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Abstract. We present an investigation of the amplitude modulation of an external
magnetic field-aligned right-hand circularly polarized electromagnetic electron-
cyclotron (EMEC) wave in a strongly magnetized electron-positron plasma. It is
shown that the dynamics of the modulated EMEC wave packet is governed by
a cubic nonlinear Schrödinger equation. The latter reveals that a modulated wave
packet can propagate in the form of either a dark or a grey envelope soliton. This re-
sult could have relevance to the transport of electromagnetic wave energy over long
distances via envelope solitons in the magnetospheres of pulsars and magnetars.

A pair plasma is composed of electrons and positrons, which have the same mass
but opposite charge. It exists in the early universe [1–3], in bipolar outflows (jets)
in active galactic nuclei [4, 5], in the polar regions of neutron stars [6–13], in
magnetars [14, 15], in the inner regions of the accretion disks surrounding black
holes [16], at the centre of our own Galaxy [17], in the Solar atmosphere [18], as well
as in plasmas in intense laser fields [19–22], and in tokamaks [23]. Furthermore,
due to the production of copious amounts of positrons in some laboratories, one is
able to perform experiments on a pair plasma [24–29].
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In a pair plasma, there are numerous new linear and nonlinear waves [30–41].
The presence of an external magnetic field in a pair plasma greatly affects the
dynamics of the pairs via the Lorentz force. Hence, the propagation characteristics
of both electrostatic and electromagnetic waves in a pair magnetoplasma are signi-
ficantly modified [42–57]. In particular, the linear dispersion relations for the non-
relativistic circularly polarized electromagnetic and the non-relativistic elliptically
polarized extraordinary electromagnetic waves, which propagate along and across
the external magnetic field direction respectively, are the same. Investigations
of nonlinear wave–wave interactions in a magnetized pair plasma might play an
important role in the description of anti-matter and dark energy of our Universe.
In this letter, we consider the nonlinear propagation of an external magnetic

field-aligned negative group dispersion right-hand circularly polarized EMEC wave
in a strongly magnetized pair plasma. The external magnetic field is ẑB0 , where
ẑ is a unit vector along the z axis in a Cartesian coordinate system and B0 is the
strength of the magnetic field. At equilibrium, we have ne0 = np0 ≡ n0 , where
n0 is the unperturbed plasma number density. The wave electric field is E⊥ =
E(x̂ + iŷ) exp(−iωt + ikz) + complex conjugate, where x̂ and ŷ are unit vectors
along the x and y axes, respectively. The frequency ω and the wave number k are
related by the cold plasma dispersion relation [44]

k2c2

ω2 = 1 −
ω2
p−

ω(ωγ− − ωc)
−

ω2
p+

ω(ωγ+ + ωc)
, (1a)

which is valid for |ωγ∓ ∓ ωc| � kVTe,Tp. Here c is the speed of light in vacuum, ωp∓ =
(4πn∓e2/m)1/2 is the electron plasma frequency, n∓ is the sum of the unperturbed
and perturbed electron number densities, e is the magnitude of the electron charge,
m is the electron rest mass, ωc = eB/mc is the electron gyrofrequency, B is
the sum of the ambient and perturbed (along ẑ) magnetic fields, and VTe (VTp) is
the electron (positron) thermal speed. The factor γ∓ = (1+ ν2

∓)1/2 accounts for the
relativistic electron and positron mass increase in the wave field, where ν∓ is given
by [45–47]

ν2
∓ =

Ω2
E γ2

∓
(ωγ∓ ∓ ωc)2 , (1b)

where ΩE = eE/mc.
Two comments are in order, First, in the non-relativistic limit, we have ν∓ � 1

and one can simply approximate γ∓ by unity. Then (1a) gives

k2c2

ω2 = 1 −
2ω2

p

(ω2 − ω2
c )

, (2a)

which for ω ≈ ωc and ω � kc yields

ω ≈ kcωc
(k2c2 + 2ω2

p)1/2 , (2b)

where ωp = ωp− = ωp+ . The wave, given by (2b), is referred to as an EMEC wave,
which has a negative group dispersion (that is, the rate of change of the group
velocity ∂ω/∂k with respect to the wave number is negative).
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Second, in the ultra-relativistic limit, we have γ2
∓ � 1, and one can approximate

γ− by (±ΩE + ωc)/ω and γ+ by (±ΩE − ωc)/ω. Here, one obtains from (1a) that

k2c2

ω2 = 1 ∓
2ω2

p

ωωE
, (2c)

which admits the solution

ω =
2ω2

p

ωE

(
1 +

k2c2ω2
E

4ω4
p

)
, (2d)

with the minus sign in (2c), and a whistler/helicon-like mode [58]

