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NEARRINGS OF CONTINUOUS FUNCTIONS 
FROM TOPOLOGICAL SPACES INTO 

TOPOLOGICAL NEARRINGS 

K. D. MAGILL, JR. 

ABSTRACT. Let A be a map from the additive Euclidean «-group Rn into the spac"e 
R of real numbers and define a multiplication * on Rn by v * w = (A(w)jv. Then 
(/?", + , *) is a topological nearring if and only if A is continuous and X(av) = a\(v) 
for every v € R" and every a in the range of A. For any such map A and any topological 
space X we denote by N\(X, Rn) the nearring of all continuous functions from X into 
(/?", +, *) where the operations are pointwise. The ideals of N\(X, Rn) are investigated 
in some detail for certain A and the results obtained are used to prove that two compact 
Hausdorff spaces X and Y are homeomorphic if and only if the nearrings NX(X, R") and 
N\(Y, Rn) are isomorphic. 

1. Introduction. For information about nearrings, particularly for any terms not 
defined here, one should consult [1], [3] or [5]. The symbol R will denote the additive 
topological group of real numbers and R" will denote the additive topological Euclidean 
«-group. In [2], we studied a class of multiplications * on Rn such that (Rn, + , *) is a 
topological nearring. We need to recall a définition in order to be more specific. A map 
À from Rn to R was defined in [2] to be semilinear if it is continuous and \{av) — a\(v) 
for all v G Rn and all a G Ran(À) where Ran(A) denotes the range of A. It was shown in 
[2] that if one chooses a map A from Rn to R and defines a binary operation * on Rn by 
v*w = A(w)v, then (Rn, +, *) is a topological nearring if and only if A is a semilinear map. 
We will refer to * as the multiplication which is induced by the semi linear map A and we 
will also refer to (R'\ +, *) as the topological nearring which is induced by A. When we 
wish to emphasize the map A we will use the notation N\(Rn) in place of (Rn, +, *). All 
this permits us to associate, in a natural way, many nearrings with each topological space. 
We denote by N\(X, R") the nearring of all continuous functions from X into N\(R") 
where the operations are pointwise. That is (f+g)(x) = f(x)+g(x) and (fg)(x) = f(x)*g(x) 
for al l / , g £ N\(X, Rn) where, of course fix) * g(jc) = A (g(x))/(x). Throughout the 
paper, multiplication in nearrings of continuous functions will always be denoted by 
juxtaposition of the functions. People are well aware of the beautiful theory which has 
been developed for rings of continuous realvalued functions and the question is, "Might 
there be an analogue for nearrings of continuous functions?" It turns out that the answer 
appears to be yes, at least for those topological nearrings induced by certain semilinear 
maps. One hopes, first of all, for the algebraic structure of the nearring N\(X, R") to 
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determine the topological structure of the space X (the converse is always there). That 
is, one would hope that N\(X, R") and N\(Y9 Rn) are isomorphic if and only if X and Y 
are homeomorphic. Because then, the topological structure of X would be reflected in 
the algebraic structure of N\(X, Rn) and similarly, the algebraic structure of N\(X, Rn) 
would be reflected in the topological structure of X. Our purpose here is to verify just 
such a theorem for compact Hausdorff spaces. In Section 2, we go over some preliminary 
considerations and we exhibit various examples of semilinear maps. In Section 3, we 
examine the ideals of N\{X, Rn) in some detail and the results obtained there are used to 
prove the isomorphism theorems in Section 4. 

2. Preliminaries. We will denote by (x) the constant map which maps everything 
into the point x. The domain of the function will be evident from context. We verified 
in [2] that for any semilinear map A from Rn to R, either (1) A = (0), (2) A = (1), (3) 
A(0) = 0 and Ran(A) = R or (4) A(0) = 0 and Ran(A) = R+ where R+ denotes the 
nonnegative real numbers. In this paper, we will be concerned only with nonconstant 
semilinear maps. For any map from a spaceX into Rn, we let Z(f) =f~l(0) and refer to 
Z(f) as a zero set of X. The set X\Z(f) is referred to as a cozero set ofX and is denoted 
by CZ(f). For any semilinear map A from Rn to R, the set 

{weRn : A(v + aw) = \(v) for alia e Randv e R"} 

was referred to in [2] as the core of A and was denoted by C(A). It was shown there in 
Theorem (3.7) that C(A) Ç Z(A). In addition, it was shown that C(A) is a linear sub-
space of Rn and that the ideals of N\(Rn) coincide with the linear subspaces of C(A). 
Consequently, the nearring N\{Rn) is simple if and only if C(A) = {0}. Throughout this 
paper, we will use the symbol 0 to denote the zero of each Rn as we expect no confusion 
to result. Finally, the i-th coordinate of a vector v G Rn will be denoted by v,. That is 
v = (vi,v2,...,v„). 

The remainder of this section will consist of various examples of semilinear maps. 

EXAMPLE 2.1. Let L be any nonzero linear map from Rn to R and define a map A 
from Rn to R by either A(v) = L(v) or by A(v) = \L(y)\ for all v G Rn. In the former 
case Ran(A) = R and N\(Rn) is actually a ring while in the latter case, Ran(A) = R+ and 
N\(Rn) is a nearring which is not a ring. Certainly, A is a semilinear map in the first case 
and one easily shows that it is a semilinear map in the second case as well. It follows 
from the previous theorem that C(A) = Z(A) = KerL, the kernel of L, in both cases. 

