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Mean square values of L-functions over
subgroups for nonprimitive characters,
Dedekind sums and bounds on relative
class numbers

Stéphane R. Louboutin and Marc Munsch

Abstract. An explicit formula for the mean value of ∣L(1, χ)∣2 is known, where χ runs over all

odd primitive Dirichlet characters of prime conductors p. Bounds on the relative class number of

the cyclotomic field Q(ζp) follow. Lately, the authors obtained that the mean value of ∣L(1, χ)∣2 is
asymptotic to π2/6, where χ runs over all odd primitive Dirichlet characters of prime conductors

p ≡ 1 (mod 2d) which are trivial on a subgroup H of odd order d of the multiplicative group

(Z/pZ)∗, provided that d ≪ log p

log log p
. Bounds on the relative class number of the subfield of degree

p−1

2d
of the cyclotomic field Q(ζp) follow. Here, for a given integer d0 > 1, we consider the same

questions for the nonprimitive oddDirichlet characters χ′modulo d0p induced by the odd primitive

characters χ modulo p. We obtain new estimates for Dedekind sums and deduce that the mean

value of ∣L(1, χ′)∣2 is asymptotic to π2

6 ∏q∣d0
(1 − 1

q2
), where χ runs over all odd primitive Dirichlet

characters of prime conductors p which are trivial on a subgroup H of odd order d ≪ log p

log log p
. As a

consequence, we improve the previous bounds on the relative class number of the subfield of degree
p−1

2d
of the cyclotomic field Q(ζp). Moreover, we give a method to obtain explicit formulas and use

Mersenne primes to show that our restriction on d is essentially sharp.

1 Introduction

Let X f be the multiplicative group of the ϕ( f ) Dirichlet characters modulo f > 2.
Let X−f = {χ ∈ X f ; χ(−1) = −1} be the set of the ϕ( f )/2 odd Dirichlet characters

modulo f. Let L(s, χ) be the Dirichlet L-function associated with χ ∈ X f . LetH denote
a subgroup of index m in the multiplicative group G ∶= (Z/ fZ)∗. We assume that−1 /∈ H. Hence, m is even. We set X f (H) = {χ ∈ X f ; χ/H = 1}, a subgroup of order m
of X f isomorphic to the group of Dirichlet characters of the abelian quotient group
G/H of orderm. Define X−f (H) = {χ ∈ X−f ; χ/H = 1}, a set of cardinalm/2. LetK be an
abelian number field of degreem and prime conductor p ≥ 3, i.e., letK be a subfield of
the cyclotomic number field Q(ζp) (Kronecker–Weber’s theorem). �e Galois group
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1712 S. R. Louboutin and M. Munsch

Gal(Q(ζp)/Q) is canonically isomorphic to the multiplicative cyclic group (Z/pZ)∗
and H ∶= Gal(Q(ζp)/K) is a subgroup of (Z/pZ)∗ of indexm and order

d = (p − 1)/m.

Now, assume that K is imaginary. �en d is odd,m is even, −1 /∈ H and the set

X−K ∶= X−p (H) ∶= {χ ∈ X−p ; and χ/H = 1}
is of cardinal (p − 1)/(2d) = m/2. Let K+ be the maximal real subfield of K of degree
m/2 fixed by the complex conjugation. �e class number hK+ of K

+ divides the class
number hK of K. �e relative class number of K is defined by h−K = hK/hK+ . We refer
the reader to [Ser, Was] for such basic knowledge. �e mean square value of L(1, χ)
as χ ranges in X−f (H) is defined by

M( f ,H) ∶= 1

#X−f (H) ∑
χ∈X−

f
(H)
∣L(1, χ)∣2 .(1.1)

�e analytic class number formula and the arithmetic–geometricmean inequality give

h−K = wK ( p

4π2
)m/4 ∏

χ∈X−
K

L(1, χ) ≤ wK ( pM(p,H)
4π2

)m/4 ,(1.2)

wherewK is the number of complex roots of unity inK. Hence,wK = 2p forK = Q(ζp)
and wK = 2 otherwise. In [LM21, �eorem 1.1], we proved that

M(p,H) = π2

6
+ o(1)(1.3)

as p tends to infinity uniformly over subgroups H of (Z/pZ)∗ of odd order

d ≤ log p
3(log log p)

1. Hence, by (1.2), we have

h−K ≤ wK ((1 + o(1))p
24

)(p−1)/4d .(1.4)

In some situations, it is even possible to give an explicit formula forM(p,H) implying
a completely explicit bound for h−K . Indeed, by [Met, Wal] (see also (4.2)), we have

M(p, {1}) = π2

6
(1 − 1

p
)(1 − 2

p
) ≤ π2

6
(p ≥ 3).(1.5)

Hence,

h−Q(ζp) ≤ 2p( pM(p, {1})4π2
)(p−1)/4 ≤ 2p( p

24
)(p−1)/4 .(1.6)

We refer the reader to [Gra] for more information about the expected size of h−
Q(ζp).

�e only other situation where a similar explicit result is known is the following one
(see �eorem 6.6 for a new proof).

1�is restriction on d is probably optimal, by (5.1).
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Mean square values of nonprimitive L-functions 1713

�eorem (See2 [Lou16, �eorem 1]) Let p ≡ 1 (mod 6) be a prime integer. Let K be
the imaginary subfield of degree (p − 1)/3 of the cyclotomic number field Q(ζp). Let H
be the subgroup of order 3 of the multiplicative group (Z/pZ)∗. We have (compare with
(1.5) and (1.6))

M(p,H) = π2

6
(1 − 1

p
) ≤ π2

6
and h−K ≤ 2( p

24
)(p−1)/12 .(1.7)

In [Lou94] (see also [Lou11]), the following simple argument allowed to improve
on (1.6). Let d0 > 1 be a given integer. Assume that gcd(d0 , f ) = 1. For χ modulo f,
let χ′ be the character modulo d0 f induced by χ. �en

L(1, χ) = L(1, χ′)∏
q∣d0

(1 − χ(q)
q
)−1(1.8)

(throughout the paper, this notationmeans that q runs over the distinct prime divisors
of d0). Let H be a subgroup of order d of the multiplicative group (Z/ fZ)∗, with−1 /∈ H. We define

Md0
( f ,H) ∶= 1

#X−f (H) ∑
χ∈X−

f
(H)
∣L(1, χ′)∣2(1.9)

and3

Πd0
( f ,H) ∶= ∏

q∣d0

∏
χ∈X−

f
(H)
(1 − χ(q)

q
) and Dd0

( f ,H) ∶= Πd0
( f ,H)4/m .(1.10)

Clearly, there is no restriction in assuming from now on that d0 is square- free. Let
now H be of odd order d in the multiplicative group (Z/pZ)∗. Using (1.8), we obtain
(compare with (1.2))

h−K = wK

Πd0
(p,H) (

p

4π2
)m/4 ∏

χ∈X−
K

L(1, χ′) ≤ wK ( pMd0
(p,H)

4π2Dd0
(p,H))

m/4
.(1.11)

Let d = o(log p) as p →∞. �en, by Corollary 2.4, we have

Dd0
(p,H) = 1 + o(1)

and we expect that

Md0
(p,H) ∼ ⎧⎪⎪⎨⎪⎪⎩∏q∣d0

(1 − 1

q2
)⎫⎪⎪⎬⎪⎪⎭ ×M(p,H).(1.12)

Hence, (1.11) should indeed improve on (1.2).�e aim of this paper is twofold. First, in
�eorem 1.1, we give an asymptotic formula for Md0

(p,H) when d satisfies the same
restriction as in (1.3) allowing us to improve on the bound (1.4). Second, we treat the
case of groups of orders 1 and 3 for small d0’s as well as the case of Mersenne primes

2Note the misprint in the exponent in [Lou16, equation (8)].
3Note that Πd0( f ,H) ∈ Q∗+, by Lemma 2.3.
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1714 S. R. Louboutin and M. Munsch

and groups of size ≈ log p. In both cases, an explicit description of these subgroups
allows us to obtain explicit formulas for Md0

(p,H). Our main result is the following.

�eorem 1.1 Let d0 ≥ 1 be a given square-free integer. As p → +∞, we have the
following asymptotic formula:

Md0
(p,H) = π2

6
∏
q∣d0

(1 − 1

q2
) + O(d(log p)2p− 1

d−1 ) = π2

6
∏
q∣d0

(1 − 1

q2
) + o(1)

uniformly over subgroups H of (Z/pZ)∗ of odd order d ≤ log p
3(log log p) . Moreover,

let K be an imaginary abelian number field of prime conductor p and of degree
m = (p − 1)/d. Let C < 4π2 = 39.478.. be any positive constant. If p is sufficiently large

and m ≥ 3 (p−1) log log p
log p

, then we have

h−K ≤ wK ( p
C
)(p−1)/4d .(1.13)

Remark 1.2 �e second result in �eorem 1.1 improves on (1.4), (1.6), and (1.7). It
follows from the first result in �eorem 1.1, and by using (1.11) and (2.2), where we
take d0 as the product of sufficiently many consecutive first primes.

�e special case d0 = 1 was proved in [LM21,�eorem 1.1]. Note that the restriction
on d cannot be extended further to the range d = O(log p) as shown by�eorem 5.2.
Moreover, the constant C in (1.13) cannot be taken larger than 4π2 (see the discussion
about Kummer’s conjecture in [MP01].

In the first part of the paper, the presentation goes as follows:

• In Section 2, we explain the condition about the prime divisors of d0 and prove that
Dd0
(p,H) = 1 + o(1).

• In Section 3, we review some results on Dedekind sums and prove a new bound
of independent interest for Dedekind sums s(h, f ) with h being of small order
modulo f (see �eorem 3.1). To do so, we use techniques from uniform distri-
bution and discrepancy theory. �en we relate Md0

(p,H) to twisted moments of
L- functions which we further express in terms of Dedekind sums. For the sake of
clarity, we first treat separately the case H = {1}. Note that we found that this case
is related to elementary sums of maxima that we could not estimate directly (see
Section 3.4). Using our estimates on Dedekind sums, we deduce the asymptotic
formula of �eorem 1.1 and the related class number bounds.

In the second part of the paper, we focus on the explicit aspects. Let us describe briefly
our presentation:

• In Section 4.1, we establish a formula for Md0
( f , {1}), d0 > 2, provided that all the

prime factors q of f satisfy q ≡ ±1 (mod d0). In particular, we get formulas for
Md0
( f , {1}) for d0 ∈ {1, 2, 3, 6} and gcd(d0 , f ) = 1 (such formulae become harder

to come by as d0 gets larger). For example, for p ≥ 5 and d0 = 6, using�eorem 4.1,
we obtain the following formula for M6(p, {1}):

M6(p, {1}) = π2

9
(1 − cp

p
) ≤ π2

9
, where cp =

⎧⎪⎪⎨⎪⎪⎩
1, if p ≡ 1 (mod 3),
0, if p ≡ 2 (mod 3),
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which by (1.11) and Corollary 2.4 give improvements on (1.6) (see also [Feng])

h−Q(ζp) ≤ 3p( p

36
)(p−1)/4 .

