ON SUCCESSIVE APPROXIMATIONS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES†

by W. A. KIRK

(Received 16 September, 1969; revised 26 December, 1969)

Let X be a Banach space and K a convex subset of X. A mapping T of K into K is called a nonexpansive mapping if $||T(x)-T(y)|| \le ||x-y||$ for all $x, y \in K$.

In general, it is not the case for nonexpansive mappings T that the sequences of Picard iterates $\{T^n(x)\}$ converge to fixed points of T, and thus when such fixed points exist other approximation techniques are needed. One such technique is to form the mapping

$$S_{\lambda} = \lambda I + (1 - \lambda)T$$
 $(0 < \lambda < 1),$

and then show that under certain circumstances the Picard iterates of S_{λ} converge to a fixed point of T. The first such result was obtained by Krasnoselskii [7], who proved that if K is a closed convex subset of a uniformly convex Banach space and if T is a nonexpansive mapping of K into a compact subset of K, then for any $x \in K$ the sequence of iterates $\{S_{\lambda}^{n}(x)\}$, for $\lambda = 1/2$, converges to a fixed point of T. It was noted by Schaefer [8] that this theorem holds for arbitrary $\lambda \in (0, 1)$ and subsequently Edelstein [4] proved the corresponding result in a strictly convex Banach space. Even more recently, Browder and Petryshyn have obtained Krasnoselskii's theorem as a corollary of their results in [3].

Our purpose in this note is to observe that mappings more general than those of type S_{λ} yield similar convergence theorems.

THEOREM 1. Let K be a convex subset of a Banach space and T a nonexpansive mapping of K into itself. Define the mapping $S: K \to K$ by

$$S = \alpha_0 I + \alpha_1 T + \alpha_2 T^2 + \ldots + \alpha_k T^k,$$

where $\alpha_i \ge 0$, $\alpha_1 > 0$, and $\sum_{i=0}^k \alpha_i = 1$. Then S(x) = x if and only if T(x) = x.

Proof. Suppose S(x) = x. Then

$$x = \sum_{i=1}^k \beta_i T^i(x),$$

where $\beta_i = \alpha_i/(1-\alpha_0)$. Thus $x \in \text{conv}\{T(x), T^2(x), \dots, T^k(x)\}$. Let

$$\delta = \sup \{ ||u-v|| : u, v \in \{x, T(x), T^2(x), \dots, T^k(x)\} \}.$$

Because T is nonexpansive, for some integer $p \ge 1$,

$$||x-T^p(x)||=\delta.$$
 (*)

† Research supported by the National Science Foundation, grant GP8367.

Assume $\delta > 0$, and let p be the smallest positive integer such that (*) holds. Since $\alpha_1 > 0$,

$$x = \beta_1 T(x) + (1 - \beta_1)z$$
,

where $z \in \text{conv}\{T^2(x), T^3(x), \dots, T^k(x)\}\$ and $0 < \beta_1 \le 1$; thus

$$\delta = ||x - T^{p}(x)|| = ||\beta_{1} T(x) + (1 - \beta_{1})z - T^{p}(x)||$$

$$\leq \beta_{1} ||T(x) - T^{p}(x)|| + (1 - \beta_{1}) ||z - T^{p}(x)||$$

$$\leq \beta_{1} \delta + (1 - \beta_{1})\delta = \delta.$$

This implies $||T(x)-T^p(x)||=\delta$, yielding $||x-T^{p-1}(x)|| \ge \delta$. This gives a contradiction if p>1. However, if p=1 the preceding argument yields $||T(x)-T(x)|| \ge \delta > 0$, which is absurd. Thus, $\delta=0$ and x=T(x). Since the converse is obvious, the theorem is proved. (We should remark that the stipulation $\alpha_1>0$ in Theorem 1 is necessary to rule out the possibility that a fixed point of S is merely a point at which T is periodic.)