EXAMPLE 2.2. Recall that a polynomial P(w\, w2 , . . . , wm) of degree r in m indeter-
minates is homogeneous if 

P(tW\, ftV2, . . . , tWm) — fP(W\, W2, . • • , Wm) 

for all w G Rn and t G R. Let 1 <m<n, choose a homogeneous polynomial P of degree 
r such that Z(P) = {0} and define a map A from Rn to R by 

X(w\, w2 , . . . , wm, wm+],..., w„) = \P(w\, w2 , . . . , wm)\1 / r . 

https://doi.org/10.4153/CMB-1996-039-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-039-8


318 K. D. MAGILLJR. 

Then A is semilinear and Ran(A) = R+. Furthermore, 

Z(A) = {w e R" : w, = 0 for \ < i < m} 

since Z(P) — {0}. For any v G Rn, a G R and w G Z(A), we have 

A(v + aw) = A((vi, v 2 , . . . , vm, V,„+I , . . . , v„) + tf(0, 0 , . . . , 0, ww + i , . . . , wn)) 

= A(vi, v2 , . . . , vm, vm+i + ûwffl+i,..., v„ + aw„) 

= |P(v, ,v2 , . . . ,vw) | , / r 

- A(v). 

Consequently, C(A) = Z(A). To get specific examples, define a map A from R3, to R by 
A(wi, w2, W3) = (w\ + w\)xl2 or by A(wi, w2, W3) = (w^ + w\w2 + W2)1/2. In the former 
case, the induced multiplication * is given by v * w — (w2 + w\)x I2 v and in the latter case, 
it is given by v * w — (w\ + w\Wi +vv^),/2v. 

EXAMPLE 2.3. In each of the previous examples C(A) is a nonzero linear subspace 
oïRn which means N\(Rn) is not simple. This time, define 

Then A is a semilinear map where C(A) = Z(A) = {0} and, consequently, N\(Rn) is 
simple. The multiplication * is, of course, given by v * w = ||w||v. 

EXAMPLE 2.4. For this example, define a semilinear map A from R2 into R by A(v) = 
yj\v] - v\\. Evidently, Z(A) = {v <E R2 : vj = ±v2}. Let us determine C(A). Recall that 
w G C(A) if and only if A(v + aw) = A(v) for all v G R2 and all ^ E i S o w G C(A) 
implies that either 

(2.4.1) (vi +awi)2 - (v 2 +ûw 2 ) 2 = v 2 - v ^ . 

or 

(2.4.2) (vi +awxf - ( v 2 + ûw2)
2 = v2 - v2. 

Suppose (2.4.2) holds. Since C(A) Ç Z(A), we have w\ — w\ and we take a — 1 in (2.4.2) 
and get v\W\ — v2w2 = v\ — v2 for all vG/? 2 . Then take v2 = 0 and get v\W\ — —v\ 
for all vi which is impossible. Consequently, (2.4.2) cannot hold and thus, (2.4.1) must 
hold. Take a = 1 in (2.4.1) and get v\W\ — v2w2. By alternately taking v\ — 1, v2 = 0 
and vj = 0, v2 = 1 we see that wx = w2 = 0. Therefore, C(A) = {0} and NX(R") is 
simple. Moreover, C(A) is a proper subset of Z(A). 

EXAMPLE 2.5. Theorem (3.7) of [2] tells us that Z(A) is an ideal of Nx(R
n) if and 

only if C(A) = Z(A). In the previous example, Z(A) isn't even a subgroup of N\(Rn). In 
this example, Z(A) is an additive subgroup but not an ideal. Define a map A from R2 to 
R by A(v) = yjv2 + J v 1V21. One easily verifies that A is semilinear and it is evident that 
Z(A) = {v G R2 : vi = 0}. We determine C(A). Suppose w G C(A). Then w\ = 0 since 
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C(A) Ç Z(A) and for any v G R2 and any a G R, we have A(v+aw) = A(v). Since w\ — 0, 
this implies that \v\Vi + av\W2\ = |vjV2I. Take a = vi = 1 and v2 = 0 and conclude that 
w2 = 0. Thus, C(A) = {0} and Z(A) is not an ideal of NX(R2) since C(A) ^ Z(A) 

In the next section, we get some results about the ideals ofNx(X, R") and we use these 
results to verify the isomorphism theorems. 

3. The Ideals of NX(X, Rn). Throughout this paper, the term ideal will always mean 
two-sided ideal. Let us recall that a subset J of a nearring N is an ideal if it satisfies the 
following three conditions: 

(A) J is a normal subgroup of the additive group of N, 
(B) JN Ç J, 
(C) x(y + a) — xyeJ for all x,y eN and a G J. 

For any subset^ ofNx(X, R") we let Z(A) = n{Z(f) : / G A}. An idealJof NX(X, R") is 
said to be fixed if Z(J) ^ 0. An ideal which is not fixed is said to be free. As is customary, 
we will refer to an ideal of a nearring which is a proper subset of that nearring as a proper 
ideal and a maximal ideal will be any proper ideal which is not a proper subset of any 
other proper ideal. Throughout the remainder of this paper, // will be assumed that A is a 
nonconstant semilinear map from Rn to R. The first result of this section shows that for 
such maps, the nearrings NX(X, Rn) all share a familiar property. 

THEOREM 3.1. Every proper ideal ofNx{X, Rn) is contained in a maximal ideal. 

