphical comparison between the first- and second-order approxima-
tions for 𝑓 ′ (𝑥) , as given by (1.2) and (1.4), respectively. The slope of the tangent
lines (dash-dotted) corresponds to the true derivative value at the location 𝑥, and
the slopes of the secant lines (dashed) correspond to the respective approximations.

1.2.1.1 FD Weights by Use of Monomial Test Functions
This algorithm is very flexible. Let 𝐿 be any derivative operator (such as 𝑑

𝑑𝑥

and 𝑑2

𝑑𝑥2). We require a stencil with 𝑛 nodes, located at 𝑥1, 𝑥2, . . . , 𝑥𝑛 (distinct)
to be exact for the first 𝑛 monomials 1, 𝑥, 𝑥2, . . . , 𝑥𝑛−1. This requirement can
be written as

1 1 · · · 1
𝑥1 𝑥2 · · · 𝑥𝑛
...

...
...

𝑥𝑛−1
1 𝑥𝑛−1

2 · · · 𝑥𝑛−1
𝑛



𝑤1
𝑤2
...

𝑤𝑛


=


𝐿 1|𝑥=0
𝐿 𝑥 |𝑥=0
...

𝐿 𝑥𝑛−1 |𝑥=0


. (1.5)

The weights 𝑤𝑘 at nodes 𝑥𝑘 , 𝑘 = 1, 2, . . . , 𝑛, can now be obtained by solving
this linear system. The matrix is of Vandermonde type – often ill-conditioned,
but never singular assuming the 𝑥𝑘 are distinct.7

Verification of nonsingularity: The result is true for 𝑛 = 1, in which case the
matrix is [1]. Applying induction over 𝑛, assume the result is true up through
size 𝑛 − 1, and consider the size 𝑛 case. Call temporarily 𝑥𝑛 = 𝑥 and the matrix
𝐴(𝑥). Expanding along the last column, det(𝐴(𝑥)) becomes a polynomial in
𝑥 of degree 𝑛 − 1, not identically zero (as, by the induction hypothesis, the
coefficient for 𝑥𝑛−1 is nonzero). All its 𝑛 − 1 roots are accounted for by 𝑥 = 𝑥1,

𝑥 = 𝑥2, . . . , 𝑥 = 𝑥𝑛−1. It must therefore be nonzero for 𝑥 = 𝑥𝑛.

Example 1.2.1 Create an FD formula that approximates 𝑓 ′′ (0) based on
function values 𝑓 (𝑥1) and 𝑓 (𝑥2) and first derivative values 𝑓 ′ (𝑥3) and 𝑓 ′ (𝑥4).
7 A different proof to the one immediately following is given in Section A.2.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

4 Introduction to Finite Difference Methods

Solution The monomial test function algorithm generalizes immediately to
cases with mixed types of input data. Enforcing

𝑓 ′′ (0) ≈ 𝑤1 𝑓 (𝑥1) + 𝑤2 𝑓 (𝑥2) + 𝑤3 𝑓
′ (𝑥3) + 𝑤4 𝑓

′ (𝑥4)

to be exact for the functions 1, 𝑥, 𝑥2, 𝑥3 gives the following linear system to
solve for the weights:

1 1 0 0
𝑥1 𝑥2 1 1
𝑥2

1 𝑥2
2 2𝑥3 2𝑥4

𝑥3
1 𝑥3

2 3𝑥2
3 3𝑥2

4



𝑤1
𝑤2
𝑤3
𝑤4

 =


0
0
2
0

 .
The determinant of the coefficient matrix becomes

(𝑥1 − 𝑥2) (𝑥3 − 𝑥4) (2𝑥2
1 + 2𝑥1𝑥2 + 2𝑥2

2 − 3𝑥1𝑥3 − 3𝑥2𝑥3 − 3𝑥1𝑥4 − 3𝑥2𝑥4 + 6𝑥3𝑥4).

