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Abstract

Let X be a smooth geometrically connected projective curve over the field of fractions
of a discrete valuation ring R, and m a modulus on X, given by a closed subscheme of
X which is geometrically reduced. The generalized Jacobian Jm of X with respect to
m is then an extension of the Jacobian of X by a torus. We describe its Néron model,
together with the character and component groups of the special fibre, in terms of a
regular model of X over R. This generalizes Raynaud’s well-known description for the
usual Jacobian. We also give some computations for generalized Jacobians of modular
curves X0(N) with moduli supported on the cusps.

Introduction

Let R be a discrete valuation ring, with field of fractions F and residue field k. Let X be
a regular scheme, proper and flat over S = SpecR, whose generic fibre X = XF is a smooth
curve. In [Ray70] Raynaud describes the relationship between the Néron model of the Jacobian
J = Pic0

X/F of X and the relative Picard functor P = PicX/S . The aim of this paper is twofold:
first, to extend Raynaud’s results to the generalized Jacobian Jm of X with respect to a reduced
modulus m; and, second, to apply these results to compute the component and character groups
of the Néron models of generalized Jacobians attached to modular curves and moduli supported
on cusps.

Our motivation for this work arises from applications to the arithmetic of modular forms,
the point being that just as the arithmetic of cusp forms of weight 2 on a congruence sub-
group of SL(2,Z) is controlled by the Jacobian of the associated complete modular curve, so
the arithmetic of the space of holomorphic modular forms on the same group is controlled
by a suitable generalized Jacobian. Raynaud’s results have been used extensively to study the
arithmetic of cusp forms of weight 2 and their associated Galois representations, for example,
in [Maz77, MW84, Rib88, Rib90]. In future work we plan to give arithmetic applications of
the results obtained here. We note that generalized modular Jacobians with cuspidal modulus
have been considered by Gross [Gro12], Yamazaki and Yang [YY16], Bruinier and Li [BL16],
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Wei and Yamazaki [WY19], and Iranzo [Ira21]. Another point of view, using 1-motives rather
than generalized Jacobians (see also § 1.7 below), has been investigated by Lecouturier [Lec21].

Before describing our main results, we briefly recall from [Ray70] the results of Raynaud
on Jacobians. To simplify the discussion, we assume for the rest of this introduction that R is
Henselian, k is algebraically closed, and that the greatest common divisor of the multiplicities
of the irreducible components of the fibre Xs at the closed point s = Spec k is 1. (We review
Raynaud’s theory in §§ 2.2–3 in greater detail and under less restrictive hypotheses.) Under
these hypotheses, [Ray70, (8.2.1)] shows that P is represented by a smooth group scheme over
S, and there is a canonical morphism of group schemes deg : P → Z, which maps a line bundle
to its total degree along the fibres of X/S. The open and closed subgroup scheme P ′ = ker(deg)
then has J as its generic fibre.

Let r be the number of irreducible components of Xs. If r > 1, then P is not separated
over S. Indeed, if Y ⊂ X red

s is an irreducible component, viewed as a reduced divisor on X , then
the line bundle OX (Y ) represents an element of P ′(S), nonzero if r > 1, whose image in P ′(F )
vanishes. The closure E ⊂ P ′ of the zero section is then an étale (but not separated) S-group
scheme, whose generic fibre is trivial, and whose special fibre is isomorphic to Zr−1, generated
by the classes of the bundles OX (Y ) restricted to Xs. Raynaud shows the following.

(i) The maximal separated quotient P ′/E is the Néron model J of J .
(ii) The identity component J 0

s of the special fibre of J is canonically isomorphic to the Picard
scheme Pic0

Xs/k
.

(iii) Let J 0,lin
s be the maximal connected affine subgroup scheme of J 0

s ; its character group
X(Js) := Homk(J 0,lin

s ,Gm) is canonically isomorphic to H1(Γ̃Xs ,Z), the integral homology
of the extended dual graph Γ̃Xs of the singular curve Xs (we recall the definition in § 1.2).

(iv) The component group Φ(J) := Js/J 0
s is canonically isomorphic to the homology of the

complex

Z[C] → ZC → Z,

where C is the set of irreducible components Y ⊂ X red
s , the first map is given by the inter-

section pairing C × C → Z on X , and the second by (mY)Y �→
∑

Y δYmY , where δY is the
multiplicity of Y in the fibre.

In the special case where Xs is a reduced divisor on X with normal crossings, statements (iii)
and (iv) become:

(iii′) Homk(J 0,lin
s ,Gm) � H1(ΓXs ,Z), where ΓXs is the reduced dual graph of Xs, whose vertex

set is C and edge set is X sing
s ;

(iv′) Φ(J) � coker(� : Z[C] → Z[C]0), where � is the Laplacian of the graph ΓXs , which is the
endomorphism of Z[C] taking a vertex v ∈ C to

∑
(v) − (v′), where the sum is taken over

all edges joining v to an adjacent vertex v′.

Now let m be a modulus (effective divisor) on X. Then one has [Ros54, Ser84] the generalized
Jacobian Jm of X relative to m, which is an extension of J by a commutative connected linear
group H. Assume that m =

∑
i∈I(xi) is a sum of distinct points, whose residue fields Fi are

all separable over F . This is equivalent to assuming that H is a torus. Then by the results of
Raynaud [BLR90, Ch. 10], Jm has a Néron model Jm, which is a smooth separated group scheme
over S, not necessarily of finite type, with generic fibre Jm and satisfying the Néron universal
property. (In the terminology of [BLR90], Jm is a Néron lft-model.) We obtain results analogous
to results (i)–(iv′) for Jm. Specifically, let Ri be the integral closure of R in Fi, and Σs be the
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Modular curves and Néron models of generalized Jacobians

disjoint union of the Spec(Ri ⊗R k), i ∈ I. The inclusion of the set of points xi in X gives a
morphism Σs → Xs. We show the following.