ω =
k2c2

2ω2
p

ωE , (2e)

with the plus sign in (2c) and with ωωE � 2ω2
p. Both modes, given by (2d) and (2e),

have a positive group dispersion.
It is remarkable that the dispersion relation (2c) is independent of the external

magnetic field. In addition, (2e) shows that the frequency is proportional to the
wave amplitude [45–47]. Furthermore, we observe that in a pair plasma, the
whistler/helicon-like mode frequency is half the frequency of ultra-relativistic
CPEM waves in a pure electron magnetoplasma [42,43] without positrons.
A finite amplitude weakly relativistic carrier wave (ω0 , k0) interacting with quasi-

stationary non-resonant fluctuations (composed of the density and magnetic field
perturbations) would create an envelope of the wave. The dynamics of a weakly non-
relativistic (γ∓ ≈ 1) envelope is governed by a nonlinear Schrödinger equation [30,
52]

i

(
∂

∂τ
+ Vg

∂

∂z

)
E +

V ′
g

2
∂2E

∂z2 − ΔE = 0, (3)

where ∂E/∂τ � ω0E,ω0 = k0cωc0/(k2
0 c2 + 2ω2

p0), ωc0 = eB0/mc, and ωp0 =
(4πn0e

2/me)1/2 . The group velocity and the group dispersion are Vg = ∂ω0/∂k0 =
2cωc0ω

2
p0/(k2

0 c2 + 2ω2
p0)

3/2 and V ′
g = ∂Vg/∂k0 = −6ωc0ω

2
p0k0c

3/(k2
0 c2 + 2ω2

p0)
5/2 ,

respectively. The nonlinear frequency shift Δ for γ∓ ≈ 1 reads [59]

Δ =
Vgω

2
p0

k0c2

[
2ω2

0ω2
c0

(ω2
0 − ω2

c0)2

B1

B0
− e2ω2

0 (ω4
0 + 6ω2

0ω2
c0 + ω4

c0)|E|2
m2c2(ω2

0 − ω2
c0)4

]
, (4)

where B1 is the external magnetic field-aligned magnetic field perturbation created
by the pressure of the wave envelope due to the inverse Cotton–Mouton effect [60].
The expression for B1 is [59]

B1

B0
= −

4ω2
p0ω

2
c0|E|2

(ω2 − ω2
c0)2B2

0
. (5)

We stress that the contribution of the radiation pressure driven density per-
turbation to the nonlinear frequency shift (4) is insignificant when ω0 ≈ ωc, and
can be neglected. One can thus imagine that in a strongly magnetized tenuous
plasma with ωc � ωp0, it is reasonable to postulate that the radiation pressure would
generate finite magnetic field fluctuations instead of finite plasma number density
perturbations.
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Inserting (5) into (3), we have [61]

i

(
∂

∂τ
+ Vg

∂

∂z

)
E + P

∂2E

∂z2 + Q|E|2E = 0, (6)

where we have denoted the group dispersion coefficient P = V ′
g/2 and the coefficient

of the nonlinearity

Q =
Vgω

2
p0ω

2
0ω2

c0

B2
0 k0c2(ω2

0 − ω2
c0)4

(
8ω2

p0ω
2
c0 + ω4

0 + 6ω2
0ω2

c0 + ω4
c0

)
.

Since the product PQ is negative, (6) depicts that the modulated wave packet is
modulationally stable [62]. The stable wavepacket, however, would propagate in
the form of a dark/grey envelope soliton [63], the profile of which in a stationary
frame has been displayed in various papers [63–67].
Furthermore, we note that the amplitude modulation of the whistler-like mode in

our pair magnetoplasma can be readily investigated following the analysis in [53].
Here, however, one has to account for the ponderomotive force driven density
fluctuation and relativistic plasma particle mass increase in the wave field. The
results in [53] would apply directly, except that for the present case one has to
replace ωp0 by

√
2ωp0.

To summarize, we have presented an investigation of the amplitude modulation of
a weakly relativistic EMEC wave in a strongly magnetized pair plasma, accounting
for the radiation pressure driven external magnetic field-aligned quasi-stationary
magnetic field perturbation and relativistic electron and positron mass increase in
the wave field. It is found that the amplitude modulated wave packet, which has a
negative group dispersion, is modulationally stable. A stable nonlinear wave packet
can propagate in the form of either a dark or grey envelope soliton. The latter is
associated with a magnetic field hole that traps the localized envelope having an
insignificant electric field at the center of the envelope. In conclusion, we stress
that the wave energy transport could occur via a dark or grey envelope soliton in
strongly magnetized pair plasmas, such as those in pulsars and magnetars where
the electron gyrofrequency is much higher than the electron plasma frequency.
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