The first two factors tell that the system is singular in the case of coinciding
nodes 𝑥1 = 𝑥2 or 𝑥3 = 𝑥4. The remaining quadratic form is not positive or
negative definite,8 implying possibilities of additional singularities for certain
node locations. □

1.2.1.2 FD Weights by the Method of Exponential Test Functions
This method leads to the same linear system (1.5). However, it simplifies certain
tasks (cf. Sections 7.5.1 and 8.3.1). We now apply 𝐿 to the test function 𝑒 𝜉 𝑥

rather than to monomials in 𝑥. Equating leading Taylor expansion terms in 𝜉 in∑𝑛
𝑘=1 𝑤𝑘𝑒

𝜉 𝑥𝑘 = 𝐿 𝑒 𝜉 𝑥
��
𝑥=0 becomes, when written out more explicitly,

𝑤1

(
1 + 𝜉 𝑥1 +

𝜉 2𝑥2
1

2! + · · ·
)
+

𝑤2

(
1 + 𝜉 𝑥2 +

𝜉 2𝑥2
2

2! + · · ·
)
+

...

𝑤𝑛

(
1 + 𝜉 𝑥𝑛 + 𝜉 2𝑥2

𝑛

2! + · · ·
)


= 𝐿

(
1 + 𝜉 𝑥 + 𝜉

2𝑥2

2!
+ · · ·

)����
𝑥=0

,

again giving the linear system (1.5).
8 Seen, for example, by noting that it is linear in 𝑥4 (and 𝑥3). For any choice of 𝑥1, 𝑥2, 𝑥3, it

evaluates to zero for 𝑥4 =
2𝑥2

1+2𝑥1𝑥2+2𝑥2
2−3𝑥1𝑥3−3𝑥2𝑥3

3(𝑥1+𝑥2−2𝑥3)
. More generally, writing it as

[𝑥1, 𝑥2, 𝑥3, 𝑥4]


2 1 −3/2 −3/2
1 2 −3/2 −3/2
−3/2 −3/2 0 3
−3/2 −3/2 3 0




𝑥1
𝑥2
𝑥3
𝑥4

 ,
it is seen from the fact that the (symmetric) matrix has both positive and negative eigenvalues
(𝜆1 = 6, 𝜆2 = 1, 𝜆3 = 0, 𝜆4 = −3). However, if 𝑥3 = 𝑥1 and 𝑥4 = 𝑥2 (then a case of Hermite
interpolation, cf. Section 1.4.3), the quadratic form evaluates to −(𝑥1 − 𝑥2)2, ensuring
nonsingularity for 𝑥1 ≠ 𝑥2.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

1.2 Finite Difference Formulas 5

1.2.1.3 FD Weights by Lagrange’s Interpolation Formula
This approach is good for theoretical insight but less convenient to code. Con-
sider, for example, deriving (1.4). The Lagrange interpolation polynomial9

𝑝(𝑥) that takes the values 𝑓 (−ℎ), 𝑓 (0), 𝑓 (ℎ) at 𝑥 = −ℎ, 0, ℎ is

𝑝(𝑥) = (𝑥 − 0) (𝑥 − ℎ)
(−ℎ − 0) (−ℎ − ℎ) 𝑓 (−ℎ) +

(𝑥 + ℎ) (𝑥 − ℎ)
(0 + ℎ) (0 − ℎ) 𝑓 (0) +

(𝑥 + ℎ) (𝑥 + 0)
(ℎ + ℎ) (ℎ + 0) 𝑓 (ℎ).

A quick calculation shows that 𝑝′ (0) = − 1
2 𝑓 (𝑥−ℎ)+ 1

2 𝑓 (𝑥+ℎ)
ℎ

, in agreement with
(1.4).

1.2.1.4 FD Weights by Recursion
This algorithm is computationally very fast and has excellent numerical stabil-
ity. It follows from Lagrange’s interpolation formula – see Fornberg (1988a)
for details. We give it here only in the form of the MATLAB code shown in
Algorithm 1.1. For example, the statement weights(0,−2 : 2, 6) returns the
output

0 0 1.0000 0 0

0.0833 –0.6667 0 0.6667 –0.0833

–0.0833 1.3333 –2.5000 1.3333 –0.0833

–0.5000 1.0000 0 –1.0000 0.5000

1.0000 –4.0000 6.0000 –4.0000 1.0000

0 0 0 0 0

0 0 0 0 0

The top line gives the weights for interpolation, which here is trivial as the
interpolation point coincides with one of the grid points. The next four rows
give the optimal weights for five-node approximations to derivatives of orders
1 to 4.10 The last two rows are all zero, as derivatives of orders 5 and higher
cannot be approximated based on just five nodes.