See also [Lou23, �eorem 5.2] for even better bounds. In Section 4.3, we obtain an
explicit formula of the form

Md0
(p,H) = π2

6

⎧⎪⎪⎨⎪⎪⎩∏q∣d0

(1 − 1

q2
)⎫⎪⎪⎬⎪⎪⎭(1 +

Nd0
(p,H)
p

),(1.14)

where Nd0
(p,H) defined in (4.5) is an explicit average of Dedekind sums. In

Proposition 4.6, we prove that Nd0
(p, {1}) ∈ Q depends only on p modulo d0 and

is easily computable.
• ForH ≠ {1} explicit formulae forMd0

(p,H) seem difficult to come by. In Section 5,
we focus on Mersenne primes p = 2d − 1, with d odd. We take H = {2k ; 0 ≤ k ≤
d − 1}, a subgroup of odd order d of the multiplicative group (Z/pZ)∗. For
d0 ∈ {1, 3, 15}, we prove in�eorem 5.4 that

Md0
(p,H) = π2

2

⎧⎪⎪⎨⎪⎪⎩∏q∣d0

(1 − 1

q2
)⎫⎪⎪⎬⎪⎪⎭(1 +

N ′d0
(p,H)
p

),
where N ′d0

(p,H) = a1(p)d + a0(p) with a1(p), a0(p) ∈ Q depending only on p =
2d − 1 modulo d0 and easily computable. In the range d ≫ log p, we see that
Md0
(p,H) has a different asymptotic behavior than the one in�eorem 1.1.

• In Section 6, we turn to the specific case of subgroups of order 3. Writing f = a2 +
ab + b2 not necessarily prime, and takingH = {1, a/b, b/a}, the subgroup of order 3
of the multiplicative group (Z/ fZ)∗, we prove in Proposition 6.4 that Nd0

( f ,H) =
O(√ f ) in (1.14) for d0 ∈ {1, 2, 3, 6}. To do so, we obtain bounds for the Dedekind
sums stronger than the one in �eorem 3.1. Note that this cannot be expected in
general for subgroups of order 3 modulo composite f (see Remarks 3.4 and 6.2).
Furthermore, we show that these bounds are sharp in the case of primes p = a2 +
a + 1, in accordance with Conjecture 7.1.

2 Preliminaries

2.1 Algebraic considerations

Take a ∈ Z with gcd(a, f ) = 1. �ere are infinitely many prime integers in the
arithmetic progressions a + fZ. Taking a prime p ∈ a + fZ with p > d0 f , we have
sd0
(p) = a, where sd0

∶ (Z/d0 fZ)∗ Ð→ (Z/ fZ)∗ is the canonical morphism. �ere-
fore, sd0

surjective and its kernel is of order ϕ(d0). Let H be a subgroup of (Z/ fZ)∗
of order d. �en Hd0

= s−1d0
(H) is a subgroup of order ϕ(d0)d of (Z/d0 fZ)∗ and as χ

runs over X−f (H) the χ′’s run over X−d0 f
(Hd0

), and by (1.1) and (1.9), we have

Md0
( f ,H) = M(d0 f ,Hd0

).(2.1)
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�e following Lemma is probably well known but we found no reference in the
literature.

Lemma 2.1 Let f > 2. Let H be a subgroup of index m = (G ∶ H) in the multiplicative
group G ∶= (Z/ fZ)∗. �en #X f (H) = m and H = ∩χ∈X f (H) ker χ. Moreover, if −1 /∈ H,
then m is even, #X−f (H) = m/2 and H = ∩χ∈X−

f
(H) ker χ.

Proof Since X f (H) is isomorphic to the group of Dirichlet characters of the abelian
quotient group G/H, it is of order m, by [Ser, Chapter VI, Proposition 2]. Clearly,
H ⊆ ∩χ∈X f (H) ker χ. Conversely, take g /∈ H, of order n ≥ 2 in the abelian quotient
group G/H. Define a character χ of the subgroup ⟨g ,H⟩ of G generated by g and
H by χ(gkh) = exp(2πik/n), (k, h) ∈ Z ×H. It extends to a character of G still
denoted χ, by [Ser, Chapter VI, Proposition 1]. Since g /∈ ker χ and χ ∈ X f (H), we
have g /∈ ∩χ∈X f (H) ker χ, i.e., ∩χ∈X f (H) ker χ ⊆ H.

Now, assume that −1 /∈ H. Set H′ = ⟨−1,H⟩, of index m/2 in G. �en X−f (H) =
X f (H)/X f (H′) is indeed of order m −m/2 = m/2, by the first assertion. Clearly,

H ⊆ ∩χ∈X−
f
(H) ker χ. Conversely, take g /∈ H. Set H′′ ∶= ⟨g ,H⟩ = {gkh; k ∈ Z, h ∈ H},

of indexm′′ inG, withm > m′′. If−1 = gkh ∈ H′′, then clearly χ(g) ≠ 1 for χ ∈ X−f (H);
hence, g /∈ ∩χ∈X−

f
(H) ker χ. If−1 /∈ H′′ and χ ∈ X−f (H)/X−f (H′′), a nonempty set or car-

dinal m/2 −m′′/2 = (H′′ ∶ H)/2 ≥ 1, then clearly χ(g) ≠ 1; hence, g /∈ ∩χ∈X−
f
(H) ker χ.

�erefore, ∩χ∈X−
f
(H) ker χ ⊆ H. ∎

Remark 2.2 WehaveMd0
(p,H)/Dd0

(p,H) = Md0/q(p,H)/Dd0/q(p,H)whenever
a prime q dividing d0 is in ∩χ∈X−p (H) ker χ. Hence, by Lemma 2.1, when applying (1.11)

we may assume that no prime divisor of d0 is in H.

2.2 On the size of Πd0
( f ,H) and Dd0

( f ,H) defined in (1.10)

Lemma 2.3 Let H be a subgroup of order d ≥ 1 of the multiplicative group (Z/ fZ)∗,
where f > 2. Assume that −1 /∈ H. Let g be the order of a given prime integer q in
the multiplicative quotient group (Z/ fZ)∗/H. Let X f (H) be the multiplicative group
of the ϕ( f )/d Dirichlet characters modulo f for which χ/H = 1. Define X−f (H) = {χ ∈
X f (H); χ(−1) = −1}, a set of cardinal ϕ( f )/(2d). �en

Πq( f ,H) ∶= ∏
χ∈X−

f
(H)
(1 − χ(q)

q
) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 + 1

qg/2 )
ϕ( f)
dg

, if g is even and − qg/2 ∈ H,

(1 − 1
qg )

ϕ( f)
2dg

, otherwise.

Proof Let α be of order g in an abelian group A of order n. Let B = ⟨α⟩ be the cyclic
group generated by α. Let B̂ be the group of the g characters of B. �en PB(X) ∶=∏χ∈B̂(X − χ(α)) = X g − 1. Now, the restriction map χ ∈ Â→ χ/B ∈ B̂ is surjective,

by [Ser, Proposition 1], and of kernel isomorphic to Â/B of order n/g, by [Ser,
Proposition 2]. �erefore, PA(X) ∶= ∏χ∈Â(X − χ(α)) = PB(X)n/g = (X g − 1)n/g .

https://doi.org/10.4153/S0008414X2300010X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2300010X


Mean square values of nonprimitive L-functions 1717

With A = (Z/ fZ)∗/H of order n = ϕ( f )/d, we have Â = X f (H) and
∏

χ∈X f (H)
(X − χ(q)) = (X g − 1) ϕ( f)

dg .

Let H′ be the subgroup of order 2d generated by −1 andH. With A′ = (Z/ fZ)∗/H′ of
order n′ = ϕ( f )/(2d), we have Â′ = X f (H′) = X+f (H) ∶= {χ ∈ X f (H); χ(−1) = +1}
and

∏
χ∈X+

f
(H)
(X − χ(q)) = (X g′ − 1) ϕ( f)

2dg′ ,

where q is of order g′ in A′.
Since X−f (H) = X f (H)/X+f (H), it follows that

∏
χ∈X−

f
(H)
(X − χ(q)) = (X g − 1) ϕ( f)

dg

(X g′ − 1) ϕ( f)

2dg′

.

Since qg ∈ H, we have qg ∈ H′ and g′ divides g. Since qg
′ ∈ H′ = {±h; h ∈ H}, we have

q2g
′ ∈ H and g divides 2g′. Hence, g = g′ or g = 2g′ and g = 2g′ if and only if g is even

and qg/2 = qg′ ∈ H′/H = {−h; h ∈ H}. �e assertion follows. ∎
Corollary 2.4 Fix d0 > 1 square-free. Let p ≥ 3 run over the prime integers that do not
divide d0. Let H a subgroup of odd order d of the multiplicative group (Z/pZ)∗. �en

Dd0
(p,H) = 1 + O(ω(d0)p−1/2(d−1)),(2.2)

where ω(d0) stands for the number of prime divisors of d0. In particular when
d = o(log p), we have

Dd0
(p,H) = 1 + o(1).(2.3)

Moreover,

Πd0
(p, {1}) ≥ exp( log d0

2
F(p + 1)) , where F(x) ∶= (x − 2) log (1 − 1

x
)

log x
, (x > 1).

In particular, Π6(p, {1}) ≥ 2/3 for p ≥ 5.
Proof Let q be a prime divisor of d0. Let g be the order of q in the multiplicative
quotient group (Z/pZ)∗/H. �en

(1 − 1

qg
)

2
g ≤ Dq(p,H) = Πq(p,H) 4d

p−1 ≤ (1 + 1

qg/2
)

4
g

,

by (1.10) and Lemma 2.3, with f = p, ϕ( f ) = p − 1 and m = (p − 1)/d. Either qg ≡ 1(mod p), in which case qg ≥ p + 1, or qg ≡ h (mod p) for some h ∈ {2, . . . , p −
1} ∩H, in which case p divides S ∶= 1 + h + ⋅ ⋅ ⋅ + hd−1 which satisfies p ≤ S ≤ 2hd−1.
�erefore, in both cases, we have qg ≥ (p/2) 1

d−1 . Hence,

logDq(p,H) ≥ 2

g
log(1 − q−g) ≥ 2

g
(−2 log 2)q−g ≥ −4(log 2)(p/2)−1/(d−1) ,
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where we used for x = q−g the fact that log(1 − x) ≥ −2(log 2)x in [0, 1/2],
Dq(p,H) ≥ 1 − 4(log 2)(p/2)−1/(d−1) ,

where we used the fact that e−x ≥ 1 − x. �erefore, we have

Dd0
(p,H) = ∏

q∣d0

Dq(p,H) ≥ 1 − 4(log 2)ω(d0) ( p
2
)−1/(d−1) ,

wherewe used the inequality (1 − x)n ≥ 1 − nx for x ≤ 1 and n ∈ N. A similar reasoning
gives an explicit upper bound Dd0

(p,H) ≤ 1 + cω(d0)p−1/2(d−1) for some constant
c > 0. �erefore, we do get (2.2). Finally, p1/(d−1) tends to infinity in the range
d = o(log p) and (2.3) follows.

Notice that if p = 2d − 1 runs over the Mersenne primes and H = ⟨2⟩, we have

d = O(log p) but D2(p,H) = (1 − 1
2
)2 does not satisfy (2.3).

