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Hardy Inequalities on the Real Line

Mohammad Sababheh

Abstract. 'We prove that some inequalities, which are considered to be generalizations of Hardy’s in-
equality on the circle, can be modified and proved to be true for functions integrable on the real line.
In fact we would like to show that some constructions that were used to prove the Littlewood conjec-
ture can be used similarly to produce real Hardy-type inequalities. This discussion will lead to many
questions concerning the relationship between Hardy-type inequalities on the circle and those on the
real line.

1 Introduction

In 1948, G. H. Hardy and J. E. Littlewood [2] conjectured that a constant K exists
such that for any set {n; < m, < --- < ny} C Z, the following inequality holds

N
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Many attempts were made in the three decades that followed and all led to weaker
results. In 1980 the conjecture was proved by S. V. Konjagin [4] and independently
by O. C. McGehee, L. Pigno and B. Smith [5].

In [5], the Littlewood conjecture was proved as a special case of the following more
general statement.

> KlogN.
1

Theorem 1.1 (McGehee, Pigno, and Smith) There is an absolute constant ¢ > 0
such that for any function f € L'([0,27)) whose spectrum is contained in the set
{m <m <---} CZ wehave

(L PLACIPTS

Then many questions regarding the “best” generalization of Hardy’s inequality
were asked. The challenging conjecture is the one that suggests the existence of an
absolute constant C > 0 such that

S P <cire S VE vy e (io.0m).
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See [3,8]. The truth of this inequality is still an open problem.
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In an attempt to solve the above open problem, Klemes proved that a constant
C > 0 exists such that

oo 41 41

> (4 }jlﬂnw)vzscuml+CE:(4ﬁ §:|f@wnﬁlﬂ
i=1 n=di—1 j=1 n=4i—1

for all functions f integrable on the circle [0, 27), see [3].
This inequality generalizes Hardy’s inequality that states that a constant C > 0
exists such that

for all integrable functions f on the circle for which f(n) = 0 when n < 0. In fact,
Klemes’ proof can be modified to get the following result: “There exists an absolute
constant C > 0 such that when f € L'([0,27)) and spec(f) C S := {m < m, <
f3, ...} C Z, we have

> ) . 1/2
Z(‘r’ > |f(”k)|2> <C|Iflh.”

j=1 41 <k<d)

This inequality implies inequality (II).

It can be seen that proving such Hardy-type inequalities is equivalent to the con-
struction of certain bounded functions. We refer the reader to [1, 3, 5, 8] for more
Hardy-type inequalities and for more on how the required bounded function is con-
structed.

All of these articles treat functions integrable on the circle. In this article, we
transform this study to functions integrable on IR. We prove that certain inequalities
are true also for f € L'(R). We shall follow the technique used in [3] with very little
modifications.

For the rest of the paper, L' denotes the space of Lebesgue integrable functions on
R and, for f € L', f denotes the fourier transform of f. This is defined by

€)= [ e
R
If f € L', then the inversion formula applies, and we have
) = 5= [ flereae
27 Jr '

When f € L2, we let f be its Plancherel-Fourier transform. This is defined to be
the limit, in the L? sense,

fier= jim. [ e
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Also, for f € L' U L? we define the spectrum of f by

spec(f) = {¢ € R: f(§) # 0}.

If f and g are in L' then it is clear that spec(f + g) C spec(f) U spec(g).
When f and g are in L2, we have fg€ L' and spec(fg) C spec(f) + spec(g). This
follows from the fact that (fg)" = f * ¢ when f and g are in L.

2 A Preliminary Discussion

Let f € L' be such that f is of compact support. For j > 1 we define the following
sequence of functions: If f(£) = 0 almost everywhere in [4/~!,47), put fi(x) =0,
otherwise put

1 —1/2  p4)

4/
= i B( [ ifora) [ foeae

The following lemmas give the basic properties of the sequence { f;}.
Lemma 2.1 Let f; be as above, then ||fi||, < 477/2.

Proof Define

R . ]
(2.1) g](g) _ {f(§)7 Y= <E< 4,

0, otherwise,

then g; € L? and, hence, it is the Fourier transform of some function, say h; € L*. By
Plancherel’s theorem, for almost every x,

1 . 1Y,
b =5 [ goea = [ foe
1 27'(_ R g] 27T 4i—1 f
Moreover,

1 1 v L\
hill, = —||gil. = — d .
il = =l = = ( [ 1feoPae)
Consequently, when f; # 0,

IR i .
.= 41/2</ 2d ) 2||hjll, = 4772, ]
1£ill2 T - BASICS 7| jll2
Lemma 2.2 If f; # 0 and g; is as above,

4] . —1/2
for) g

J

F(€) = Vama i ( /
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Proof This follows from the fact that, when f; # 0,

\ gmiz o N2 )
fo =2 ([ 1ior)  xamiye
. b —1)2
— vz ([ lierd) g o
4i—1

Lemma 2.3 For fj as above, || fj| < 1.