1.2.1.5 FD Weights by Padé-Based Algorithm
This algorithm was introduced in Fornberg (1998). Its derivation is a straightfor-
ward generalization of the special case described in Example 1.2.5. It requires
equispaced nodes but is otherwise very general. It readily applies also to im-
plicit stencils,11 and it naturally uses exact rather than floating-point arithmetic.
In the display form introduced in (1.3), we consider now stencils of the more
general form
9 Described in Appendix A, with illustration in Figure 1.3.

10 Thus, lines 2 and 3 match the second row in Tables 1.1 and 1.2, respectively.
11 Also described as compact stencils; see also Sections 3.3.2 and 4.3.1.1.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

6 Introduction to Finite Difference Methods

Algorithm 1.1 A MATLAB implementation of the weights algorithm in Sec-
tion 1.2.1.4.
function c = weights(z,x,m)
% Calculates FD weights.
% Input parameters:
% z Location where approximations are to be accurate,
% x Row vector with x-coordinates for grid points (distinct but
% otherwise arbitrarily located),
% m Highest derivative that we want to find weights for
% Output parameter:
% c Matrix, size (m+1,length(x)), containing in successive rows the
% weights for derivatives 0,1,...,m.

n = length(x); c = zeros(m+2,n); c(2,1) = 1; x1 = repmat(x,n,1);
A = x1.'-x1;
b = cumprod([ones(n,1),A],2); rm = cumsum(ones(m+2,n-1))-1;
d = diag(b); d(1:n-1) = d(1:n-1)./d(2:n);
for i = 2:n
mn = min(i,m+1);
c(2:mn+1,i) = d(i-1)*(rm(1:mn,1).*c(1:mn,i-1)-(x(i-1)-z)* ...
c(2:mn+1,i-1));
c(2:mn+1,1:i-1) = ((x(i)-z)*c(2:mn+1,1:i-1)-rm(1:mn,1:i-1).* ...
c(1:mn,1:i-1))./(x(i)- x1(1:mn,1:i-1));

end
c(1,:) = [];
end

relating weights for the 𝑚th derivative at 𝑑 + 1 locations spaced ℎ apart with
weights for the function at 𝑛 + 1, also ℎ-spaced locations, with the two sets
shifted sideways by 𝑠 units of ℎ, where 𝑠 need not be an integer. In symbolic
languages, such as Mathematica here, just two lines of code suffice12:

t = PadeApproximant[xs(Log[x]/h)m,{x,1,{n,d}}];
CoefficientList[{Denominator[t],Numerator[t]},x]

The following examples illustrate how this algorithm can be used and (Ex-
ample 1.2.5) also the approach for deriving it.

12 The present usage of Padé expansions differs significantly from their more common
applications to convergence acceleration and numerical analytic continuation of both Taylor
and asymptotic expansions; see Section E.3 and, for example, Bender and Orszag (1978),
Sections 8.3–8.6; Fornberg and Piret (2020), Section 3.2.9; and Trefethen (2013), Chapter 27.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

1.2 Finite Difference Formulas 7

Example 1.2.2 Find the weights in a stencil of the shape for approx-
imating the second derivative.

Solution For 𝑠 = 1, 𝑑 = 0, 𝑛 = 2, 𝑚 = 2, the algorithm returns{{
ℎ2} , {1,−2, 1}

}
,

corresponding to the explicit second-order accurate formula for the second
derivative

𝑓 ′′ (𝑥) ≈ { 𝑓 (𝑥 − ℎ) − 2 𝑓 (𝑥) + 𝑓 (𝑥 + ℎ)} 1
ℎ2 . (1.6)

□

Example 1.2.3 Find the weights in a stencil of the shape , again for
approximating the second derivative.