PROOF. It is not true, in general that NJÇJ for an ideal J of a nearring N but it 
is true for zero symmetric nearrings, that is, nearrings TV in which Ox = xO = 0 for all 
x G N. To see this, simply take y — 0 in (C). It happens that NX(X, R") is a zero symmetric 
nearring. Because NX(X, Rn) is a right nearring, we immediately have (0)/ = (0) for all 
/ G NX(X, Rn). But since A is nonconstant, Theorem (3.3) of [2] tells us that A(0) = 0 so 
we also have 

(f(0))(x) = {f(x)) * 0 = (A(0)) (/"(*)) = 0 

for all x G X. That is,/(0) = (0) for a l l / G À ^ , Rn). Now let J be a proper ideal 
of NX(X, Rn\ let 3 denote the partially ordered family of all ideals of NX(X, R") which 
contain J and let C be any chain in J/. One verifies, in the usual manner that UC is an ideal 
so the only remaining task is to show that it is proper. Since A is nonconstant, it follows 
from Theorem (3.3) of [2] that either Ran(A) = R or Ran(A) = R+ the nonnegative real 
numbers. Choose any v e R" such that A(v) = 1 and note that for any/ G A^A(^, R") 
and any x G X, we have (f(v))(x) = f(x) * (v)(x) = (A(v))/(x) = /(x) which implies 
/(v) = / . If (v) G UC, then (v) G K for some K G C which implies K is not proper 
since A^A(^, Rn)K Ç K. Consequently, (v) ^ UC which means UC is a proper ideal and 
Zorn's Lemma assures us that J is contained in a maximal ideal. 

We next introduce a particular ideal of N\(X, Rn) and derive some of its properties. 

DEFINITION 3.2. We denote by J c me collection of all functions/ G N\(X, R") with 
the property that there exists a compact subset Kf of X such that /(x) = 0 for each 
x G X\Kf and we refer to Jç as the nucleus of 7VA(X, R"). 
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THEOREM 3.3. Jc is an ideal ofN\ (X, Rn ) and it is a proper ideal if and only ifX is 
not compact. 

PROOF. It is immediate that Jc is a subgroup of the additive subgroup oïN\{X, R") 
which is, of course, abelian. For a n y / G Jc, there exists a compact subset Kf of X 
such that/(x) = 0 for x G X\Kf and for any g G NX(X, Rn) and x G X\Kf, we have 

fg(x) = /(x) * g(x) — I A(g(x)) ) (/"(*)) = 0 which means /g G Je- For any additional 

h G iVA(X, /?") and any x G A^£/-, we have 

{g(h + / ) - g/*)(x) = (g(x)) * (/i(x) +/(*)) - (g(x)) * (/z(x)) 

= (g(x)) * (AM) - (g(x)) * (h(xj) 

= 0 

which means g(h +/*) — gh e Jc and we have verified that J c is an ideal of 7VA(X, /?"). 
IfX is compact, it is immediate that Jc = N\(X, Rn) and if X is not compact, the only 
constant function which belongs to Jc is (0). 

LEMMA 3.4. SupposeXis a completely regular Hausdorff space. Then x G Z(Jc) if 
and only ifx has no compact neighborhood. 

PROOF. Suppose x is contained in a compact neighborhood. Then x G G Ç K for 
some open subset G of X and some compact subset K of X. Choose any point v ^ 0 in 
/?". Then there exists a continuous map/fromXto /?w such that/(x) = v and/(y) = 0 for 
y G X\G. Evidently,/(y) = 0 for y G A\K and we conclude that/ G J c . Since x ^ Z(/), 
we have x ^ Z(Jc)-

Suppose, conversely, that x ^ Z(Jc). Then x ^ Z(/) for some/ G Je- This means 
/(x) ^ 0 and there exists a compact subset K of X such that f(y) = 0 for y G A ^ . 
Then there is an open subset G of X containing x such that/(v) ^ 0 for all y G G. Since 
x G G Ç /T, the proof is complete. 

The next result is an immediate consequence of the previous Lemma. 

THEOREM 3.5. Let X be a completely regular Hausdorff space. Then the ideal Jc is 
fixed if and only ifXis not locally compact. Furthermore, 

Z(Jc) — {x G X : x has no compact neighborhood}. 

It follows from the previous Theorem, for example, that if X is the space of rational 
numbers, then the nucleus of NX(X, Rn) is the zero ideal. 

THEOREM 3.6. Let X be a completely regular Hausdorff space. Then Jc is a nonzero 
ideal if and only ifX contains a point with a compact neighborhood. 

PROOF. Suppose Jc is a nonzero ideal. Then there exists a n / G Je and a point x G X 
such that/(x) ^ 0. Thenx ^ Z(Jc) and it follows from Theorem 3.5 thatx has a compact 
neighborhood. Suppose conversely, that x has a compact neighborhood. Then x ^ Z(JC) 
by Theorem 3.5 which means/(x) ^ 0 for some/* G Je- Evidently,/" ^ (0). 

Our next result is an immediate consequence of Theorems 3.3 and 3.5. 
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THEOREM 3.7. Let X be a completely regular Hausdorff space. Then Jç is a proper 
free ideal ofN\{X, Rn) if and only ifX is locally compact but not compact. 

THEOREM 3.8. Let X be a locally compact Hausdorff space and suppose C(X) = 
Z(X). Then every proper ideal ofN\(X, Rn) is fixed if and only ifX is compact and the 
nearring N\(Rn) is simple. 