Now, assume that H = {1}. �en K = Q(ζp) and qg ≥ p + 1. Hence,

Πq(p, {1}) ≥ (1 − 1

p + 1)
p−1
2g ≥ (1 − 1

p + 1)
(p−1) log q
2 log(p+1) = exp( log q

2
F(p + 1)).

�e desired lower bound easily follows. ∎

3 Dedekind sums and mean square values of L-functions

3.1 Dedekind sums and Dedekind–Rademacher sums

�e Dedekind sums is the rational number defined by

s(c, d) = 1

4d

∣d ∣−1∑
n=1

cot(πn
d
) cot(πnc

d
) (c ∈ Z, d ∈ Z/{0}, gcd(c, d) = 1),(3.1)

with the convention s(c,−1) = s(c, 1) = 0 for c ∈ Z (see [Apo] or [RG] where it is,
however, assumed that d > 1). It depends only on c mod ∣d∣ and c ↦ s(c, d) can
therefore be seen as a mapping from (Z/∣d∣Z)∗ toQ. Notice that

s(c∗ , d) = s(c, d) whenever cc∗ ≡ 1 (mod d)(3.2)

(make the change of variables n ↦ nc in s(c∗ , d)). Recall the reciprocity law for
Dedekind sums

s(c, d) + s(d , c) = c2 + d2 − 3∣cd∣ + 1
12cd

, (c, d ∈ Z/{0}, gcd(c, d) = 1).(3.3)

In particular,

s(1, d) = d2 − 3∣d∣ + 2
12d

and s(2, d) = d2 − 6∣d∣ + 5
24d

(d ∈ Z/{0}).(3.4)
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For b, c ∈ Z, d ∈ Z/{−1, 0, 1} such that gcd(b, d) = gcd(c, d) = 1, the Dedekind–
Rademacher sum is the rational number defined by

s(b, c, d) = 1

4d

∣d ∣−1∑
n=1

cot(πnb
d
) cot(πnc

d
),

with the convention s(b, c,−1) = s(b, c, 1) = 0 for b, c ∈ Z. Hence, s(c, d) = s(1, c, d),
if α ∈ (Z/∣d∣Z)∗ is represented as α = b/c with gcd(b, d) = gcd(c, d) = 1, then
s(α, d) = s(b, c, d), and

s(b, c, d) = s(ab, ac, d) for any a ∈ Z with gcd(a, d) = 1.(3.5)

For gcd(b, c) = gcd(c, d) = gcd(d , b) = 1, we have a reciprocity law for Dedekind–
Rademacher sums (see [Rad] or [BR])

s(b, c, d) + s(d , b, c) + s(c, d , b) = b2 + c2 + d2 − 3∣bcd∣
12bcd

.(3.6)

�e Cauchy–Schwarz inequality and (3.4) yield

∣s(c, d)∣ ≤ s(1, ∣d∣) ≤ ∣d∣/12 and ∣s(b, c, d)∣ ≤ s(1, ∣d∣) ≤ ∣d∣/12.(3.7)

3.2 Nontrivial bounds on Dedekind sums

In this section, we will use the alternative definition of the Dedekind sums given by

s(c, d) = d−1∑
a=1
(( a

d
))(( ac

d
)) (c ∈ Z, d ≥ 1, gcd(c, d) = 1),

where (()) ∶ R→ R stands for the sawtooth function defined by

((x)) ∶= ⎧⎪⎪⎨⎪⎪⎩
x − ⌊x⌋ − 1/2, if x ∈ R/Z,
0, if x ∈ Z.

In order to prove�eorem 1.1, we need general bounds on Dedekind sums depending
on themultiplicative order of the argument.�is is a new type of bounds forDedekind

sums and the following result that improves upon (3.7) when the order is o ( log p
log log p

)
might be of independent interest (see also Conjecture 7.1 for further discussions).

�eorem 3.1 Let p > 1 be a prime integer and assume that h has order k ≥ 3 in the
multiplicative group (Z/pZ)∗We have

∣s(h, p)∣≪ (log p)2p1− 1
ϕ(k) .

Remark 3.2 Let us notice that by a result of Vardi [Var], for any function f such
that limn→+∞ f (n) = +∞ we have s(c, d)≪ f (d) log d for almost all (c, d) with
gcd(c, d) = 1. However, Dedekind sums take also very large values (see, for instance,
[CEK, Gir03] for more information).

Our proof builds from ideas of the proof of [LM21, �eorem 4.1] where some
tools from equidistribution theory and the theory of pseudo-random generators were
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used. We refer for more information to [Kor, Nied77], or the book of Konyagin and
Shparlinski [KS, Chapter 12] (see [LM21, Section 4] for more details and references).
Let us recall some notations. For any fixed integer s, we consider the s-dimensional
cube Is = [0, 1]s equipped with its s-dimensional Lebesgue measure λs . We denote by
B the set of rectangular boxes of the form

s∏
i=1
[α i , β i) = {x ∈ Is , α i ≤ x i < β i},

where 0 ≤ α i < β i ≤ 1. If S is a finite subset of Is , we define the discrepancy D(S) by
D(S) = sup

B∈B
∣#(B ∩ S)

#S
− λs(B)∣.

Let us introduce the following set of points:

Sh ,p = {( x
p
,
xh

p
) ∈ I2 , x mod p}.

For good choice of h, the points are equidistributed andwe expect for “nice” functions f

lim
p→∞

1

p
∑

x mod p

f ( x
p
,
hx

p
) = ∫

I2
f (x , y)dxdy.

Lemma 3.3 For any h of order k ≥ 3, we have the following discrepancy bound:
D(Sh ,p) ≤ (log p)2p−1/ϕ(k) .

Proof It follows from the proof of [LM21, �eorem 4.1] where the bound was
obtained as a consequence of Erdős–Turan inequality and tools from pseudo-random
generators theory. ∎

3.2.1 Proof of Theorem 3.1

Observe that

s(h, p) = ∑
x mod p

f ( x
p
,
hx

p
),

where f (x , y) = ((x))((y)). By Koksma–Hlawka inequality [DT, �eorem 1.14], we
have RRRRRRRRRRR

1

p
∑

x mod p

f ( x
p
,
xh

p
) − ∫

I2
f (u, v)dudvRRRRRRRRRRR ≤ V( f )D(Sh ,p),

where V( f ) is the Hardy–Krause variation of f. Moreover, we have

∫
I2
f (u, v)dudv = 0.

�e readers can easily convince themselves that V( f )≪ 1. Hence, the result follows
from Lemma 3.3.
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Remark 3.4 �e same method used to bound the discrepancy leads to a similar
bound for composite f. Indeed, for h ∈ (Z/ fZ)∗ of order k ≥ 3, we have s(h, f ) =
O ((log f )2 f /E( f )) with E( f ) =max{P+( f )1/ϕ(k∗) , rad( f )1/k} where P+( f ) is the
largest prime factor of f, k∗ is the order of h modulo P+( f ) and rad( f ) = ∏

ℓ∣ f
ℓprime

ℓ is

the radical of f. If f = h3 − 1 is square-free, then we have E( f ) = f 1/3 and s(h, f ) =
O ((log f )2 f 2/3) which is close to the truth by a logarithmic factor (see Remark 6.2).

For gcd(b, p) = gcd(c, p) = 1, we recall the other definition of Dedekind–
Rademacher sums

s(b, c, p) = p−1
∑
a=1
(( ab

p
))(( ac

p
)).

A similar argument as in the proof of �eorem 3.1 leads to a bound on these
generalized sums.

�eorem 3.5 Let q1, q2 and k ≥ 3 be given natural integers. Let p run over the primes
and h over the elements of order k in the multiplicative group (Z/pZ)∗. �en, we have

∣s(q1 , q2h, p)∣≪ (log p)2p1− 1
ϕ(k) .

Proof �e proof follows exactly the same lines as the proof of �eorem 3.1 except
for the fact that the function f is replaced by the function g(x , y) = ((q1x))((q2 y)).
Hence, we have

s(q1 , q2h, p) = g ( x
p
,
hx

p
)

and by symmetry we remark that

∫
I2
g(u, v)dudv = 0.

Again, V(g)≪ 1 and the result follows from Lemma 3.3 and Koksma–Hlawka
inequality. ∎

3.3 Twisted second moment of L- functions and Dedekind sums

We illustrate the link between Dedekind sums and twisted moments of L- functions
by first proving �eorem 1.1 in the case H = {1} with a stronger error term. For any
integers q1 , q2 ≥ 1 and any prime p ≥ 3, we define the twisted moment

Mq1 ,q2(p) ∶= 2

ϕ(p) ∑χ∈X−p χ(q1)χ(q2)∣L(1, χ)∣
2 .(3.8)

�e following formula (see [Lou94, Proposition 1]) will help us to relate L- func-
tions to Dedekind sums:

L(1, χ) = π

2 f

f−1
∑
a=1

χ(a) cot(πa
f
) (χ ∈ X−f ).(3.9)
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�eorem 3.6 Let q1 and q2 be given coprime integers. �en, when p goes to infinity

Mq1 ,q2(p) = π2

6q1q2
+ Oq1 ,q2(1/p).

Remark 3.7 It is worth to notice that in the case q2 = 1, explicit formulas are known
by [Lou15, �eorem 4] (see also [Lee17]). �is also gives a new and simpler proof of
[Lee19, �eorem 1.1] in a special case.

Proof Let us define

ε(a, b) ∶= 2

ϕ(p) ∑χ∈X−p χ(a)χ(b) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if p ∤ ab and a = b mod p,

−1, if p ∤ ab and a = −b mod p,

0, otherwise.

For p large enough, we have gcd(q1 , p) = gcd(q2 , p) = 1. Hence, using orthogonality
relations and (3.9), we arrive at

Mq1 ,q2(p) = π2

4p2

p−1
∑
a=1

p−1
∑
b=1

ε(q1a, q2b) cot(πa
p
) cot(πb

p
)

= π2

2p2

p−1
∑
a=1

cot(πq1a
p
) cot(πq2a

p
) = 2π2

p
s(q1 , q2 , p).

When q1 and q2 are fixed coprime integers and p goes to infinity, we infer from (3.6)
and (3.7) that

s(q1 , q2 , p) = p

12q1q2
+ O(1).

�e result follows immediately. ∎
Corollary 3.8 Let q1 and q2 be given natural integers. �en, when p goes to infinity

Mq1 ,q2(p) = π2

6

gcd(q1 , q2)2
q1q2

+ Oq1 ,q2(1/p).
Proof Let δ = gcd(q1 , q2). We clearly haveMq1 ,q2(p) = Mq1/δ ,q2/δ(p) and the result
follows from�eorem 3.6. ∎

�e proof of �eorem 1.1 in the case of the trivial subgroup follows easily.

Corollary 3.9 Let d0 be a given square-free integer. When p goes to infinity, we have
the following asymptotic formula:

Md0
(p, {1}) = π2

6
∏
q∣d0

(1 − 1

q2
) + O(1/p).

Proof For χmodulo p, let χ′ be the character modulo d0p induced by χ. By (1.8) and
Corollary 3.8, we have
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Md0
(p, {1}) = 2

#X−p
∑
χ∈X−p
∣L(1, χ′)∣2 = ∑

δ1 ∣d0

∑
δ2 ∣d0

µ(δ1)
δ1

µ(δ2)
δ2

Mδ1 ,δ2(p)
= π2

6
∑
δ1 ∣d0

∑
δ2 ∣d0

µ(δ1)
δ21

µ(δ2)
δ22

gcd(δ1 , δ2)2 + O(1/p)
= π2

6
∏
q∣d0

(1 − 1

q2
) + O(1/p). ∎

3.4 An interesting link with sums of maxima

Before turning to the general case of �eorem 1.1, we explain how to use�eorem 3.6
to estimate the seemingly innocuous sum4 defined for any integers q1 , q2 ≥ 1 by

Maq1 ,q2 ,p ∶= ∑
x mod p

max(q1x , q2x),
where, here and below, q1x , q2x denote the representatives modulo p taken in [1, p].
�eorem 3.10 Let q1 and q2 be natural integers such that q1 ≠ q2. �en, we have the
following asymptotic formula:

Maq1 ,q2 ,p = p2 (23 −
gcd(q1 , q2)2

12q1q2
)(1 + o(1)).

Remark 3.11 In the special case q1 = 1, we are able to evaluate the sum directly
without the need of Dedekind sums and L- functions. However, we could not prove
�eorem 3.10 in the general case using elementary counting methods.