Solution For 𝑠 = 0, 𝑑 = 2, 𝑛 = 2, 𝑚 = 2, the algorithm returns{{
ℎ2

12
,
5ℎ2

6
,
ℎ2

12

}
, {1,−2, 1}

}
,

corresponding to the compact (implicit) fourth-order accurate formula for the
second derivative

1
12
𝑓 ′′ (𝑥 − ℎ) + 5

6
𝑓 ′′ (𝑥) + 1

12
𝑓 ′′ (𝑥 + ℎ)

≈ { 𝑓 (𝑥 − ℎ) − 2 𝑓 (𝑥) + 𝑓 (𝑥 + ℎ)} 1
ℎ2 . (1.7)

□

Example 1.2.4 Find the weights in a stencil of the shape for
approximating the first derivative.

Solution For 𝑠 = −2, 𝑑 = 2, 𝑛 = 1, 𝑚 = 1, the output{{
5ℎ
12
,− 4ℎ

3
,
23ℎ
12

}
, {−1, 1}

}
is readily rearranged into

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + ℎ

12
(23 𝑓 ′ (𝑥) − 16 𝑓 ′ (𝑥 − ℎ) + 5 𝑓 ′ (𝑥 − 2ℎ)). (1.8)

We later (in Section 3.2.3) encounter this formula as the third-order Adams–
Bashforth method for solving ODEs. □

Example 1.2.5 For Example 1.2.3, obtain the weights by explicitly carrying
out the exponential test function approach.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

8 Introduction to Finite Difference Methods

Algorithm 1.2 A MATLAB implementation of the weights algorithm in Sec-
tion 1.2.1.5.
function [w_f,w_der] = weights_Pade(s,d,n,m)
% Input parameters (type double or symbolic); d,n,m must be integers;
% If s is non-integer, symbolic form for s ensures exact arithmetic.
% s,d,n Define stencil shape
% m Order of derivative approximated
% Output parameters (symbolic variables)
% w_f Weight(s) for function values
% w_der Weight(s) for derivative values
syms x h; [N,D] = numden(pade(xˆs*log(x)ˆm,x,1,'Order',[n,d]));
w_f = fliplr(coeffs(N,'All')); w_der = fliplr(coeffs(D,'All'))*hˆm;
end

Solution The approximation should be of the form

𝑏−1 𝑓
′′ (𝑥 − ℎ) + 𝑏0 𝑓

′′ (𝑥) + 𝑏1 𝑓
′′ (𝑥 + ℎ) ≈ 𝑐−1 𝑓 (𝑥 − ℎ) + 𝑐0 𝑓 (𝑥) + 𝑐1 𝑓 (𝑥 + ℎ).

With 𝑓 = 𝑒 𝜉 𝑥 , this becomes

𝜉2
(
𝑏−1𝑒

−𝜉ℎ + 𝑏0 + 𝑏1𝑒
𝜉ℎ

)
𝑒 𝜉 𝑥 ≈

(
𝑐−1𝑒

−𝜉ℎ + 𝑐0 + 𝑐1𝑒
𝜉ℎ

)
𝑒 𝜉 𝑥.

After canceling 𝑒 𝜉 𝑥 and substituting 𝑒 𝜉ℎ = 𝑠 (i.e., 𝜉 = 1
ℎ

log 𝑠), this can be
written as {

1
ℎ

log 𝑠
}2
≈ 𝑐−1 + 𝑐0𝑠 + 𝑐1𝑠

2

𝑏−1 + 𝑏0𝑠 + 𝑏1𝑠2
. (1.9)

This relation should be as accurate as possible for 𝜉 → 0, that is, for 𝑠→ 1. The
Padé expansion (cf. Section E.3) of

{ 1
ℎ

log 𝑠
}2 around 𝑠 = 1 with numerator

and denominator degrees both equal to 2 becomes{
1
ℎ

log 𝑠
}2
≈ 1
ℎ2

(𝑠 − 1)2

1 + (𝑠 − 1) + 1
12 (𝑠 − 1)2

=
12 − 24𝑠 + 12𝑠2

ℎ2 (1 + 10𝑠 + 𝑠2)
.