PROOF. Suppose first that every proper ideal of NX(X9 R
n) is fixed. It follows imme­

diately from Theorem 3.7 that X is compact. Assume Nx(R
n) is not simple. According 

to Theorem 3.7 of [2] C(A) is the unique maximal ideal of Nx(R
n) and is a linear sub-

space of Rn. So to say that Nx(R") is not simple is equivalent to saying that C(A) is a 
nonzero linear subspace of Rn. Let J = {f G N\(X, R") : Ran(/) Ç C(A)}. J is evidently 
a subgroup of the additive group of NX(X, Rn). Suppose h G J and/ G NX(X9 R

n). Then 
hf(x) = h{x) */(*) = U(f(xj))(f(xj) G C(À) for all i G l a n d (B) is satisfied. For/, 
g G NX(X, Rn\ h G J andx G X, we have 

{fig + A) ~fg)(x) =/(*) * (#(*) + *(*)) -fix) * g « 

= (\{gix)+h(x))-\(g(x))y(x) 
= 0 G C(A) 

since A(g(x) + /Î(X)) = A(g(jc)). Thus (C) is satisfied and we conclude that J is a proper 
ideal. To see that J is free, simply choose any nonzero vector v G C(A) and note that 
(v) G J but Z((v)) = 0. We have now shown that if every proper ideal ofN\(X, Rn) is 
fixed, then X is compact and N\(Rn) is simple. 

Suppose, conversely, thatX is compact and Nx(Rn) is simple. Let J be a proper ideal of 
N\(X, Rn) and suppose J is free. Then for each x G X, there exists an element/ G J such 
that/(x) 7̂  0. Then {CZ(fx) : je G X} is an open cover of Xand since Xis compact, there 
exists a finite subcollection {CZ(^:/)}J1/ which also covers X. We previously observed 
that NX(X, Rn)J Ç J since A Â(X, #") is zero symmetric. Let v = (1, 1, . . . , 1) and note 
that gXj — (v)fxfXi G J. For 1 < / < m, define continuous maps tXi from X into R by 

k,- (y) = ( A (£,. (y)) ) and observe that for each y G X and each /, we have 

&00 = WxfxM 
= v*fxi(y)*fx,(y) 

= (tXi(y),tXi(y\...,tXi(y)). 

Define g(y) = EJli gXiiy) and it is immediate that g G J. Since NX(R") is simple, 
C(A) = {0} which means Z(A) = {0}. Consequently, Z(fXi) — Z(gx.) for each /. For each 
y G X, we have3; G CZ(fXj) for somey. It then follows that tXj(y) > 0 and since tXj(y) > 0 
for 1 < / < /i, it readily follows that g(y) 7̂  0 for all;; G X Then A(g(y)) ^ 0 for all 
j G X since Z(A) = {0} and this enables us to define a continuous function h from X to 
Rnby 

%)=VA(g(y)),A(g(y)),""A(g(y))J' 
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For any y G X, we then have (hg)(y) = h(y) * g(y) = v = (v)(y) which means hg — (v) 
and therefore, (v) G J since g G J. Let any k G NA(X, ^w) be given. Since À(v) ^ 0, we 
can define t(y) = (l /A(v))&(y) for all ̂ y G 7 and it follows that t(v) G J since (v) G J. 
But t(v) = k and we have arrived at the contradiction that J = N\(X, Rn). We conclude, 
therefore, that every proper ideal of NX(X, Rn) is fixed. 

DEFINITION 3.9. For x G X, we let Mx = {f G 7VA(X, tf'7) :/(JC) = 0}. 

THEOREM 3.10. Suppose Nx(R
n) is simple, C(X) = Z(X), andXis a compact Haus-

dorff space. Then the maximal ideals of the nearringN\(X, Rn) are precisely the sets of 
the form Mx. 

PROOF. Choose any x G Xand define a map (f from NX(X, Rn) to Nx(R
n) by <p(f) = 

f(x). One easily verifies that ip is a surjective homomorphism with Ker((^) = Mx which 
means Mx is an ideal of NX(X, Rn). But it is more. Since the nearring Nx(R

n) is simple, 
Mx is a maximal ideal. We now show that all maximal ideals are of this form. Let M 
be any maximal ideal of N\{X, Rn). According to Theorem 3.8, M is fixed. Choose any 
x G Z(M). Then M Ç Mx and since M is maximal, we must have M — Mx. 

Our next task is to get information about the ideals of A^A(^, Rn) without the assump­
tion that N\(Rn) is simple. To do this, we need some Lemmas. Recall that C(A) is the 
unique maximal ideal of Nx(R

n) by Theorem (3.7) of [2]. Then Qx = Nx(R
n)/C(X) is a 

topological nearring where the topology on Qx is the quotient topology and we denote 
by N(X, Qx) the nearring of all continuous functions from X into Qx where the operations 
on N(X, Qx) are pointwise. 

LEMMA 3.11. Let X be any paracompact Hausdorff space. Then the map ij from 
NX(X, R") to N(X, Qx) defined by (rj(f))(x) = ((f(x))) is an epimorphismfrom NX(X, Rn) 
onto N(X, Qx) where ({f(x))) is the equivalence class to which f(x) belongs. 