Proof If f; # 0, then, using the Cauchy-Schwarz inequality,

' 42 4J X , —1/2 4 , 1/2 4J 1/2
e = ([ 1s0Ra) ([ 1f0ra) ([ ac)

<1 u

Now we construct a new sequence of functions as follows: Put F; = 0 and for
j > 0put

€ €—
Fiyn = Efjﬂ +(1— €2|fj+1‘2)Fj - EfjHF]Z‘a

where 0 < e < 1is to be specified later.

Since f is of compact support, f; = 0 for large j. Therefore, there exists an index
k such that Fy = Fyyy = Fjyp = -+ . Let F = %Fk.

The proof of the following lemma is a nice application of the maximum modulus
principle, see [8].

Lemma 2.4 Leta,z € C be such that |al, |z| < 1. If
€ 20,12 €2
W:EZ+(17€ |z| )afiza,0<e§1,

then |w| < 1.

Basic and important properties of F; are given in the following sequence of lem-
mas.

Lemma 2.5 Foreach j > 0 we have ||Fj||o < 1.

Proof This follows from Lemma 2.4l and the inductive definition of Fj;; on taking
a=Fjandz = fj;;. [ |

Lemma 2.6 Foreach j > 0,spec(F;) C (=2 - 431 47,

Proof We proceed by induction on j. The result is true for F, because spec(Fy) = ¢.
Suppose that spec(F;) C (—2 - 47!, 47). Observe that f; is a scalar multiple of the
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inverse Fourier transform of g;, where g; is as given in (2.I). Therefore, spec(f;) C
(4771, 47). Now

spec(fj1) C [4/,471)
spec(|fj+1|2Fj) C spec(fj1) + spec(?jﬂ) + spec(F))
C (47,47 + (—4/! —40] + [—2- 471 &)
C (_3 . 4j+l,4j+1)
spec(?j+1F]2) C —spec(fi+1) + 2spec(F;)
C (4", —4] + [—4- 477 2. 4))

C (=547 47t
Whence,

spec(Fiy) C [47,47) U [—2- 47" 4/) U (=3 - 47 47ty U (=5 - 477 47T

C (=247 4%, [

Lemma 2.7 Fork > j > 0 we have

1/2
(2.2) ( / |Fk(§)|2d§> < 16ev2m4712,
[§]>4i—1

Proof Observe that

k—1 k—1
€ 2 2 €= 2
Fy =F;_3 +ZZ3(F4+1 —F)=F;_3 +€Z3(2fé+1 — €| fra|"Fr — Efsz) )
0 =

where by convention F; = 0 when £ < 0.
When |¢| > 4771,

k—1

B© = 3 (Sfon— Ui PR~ FR) @

(=j—3
Take the L? norm of both sides, use the triangle inequality, and recall that

ferllz <4720 i frllo <1, and  [|Fefloe < 1,
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to get

1/2
( [ |Fk<§>|2d£>
€] >41—1

< 3 {5l @] (1finlPE) "I+ 51 (FeoaD) "I}
=5 3 { ol @R S TrFiL)

€ €
<var 37 (5ol + Elfenlla + 5l fols)

l=j—3
k—1
<27 Z (€ + 2)4~¥D/2
(=j—3
< 16eV2m4~ 2, ]

Lemma 2.8 Letj> landk > j. Then

Y € 5 1/2 '
([ 1t©-Shofa)  <isea

4i—1

Proof Observe that
€ =l k—1 a
e Ef] - (Fj_l +Z ZﬁH) * ( Z —€| frn|*Fo — 2f(+1Ff) ,
(=] P

and that

k—1 A
(Fj_1 + Z §ﬁ+1> () =0ford~! < ¢ < 4.
(=j

This is true because spec(F;_;) C (—2-4/,4/7") and spec(fy) C [4¢7!,4%) and
k > j. Note that spec(EHFg) C (—00,0) and therefore, for 4/~ < ¢ < 4/, we may
write

(Fer FDNE) = (f i FeFe )" (8),

where Fy ; is the truncation defined by

Fy () = / B,
§>41—

1

Now we have the estimates

1 fert PEelly < [l fea I3 < 47,
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and

I eerFeFeslly <l ferall2llFejll2

< g1 (/ Iﬁz(f)lzd5> N
= V2 \ Jezai

< 4= ED/2 Lme\/zmrf/z,
s

- Vor

where, in the last line, we have used (Z.2). Whence, for 477! < ¢ < 4/,

k—1
@3) RO - SHOIS Y. —elfenlF = Sl

r=j—1

k-1
< Z (6247((“) n 547(@1)/2 % 1664*1/2>

(=j—1
< 18€*477.
Hence
. € 2 172 : : :
(/ Fr(€) — Efj(g)\ dg) < 412 x 182477 = 1862471/, ]
4j—1

Now, recall that F = %Fk for some k > 1. Thence, we have the following lemma.