Equating coefficients with (1.9) gives (1.7). □

The MATLAB code in Algorithm 1.2 implements this Padé-based algorithm
using the Symbolic Toolbox. For example, to compute the weights in the second
row in Table 4.1, the statement

[w_f, w_der] = weights_Pade(sym(3/2), 0, 3, 1)

produces the output w_f = [1,−27, 27,−1], w_der = 24 ∗ h.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

1.2 Finite Difference Formulas 9

Table 1.1 Weights for centered FD approximations of the first derivative on
an equispaced grid (omitting the factor 1/ℎ).

Order Weights First derivative

2 − 1
2 0 1

2
4 1

12 − 2
3 0 2

3 − 1
12

6 − 1
60

3
20 − 3

4 0 3
4 − 3

20
1
60

8 1
280 − 4

105
1
5 − 4

5 0 4
5 − 1

5
4

105 − 1
280

10 − 1
1260

5
504 − 5

84
5
21 − 5

6 0 5
6 − 5

21
5
84 − 5

504
1

1260
.
.
. ↓ ↓ ↓ ↓ ↓

.

.

. ↓ ↓ ↓ ↓ ↓

Limit · · · − 1
5

1
4 − 1

3
1
2 −1 0 1 − 1

2
1
3 − 1

4
1
5 · · ·

1.2.2 Some Tables of FD Formulas

Especially with the recursion and Padé algorithms (in Sections 1.2.1.4 and
1.2.1.5, respectively), it is very easy to generate tables of FD weights. Four
examples are given in Tables 1.1–1.4.13

We can make a number of observations from these relating to increasing
orders of accuracy:

i. For centered FD approximations, the weights converge to well-defined
limits – derived later in Section 2.1 for an arbitrary-order derivative.

ii. As seen for the first and second derivatives in Tables 1.1 and 1.2, and for a
general-order derivative in (2.1), the weights for centered FD approxima-
tions decay in magnitude with distance 𝑘 from the stencil center at the rate
of 𝑂 (1/𝑘) for odd-order derivatives, and 𝑂 (1/𝑘2) for those of even order.
These slow decay rates are in some contexts problematic, since analytically,
a derivative is a local property of a function and should not depend heavily
on distant data.14

iii. For one-sided approximations, the weights diverge rapidly with increasing
orders of accuracy (as seen in Tables 1.3 and 1.4). Ways to understand
and control this will be discussed in several contexts later in this book
(including Sections 1.4, 5.3.7, and F.3).

13 A simple relation between the entries in Tables 1.1 and 1.2 is given in Section 6.3.3.
14 This comment does not apply to FD in the complex plane (cf. Chapter 6).

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

10 Introduction to Finite Difference Methods

Table 1.2 Weights for centered FD approximations of the second derivative
on an equispaced grid (omitting the factor 1/ℎ2).

Order Weights Second derivative
2 1 −2 1

4 − 1
12

4
3 − 5

2
4
3 − 1

12
6 1

90 − 3
20

3
2 − 49

18
3
2 − 3

20
1
90

8 − 1
560

8
315 − 1

5
8
5 − 205

72
8
5 − 1

5
8

315 − 1
560

10 1
3150 −

5
1008

5
126 −

5
21

5
3 − 5269

1800
5
3 − 5

21
5

126 −
5

1008
1

3150
.
.
. ↓ ↓ ↓ ↓ ↓

.

.

. ↓ ↓ ↓ ↓ ↓

Limit · · · 2
52 − 2

42
2
32 − 2

22
2
12 − 𝜋2

3
2
12 − 2

22
2
32 − 2

42
2
52 · · ·

Table 1.3 Weights for one-sided FD approximations of the first derivative on
an equispaced grid (omitting the factor 1/ℎ).