PROOF. Let TT be the projection map from Nx(R
n) onto Qx which is defined by 7r(x) = 

((x)). Since (j](f))(x) = ((f(x))) — TT of(x) and IT is continuous, it follows that ?/(/) G 
N(X, Qx) and one readily verifies that ij is a homomorphism. It only remains for us to 
show that 1] is surjective so let g be any function in N(X, Qx) and let G be any open subset 
oîRn. Let H = {v G Rn : ((v)) n G ^ 0} and let v G H. Then ((v)) H G ± 0 which 
means v + w£ G for some w G C(X) and it follows that G — w is a neighborhood of v. 
Furthermore, for any u G G — w, we have u + w G G which implies ((u))DG ^ 0 and 
this means u G H. Consequently, H is an open subset of Rn. Since Qx has the quotient 
topology and H = ^{ ( (v ) ) G Qx : ((v)) n G ^ 0}, it follows that {((v)) G gA : 
((v)) D G T̂  0} is open in g^. Therefore, 

g"'{«v» e gA : (W)nc/ 0} = {x eX:g(x)nG ^ 0} 

is open in Xsince g is a continuous map fromXto Qx. This means that g is a lower semi-
continuous function when regarded as a map from X into 2R\ the space of all nonempty 
closed subsets of Rn. Furthermore, it is immediate that ((v)) is convex for each v G R" so 
that g is, in fact, a lower semicontinuous map from X into the subspace of 2R" consisting 
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of all nonempty closed convex subsets of Rn. It now follows follows from Theorem (2.1) 
of [4] that g admits a selection. That is, there exists a continuous function/ from X to Rn 

such that/(jc) G g{x) for eachx G X. It follows from this that (i](f))(x) = ({/*(*))) = g(x) 
for all x G X. That is, ?/(/) = g and we conclude that ?y is an epimorphism. 

LEMMA 3.12. Suppose C(A) = Z(A) and define a map A* from Q\ into R by 
A*(((v))) = A(v). Then A* is a well defined continuous map from Q\ into R which has the 
following properties: 

(3. 12.1) A*(a((v))) = a\,(((v)))forall ((v)) G Qx and a G Ran(A*), 

(3. 12.2) «v» * «w» = (A*(((w))))((v))/or a// ((v)>, «w» G 0A , 

(3.12.3) Z(A*) = {((0))}. 

PROOF. Recall first that 

(3.12.4) C(A) = {weRn : A(v + aw) = A(v) for MaeR and v G f } 

and suppose ((u)) = ((v)). Then w = v + w for some w G C(A) and it follows immediately 
from (3.12.4) that X(u) = A(v). Consequently, A* is well defined and it is continuous 
since Q\ has the quotient topology. Note that Ran(A*) = Ran(A). For any a G Ran(A*) 
and ((v)) G Q\, we have 

A*(û((v») - A*(((£iv») = A(£iv) = a\{v) = a\*(((v))) 

and (3.12.1) has been verified. For ((v)), ((w)) G Q\, we have 

«v» * «w» = «v * w» = (( (A(w))v)} = A(w)((v)) = (A,(«w))))«v)) 

which means (3.12.2) is valid. Finally, suppose ((v)) G Z(A*). Then A(v) = A*(((v))) = 0 
which means v G Z(A). But C(A) = Z(A) so that v G C(A) which means ((v)) = ((0)} and 
we have verified (3.12.3). 

LEMMA 3.13. Let m = dimC(A) and let a be any linear isomorphism from Rn~~m 

onto Q\. Define a map [ifrom Rn~m into R by [i — A* o a. Then p is a semilinear map 
with the property that Z(p) = {0} and a is a topological isomorphism from N^(Rn~m) 
onto Qx. 

PROOF. It is immediate from Lemma (3.12) that p is a semilinear map and that 
Z(p) = {0}. Moreover, it is also immediate that a is a homeomorphism and an addi­
tive group isomorphism. We need only verify that it is a multiplicative homomorphism. 
With this in mind, let v, w G Rn~m. It follows from (3.12.2) that 

a(v* w) = a((/i(w))vj = (p(w)}a(v) = (A*(a(w)) Wv) = (a(v)) * (a(w)) 

and the proof is complete. 
We recall from [1], Definition (3.13), p. 23 that the right annihilator, Ann(x), of an 

element x of a nearring TV is defined by Ann(x) = {n G N : xn = 0} and the right 
annihilator, Ann(Z), of a nonempty subset X of Af is defined by Ann(X) = Pi{Ann(x) : 
xeX}. 
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LEMMA 3.14. LetX be aparacompactHausdorffspace. Then Ar\n[Nx(R
n)^ = Z(A) 

and 
Axm(Nx(X, Rn)) = {f G NX(X, R") : Ran(/) Ç Z(A)}. 

Moreover, the following statements are equivalent: 

(3. 14. 1) Ann(vVA(X, Rnj) is an ideal ofNx(X, R"), 

(3.14.2) Ann(NA(/T)) is an ideal ofNx(R
n\ 

(3.14.3) C(A) = Z(A). 

PROOF. It is immediate that Ann(A^A(^w)) = Z(A). Denote {f G NA(X, #w) : 

Ran(/) Ç Z(A)} by J and suppose/ ^ J. Then/(x) ^ Z(A) for some x e X. Choose any 

nonzero v <E R" and we have ((v)f)(x) = v *f{x) = (\(f(xj))v f- 0. Thus, (v)f ^ (0) 

which means/ ^ Ann((v)) and hence/ fi Ann(AA(X, R")}. On the other hand, if/ G J, 

then Ran(/) Ç Z(A) and we have (gf)(x) = g(x) */(*) = ( A (/*(*))) 
* g(x) = 0 which 

means gf = (0) for all g G NA(X, Rn). Consequently,/ G Ann(AA(X, /T)) and we have 
verified that Ann(^A(X, Rn)) = {f G NX(X, Rn) : Ran(/) Ç Z(A)}. 