Lemma 2.9 For a certain value of €, there is an absolute constant ¢ > 0 such that

(2.4) [Flloe <,
47 1/2 ‘
(2.5) ( / IF(—f)Izdf) <caI?
4j—1

A A 1 . . .
(2.6) E©) - 19| < 54—1 when 471 < ¢ < 4/,
Proof Lete = 72\;%. Since F = 2F, we get |[Flloo < 2/¢ = 144y/27. Equation
(2.2)) implies that

4) 1/2 ‘
(/ F(§)|2d§) <32 x 4772,
4i—1

Therefore, ¢ = 144+/27. Moreover, (2.6) follows immediately from (23)). [ |

As a final remark about F, observe that

k—1 k—1
€ €—
Fo= Fot 3 (s = F) = 3 Sio = lfi P = T 7).
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Hence

k—1

1Bz < 32 (5 fertlla + €l fenalls + Sl e )

=0

6+6 )4~ w+1/2<166

MS

=0

Therefore, ||F||, = %HFkHz < 32.
Before proceeding further, we remind the reader of the following basic lemma.

Lemma 2.10 If f,g € L?, then
[ s = - [ e,
R T Jr

Observe that if f € L! is such that f is compactly supported, then f € L. But the
Plancherel theorem, then, guarantees that f € L2
Now, if F is as above, then F € L?, hence

(2. FR@dx = 5 [ fOF@
R T Jr
by Lemma[2.10

3 Main Results

Now we are ready to prove the following.
Theorem 3.1 There exists an absolute constant C > 0 such that for all f € L'(R),

o0

Y 1/2 oo U 1/2
S (47 [ vierd)  <cieeX (s [ if-opa)
4j—1 -1 4i—1

j=1

Proof We prove the result, first, for f € L! whose Fourier transform f is of compact
support. Thus, let f € L' be such that f is compactly supported and let f; and F be

as above. Recall (2.4) and observe that (2.7)) holds because f is of compact support.
Therefore,

%

cll £l (x)F(x)dx

1 A
= — F(&)d.
ZW‘ /R HOF© 5‘

V

L[, o - L e
| [ FoRSw| - | [ Her@a] - | [ jor@a.
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Whence,

—1

[ee] - 1 R . R .
/1 f(f)ﬁ(i)dé‘ < dllffh + / IO + / FEIF©)|de

<dlflh+ ( | |f<s>2ds) ( /| |ﬁ<f>|2de) 2

00 4)
> [ ool
=17
X 0o 4J . 1/2
< cllfll + VLB + Z{ ( / |f(—£)|2d£)
=1 "
47 1/2
x( /| |F<—£>|2d£) }
4j—1
0o ) 4J X 1/2
< clfll + 2vAlElL ] +cz(4—f /| |f(—£)|2d£> |
=1 "
where we have used (Z.5) in the last line. But ||F||, < 32, hence

(3.1)

00 7 0 ) 47 . 1/2
/ f<s>ﬁ<§>df]szc||f||1+c2(4f / |f(—£)|2d£> |
1 -1 4i—1

where we have used the fact that ¢ = 14427 > 64./7.
Now,

/ N f(@ﬁ(@df’ > m( / h f(f)?(f)d§>

[eS) 4) R
Sor( [ HeF@a).

j=1

But we have, for 471 < £ < 4/,

& - F©)] < 547

hence,

[E& i - F©f©)| < 4@

which implies

® (FOf© - 1©1©) < 5471f@).
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Consequently, for 4171 < & < 4/,
S~ A A ~ 1 A
R(FEf(©) = R(f(Of;(9) — 5471|f(§)‘
o —1)2
= V242 ( / | f(T)|2d7'> f
4i-1

Integrate both sides and then use the Cauchy—Schwarz inequality to get

_ 14—1' y
2

4/ .
/ R(F©)f(6)de)
4

ji—1

‘ W 1/2 -
> v ([ erac) - [ 1ol

4i—1

A Jo 1/2 i X 1/2 4/ 1/2
> m4—f/2( / |f(£)|2d£> = ( / |f<f>|2df) ( / d’f)

~ (var- L2 (4‘]’ / f(§)|2d§) N

) 47 . 1/2
> (4_, / |f<§>|2d§) .