Remark 3.12 Let us notice that ∫ 1

0 ∫ 1

0 max(x , y)dxdy = 2/3. Hence, using the same

method as in Section 3.2, we can show that if the points ({ x
p
} , { qx

p
}) are equidis-

tributed in the square [0, 1]2 , then
∑

x mod p

max(x , qx) ∼ 2

3
p2 .

For q fixed and p → +∞, the points are not equidistributed in the square and we see

that the correcting factor
gcd(q1 ,q2)2

12q1q2
from equidistribution is related to the Dedekind

sum s(q1 , q2 , p).
We need the following result of [LM21, �eorem 2.1].

Proposition 3.13 Let χ be a primitive Dirichlet character modulo f > 2, its conductor.
Set S(k, χ) = k

∑
l=0

χ(l). �en

f−1
∑
k=1
∣S(k, χ)∣2 = f 2

12
∏
p∣ f
(1 − 1

p2
) + aχ

f 2

π2
∣L(1, χ)∣2 , where aχ ∶=

⎧⎪⎪⎨⎪⎪⎩
0, if χ(−1) = +1,
1, if χ(−1) = −1.

4In [Sun], the author uses lattice point interpretation to study sums with a similar flavor.
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3.4.1 Proof of Theorem 3.10

We follow a strategy similar to the proof of [LM21, Corollary 2.2].We denote by χ0 the
trivial character. Using Proposition 3.13 and recalling the definition (3.8), we arrive at

∑
χ∈Xp/χ0

χ(q1)χ(q2) p−1∑
k=1
∣S(k, χ)∣2 = ∑

χ∈Xp/χ0
χ(q1)χ(q2) p2 − 1

12
+ p3

2π2
Mq1 ,q2(p).

Adding the contribution of the trivial character

χ0(q1)χ0(q2) p−1∑
k=1
∣ k∑
l=1

1∣ 2 = p−1
∑
k=1

k2 = (p − 1)p(2p − 1)
6

,

we obtain

∑
χ∈Xp

χ(q1)χ(q2) p−1∑
k=1
∣S(k, χ)∣2 = ∑

χ∈Xp

χ(q1)χ(q2) p2 − 1
12
+ (p − 1)p(2p − 1)

6

+ p3

2π2
Mq1 ,q2(p) + O(p2).(3.10)

For sufficiently large p, using the fact that q1 ≠ q2 mod p and the orthogonality
relations, we have

∑
χ∈Xp

χ(q1)χ(q2) p2 − 1
12
= 0.

We now follow the method used in the proof of [LM21, �eorem 4.1] (see also
[Elma]) with some needed changes to treat the le�-hand side of (3.10). Again by
orthogonality, we obtain

∑
χ∈Xp

χ(q1)χ(q2) p−1∑
k=1
∣S(k, χ)∣2 = ∑

χ∈Xp

χ(q1)χ(q2) p−1∑
k=1
∣ k∑
l=1

χ(l)∣ 2

= ∑
χ∈Xp

p−1
∑
k=1

∑
1≤l1 , l2≤k

χ(q1 l1)χ(q2 l2) = (p − 1)2A(q1 , q2 , p),
where

A(q1 , q2 , p) = 1

p − 1
p−1
∑
N=1

⎛⎜⎝ ∑
1≤n1 ,n2≤N

q1n1=q2n2 mod p

1
⎞⎟⎠.

Changing the order of summation and making the change of variables n1 = q2m1, we
arrive at

(p − 1)A(q1 , q2 , p) = ∑
1≤m1≤p

(p −max(q1m1 , q2m1)) = p2 − ∑
x mod p

max(q1x , q2x).
By symmetry, injecting this into (3.10), we arrive at

p3 − p ∑
x mod p

max(q1x , q2x) = (p − 1)p(2p − 1)
6

+ p3

2π2
Mq1 ,q2(p) + o(p3).(3.11)
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Hence, comparing the terms of order p3 in the above formula (3.11) and using
Corollary 3.8, we have

∑
x mod p

max(q1x , q2x) = cq1 ,q2(p2 + o(p2)),
where

1 − cq1 ,q2 = 1

3
+ 1

12

gcd(q1 , q2)2
q1q2

.

�is concludes the proof.
We know turn to the general case of �eorem 1.1. Let d0 be a given square-free

integer such that gcd(d0 , p) = 1. For χ modulo p, let χ′ be the character modulo d0p
induced by χ. Recall that we want to show forH a subgroup of (Z/pZ)∗ of odd order
d ≪ log p

log log p
that

Md0
(p,H) = 1

#X−p (H) ∑
χ∈X−p (H)

∣L(1, χ′)∣2 = (1 + o(1))π2

6
∏
q∣d0

(1 − 1

q2
).

3.5 Twisted average of L- functions over subgroups

For any integers q1 , q2 ≥ 1 and any prime p ≥ 3, we define
Mq1 ,q2(p,H) ∶= 1

#X−p (H) ∑
χ∈X−p (H)

χ(q1)χ(q2)∣L(1, χ)∣2 .
Our main result is the following.

�eorem3.14 Let q1 and q2 be given coprime integers.WhenH runs over the subgroups
of (Z/pZ)∗ of odd order d, we have the following asymptotic formula:

Mq1 ,q2(p,H) = π2

6q1q2
+ O (d(log p)2p− 1

ϕ(d) ).
Proof �e proof follows the same lines as the proof of �eorem 3.6. Let us define

εH(a, b) ∶= 1

#X−p (H) ∑
χ∈X−p (H)

χ(a)χ(b) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if p ∤ ab and a ∈ bH,

−1, if p ∤ ab and a ∈ −bH,

0, otherwise.

Hence, we obtain similarly

Mq1 ,q2(p,H) = π2

4p2

p−1
∑
a=1

p−1
∑
b=1

εH(q1a, q2b) cot(πa
p
) cot(πb

p
)

= π2

2p2
∑
h∈H

p−1
∑
a=1

cot(πq1a
p
) cot(πq2ha

p
)

= 2π2

p
s(q1 , q2 , p) + O (p−1 ∑

1≠h∈H
s(q1 , q2h, p))
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= π2

6q1q2
+ O(1/p) + O (∣H∣(log p)2p− 1

ϕ(d) )
= π2

6q1q2
+ O (d(log p)2p− 1

ϕ(d) ),
where we used �eorem 3.5 in the last line and noticed that ϕ(k) divides ϕ(d)
whenever k divides d. ∎
Remark 3.15 �e error term is negligible as soon as d ≤ log p

3(log log p) .

Corollary 3.16 Let q1 and q2 be given integers. When H runs over the subgroups of(Z/pZ)∗ of odd order d, we have the following asymptotic formula:

Mq1 ,q2(p,H) = π2

6

gcd(q1 , q2)2
q1q2

+ O (d(log p)2p− 1
ϕ(d) ).

3.6 Proof of Theorem 1.1

As in the proof of Corollary 3.9 and using Corollary 3.16,

Md0
(p,H) = 1

#X−p (H) ∑
χ∈X−p (H)

∣L(1, χ′)∣2 = ∑
δ1 ∣d0

∑
δ2 ∣d0

µ(δ1)
δ1

µ(δ2)
δ2

Mδ1 ,δ2(p,H)
= π2

6
∑
δ1 ∣d0

∑
δ2 ∣d0

µ(δ1)
δ21

µ(δ2)
δ22

gcd(δ1 , δ2)2 + O (d(log p)2p− 1
ϕ(d) )

= π2

6
∏
q∣d0

(1 − 1

q2
) + O (d(log p)2p− 1

ϕ(d) ) = (1 + o(1))π2

6
∏
q∣d0

(1 − 1

q2
)

using the condition on d.

4 Explicit formulas for Md0( f ,H)

Recall that by (3.9)

L(1, χ) = π

2 f

f−1
∑
a=1

χ(a) cot(πa
f
) (χ ∈ X−f ).

Hence, using the definition of Dedekind sums, we obtain (see [Lou16, Proof of
�eorem 2])

M( f ,H) = 2π2

f
∑
δ∣ f

µ(δ)
δ
∑
h∈H

s(h, f /δ).(4.1)

4.1 A formula for Md0
( f , {1}) for d0 = 1, 2, 3, 6

�e first consequence of (4.1) is a short proof of [Lou94,�éorèmes 2 and 3] by taking
H = {1}, the trivial subgroup of the multiplicative group (Z/ fZ∗). Indeed, (4.1) and
(3.4) give
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M( f , {1}) = 2π2

f
∑
δ∣ f

µ(δ)
δ

s(1, f /δ) = π2

6
∑
δ∣ f

µ(δ)( 1

δ2
− 3

δ f
+ 2

f 2
).

�e arithmetic functions f ↦ ∑δ∣ f µ(δ)δk being multiplicative, we obtain (see also
[Qi])

M( f , {1}) = π2

6
×
⎧⎪⎪⎨⎪⎪⎩∏q∣ f (1 −

1

q2
) − 3

f
∏
q∣ f
(1 − 1

q
)⎫⎪⎪⎬⎪⎪⎭ ( f > 2).(4.2)

Now, it is clear by (2.1) that for d0 odd and square-free and f odd, we have

M2d0
( f , {1}) = Md0

(2 f , {1}).
Hence, on applying (4.2) to 2 f instead of f, we therefore obtain

M2( f , {1}) = π2

8
×
⎧⎪⎪⎨⎪⎪⎩∏q∣ f (1 −

1

q2
) − 1

f
∏
q∣ f
(1 − 1

q
)⎫⎪⎪⎬⎪⎪⎭ ( f > 2 odd).

For d0 ∈ {3, 6}, the following explicit formula holds true for any f coprime with d0.
It generalizes [Lou94, �éorème 4] to composite moduli.

�eorem 4.1 Let d0 > 2 be a given square-free integer. Set

κd0
∶= π2

6
∏
q∣d0

(1 − 1

q2
) and c ∶= 3∏

q∣d0

q − 1
q + 1 .

For n ∈ Z, set ε(n) = +1 if n ≡ +1 (mod d0) and ε(n) = −1 if n ≡ −1 (mod d0). �en,
for f > 2 such that all its prime divisors q satisfy q ≡ ±1 (mod d0), we have
Md0
( f , {1}) = κd0

×
⎧⎪⎪⎨⎪⎪⎩∏q∣ f (1 −

1

q2
) − c

f
∏
q∣ f
(1 − 1

q
) + ε( f ) c − 1

f
∏
q∣ f
(1 − ε(q)

q
)⎫⎪⎪⎬⎪⎪⎭.

In particular, for f > 2 such that all its prime divisors q satisfy q ≡ 1 (mod d0), we have
Md0
( f , {1}) = κd0

×
⎧⎪⎪⎨⎪⎪⎩∏q∣ f (1 −

1

q2
) − 1

f
∏
q∣ f
(1 − 1

q
)⎫⎪⎪⎬⎪⎪⎭.

Proof With the notation of [Lou11, Lemma 2], we haveMd0
( f , {1})) = 4π2S(d0 , f ).

Hence, by [Lou11, Lemmas 3 and 6], we have

Md0
( f , {1}) = π2

6
∏
q∣d0 f

(1 − 1

q2
) − π2

2

ϕ(d0)2ϕ( f )
d2
0 f

2
+ π2

2d2
0 f
∑
d ∣ f

µ(d)
d

A(d0 , f /d),
where the A(d0 , f /d)’s are rational numbers such that A(d0 , f /d) = εA(d0 , 1) if
f /d ≡ ε (mod d0) with ε ∈ {±1} (see (4.13)). If all the prime divisors q of f satisfy
q ≡ ±1 (mod d0), then f /d ≡ ε( f /d) (mod d0) and A(d0 , f /d) = ε( f /d)A(d0 , 1) =
ε( f )A(d0 , 1)ε(d) and

∑
d ∣ f

µ(d)
d

A(d0 , f /d) = ε( f )A(d0 , 1)∏
q∣ f
(1 − ε(q)

q
).
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Hence, we finally get

Md0
( f , {1}) = π2

6
∏
q∣d0 f

(1 − 1

q2
) − π2

2

ϕ(d0)2ϕ( f )
d2
0 f

2
+ π2

2d2
0 f

ε( f )A(d0 , 1)∏
q∣ f

(1 − ε(q)
q
).