Order Weights First derivative
1 −1 1

2 − 3
2 2 − 1

2
3 − 11

6 3 − 3
2

1
3

4 − 25
12 4 −3 4

3 − 1
4

5 − 137
60 5 −5 10

3 − 5
4

1
5

6 − 49
20 6 − 15

2
20
3 − 15

4
6
5 − 1

6
7 − 363

140 7 − 21
2

35
3 − 35

4
21
5 − 7

6
1
7

8 − 761
280 8 −14 56

3 − 35
2

56
5 − 14

3
8
7 − 1

8

9 − 7129
2520 9 −18 28 − 63

2
126
5 −14 36

7 − 9
8

1
9

10 − 7381
2520 10 − 45

2 40 − 105
2

252
5 −35 120

7 − 45
8

10
9 − 1

10

1.3 Errors When Applying FD Formulas

Two types of errors arise when applying FD approximations to a function:

1. Truncation errors: The FD formula has an error of size 𝑂 (ℎ𝑝), where 𝑝
is the approximation’s order of accuracy.

2. Rounding errors: Typical double precision accuracy in a computer has a
relative error level of around 10−16.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

1.3 Errors When Applying FD Formulas 11

Table 1.4 Weights for one-sided FD approximations of the second derivative
on an equispaced grid (omitting the factor 1/ℎ2).

Order Weights Second derivative
1 1 −2 1
2 2 −5 4 −1

3 35
12 − 26

3
19
2 − 14

3
11
12

4 15
4 − 77

6
107
6 −13 61

12 − 5
6

5 203
45 − 87

5
117
4 − 254

9
33
2 − 27

5
137
180

6 469
90 − 223

10
879
20 − 949

18 41 − 201
10

1009
180 − 7

10

7 29531
5040 − 962

35
621
10 − 4006

45
691
8 − 282

5
2143
90 − 206

35
363
560

8 6515
1008 − 4609

140
5869
70 − 6289

45
6499
40 − 265

2
6709
90 − 967

35
3407
560 − 761

1260

1.3.1 Truncation Errors
These can be found theoretically by Taylor expanding the FD formula, as in
(1.2). Numerically, one can evaluate the approximation and record the error.
Then a log–log type plot showing log |Error| versus log ℎ will feature (near-)
straight lines with the slope 𝑝. These 𝑂 (ℎ𝑝)-size errors become smaller when
ℎ decreases.

1.3.2 Rounding Errors
In standard double precision arithmetic, both weights and function values are
typically uncertain by 𝑂 (10−16). For FD formulas for the 𝑘th derivative, hav-
ing a ℎ𝑘 in their denominator, rounding errors can be roughly estimated as
𝑂 (10−16)/ℎ𝑘 , that is growing rapidly when ℎ decreases.

1.3.3 Total Errors
The total error becomes smallest when the two error types match in size, that
is, when 𝑂 (ℎ𝑝) ≈ 𝑂 (10−16)/ℎ𝑘 , occurring for ℎ ≈ 10−16/(𝑝+𝑘) , in which

case |Error| ≈ 10−16
(

𝑝

𝑝+𝑘

)
. Figure 1.2 illustrates the schematic observations,

by showing the error when 𝑑
𝑑𝑥
𝑒−𝑥/2

��
𝑥=0 = 1

2 is approximated using the first
four FD stencils in Table 1.1 (denoted according to their accuracy orders as
FD2,. . . , FD8). Apart from illustrating the two error sources, the figure also
gives a hint about why we in this book focus on higher-order FD methods.
When solving differential equations, approximations are needed at all grid

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

12 Introduction to Finite Difference Methods

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

h

10
-15

10
-10

10
-5

10
0

E
rr
o
r

FD2

FD4

FD6

FD8

Figure 1.2 Errors when approximating 𝑑
𝑑𝑥

𝑒−𝑥/2
��
𝑥=0 = 1

2 with different grid spac-
ings ℎ and using the first four FD stencils in Table 1.1. The respective orders of
accuracy are confirmed by the slopes of the initial straight-line trends. The jagged
trend for smaller ℎ reflect 𝑂 (10−16)/ℎ-sized rounding errors.

points across a domain. If we, for example, want to reach a 10−10 error level,
the FD8 approximation (with four times as many weights as FD2) is seen to
need only about 1/10,000 as many node points, typically making it vastly more
cost-effective (already in 1-D; in 2-D, the factor would be 10−8, etc.).

1.4 The Runge Phenomenon

High-degree polynomial interpolation with equispaced nodes is notorious for
often being violently oscillatory near the end points of an interval. This plays
a big role in the way that increasing order FD methods are designed.