Therefore, (3.1]) becomes

00 1/2

' 4) X 1/2 e’} , 4) X
Z<4f / |f(£)2d£> <C||f||1+CZ<4J /| |f<—5>|2d£) ,
4i—1 -1 4i—1

j=1

where C = 2¢. This completes the proof of the case when f is compactly supported.
For the general case, let f € L' and apply the result on f * K, where K is the
Fejer kernel of order A, to get the result. ]

Now, some corollaries are available. The first corollary is the real form of Hardy’s
inequality.

Corollary 3.2 Let f € L' be such that f(€) = 0 forall € < 0, then

where C’ is an absolute constant not depending on f.

Proof Observe that

[ Z [ e < Z( [ ) ([ rae)

oo . 4) . 1/2
=3y (47 [ 1fopa)  =clislh
=1 -
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where C’ = v/3C. Here, we have applied the result of the above theorem, noting that

f(f) = 0 when ¢ < 0.
Now let @ > 0 be any given number and define g(x) = f(ax). Then

lglh = Ll[fIh and £(&) = Lf(¢/a).

Moreover, $(£) = 0 when £ < 0. Hence,

il , L[ ]f /o) 1,
/1 Tdfﬁc ||g||1:‘a/1 Tdfﬁ EC I f1l1-

That is, )
/ ”ﬁf’&gcwfbva>a
1

But this is equivalent to saying
[Vl <cripp, va o
1/«

Since the right side of this inequality does not depend on «, we may let @« — oo to

get

as required. [ |

Now having proved the real Hardy’s inequality, it is very natural to ask about the
best generalization of Hardy’s inequality for arbitrary f € L'(R). The following the-
orem is a nice generalization.

Theorem 3.3 Lete > 0 be given. Then, a constant C, > 0 exists such that for all
f € LY(R) we have

[TV < o v [T goger

Proof From the proofs of Theorem[B.dland Corollary[3.2 we see that, for f € L'(R),

(32) | ﬂ] QWWCZ/ -6 B¢ de,

where C > 0 is some constant independent of f.
As a matter of notation, denote

o) 4 . )
> [ ifoliece de
=1
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by G(f). Let ‘{)\ it be a sequence of positive numbers to be specified later and let
Ej={¢e[47",4/]: |E(=&)| < \j} and let E = [41~!, 4]\E;.
Then

oo r

6 =Y| [ If-olfc-os+ [ 1f-olf-old]

—1 LY/E

-

\F( §)I ]

Z /If( 5)|d5+/ oo ECO

1

— [ ] [l f1ls A
> S / | F(—g)ﬁd&]

j=1t

IN

IN

where, in the last line, we have used the fact that 1F(=O)] < |Iflli- Now, let \; =
47Jaj where {a} is a sequence of positive numbers to be specified later. Thus

[eS) 4) pe © i 4J .
6 <>a; [ T ac s Z;/ B0 de
.:1 j—1 j:l j—1

<Z / f(gdﬁ IIfIIZ " 2a (see @)

Let
o = 17 ]: )
TG = Dlogs) ", =2
Consequently
4
4i—1
+ ¢ <1 + )
&Il Z e 1)10g4)
Now denote

— 1
1+
( ;((jl)log4)l+6>

by c(¢), which is a real number. Moreover, if ¢ € [4/7!, 4], then

((G—1)log4) ™ < (log &)™
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Hence
o) < ||f||110g4+Z/ VO 1og) de+ el
<c'lfli+ | 'f(f)'aogfﬂ“ de.
1
By substituting this inequality in (3.2), the result of the theorem follows. ]

Remark (i) We may modify our choice of ; above to get

/1 ‘f(f)'d5<c2|\fu1+c/ |f<§5>|logs(loglog5)

which is stronger than the inequality in Theorem In fact we can modify the
inequality to get as many log terms as we want.

(ii) In the author’s Ph. D. thesis [6], it was proved that if € > 0 is given, then a
constant C > 0 depending on ¢ exists such that

Z| (ﬂ)‘ <C||f|| +Cz‘f( gn)lJre

n
n=1 n=1

for all f € LY(T). The proof of this result is very similar to that of Theorem[3.3l
(iii) In [7], it is shown that for functions lying in an infinite dimensional subspace

of L'(R),
\f(f)|2 2 f(—&)P
/o dé < 2 f2 / VT g
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