�e desired formula for Md0
( f , {1}) follows by using the explicit formula

A(d0 , 1) = ϕ(d0)2 − d2
0

3
∏
q∣d0

(1 − 1

q2
)

given in [Lou11, Lemma 6]. ∎
4.2 A formula for M(p,H)

�e second immediate consequence of (4.1) and (3.4) is:

Proposition 4.2 For f > 2 and H a subgroup of the multiplicative group (Z/ fZ)∗, set
S′(H, f ) = ∑

1≠h∈H
s(h, f ) and N( f ,H) ∶= −3 + 2

f
+ 12S′(H, f ).(4.3)

�en, for p ≥ 3 a prime and H a subgroup of odd order of the multiplicative group(Z/pZ)∗, we have
M(p,H) = π2

6
(1 + N(p,H)

p
) = π2

6
((1 − 1

p
)(1 − 2

p
) + 12S′(H, p)

p
) .(4.4)

Remark 4.3 In particular, N( f , {1}) = −3 + 2/ f and (4.4) implies (1.5). Notice also
that N(p,H) ∈ Z for H ≠ {1}, by [Lou19, �eorem 6]. Moreover, by [LM21, �eorem

1.1], the asymptotic formula M(p,H) = π2

6
+ o(1) holds as p tends to infinity and

H runs over the subgroup of (Z/pZ)∗ of odd order d ≤ log p
log log p

. Hence, we have

N(p,H) = o(p) under this restriction.
4.3 A formula for Md0

(p,H)
We will now derive a third consequence of (4.1): a formula for the mean square value
Md0
( f ,H) defined in (1.9) when f is prime.

�eorem 4.4 Let d0 > 1 be a square-free integer. Let f > 2 be coprime with d0. Let
H be a subgroup of the multiplicative group (Z/ fZ)∗. Whenever δ divides d0, let sδ ∶(Z/δ fZ)∗ Ð→ (Z/ fZ)∗ be the canonical surjective morphism and set Hδ = s−1δ (H)
and H′δ = s−1δ (H/{1}). Define the rational number

Nd0
( f ,H) = − f + 12µ(d0)

∏q∣d0
(q2 − 1) ∑δ∣d0

δµ(δ) ∑
h∈Hd0

s(h, δ f ).(4.5)

�en, for p ≥ 3 a prime which does not divide d0 and H a subgroup of odd order of the
multiplicative group (Z/pZ)∗, we have

Md0
(p,H) = 2π2µ(d0)ϕ(d0)

d2
0 p

∑
δ∣d0

δµ(δ)
ϕ(δ) S(Hδ , δp),(4.6)
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where

S(Hδ , δ f ) = ∑
h∈Hδ

s(h, δ f ),
and

Md0
(p,H) = κd0

× (1 + Nd0
(p,H)
p

) , where κd0
∶= π2

6
∏
q∣d0

(1 − 1

q2
) .(4.7)

Moreover,

Nd0
( f ,H) = − f + 12µ(d0)

∏q∣d0
(q + 1) ∑δ∣d0

δµ(δ)
ϕ(δ) S(Hδ , δ f )(4.8)

= Nd0
( f , {1}) + 12µ(d0)

∏q∣d0
(q + 1) ∑δ∣d0

δµ(δ)
ϕ(δ) S′(Hδ , δ f ),(4.9)

where

S′(Hδ , δ f ) ∶= ∑
h∈H′

δ

s(h, δ f ).
Proof Using (2.1) and by making the change of variables δ ↦ d0 f /δ in (4.1), we
obtain

Md0
( f ,H) = M(d0 f ,Hd0

) = 2π2

d2
0 f

2
∑
δ∣d0 f

δµ(d0 f /δ) ∑
h∈Hd0

s(h, δ).(4.10)

Since {δ; δ ∣ d0p} is the disjoint union of {δ; δ ∣ d0} and {δp; δ ∣ d0}, by (4.10), we
obtain

Md0
(p,H) = −2π2µ(d0)

d2
0 p

2 ∑
δ∣d0

δµ(δ) ∑
h∈Hd0

s(h, δ) + 2π2µ(d0)
d2
0 p

∑
δ∣d0

δµ(δ) ∑
h∈Hd0

s(h, δp).
Now, S ∶= ∑h∈Hd0

s(h, δ) = 0 whenever δ ∣ d0, which gives

Md0
(p,H) = 2π2µ(d0)

d2
0 p

∑
δ∣d0

δµ(δ) ∑
h∈Hd0

s(h, δp)(4.11)

and implies (4.7). Indeed, let σ ∶ (Z/d0 fZ)∗ Ð→ (Z/δZ)∗ be the canonical surjec-
tive morphism. Its restriction τ to the subgroup Hd0

is surjective, by the Chinese
reminder theorem. Hence, S = (Hd0

∶ ker τ) × S′, where S′ ∶= ∑c∈(Z/δZ)∗ s(c, δ) =
∑c∈(Z/δZ)∗ s(−c, δ) = −S′ yields S′ = 0. In the same way, whenever δ ∣ d0, the kernel
of the canonical surjectivemorphism s ∶ (Z/d0 fZ)∗ Ð→ (Z/δ fZ)∗ being a subgroup
of order ϕ(d0 f )/ϕ(δ f ) = ϕ(d0)/ϕ(δ), we have

∑
h∈Hd0

s(h, δ f ) = ϕ(d0)
ϕ(δ) ∑h∈Hδ

s(h, δ f )(4.12)

and (4.6) follows from (4.11) and (4.12).
�en, (4.7) is a direct consequence of (4.6) and (4.5). Finally, (4.9) is an immediate

consequence of (4.5) and (4.12). ∎
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4.3.1 A new proof of Theorem 1.1

We split the sum in (4.11) into two cases depending whether h = 1 or not. By (3.4), we
have s(1, δp) = pδ

12
+ O(1) giving a contribution to the sum of order

π2µ(d0)
6d2

0

∑
δ∣d0

δ2µ(δ) + O(1/p) = π2

6
∏
q∣d0

(1 − 1

q2
) + O(1/p).

When h ≠ 1 and h ∈ Hd0
, it is clear that the order of h modulo p is between 3

and d. Hence, it follows from �eorem 3.1 (see the Remark a�er) that s(h, δp) =
O((log p)2p1− 1

ϕ(d) ). �e integer d0 being fixed, we can sum up these error terms and
the proof is finished.

4.4 An explicit way to compute Nd0
( f , {1})

Lemma 4.5 Let d0 > 1 be a square-free integer. Let f > 2 be coprime with d0. Recall
that Hd0

( f ) = {h ∈ (Z/d0 fZ)∗ , h ≡ 1 (mod f )} and set
U(d0 , f ) ∶= ∑

1≠h∈Hd0
( f )

d0 f−1
∑
n=1

gcd(d0 ,n)=1

(1 + cot( πn

d0 f
) cot(πnh

d0 f
))

and

A(d0 , f ) = ∑
a∈(Z/d0Z)∗

∑
b∈(Z/d0Z)

∗

b≠a

cot(π(b − a)
d0

)(cot(π f a
d0
) − cot(π f b

d0
)),(4.13)

a rational number depending only on f modulo d0. �en U(d0 , f ) = f A(d0 , f ).
Proof As in [Lou11, Lemma 3], set

T(d0 , f ) ∶= ∑
1≠h∈Hd0

( f )

d0 f−1
∑
n=1

gcd(d0 f ,n)=1

F ( n

d0 f
,
nh

d0 f
),

where F(x , y) = 1 + cot(πx) cot(πy). On the one hand, since gcd(d0 f , n) = 1 if and
only if gcd(d0 , n) = gcd( f , n) = 1 and∑

d∣ f
d∣n

µ(d) is equal to 1 if gcd( f , n) = 1 and is equal
to 0 otherwise, we have

T(d0 , f ) =∑
d ∣ f

µ(d) ∑
1≠h∈Hd0

( f )

d0( f /d)−1
∑
n=1

gcd(d0 ,n)=1

F ( n

d0( f /d) ,
nh

d0( f /d)).
On the other hand, the canonical morphism σ ∶ Hd0

( f )→ Hd0
( f /d) is surjective and

both groups have order ϕ(d0 f )/ϕ( f ) = ϕ(d0( f /d))/ϕ( f /d) = ϕ(d0). Hence, σ is
bijective and

T(d0 , f ) =∑
d ∣ f

µ(d)U(d0 , f /d).
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Using [Lou11, Lemma 6] and Möbius’ inversion formula, we finally do obtain

U(d0 , f ) =∑
d ∣ f

T(d0 , d) =∑
d ∣ f

d∑
δ∣d

µ(δ)
δ

A(d0 , d/δ)

= ∑
δ′∣ f

δ′
⎛
⎝ ∑δ∣ f /δ′ µ(δ)

⎞
⎠A(d0 , δ′) = f A(d0 , f ),

where we set δ′ = d/δ. ∎
Proposition 4.6 Let d0 > 1 be a square-free integer. Set B =∏q∣d0

(q2 − 1). For f > 2
and gcd(d0 , f ) = 1, we have

Nd0
( f , {1}) = 3

B
(A(d0 , f ) − ϕ(d0)2).

Consequently, Nd0
( f , {1}) is a rational number depending only on f modulo d0.

Proof Set H = Hd0
( f ) ∶= {h ∈ (Z/d0 fZ)∗ , h ≡ 1 (mod f )}. By (4.5), we have

Nd0
( f , {1}) = − f + 12µ(d0)

B
∑
δ∣d0

δµ(δ)∑
h∈H

s(h, δ f ).
Using (3.4) to evaluate the contribution of h = 1 in this expression and∑δ∣d0

µ(δ) = 0,
we get

Nd0
( f , {1}) = −3ϕ(d0)

B
+ 12µ(d0)

B
∑
δ∣d0

δµ(δ) ∑
1≠h∈H

s(h, δ f )
and

Nd0
( f , {1}) = −3ϕ(d0)2

B
+ 3µ(d0)

B f
∑

1≠h∈H
∑
δ∣d0

µ(δ) δ f−1∑
n=1
(1 + cot(πn

δ f
) cot(πnh

δ f
)),

by (3.1) and by noticing that #H = ϕ(d0).�erefore,

Nd0
( f , {1}) = −3ϕ(d0)2

B
+ 3

B f
S(d0 , f )(4.14)

(make the change of variable δ ↦ d0/δ). Lemma 4.5 gives the desired result. ∎
Remark 4.7 As a consequence, we obtain Md0

(p, {1}) = π2

6 ∏q∣d0
(1 − 1

q2
) +

O(p−1), using (4.7) and the fact that Nd0
(p, {1}) depends only on pmodulo d0.�is

gives in this extreme situation another proof of�eorem 1.1 with a better error term.
Moreover, in that situation, we have K = Q(ζp) and in (1.11) the term Πd0

(p, {1}) is
bounded from below by a constant independent of p, by Corollary 2.4.