Next we prove that in uniformly convex spaces the mapping S is asymptotically regular; that is,

$$\lim_{n \to \infty} ||S^{n+1}(x) - S^n(x)|| = 0 \qquad (x \in K).$$

This result is patterned after Theorem 5 in Browder and Petryshyn [3].

THEOREM 2. Let X be uniformly convex and let T and S be as defined in Theorem 1. If T has at least one fixed point then the mapping S is asymptotically regular.

Proof. Let $x \in K$. Define the sequence $\{x_n\}$ by $x_n = S^n x$, $n = 1, 2, \ldots$. Suppose u is a fixed point of T in K. Then the sequence $\{||x_n - u||\}$ is nonincreasing (since S is nonexpansive and S(u) = u), and we may suppose $\lim_{n \to \infty} ||x_n - u|| = d \ge 0$. Assume d > 0. (If d = 0 there is clearly nothing to prove.) Then (adopting the notation $T^0 = I$) we have

$$x_{n+1} - u = S(x_n) - u$$

$$= \sum_{i=0}^{k} \alpha_i T^i(x_n) - u$$

$$= \alpha_0(x_n - u) + (1 - \alpha_0)z_n,$$

where

$$z_n = \frac{1}{1-\alpha_0} \sum_{i=1}^k \alpha_i (T^i(x_n) - u).$$

Since

$$||T^{i}(x_{n})-u|| = ||T^{i}(x_{n})-T^{i}(u)|| \le ||x_{n}-u||$$

and $\sum_{i=0}^{k} \alpha_i = 1$ it follows that $\limsup_{n \to \infty} ||z_n|| \le d$. Also $\lim_{n \to \infty} ||x_n - u|| = d$, $\lim_{n \to \infty} ||x_{n+1} - u|| = d$.

Because X is uniformly convex it must be the case that

$$\lim_{n\to\infty} ||x_n - u - z_n|| = 0.$$

However, $x_{n+1} - x_n = (1 - \alpha_0)(x_n - u - z_n)$ and so $\lim_{n \to \infty} (x_{n+1} - x_n) = 0$, completing the proof.

The above results and Theorem 6 of [3] yield the following corollary.

COROLLARY. Let X be a uniformly convex Banach space and T a nonexpansive compact mapping of X into X (i.e., T maps bounded subsets of X into precompact subsets of X) which has at least one fixed point. Then if the mapping S is defined as in Theorem 1, for each $x_0 \in X$ the sequence $\{S^n(x_0)\}$ converges to a fixed point of T.

Proof. Since S is asymptotically regular and has the same fixed points as T, the conclusion is a direct consequence of Theorem 6 of Browder-Petryshyn [3] if it is the case that I-S maps bounded closed subsets of X into closed subsets of X. Let H be a bounded closed subset of X and suppose $\lim_{n \to \infty} (h_n - Sh_n) = z$, $h_n \in H$. We need to show that $z \in (I-S)[H]$. Since T is a

compact mapping, some subsequence $\{T(h_{n_j})\}$ of $\{T(h_n)\}$ converges; say $T(h_{n_j}) \to v$ as $j \to \infty$. Fix i between 1 and k. Continuity of T implies $T^i(h_{n_j}) \to T^{i-1}(v)$ as $j \to \infty$. Thus by repeatedly choosing subsequences, we may obtain a subsequence $\{h_n\}$ of $\{h_n\}$ which has the property:

$$\lim_{n\to\infty} T^i(\bar{h}_n) = w_i \in X \qquad (i=1,\ldots,k).$$

Now

$$(I-S)(\bar{h}_n) = \bar{h}_n - \sum_{i=0}^k \alpha_i T^i(\bar{h}_n)$$
$$= (1-\alpha_0)\bar{h}_n - \sum_{i=1}^k \alpha_i T^i(\bar{h}_n).$$

Since $\overline{h}_n - S(\overline{h}_n) \rightarrow z$ as $n \rightarrow \infty$ it follows that

$$\lim_{n\to\infty} (1-\alpha_0) \bar{h}_n = z + \sum_{i=1}^k \alpha_i w_i.$$

This implies that $\{\bar{h}_n\}$ converges, say to $h \in H$ (since H is closed). Hence h - Sh = z, which completes the proof.