Suppose (3.14.1) holds, choose any point x G Jf and define a map ^ from NX(X, Rn) 
into Nx(R

n) by <£*(/) =f(x). It is a simple matter to verify that (fx is an epimorphism from 
Nx(X,Rn) onto A^TT) and since (px(Arm(Nx(X, R"))) = Ann(Nx(R

n)) we conclude 
that Aim(Nx(R

nj) is an ideal of Nx(R
n). Thus, (3.14.1) implies (3.14.2). Theorem (3.7) 

of [2] tells us that the proper ideals of Nx(R
n) coincide with the linear subspaces of C(A) 

so that (3.14.2) implies that Z(A) Ç C(A). Since we always have C(A) Ç Z(A) we see 
that (3.14.2) implies (3.14.3). To see that (3.14.3) implies (3.14.1), simply observe that 
Ker?/ = {/ G NX(X, Rn) : Ran(/) Ç C(A)} where ?/ is the homomorphism defined 
in Lemma 3.11. Consequently, when C(A) = Z(A), we have Ker?/ = Ann(Nx(X, Rnfj 
which means Ann(Nx(X, Rn)) is an ideal of NX(X, Rn). 

J.R. Clay shows in Proposition (3.15), p. 23 of [1] that the right annihilator of a near-
ring is a normal subgroup of its additive group. But his nearrings are left nearrings while 
ours are right nearrings. For instance, in Example 2.4, 

Z(A) = {v G R2 : vj = v2} U {v G R2 : vj = - v 2 } 

whereas C(A) = {0}. Consequently, Z(A) is not a subgroup ofR2 and Ann(AA(X, 7?'7)) is 
not a subgroup of NX(X, Rn). To see the latter, simply observe that ((1, 1)), ((1, —1)) G 
Aim(Nx(X, Rn)) while ((1, 1)) + ((1, -1)) = ((2, 0)) £ Aim(Nx(X, R")). Of course, 
Z(A) can be an additive subgroup of Nx(R

n) even when C(A) ^ Z(A). This is the case 
in Example 2.5 where C(A) = {0} while Z(A) = {v G R2 : vi = 0}. In this case 
Ann(AA(X, Rnfj is also an additive subgroup of NX(X, Rn). Actually, it is not difficult 
to verify that Ann(AA(X, Rnfj is an additive subgroup of NX(X, Rn) if and only if Z(A) 
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is a subgroup of Nx(R
n). It is immediate that Ann(Nx(X, R"fj is an additive subgroup 

of Nx(X,Rn) whenever Z(A) is an additive subgroup of Nx(R
n). To see that Z(A) is a 

subgroup whenever Ann(N\(X, R")) is, choose any x G Xand define <px(f) = /(*)• Then 

(fx is an epimorphism from NX(X, Rn) onto Nx(R
n) for which (px(Ann(Nx(X, Rnfj ) = 

Z(A). 

THEOREM 3.15. Let X be a paracompact Hausdorffspace, let C(X) — Z(A) and 
let m — dimC(A). Then there exists a topological isomorphism (3 from N(X,QX) onto 
N^X, Rn~m). Let T) be the epimorphism from NX(X, R") onto N(X,QX) defined by 
(r)(f))(x) = ({f(x))). Then (3 o TJ is an epimorphism from Nx(Xf Rn) onto N^X, R"~m) 
with the property that Ker(/3 o rj) = Ann(NA(X, R")). 

PROOF. Lemma 3.13 assures that there exists a topological isomorphism a from 
N^Rn~m) onto Qx. Define a map (3 from N(X, Qx) into N^X, Rn~m) by f3(f) = or] of. It is 
immediate that (3 is a bijection and that it is an additive isomorphism. Let/, g G N(X, Qx), 
let x e Xand recall from Lemma 3.13 that \i — A* o a. We then appeal to (3.12.2) once 
again and get 

(/?(&))(*) = oc~x ((fg)(x)) = a"1 {f(x) * g(x)) = a~l (A* (g(x))f(x)) 

= (K{g(x)))oc-l{f(x)) = A* oa(a'] og(x))(a-] of(xj) 

= n({P(gJ)(x)) ((/?(/))(*)) = (/?(/))(*) * (/%))(*) 

which implies that f3(fg) = (3(f)(3(g) and we have verified that /? is an isomorphism 
from N(X, Qx) onto A^(X, Rn~m). Then /3 o r/ is an epimorphism from NX(X, Rn) onto 
N^X, Rn~m). Moreover, Ker(/3 o ij) = Ann(Nx(X, R")) since Kerfa) = Ann(Nx(X, R")) 
and (3 is an isomorphism. 

For any/ G NA(X, Rn\ let P(f) = f~x (C(A)) and for any subset ^ C I , let P(A) = 
n{P(f):feA}. 

DEFINITION 3.16. An ideal J of the nearring Nx(X,Rn) is said to be stable if 
Ann(Nx(X, Rnj) Ç J and unstable otherwise. It is said to be C(X)-fixed if P(J) ^ 0 
and C(X)-free otherwise. 

THEOREM 3.17. Let X be a locally compact paracompact Hausdorff space and sup­
pose C(X) = Z(A). Then every proper stable ideal of NX(X, Rn) is C(X)-fixed ifand only 
ifX is compact. 