5 The case where f = ad−1 + ⋅ ⋅ ⋅ + a2 + a + 1

In this specific case, we are able to obtain explicit formulas for Md0
( f ,H) when

the subgroup H is defined in terms of the parameter a defining the modulus. For
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a general subgroup H, it seems unrealistic to be more explicit than the formula
involving Dedekind sums given in �eorem 4.4. It might be interesting to explore
formulas involving continued fraction expansions in view of their link to Dedekind
sums [Hic].

5.1 Explicit formulas for d0 = 1, 2
Lemma 5.1 Let f > 1 be a rational integer of the form f = (ad − 1)/(a − 1) for some
a ≠ −1, 0, 1 and some odd integer d ≥ 3. Hence, f is odd. Set H = {ak ; 0 ≤ k ≤ d − 1}, a
subgroup of order d of the multiplicative group (Z/ fZ)∗. �en

S(H, f ) = a + 1
a − 1 ×

f − (d − 1)a − 1
12

and

S(H2 , 2 f ) =
⎧⎪⎪⎨⎪⎪⎩

a+1
a−1 × 4 f−(d−1)a−3d−1

24
, if a is odd,

2a−1
a−1 × f−(d−1)a−1

12
, if a is even.

Proof Wehave S(H, f ) = ∑d−1
k=0 s(ak , f ). Moreover, S(H2 , 2 f ) = ∑d−1

k=0 s(ak , 2 f ) if a
is odd and S(H2 , 2 f ) = s(1, 2 f ) +∑d−1

k=1 s(ak + f , 2 f ) if a is even. Now, we claim that
for 0 ≤ k ≤ d − 1, we have
s(ak

, f ) = ak

12 f
+ ( f 2 + 1)a−k

12 f
+ ak + a−k(a2 − 2a + 2)

12(a − 1) − a(a + 1)
12(a − 1) whatever the parity of a,

s(ak , 2 f ) = ak

24 f
+ (4 f 2 + 1)a−k

24 f
+ 4ak + a−k(a2 − 2a + 5)

24(a − 1) − (a + 1)(a + 3)
24(a − 1) if a is odd,

and that for 1 ≤ k ≤ d − 1, we have
s(ak + f , 2 f ) = ak

24 f
+ ( f 2 + 1)a−k

24 f
+ ak + a−k(a2 − 2a + 2)

24(a − 1) − a(2a − 1)
12(a − 1) if a is even.

Noticing that ∑d−1
k=1 a

k = f − 1 and ∑d−1
k=1 a

−k = f−1
(a−1) f+1 , we then get the assertions on

S(H, f ) and S(H2 , 2 f ). Now, let us, for example, prove the third claim.Hence, assume
that a is even and that 1 ≤ k ≤ d − 1. �en fk ∶= (ak − 1)/(a − 1) is odd, sign( fk) =
sign(a)k and ak + f > 0. First, since 2 f ≡ −2ak (mod ak + f ), using (3.3), we have

s(ak + f , 2 f ) = ak + f

24 f
+ f

6(ak + f ) −
1

4
+ 1

24(ak + f ) f + s(2ak , ak + f ).
Second, noticing that ak + f ≡ fk (mod 2ak) and using (3.3), we have

s(2ak , ak + f ) = ak

6(ak + f ) +
ak + f

24ak
− sign(a)k

4
+ 1

24ak(ak + f ) − s( fk , 2ak).
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Finally, noticing that 2ak ≡ 2 (mod fk) and using (3.3) and (3.4), we have

s( fk , 2ak) = fk
24ak

+ ak

6 fk
− sign(a)k

4
+ 1

24 fkak
− s(2, fk)

= fk
24ak

+ ak

6 fk
− sign(a)k

4
+ 1

24 fkak
− f 2k − 6 fk + 5

24 fk
.

A�er some simplifications, we obtain the desired formula for s(ak + f , 2 f ).
Notice that for d = 3, we obtain S(H, f ) = f−1

12
, in accordance with (6.1). ∎

Using (4.6) and Lemma 5.1, we readily obtain:

�eorem 5.2 Let d ≥ 3 be a prime integer. Let p ≡ 1 (mod 2d) be a prime integer of
the form p = (ad − 1)/(a − 1) for some a ≠ −1, 0, 1. Let K be the imaginary subfield of
degree (p − 1)/d of the cyclotomic fieldQ(ζp). Set H = {ak ; 0 ≤ k ≤ d − 1}, a subgroup
of order d of themultiplicative group (Z/pZ)∗.We have themean square value formulas

M(p,H) = π2

6
× a + 1
a − 1 × (1 −

(d − 1)a + 1
p

)(5.1)

and

M2(p,H) = π2

8
×
⎧⎪⎪⎨⎪⎪⎩

a+1
a−1 × (1 − d

p
) , if a is odd,

1 − (d−1)a+1
p

, if a is even.
(5.2)

Consequently, for a given d, as p →∞, we have

M(p,H) = π2

6
+ o(1) and M2(p,H) = π2

8
+ o(1).

On the other hand, for a given a, as p →∞, we have

M(p,H) = π2

6
× a + 1
a − 1 + o(1) and M2(p,H) =

⎧⎪⎪⎨⎪⎪⎩
π2

8
× a+1

a−1 + o(1), if a is odd,
π2

8
+ o(1), if a is even.

Remark 5.3 Assertion (5.1) was initially proved5 in [Lou16, �eorem 5] for d = 5
and then generalized in [LM21, Proposition 3.1] to any d ≥ 3. However, (5.1) is much
simpler than [LM21, equation (22)]. Notice that if p runs over the prime of the form
p = (ad − 1)/(a − 1) with a ≠ 0, 2 even then M2(p,H) = 6

8
× a−1

a+1 ×M(p,H) and the
asymptotic (1.12) is not satisfied.

5.2 The case where p is a Mersenne prime and d0 = 1, 3, 15
In the setting of �eorem 5.4, we have 2 ∈ H. Hence, by Remark 2.2, we assume that
d0 is odd.

�eorem 5.4 Let p = 2d − 1 > 3 be a Mersenne prime. Hence, d is odd and H ={2k ; 0 ≤ k ≤ d − 1} is a subgroup of odd order d of the multiplicative group (Z/pZ)∗.
5Note the misprint in the exponent in [Lou16, �eorem 5].
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Let K be the imaginary subfield of degree m = (p − 1)/d ofQ(ζp). �en

M(p,H) = π2

2
(1 − 2d − 1

p
) ≤ π2

2
and h−K ≤ 2( p8 )

m/4
,

M3(p,H) = 4π2

9
(1 − d

p
) ≤ 4π2

9
and h−K ≤ 2( p9)

m/4
,

and

M15(p,H) = 32π2

75
(1 − cd

48p
) ≤ 32π2

75
, where cd =

⎧⎪⎪⎨⎪⎪⎩
47d + 1, if d ≡ 1 (mod 4),
17d − 3, if d ≡ 3 (mod 4).

In particular, for d ≡ 3 (mod 4), we have h−K ≤ 2 ( 8p75 )m/4 .
Proof By (4.6), we have

Md0
(p,H) = π2

2

⎧⎪⎪⎨⎪⎪⎩∏q∣d0

(1 − 1

q2
)⎫⎪⎪⎬⎪⎪⎭(1 +

N ′d0
(p,H)
p

) ,(5.3)

where for H a subgroup of odd order of the multiplicative group (Z/ fZ)∗, we set
N ′d0
( f ,H) ∶= − f + 4µ(d0)

∏q∣d0
(q + 1) ∑δ∣d0

δµ(δ)
ϕ(δ) S(Hδ , δ f ).(5.4)

�e formulas for M(p,H),M3(p,H), and M15(p,H) follow from (5.3)) and
Lemma 5.5. �e upper bounds on h−K follow from (1.11) and Lemma 2.3 according
to which Πq(p,H) ≥ 1 if q is of even order in the quotient group G/H, where G =(Z/pZ)∗, hence, if q is of even order in the group G. Now, since p ≡ 3 (mod 4) the
group G is of order p − 1 = 2N with N odd and q is of even order in G if and only

qN = −1 in G, i.e., if and only if the Legendre symbol ( q
p
) is equal to −1. Now, since

p = 2d − 1 ≡ −1 ≡ 3 (mod 4) for d ≥ 3, the law of quadratic reciprocity gives ( 3
p
) =

− ( p
3
) = − ( 1

3
) = −1, as p ≡ (−1)d − 1 ≡ −2 ≡ 1 (mod 3). Hence, Π3(p,H) ≥ 1. In the

same way, if d ≡ 3 (mod 4) then p = 2d − 1 = 2 ⋅ 4 d−1
2 − 1 ≡ 2 ⋅ (−1) d−1

2 − 1 ≡ −3 ≡ 2
(mod 5) and ( 5

p
) = ( p

5
) = ( 2

5
) = −1 and Π5(p,H) ≥ 1. ∎

Lemma 5.5 Set f = 2d − 1 and εd = (−1)(d−1)/2 with d ≥ 2 odd. Hence, gcd( f , 15) = 1.
Set H = {2k ; 0 ≤ k ≤ d − 1}, a subgroup of order d of the multiplicative group (Z/ fZ)∗.
�en,

S(H, f ) = f − 2d + 1
4

and N ′( f ,H) = −2d + 1,(5.5)

S(H3 , 3 f ) = 5 f − 6d + 1
6

and N ′3( f ,H) = −d ,(5.6)

S(H5 , 5 f ) = 7 f − 10d + 2 + εd
5

and N ′5( f ,H) = −43d +
1 + εd
6

,(5.7)
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S(H15 , 15 f ) = 14 f − (12 + 3εd) d + 1
3

and N ′15( f ,H) = −32 + 15εd48
d + 1 − 2εd

48
.(5.8)

Proof �e first assertion is the special case a = 2 of Lemma 5.1. Let us now deal with
the second assertion. Here, H3 = {2k ; 0 ≤ k ≤ d − 1} ∪ {2k + (−1)k f ; 0 ≤ k ≤ d − 1}.
We assume that 0 ≤ k ≤ d − 1. Hence, sign(2k + (−1)k f ) = (−1)k .

1. Noticing that 3 f ≡ −3 (mod 2k), by (3.3), we obtain
s(2k , 3 f ) = 4k + 9 f 2 − 9 ⋅ 2k ⋅ f + 1

36 ⋅ 2k ⋅ f + s(3, 2k).
Noticing that 2k ≡ (−1)k (mod 3), by (3.3) and (3.4), we obtain

s(3, 2k) = 9 + 4k − 9 ⋅ 2k + 1
36 ⋅ 2k − (−1)k s(1, 3) = 9 + 4k − 9 ⋅ 2k + 1

36 ⋅ 2k − (−1)k
18

.

Hence,

s(2k , 3 f ) = f + 1
36 f

2k + ( f + 1)(9 f + 1)
36 f

2−k − 1

2
− (−1)k

18
.

2. Noticing that 3 f ≡ −3 ⋅ (−1)k2k (mod 2k + (−1)k f ), by (3.3), we obtain
s(2k + (−1)k f , 3 f ) =2k + (−1)k f

36 f
+ f

4(2k + (−1)k f ) −
(−1)k
4
+ 1

36(2k + (−1)k f ) f
+ (−1)k s(3 ⋅ 2k , 2k + (−1)k f ),

and noticing that 2k + (−1)k f ≡ (−1)k−1 (mod 3 ⋅ 2k), by (3.3), we obtain
s(3 ⋅ 2k , 2k + (−1)k f ) = 3 ⋅ 2k

12(2k + (−1)k f ) +
2k + (−1)k f

36 ⋅ 2k − (−1)k
4

+ 1

36 ⋅ 2k ⋅ (2k + (−1)k f ) + (−1)k s(1, 3 ⋅ 2k).
Using (3.4), we finally obtain

s(2k + (−1)k f , 3 f ) = 9 f + 1
36 f

2k + ( f + 1)2
36 f

2−k − 1

2
+ (−1)k

18
.