We conclude by giving an analogue of Theorem 7 of Browder [2].

THEOREM 3. Let X be a uniformly convex Banach space, K a closed bounded convex subset of X, and T a nonexpansive mapping of K into K. Let

$$S = \sum_{i=0}^{k} \alpha_i T^i$$

where $\alpha_i \ge 0$, $\alpha_1 > 0$, and $\sum_{i=0}^k \alpha_i = 1$. Suppose T has at most one fixed point y in K. Then for each x_0 in K the sequence $\{S^n(x_0)\}$ converges weakly to y in K.

Proof. Since S is nonexpansive, Theorem 3 of [2] implies that I-S is demiclosed. This means that if $\{u_j\}$ converges weakly to u_0 in K and $(I-S)(u_j)$ converges strongly to w, then $(I-S)(u_0)=w$.

Now let $x_n = S^n(x_0)$, n = 1, 2, ..., and suppose $\{x_{n_i}\}$ converges weakly to u_0 . By Theorem 2, S is asymptotically regular so

$$\lim_{i \to \infty} (I - S)(x_{n_i}) = \lim_{i \to \infty} (S^{n_i}(x_0) - S^{n_i + 1}(x_0)) = 0$$

and thus demiclosedness of I-S implies

$$(I-S)(u_0)=0.$$

Thus u_0 is a fixed point of S. However, by Theorem 1 the fixed points of S and T coincide. Therefore u_0 is the unique fixed point of T and it follows that every weakly convergent subsequence of $\{x_n\}$ converges weakly to u_0 . If $\{x_n\}$ does not converge weakly to u_0 then there exists a weak neighborhood W of u_0 and a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ with the property that $x_{n_k} \notin W$, $k=1,2,\ldots$ However, reflexivity of X and boundedness of $\{x_n\}$ imply that some subsequence of $\{x_{n_k}\}$ converges weakly, and by what we have just shown, this weakly convergent subsequence must converge to u_0 . This implies that terms of the sequence $\{x_{n_k}\}$ must lie in W-a contradiction. Therefore, $\{S^n(x_0)\}$ converges weakly to u_0 .

We might remark that the existence of at least one fixed point for T in K follows from a theorem proved independently by Browder [1], Göhde [5], and Kirk [6]. In general, this fixed point is not unique, but it will be unique for strictly contractive mappings (i.e., mappings T for which ||T(x)-T(y)|| < ||x-y|| when $x \neq y$).

ADDED IN PROOF. Using Theorem 1, one may also obtain Theorems 2 and 3 as direct consequences of their analogues in [2] and [3] by applying the original theorems to the mapping

$$R = \left(\frac{1}{1 - \alpha_0}\right) \sum_{i=1}^k \alpha_i T^i.$$

REFERENCES

- 1. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, *Proc. Nat. Acad. Sci. U.S.A.* 54 (1965), 1041-1044.
- 2. F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665.
- 3. F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, *Bull. Amer. Math. Soc.* 72 (1966), 571-575.
- 4. M. Edelstein, A remark on a theorem of M. A. Krasnoselskii, Amer. Math. Monthly 73 (1966), 509-510.
 - 5. D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258.
- 6. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, *Amer. Math. Monthly* 72 (1965), 1004–1006.
- 7. M. A. Krasnoselskii, Two remarks about the method of successive approximations, *Uspehi Mat. Nauk* 10 (1955), no. 1 (63), 123-127.
- 8. H. Schaefer, Über die Methode suksessiver Approximation, Jber. Deutsch. Math. Verein. 59 (1957), 131-140.

University of Iowa Iowa City Iowa 52240, U.S.A.