PROOF. Theorem 3.15 tells us that (3 o ?/ is an epimorphism from NX(X, R") onto 
N^(X, Rn~m). Suppose first that X is compact and let J be a proper stable ideal of 
NX(X, R"). Then (3 o <q(J) is a proper ideal ofN^X, Rn'm). It follows from (3.12.3) and 
the definition of the semilinear map \i in Lemma 3.13 that Z([i) — {0} which means 
C(fi) = Z(\x) = {0} since C(/x) C Z(/x). Consequently, N^X, Rn~m) is simple and it 
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follows from Theorem 3.8 that the ideal (3 o /y(J) is fixed. This means that there exists an 
x G Zsuch that (/? o i](f))(x) = 0 for a l l / G J. But (f3 o ?/(/))(x) - (3(({f(x)))) which 
means {(fix))) = ((0)) since /3 is an isomorphism. This means/(x) G C(A) for a l l / G J 
and we conclude that J is C(A)-fixed. 

Now suppose that every proper stable ideal ofN\(X, Rn) is C(A)-fixed and this time, 
let J be any proper ideal of N^X, Rn~m). Then (f3 o i])~l(J) is a proper stable ideal of 
N\(X, Rn) which is C(A)-fixed and consequently, there exists a point x G X such that 
fix) G C(A) for each/ G (/3 o ?y)_1(J). Let g be any element of J and let j3 o 7/(/) = g. 
Then, since /(x) G C(A), we have 

g(x) = ((/J o ,X/))(x) = /?(((/•«») - /3(«0)» = 0 

and this means that J is fixed. Again, we use the fact that Cip) — Zip) — {0} (which 
implies that N^(X9 R

n~m) is simple) to conclude from Theorem 3.8 that Xis compact. 

DEFINITION 3.18. Let AC = {f G NX(X, Rn) :/(x) G C(A)}. 

THEOREM 3.19. Suppose C(A) = Z(A) andX is a compact Hausdorff space. Then 
the stable maximal ideals ofN\{X, Rn) are precisely the sets of the form M*x. 

PROOF. Let (3or\ be as in Theorem 3.15 and for x G Xdefineamap^fromTV^X, Rn) 
toN^Rn-m)by ifx(f) = (/3o7](f))(x). Since/Jorç is anepimorphism fromNX(X, Rn) onto 
N^iX, Rn~m\ it readily follows that px is an epimorphism from NX(X, Rn) onto NpiR

n~m) 
and since N^(Rn~m) is simple, it follows that Ker(^) is a maximal ideal of NX(X, Rn). 
One readily verifies that K e r ^ ) = AC which means M*x is a stable maximal ideal for 
each x G X. Now let M be any stable maximal ideal. By Theorem 3.17, M is C(A)-fixed. 
Choose any x G P{M). Then M Ç AC which means M — M\ since A/ is maximal. 

4. The Isomorphism Theorems. In this section, we prove the isomorphism the­
orems. This section is relatively short since we fashioned all the tools we need for the 
proof in the previous section. Just as in Lemma 3.11, we let Qx = N\(Rn)/C(\) with the 
quotient topology and, similarly, we let Qp = Np(R

m)/C(p) with the quotient topology. 

THEOREM 4.1. Let A and p be nonconstant semilinear maps from Rn and Rm, re­
spectively, into R such that C{\) — Z(A) and C(p) = Z(p) and let X and Y be compact 
Hausdorff spaces. If the nearrings Nx(Xf Rn) and NP(Y, Rm) are isomorphic, then 

(4.1.1) the spaces X and Y are homeomorphic, 

and 

(4. 1. 2) the nearrings Qx and Qp are topologically isomorphic. 

PROOF. Let y be any isomorphism from NX(X, Rn) onto NP(Y, Rm). Then (p[M] is a 
stable maximal ideal of NP(Y, Rm) for each stable maximal ideal M of NX(X, Rn). Con­
sequently, according to Theorem 3.19, there exists, for each x G X, a point y G Y 
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such that (f[M^] = AC. Define a bijection h from X onto Y by h(x) = y and note that 
<p[M*x] = Ml{x). For any/ G NX(X, R"\ we have 

xePV)*=*f(x)eC(\)*=*feAfx 

*=*Kx)eP(<pVJ) 

which readily implies that h[P(f)] = P(</?(/)). In a similar manner, /*_1[P(g)] = 
P(<p-l(gj) for each g G À^(7, 7H- Since {P(f) : f e NX(X9 R

n)} and {/>(g) : g G 
NP(Y, Rm)} form bases for the closed subsets of Xand Y respectively, it follows that h is 
a homeomorphism and (4.1.1) has been verified. 

Now choose any x G Xand let </?[A/£] = AC. Theorem 3.19 tells us that Qx is topo­
logical^ isomorphic to Np(Rn~r) where r — dimC(A) and we observed in the proof of 
Theorem 3.19 that there exists an epimorphism a from N\(X, Rn) onto N^(Rn~r) whose 
kernel is AC. Consequently, NX(X, Rn)/C(X) is topologically isomorphic to N^(R"~r). In 
a similar manner, there exists an epimorphism /3 from NP(Y, Rm) whose kernel is AC so 
that NP(Y, Rm)/C(p) is topologically isomorphic to Na(R

m's) where s = dim C(p) and a 
is the semilinear map induced by p just as p is induced by À in Lemma 3.13. Moreover, 
Qp is topologically isomorphic to Na{Rm~s). We now wish to define an isomorphism ip 
from N^(Rn~r) onto Na(R

m~s) which is suggested by the following diagram. 