1.4.1 Illustration of Lagrange Polynomials
Figure 1.3 illustrates the Lagrange polynomials 𝐿𝑘 (𝑥) (see equation (A.1) in
Appendix A) in the case of nodes located at 𝑥𝑘 = 𝑘, 𝑘 = 0, 1, . . . , 8. None of
these polynomials feature strikingly large spurious oscillations near the interval
center, but several do that near the interval ends. Combining these kernel func-
tions together according to the function values 𝑓 (𝑥𝑘) will produce a polynomial
interpolant sharing the same property, that is, being relatively smooth near the
interval center, but with a high likelihood of oscillations near its ends.

Figure 1.3 also gives insight into the FD weight tables. The weights given
in the next to last row of Tables 1.3 and 1.4 are exactly the first and second

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

1.4 The Runge Phenomenon 13

Figure 1.3 The Lagrange polynomials 𝐿𝑘 (𝑥) in the case of 𝑥𝑘 = 𝑘, 𝑘 =

0, 1, . . . , 8. The nodes at which they are zero are marked with open circles and
the node at which the value is one is shown with a filled circle.

derivative of these shown curves at their left end point 𝑥 = 0 (marked here
by crosses). For the centered FD approximations (the next to last rows in
Tables 1.1 and 1.2; again of stencil width of 9 nodes), the weights are similarly
the matching derivatives of these curves at their center location.

1.4.2 Illustration of the Runge Phenomenon
Figure 1.4 shows a commonly illustrated case of the Runge phenomenon –
interpolating the function

𝑓 (𝑥) = 1
1 + 16𝑥2 (1.10)

at equispaced nodes over 𝑥 ∈ [−1, 1]. Without here going into the extensive
literature on Runge phenomenon analysis,15 let us just note some pertinent
highlights that are relevant to the present goal of understanding its influence on
FD (and PS) methods:

i. Figure 1.4 again illustrates why centered FD approximations are much
more accurate than one-sided ones, as in both cases these return the exact
derivative of interpolating polynomials.

ii. With 𝑁 nodes, the envelope of the oscillations in the error (to leading order;

15 The pioneering work by C. Runge (1901) has been recalled in, for example, Fornberg (1996)
and Trefethen (2000, 2013). One important starting point is the formula (A.7).

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

14 Introduction to Finite Difference Methods

𝑥 ∈ [−1, 1]) is given by 𝛼(𝑥)𝑁 , where 𝛼(𝑥) = 𝑒𝜙 (𝑥)−𝑐, and

𝜙(𝑥) = 1
2
((1 − 𝑥) log(1 − 𝑥) + (1 + 𝑥) log(1 + 𝑥)) . (1.11)

The function 𝑓 (𝑥) that is interpolated enters only through the constant 𝑐,
which in the present case of (1.10) becomes 𝑐 = 1

2 log 17
16 +

1
4 arctan 4 ≈

0.3618.16 Figure 1.5 shows the function 𝛼(𝑥) for the present 𝑓 (𝑥). We can
read off that the interpolant converges exponentially fast in a central region
(at 𝑥 = 0 as 0.6964𝑁) and diverges exponentially toward the edges, with
the transition points at 𝑥 ≈ ±0.7942 (independent of 𝑁).

iii. While interpolation generally is much more stable numerically than ex-
trapolation (or approximations near to interval ends), the extreme severity
of the Runge phenomenon is to a large extent due to the present use of
polynomials as opposed to other types of interpolating functions.17

Although there is no simple universal remedy against the Runge
phenomenon, various ways to reduce the damage it causes have been devised
(such as the RBF-FD PHS+poly approach, described in Section 5.4.1 and,
focusing on its properties at boundaries, in Section F.3).18

1.4.3 Hermite Interpolation

In certain applications, both 𝑓 (𝑥𝑘)- and 𝑓 ′ (𝑥𝑘)-values are available at all node
points. Hermite interpolation can then be an alternative to Lagrange interpola-
tion (again finding the unique lowest degree polynomial that fits the data). Finite
difference weights to be simultaneously applied to both these sets can readily
be obtained, for example, by generalizing the algorithms in Sections 1.2.1.1 and
1.2.1.4.19 However, with 𝑁 nodes, these polynomials will be of degree 2𝑁 − 1
(rather than 𝑁 − 1), off-setting possible advantages with respect to the Runge
phenomenon. In the case illustrated in Figure 1.4, the break point between con-
vergence and divergence is unchanged, again at 𝑥 ≈ ±0.7942; see Figure 1.6.