3. Using∑d−1
k=0 2

k = f ,∑d−1
k=0 2

−k = 2 f
f+1 and∑d−1

k=0(−1)k = 1, we obtain
d−1
∑
k=0

s(2k , 3 f ) = 19 f − 18d + 1
36

and
d−1
∑
k=0

s(2k + (−1)k f , 3 f ) = 11 f − 18d + 5
36

.

Hence, we do obtain

S(H3 , 3 f ) = ∑
h∈H3

s(h, 3 f ) = 19 f − 18d + 1
36

+ 11 f − 18d + 5
36

= 5 f − 6d + 1
6

and N ′3( f ,H) = −d, by (5.4).
Let us finally deal with the third and fourth assertions.�e proof involves tedious

and repetitive computations. For this reason, we will restrict ourselves to a specific
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case. Let us, for example, give some details for the proof of (5.8) in the case that
d ≡ 1 (mod 4). We have f = 2d − 1 ≡ 1 (mod 30) and H15 = ∪14l=0E l , where E l ∶={2k + l f ; 0 ≤ k ≤ d − 1, gcd(2k + l , 15) = 1} for 0 ≤ l ≤ 14. We have to compute the
sums s l ∶= ∑n∈E l

s(n, 15 f ). Let us, for example, give some details in the case that l = 1.
We have gcd(2k + 1, 15) = 1 if and only if k ≡ 0 (mod 4). Hence, s1 = ∑(d−1)/4k=0 s(16k +
f , 15 f ). Using (3.3) and (3.4), we obtain

s(16k + f , 15 f ) = 9 f + 1
180 f

16k + 14

45
+ ( f + 1)2

180 f
16−k .

Finally, using∑(d−1)/4k=0 16k = 8 f+7
15

and∑(d−1)/4k=0 16−k = 2(8 f+7)
15( f+1) , we obtain

s1 = (d−1)/4∑
k=0

s(16k + f , 15 f ) = 88 f 2 + (210d + 731) f + 21
2700 f

.

Finally, using (5.4)–(5.7), we get (5.8). ∎
We conclude this section with the following result for d0 = 3 × 5 × 7 = 105, whose

long proof we omit:6

Lemma 5.6 Set f = 2d − 1 with d > 1 odd. Assume gcd( f , 105) = 1, i.e., that d ≡
1, 5, 7, 11 (mod 12). Set H = {2k ; 0 ≤ k ≤ d − 1}, a subgroup of order d of the multi-
plicative group (Z/ fZ)∗. �en

N ′105( f ,H) = − 1

576
×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

437d + 139, if d ≡ 1 (mod 12),
535d − 644, if d ≡ 5 (mod 12),
97d − 324, if d ≡ 7 (mod 12),
195d + 13, if d ≡ 11 (mod 12).

Lemmas 5.5 and 5.6 show that the following conjecture holds true for d0 ∈{1, 3, 5, 15, 105}:
Conjecture 5.7 Let d0 ≥ 1 be odd and square-free. Let N be the order of 2 in the

multiplicative group (Z/d0Z)∗. Set f = 2d − 1 with d > 1 odd and H = {2k ; 0 ≤ k ≤
d − 1}, a subgroup of order d of the multiplicative group (Z/ fZ)∗. Assume gcd( f , d0) =
1. �en N ′d0

( f ,H) = A1(d)d + A0(d), where A1(d) and A0(d) are rational numbers
which depend only on d modulo N, i.e., only on f modulo d0. Hence, for a prime p ≥ 3,
we expect

Md0
(p,H) = π2

2

⎧⎪⎪⎨⎪⎪⎩∏q∣d0

(1 − 1

q2
)⎫⎪⎪⎬⎪⎪⎭(1 +

A1(d)d
p

+ A0(d)
p
) ,

confirming again that the restriction on d in �eorem 1.1 should be sharp.

�ere is apparently no theoretical obstruction preventing us to prove Conjecture
5.7. Indeed, for a fixed d0, the formulas for A0(d) and A1(d) could be guessed using

6�e formulas can be and have been checked on numerous examples using a computer algebra
system. Indeed, by (3.3) and (3.4), any Dedekind sum s(c, d) ∈ Q with c, d ≥ 1 can be easily computed
by successive euclidean divisions of c by d and exchanges of c and d, until we reach c = 1.
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numerous examples on a computer algebra system. However, for large d0’s, the set of
cases to consider grows linearly and a more unified approach seems to be required to
give a complete proof.

6 The case of subgroups of order d = 3

6.1 Formulas for d0 = 1, 2, 6
Let p ≡ 1 (mod 6) be a prime integer. Let K be the imaginary subfield of degree m =(p − 1)/3 of the cyclotomic fieldQ(ζp). Since p splits completely in the quadratic field

Q(√−3) of class number one, there exists an algebraic integer α = a + b 1+
√
−3

2
with

a, b ∈ Z such that p = N
Q(
√
−3)/Q(α) = a2 + ab + b2. �en, H = {1, a/b, b/a} is the

unique subgroup of order 3 of the cyclicmultiplicative group (Z/pZ)∗. Sowe consider
the integers f > 3 of the form f = a2 + ab + b2, with a, b ∈ Z/{0} and gcd(a, b) = 1,
which implies gcd(a, f ) = gcd(b, f ) = 1 and the oddness of f. We have the following
explicit formula.

Lemma 6.1 Let f > 3 be of the form f = a2 + ab + b2, with a, b ∈ Z and gcd(a, b) = 1.
Set H = {1, a/b, b/a}, a subgroup of order 3 of the multiplicative group (Z/ fZ)∗. �en

s(a, b, f ) = f − 1
12 f

, S(H, f ) = f − 1
12

and N( f ,H) = −1 + 12S(H, f ) = −1.(6.1)

Proof Noticing that s(b, f , a) = s(b, b2 , a) = s(1, b, a) = s(b, a), by (3.5), and
s( f , a, b) = s(a2 , a, b) = s(a, 1, b) = s(a, b), and using (3.3), we obtain

s(a, b, f ) = a2 + b2 + f 2 − 3∣ab∣ f
12ab f

− s(b, f , a) − s( f , a, b) (by (3.6))

= a2 + b2 + f 2 − 3∣ab∣ f
12ab f

− s(b, a) − s(a, b)
= a2 + b2 + f 2 − 3∣ab∣ f

12ab f
− a2 + b2 − 3∣ab∣ + 1

12ab
= f − 1

12 f
.

Finally, S(H, f ) = s(1, f ) + s(a, b, f ) + s(b, a, f ) = s(1, f ) + 2s(a, b, f ) and use (3.4)
and (4.9). ∎
Remark 6.2 Take f1 = A2 + AB + B2 > 0, where 3 ∤ f1 and gcd(A, B) = 1. Set f =( f1 + 1)3 − 1. �en f = a2 + ab + b2, where a = Af1 + A− B, b = B f1 + A+ 2B and
gcd(a, b) = 1. By Lemmas 6.1, we have an infinite family of moduli f for which the
multiplicative group (Z/ fZ)∗ contains at the same time an element h = a/b of order
d = 3 for which s(h, f ) is asymptotic to 1/12 and an element h′ = f1 + 1 of order
d = 3 for which s(h′ , f ) is asymptotic to f 2/3/12. Indeed, by (3.3) and (3.4), for f =
( f1 + 1)3 − 1, we have s(h′ , f ) = h′5+h′4−6h′3+6

12 f
.

To deal with the case d0 > 1, we notice that by (4.9), we have the following
proposition.
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Proposition 6.3 Let d0 ≥ 1 be a given square-free integer. Take f > 3 odd of the
form f = a2 + ab + b2, where gcd(a, b) = 1 and gcd(d0 , f ) = 1. Set H = {1, a/b, b/a},
a subgroup of order 3 of themultiplicative group (Z/ fZ)∗. Let Nd0

( f ,H) be the rational
number defined in (4.5). �en

Nd0
( f ,H) = Nd0

( f , {1}) + 24µ(d0)
∏q∣d0

(q + 1) ∑δ∣d0

δµ(δ)
ϕ(δ) S(a, b, δ f ),

where Nd0
( f , {1}) is a rational number which depends only on f modulo d0, by

Proposition 4.6, and where

S(a, b, δ f ) = ∑
h∈(Z/δ fZ)∗

h≡a/b (mod f )

s(h, δ f ) = ∑
h∈(Z/δ fZ)∗

h≡b/a (mod f )

s(h, δ f ).
It seems that there are no explicit formulas for S(a, b, δ f ), S(Hδ , δ f ), orNδ( f ,H)

for δ > 1 (however, assuming that b = 1, we will obtain such formulas in Section 6.2 for

δ ∈ {2, 3, 6}). Instead, our aim is to prove in Proposition 6.4 that Nδ( f ,H) = O(√ f )
for δ ∈ {2, 3, 6}.

Let f > 3 be of the form f = a2 + ab + b2, with a, b ∈ Z and gcd(a, b) = 1. Hence,
a or b is odd. Since a2 + ab + b2 = a′2 + a′b′ + b′2 = a′′2 + a′′b′′ + b′′2 and a′/b′ =
a/b and a′′/b′′ = a/b in (Z/ fZ)∗, where (a′ , b′) = (−b, a + b) and (a′′ , b′′) = (−a −
b, a), we may assume that both a and b are odd. Moreover, assume that gcd(3, f ) = 1.
If 3 ∤ ab, by swapping a and b as needed, which does not change neither H nor
S(a, b,H), we may assume that a ≡ −1 (mod 6) and b ≡ 1 (mod 6). If 3 ∣ ab, by
swapping a and b and then changing both a and b to their opposites as needed, which
does not change neither H nor S(a, b,H), we may assume that a ≡ 3 (mod 6) and
b ≡ 1 (mod 6). So in Proposition 6.3, we may restrict ourselves to the integers of the
form

f >3 is odd of the form f = a2 + ab + b2 , with a, b ∈ Z odd and gcd(a, b) = 1
and if gcd(3, f ) = 1 then a ≡ −1 or 3 (mod 6) and b ≡ 1 (mod 6).(6.2)

Proposition 6.4 Let δ ∈ {2, 3, 6} be given. Let f be as in (6.2), with gcd( f , δ) = 1.�en,

s(h, δ f ) = O(√ f ) for any h ∈ (Z/δ fZ)∗ such that h ≡ a/b (mod f ). Consequently,
for a given d0 ∈ {1, 2, 3, 6}, in Proposition 6.3, we have Nd0

( f ,H) = O(√ f ), and we
cannot expect great improvements on these bounds, by (6.11), (6.13), and (6.15).

Proof First, by (6.1), we have

S(a, b, f ) = s(a, b, f ) = f − 1
12 f

.