NX(X9R») - ^ - Np(Y,Rm) 

(4.1.3) U U 
N,(R"-r) -^ K(Rm-s) 

Accordingly, for any v G N^(Rn~r), we choose any / G JVAC ,̂ Rn) such that a(/) = v 
and we define ijj(v) = (3 o (^(/). Our first task is to show that ip is well defined. Suppose 
a(f) — a(g). Then/ — g G AC which implies (p(f) — ip(g) G AC. Consequently, /3 o 
<£>(/) — P ° ^(&)- ^ is easily verified that ^ is a homomorphism. It is immediate that 
Diagram (4.1.3) commutes and since ip, a and (3 are all surjective, tj; must be surjective 
as well. Finally, suppose ^(v) = 0 and let a(f) = v. Then (3((f(f)) = 0 which means 
(f(f) G AC. This implies that / G AC and it follows that v = a(f) = 0. Therefore 
-0 is an isomorphism from N^(Rn~r) onto Na(R

m~s) and since any isomorphism is also a 
homeomorphism, we conclude that N^(Rn~r) and Na(R

m~s) are topologically isomorphic. 
Since Qx is topologically isomorphic to Np(R"~r) and g p is topologically isomorphic to 
Na(R

m~~s), (4.1.2) has been verified and the proof is complete. 
Our next result follows easily from the previous one. 

THEOREM 4.2. Let X be any nonconstant semilinear map from Rn to R such that 
C(A) = Z(X) and let X and Y be compact Hausdorffspaces. Then the nearrings NX(X, Rn) 
and NX(Y, Rn) are isomorphic if and only ifX and Y are homeomorphic. 

PROOF. It follows from the previous theorem that X and Y are homeomorphic if 
NX(X, Rn) and N\(Y, Rn) are isomorphic. Suppose, conversely, that h is a homeomor-
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phism from Y onto X. The map p defined by p(f) = / o h is easily shown to be an 
isomorphism from NX(X, R") onto NX(Y, Rn). 

THEOREM 4.3. Let X and p be nonconstant semilinear maps from Rn andRm, respec­
tively, into R such that C(A) = Z(X) and C(p) — Z(p). LetXand Y be compact Hausdorff 
spaces and suppose both Nx(R

n) andNp(R
m) are simple (which, here, is equivalent to re­

quiring that Z(X) = {0} and Z(p) = {0}). Then the following statements are equivalent: 
(4.3.1) The nearrings NX(X, Rn) andNp(Y, Rm) are isomorphic, 
(4.3.2) The spaces Xand Y are homeomorphic and the nearringsN\{Rn) andNp(R

m) are 
topologically isomorphic, 

(4.3.3) The spacesXand Y are homeomorphic, n = m and there exists a linear isomor­
phism if from Rn onto Rm such that X — p o p. 

PROOF. Since Nx(R
n) and Np(R

m) are both simple, it follows that Nx(R
n) coincides 

with Q\ and Np{Rm) coincides with Qp. Therefore, it is an immediate consequence of 
Theorem (4.1 ) that (4.3.1 ) implies (4.3.2). Now suppose (4.3.2) holds. It is immediate that 
n — m and it follows from Theorem (3.14) of [2] that there exists a linear isomorphism 
(p from Rn onto Rm such that À = po</j. Finally, suppose (4.3.3) holds. Let h be any 
homeomorphism from Y onto X and let p be any linear isomorphism from Rn onto Rm. 
Define a map $ from NX(X, Rn) to NP(Y, Rm) by (xp(fj)(y) = <p{f ° h(yj). It follows 
easily that xj; is an additive isomorphism from N\(X, Rn) onto NP(Y, Rm). To show that 
^(fg) — ^(f)^ig\ let any>> G Y be given and observe that 

{Wg))(y) = <f{Vg)°h(yj) = *>(/(%)) *g(A(y))) 

= ^(g{h(y))y{h(y))^ = \(g{h(y)))<p(f(h(y))) 

= P^(g{h(y)))y(f{h(y))) = p(f(h(y))) * <p(g(h(yj)) 

- (W)(y)) * {^(g)(y)) = (VW(g))0). 
Consequently, ^(fg) = V;(/)V;(g) and we conclude that \p is an isomorphism from the 
nearring NX(X, Rn) onto the nearring NP(Y, Rm). Thus (4.3.3) implies (4.3.1) and the 
proof is complete. 

SOME CONCLUDING REMARKS. Theorem 4.1 tells us that if the nearrings NX(X, R") 
and NP(Y, Rm) are isomorphic, then Qx and Qp are topologically isomorphic. However, 
we cannot conclude from this ih.dXN\(Rn) &néNp(R

m) are topologically isomorphic. For 
example, define a map A from R2 into R by A(v) = |vi | and define a map p from R? into 
R by p(w) — \w\\. Then 

C(A) = Z(A) = {v G R2 : vi = 0} and C(p) = Z(p) = {w e R3 : wx = 0}. 

One can verify that Qx = NX(R2)/C(X) is isomorphic to gp = NP{R?)/C(p) are isomor­
phic but NX(R2) and NP(R3) are certainly not isomorphic. Nevertheless, we conjecture 
that Theorem 4.3 holds without the requirement that the nearrings Nx(R

n) and Np(R
m) be 

simple. 
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