16 Its value can be found by generalizing 𝑥 to 𝑧 complex and noting that convergence/divergence
breakeven should occur at the most limiting singularity of 𝑓 (𝑧); here at 𝑧 = ± 𝑖

4 .
17 For example, in contrast to rational functions, all polynomials 𝑝 (𝑥) of high orders must

diverge rapidly as |𝑥 | increases.
18 It is shown in Platte et al. (2011) that no stable algorithm can converge exponentially fast for all

analytic functions if using only equispaced data on an interval within their region of analyticity.
However, “root-exponential” convergence is possible (faster than any algebraic order).

19 For details and MATLAB code, see Fornberg (2021a).

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

1.4 The Runge Phenomenon 15

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

-2

0

2

11 nodes

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

-2

0

2

31 nodes

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

-2

0

2

61 nodes

Figure 1.4 Equispaced polynomial interpolation of 𝑓 (𝑥) = 1
1+16𝑥2 over [−1, 1]

using 11, 31, and 61 nodes.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(
x
)

 x - 0.7942 x + 0.7942

(x) + 0.6964

Figure 1.5 Solid curve: The function 𝛼(𝑥) describing the Runge phenomenon
oscillation envelope for equispaced interpolation over [−1, 1] in the case of 𝑓 (𝑥)
given in (1.10). In particular, it always holds that 𝛼(±1) − 𝛼(0) = log 2 ≈ 0.6931.
Dotted straight line: The counterpart curve if the nodes are not equispaced but
Chebyshev-distributed. For different functions 𝑓 (𝑥) , this curve and line get shifted
up or down (with different amounts), but do not otherwise change shape.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

16 Introduction to Finite Difference Methods

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
0

2

11 nodes

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
0

2

21 nodes

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
0

2

31 nodes

Figure 1.6 Equispaced Hermite interpolation of 𝑓 (𝑥) = 1
1+16𝑥2 over [−1, 1] using

11, 21, and 31 nodes.

1.4.4 Brief Comments on Chebyshev-Distributed Nodes
As seen in Tables 1.3 and 1.4, the Runge phenomenon is quite mild for small
FD stencils, but then grows exponentially with the degree of the polynomials
that the stencils are based on. Pseudospectral methods (Chapter 2) can be seen
as pushing node numbers and polynomial degrees to extremely high values. As
an alternative to an equispaced grid with nodes on [−1, 1] located at

𝑥𝑘 = −1 + 2𝑘/𝑁, 𝑘 = 0, 1, . . . , 𝑁,

a commonly used Runge phenomenon remedy is then to cluster the nodes
strongly toward the interval ends, as with the Chebyshev node distribution

𝑥𝑘 = − cos(𝑘𝜋/𝑁), 𝑘 = 0, 1, . . . , 𝑁.

If using approximations based on a single interpolating polynomial in the 𝑁 →
∞ limit, the dotted line in Figure 1.5 shows the counterpart 𝛼(𝑥) curve, which
in the case of (1.10) works out to become the constant 𝛼(𝑥) ≡ 1

4 (
√

17 − 1) ≈
0.7808. The global polynomial interpolant now converges exponentially across
[−1, 1]. Compared to equispaced nodes, improved accuracy near interval ends
has been obtained in exchange for a loss of accuracy near the interval center.20

With the focus in this book on FD approximations well short of the infinite
order limit, the Runge phenomenon is often not a major issue.21

20 The high accuracy seen near the interval center in Figure 1.5 explains the excellent accuracy of
centered high-order FD approximations.

21 Node clustering at boundaries can still be beneficial for other purposes, such as for achieving
locally increased resolution (e.g., for resolving boundary layers) and for representing irregular
boundary shapes. The generalization from grid-based FD to mesh-free RBF-FD
discretizations is described in Chapter 5.

https://doi.org/10.1017/9781009566544.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009566544.002