Second, f being odd, recalling (4.13), we have A(2, f ) = A(2, 1) = 0, N2( f , {1}) = −1,
S(a, b, 2 f ) = s(a, b, 2 f ),(6.3)

and

N2( f ,H) = −1 − 8S(a, b, f ) + 16S(a, b, 2 f ).
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�ird, assume that d0 ∈ {3, 6}.�en gcd( f , 3) = 1. Hence, f ≡ 1 (mod 6).�erefore,
A(3, f ) = A(3, 1) = 4/3, A(6, f ) = A(6, 1) = −4, N3( f , {1}) = N6( f , {1}) = −1,

N3( f ,H) = −1 − 6S(a, b, f ) + 9S(a, b, 3 f ),
and

N6( f ,H) = −1 + 2S(a, b, f ) − 4S(a, b, 2 f ) − 3S(a, b, 3 f ) + 6S(a, b, 6 f ).
If a ≡ −1 (mod 6), b ≡ 1 (mod 6), and δ ∈ {1, 2}, then {h ∈ (Z/3δ fZ)∗; h ≡ a/b(mod f )} = {a/b, (a + 2 f )/b} and

S(a, b, 3δ f ) = s(a, b, 3δ f ) + s(a + 2 f , b, 3δ f ).(6.4)

If a ≡ 3 (mod 6), b ≡ 1 (mod 6), and δ ∈ {1, 2}, then {h ∈ (Z/3δ fZ)∗; h ≡ a/b(mod f )} = {(a − δ f )/b, (a + δ f )/b} and
S(a, b, 3δ f ) = s(a − δ f , b, 3δ f ) + s(a + δ f , b, 3δ f ).(6.5)

Let us now bound the Dedekind–Rademacher sums in (6.3)–(6.5). We will need
the bounds,

if f = a2 + ab + b2 , then ∣a∣ + ∣b∣ ≤√4 f and ∣ab∣ ≥√ f /3.(6.6)

Indeed, 4 f − (∣a∣ + ∣b∣)2 ≥ 3(∣a∣ − ∣b∣)2 ≥ 0 and f ≤ a2 + a2b2 + b2 = 3a2b2.
First, we deal with the Dedekind–Rademacher sums s(a, b, δ f ) in (6.3) and (6.4),

where δ ∈ {2, 3, 6}. Here, gcd(a, b) = gcd(a, δ f ) = gcd(b, δ f ) = 1. �en (3.7) and
(6.6) enable us to write (3.6) as follows:

s(a, b, δ f ) + O(√ f ) + O(√ f ) = O(√ f ).
Hence, in (6.3) and (6.4), we have s(a, b, 2 f ), s(a, b, 3 f ), s(a, b, 6 f ) = O(√ f ).

Second, the remaining and more complicated Dedekind–Rademacher sums in
(6.4) and (6.5) are of the form s(a + εδ f , b, 3δ f ), where ε ∈ {±1}, δ ∈ {1, 2} and
gcd(a + εδ f , 3δ f ) = gcd(b, 3δ f ) = 1. Set δ′ = gcd(a + εδ f , b).�en gcd(δ′ , 3δ f ) = 1.
�us, s(a + εδ f , b, 3δ f ) = s((a + εδ f )/δ′ , b/δ′ , 3δ f ), where now the three terms in
this latter Dedekind–Rademacher are pairwise coprime. �en (3.7) and (6.6) enable
us to write (3.6) as follows:

s((a + εδ f )/δ′ , b/δ′ , 3δ f ) + O(√ f ) + s(b/δ′ , 3δ f , (a + εδ f )/δ′)
= O(δ′2/b) = O(b) = O(√ f ).

Now, 3δ f ≡ −3εa (mod a + εδ f ) gives s(b/δ′ , 3δ f , (a + εδ f )/δ′) =
−εs(b/δ′ , 3a, (a + εδ f )/δ′). Since the three rational integers in this latter Dedekind–
Rademacher are pairwise coprime, the bounds (6.6) and (3.7) enable us to write (3.6)
as follows:

s(b/δ′ , 3a, (a + εδ f )/δ′) + O(√ f ) + O(√ f ) = O(√ f ).
It follows that s(a + εδ f , b, 3δ f ) = s((a + εδ f )/δ′ , b/δ′ , 3δ f ) = O(√ f ), i.e., in
(6.4) and (6.5), we have s(a + 2 f , b, 6 f ), s(a − 2 f , b, 6 f ), s(a + 2 f , b, 3 f ), s(a −
f , b, 3 f ), s(a + f , b, 3 f ) = O(√ f ). ∎
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Conjecture 6.5 Let δ be a given square-free integer. Let f > 3 run over the odd integers
of the form f = a2 + ab + b2 with gcd(a, b) = 1 and gcd(δ, f ) = 1. �en s(h, δ f ) =
O(√ f ) for any h ∈ (Z/δ fZ)∗ such that h ≡ a/b (mod f ). Consequently, for a given
square-free integer d0, in Proposition 6.3, we would have Nd0

( f ,H) = O(√ f ) for
gcd(d0 , f ) = 1.

Putting everything together, we obtain:

�eorem 6.6 Let p ≡ 1 (mod 6) be a prime integer. Let K be the imaginary subfield
of degree (p − 1)/3 of the cyclotomic fieldQ(ζp). Let H be the subgroup of order 3 of the
multiplicative group (Z/pZ)∗. We have

M(p,H) = π2

6
(1 + N(p,H)

p
) = π2

6
(1 − 1

p
) and h−K ≤ 2( p

24
)(p−1)/12 ,

and the following effective asymptotics and upper bounds

M2(p,H) = π2

8
(1 + N2(p,H)

p
) = π2

8
(1 + O(p−1/2)) and h−K ≤ 2( p + o(p)32

)
(p−1)
12

,

(6.7)

M6(p,H) = π2

9
(1 + N6(p,H)

p
) = π2

9
(1 + O(p−1/2)) and h−K ≤ 2( p + o(p)36

)
(p−1)
12

.

Proof �e formulas forM(p,H),M2(p,H), andM6(p,H) follow from (4.4), (4.7),
(6.1), and Proposition 6.4. �e inequalities on h−K are consequences as usual of (1.11)
and Corollary 2.4. ∎

6.2 The special case p = a2 + a + 1 and d0 = 1, 2, 6
Let f > 3 be of the form f = a2 + a + 1, a ∈ Z. �en gcd( f , 6) = 1 if and only if a ≡
0, 2, 3, 5 (mod 6). We define c′a , c

′′
a , c
′′′
a and ca = (−1 − 2c′a − c′′a + 2c′′′a )/12, as follows:

a (mod 6) c′a c′′a c′′′a ca

0 −3a − 2 −8a − 5 −19a − 10 −2a − 1
1 3a + 1
2 −3a − 2 8a + 3 a − 18 −3
3 3a + 1 −8a − 5 −a − 19 −3
4 −3a − 2
5 3a + 1 8a + 3 19a + 9 2a + 1

�eorem 6.7 Let p ≡ 1 (mod 6) be a prime integer of the form p = a2 + a + 1 with
a ∈ Z. Let K be the imaginary subfield of degree (p − 1)/3 of the cyclotomic fieldQ(ζp).
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Let H be the subgroup of order 3 of the multiplicative group (Z/pZ)∗. We have

M2(p,H) = π2

8
(1 − (−1)a 2a + 1

p
)(6.8)

and

M6(p,H) = π2

9
(1 + ca

p
) ,(6.9)

showing that the error term in (6.7) is optimal.

Proof �e formula (6.8) is a special case of (5.2) for d = 3. By (4.7), we have
M6(p,H) = π2

9
(1 + N6(p,H)

p
) .

Hence, (6.9) follows from Lemma 6.9. ∎
Lemma 6.8 Let f > 3 be of the form f = a2 + a + 1, a ∈ Z. Set H = {1, a, a2}, a
subgroup of order 3 of the multiplicative group (Z/ fZ)∗. We have

S(H, f ) = f − 1
12

, S(H2 , 2 f ) = 2 f + c′a
12

(6.10)

and

N2( f ,H) = (−1)a−1(2a + 1).(6.11)

Proof Apply Lemma 5.1 with d = 3 and f = a2 + a + 1 to get (6.10).�en, using (4.8),

we get N2( f ,H) = − f − 4S(H, f ) + 8S(H2 , 2 f ) = 2c′a+1
3
= (−1)a−1(2a + 1). ∎

Lemma 6.9 Let f > 3 be of the form f = a2 + a + 1, a ∈ Z. Assume that gcd( f , 6) =
1, i.e., that a ≡ 0, 2, 3, 5 (mod 6). Set H = {1, a, a2}, a subgroup of order 3 of the
multiplicative group (Z/ fZ)∗. �en

S(H3 , 3 f ) = 5 f + c′′a
18

,(6.12)

N3( f ,H) =
⎧⎪⎪⎨⎪⎪⎩
−2a − 1, if a ≡ 0 (mod 3),
2a + 1, if a ≡ 2 (mod 3),(6.13)

S(H6 , 6 f ) = 10 f + c′′′a
18

,(6.14)

and

N6( f ,H) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2a − 1, if a ≡ 0 (mod 6),
−3, if a ≡ 2, 3 (mod 6),
2a + 1, if a ≡ 5 (mod 6).

(6.15)

Proof Let us, for example, detail the computation of S(H6 , 6 f ) in the case that
a ≡ 0 (mod 6). We have f ≡ 1 (mod 6) and H6 = {1, 1 + 4 f , a + f , a + 5 f , a2 +
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f , a2 + 5 f }. Since a2 + f = (a + f )−1 and a2 + 5 f = (a + 5 f )−1 in (Z/ fZ)∗, we
have S(H6 , 6 f ) = s(1, 6 f ) + s(1 + 4 f , 6 f ) + 2s(a + f , 6 f ) + 2s(a + 5 f , 6 f ), by (3.2).

Using (3.3) and (3.4), we obtain s(1, 6 f ) = 18 f 2−9 f+1
36 f

, s(1 + 4 f , 6 f ) = 2 f 2−13 f+1
36 f

, s(a +
f , 6 f ) = − (3a−21) f+1

72 f
, and s(a + 5 f , 6 f ) = − (35a+19) f+1

72 f
. Formula (6.14) follows.

By (4.8), we have

N3( f ,H) = − f − 3S(H, f ) + 9

2
S(H3 , 3 f )

and

N6( f ,H) = − f + S(H, f ) − 2S(H2 , 2 f ) − 3

2
S(H3 , 3 f ) + 3S(H6 , 6 f ).

Using (6.1), (6.10), and (6.12), we obtainN3( f ,H) = c′′a +1
4

and (6.13). Using (6.1), (6.10),

(6.12), and (6.14), we obtain N6( f ,H) = −1−2c′a−c′′a +2c′′′a12
= ca and (6.15). ∎

7 Conclusion and a conjecture

�e proof of Lemma 5.1 gives for d ≥ 3 odd and a ≠ 0,±1
s (a, ad − 1

a − 1 ) =
( f − 1)( f − a2 − 1)

12a f
= O ( f 1− 1

d−1 ) .(7.1)

Our numerical computations suggest the following stronger version of�eorem 3.1:

Conjecture 7.1 �ere exists C > 0 such that for any d > 2 dividing p − 1 and any h of
order d in the multiplicative group (Z/pZ)∗, we have

∣s(h, p)∣ ≤ Cp1−
1

ϕ(d) .(7.2)

Indeed, for p ≤ 2 ⋅ 105, we checked on a desk computer that any d > 2 dividing p − 1
and any h of order d in the multiplicative group (Z/pZ)∗, we have

Q(h, p) ∶= ∣s(h, p)∣
p1−

1
ϕ(d)

≤ Q(2, 27 − 1) = 0.08903 . . . .
�e estimate (7.2) would allow to slightly extend the range of validity of�eorem 1.1 to

d ≤ (1 − ε) log p
log log p

.Moreover, the choice a = 2 in (7.1) forwhich s(2, f ) is asymptotic to
1
24
f with f = 2d − 1 shows that s(h, p) = o(p) cannot hold true in the range d ≍ log p.

Notice that we cannot expect a better bound than (7.2), by (7.1). Finally, the restriction
that p be prime in (7.2) is paramount by Remark 6.2 where s(a, f ) ∼ f 2/3/12 for a of
order 3 in (Z/(a3 − 1)Z)∗.
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