(i) There exists a smooth S-group scheme Pm, parametrizing equivalence classes of line bundles
on X with a trivialization at each xi, and Jm is the maximal separated quotient of P ′

m =
ker(deg : Pm → Z) (Theorems 1.15 and 1.16).

(ii) The identity component J 0
m,s of the special fibre of Jm is canonically isomorphic to

Pic0
(Xs,Σs)/k

, the generalized Picard scheme classifying line bundles on Xs of degree zero
on each irreducible component, together with a trivialization of the pullback to Σs
(Corollary 1.18(a)).

(iii) The character group Homk(J 0,lin
m,s ,Gm) is the integral homology of an extended graph Γ̃Xs,Σ,

depending only on the combinatorics of the components of Xs and the reductions x̄i ∈ Xs
of the points xi (Corollary 1.18(b)).

(iv) The component group Φ(Jm) = Jm,s/J 0
m.s, which is an abelian group of finite type (not

necessarily finite), is isomorphic to the homology of the complex (1.6.4)

Z[C] ⊕ Z → ZC ⊕ ZI → Z

(Theorem 1.19).

If Xs is a reduced divisor with normal crossings, and the points xi are F -rational, then the
character and component groups have simple descriptions in terms of the homology and Laplacian
of a generalized reduced dual graph (Corollary 1.20).

We then apply these results to a modular curve X0(N) and a modulus m supported on
the cusps. If p > 3 is a prime exactly dividing N , we compute the character and component
groups, together with the action of the Hecke operators on them. In particular, if N = p and
m = (∞) + (0) is the sum of the two cusps of X0(p), then the component group is infinite
cyclic, with T� acting by �+ 1 for � 
= p, and the representation of the full Hecke algebra on the
character group is given by the classical Brandt matrices. We also compute the component group
for N = p2, which for the full cuspidal modulus is free of rank 2.

There has been considerable interest in ‘Jacobians of graphs’; for example, Lorenzini [Lor89,
Lor91], Bacher, de la Harpe, and Nagnibeda [BdlHN97] and Baker and Norine [BN07]. Our
results here on Φ(Jm) suggest that there is also a theory of ‘generalized Jacobians of graphs’.
We investigate this in a future paper.

Let us briefly describe the contents of the rest of the paper. In § 1, we prove our results
on Néron models of generalized Jacobians. Although not needed for the applications we have in
mind, we decided to work in a very general setting (in particular, there are no conditions imposed
on the base ring). Sections 1.1–1.3 review well-known facts about Néron models, Weil restriction,
and Picard schemes of singular curves, as well as some of Raynaud’s results from [Ray70].

In §§ 1.4 and 1.5 we describe the structure of the generalized Picard scheme of a singular
curve with respect to a modulus, and discuss its functoriality. The main results on the Néron
models of generalized Jacobian are contained in § 1.6. In the following two sections we explain
the relation with 1-motives, and describe some of the behaviour of the Néron model of Jm under
correspondences.

In § 2 we apply our results to the modular curves X0(N) and cuspidal moduli, computing in
several cases the component and characters groups of the reduction of the Néron model modulo
a prime p > 3.

We describe some prior work on these topics. If the points (xi) are F -rational and their
closures in X are disjoint, then by identifying them, one obtains a singular relative curve
X/m which is semifactorial. Some of our results in this case are then subsumed by the works
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[Ore17a, Ore17b, Pép13] on Picard schemes of semifactorial curves. In [Ove21], Overkamp proves
general results on the existence of Néron models of Picard schemes of singular curves. Finally,
Suzuki [Suz19] has defined Néron models of 1-motives and studied their duality properties and
component groups. We discuss its relation with the present work in § 1.7.

Notation
Throughout the paper, unless otherwise stated, R will denote a discrete valuation ring with field
of fractions F , uniformizer �, and residue field k. Except where stated otherwise, we make no
further hypotheses on R or k. We write p = max(1, char(k)) for the characteristic exponent of
k. We put S = SpecR and denote by s its closed point. Let Rsh be a strict henselization of R,
and F sh its field of fractions. Write ksep for the residue field of Rsh (a separable closure of k),
and s̄ for its spectrum. We write (Sm/S) for the category of essentially smooth S-schemes, and
(Sm/S)ét for its étale site. For a scheme X, we write κ(x) for the residue field at a point x ∈ X,
and if X is irreducible, κ(X) for the residue field of the generic point of X. All group schemes
considered in this paper will be commutative. We frequently identify étale group schemes over a
field with their associated Galois modules.

If S is a finite set we write Z[S] for the free abelian group on S and Z[S]0 for the kernel of
the degree map Z[S] → Z, s �→ 1 for s ∈ S.

1. Néron models of generalized Jacobians

1.1 Preliminaries
In this section we collect together properties of Néron models and Weil restriction of scalars.
Most of these may be found in [BLR90], especially Chapter 10.

Recall that if G/F is a smooth group scheme of finite type, then a Néron model for G
is a smooth separated group scheme G/S with generic fibre G, such that for every smooth
S-scheme S′, the canonical map G(S′) → G(S′

F ) = G(S′
F ) is bijective. If G exists, it is unique up

to unique isomorphism. (In [BLR90] these are called Néron lft-models.) The identity component
G0 of G is a smooth group scheme of finite type. The formation of Néron models commutes with
strict henselization and completion of the base ring R. If G⊗F F̂

sh does not contain a copy of
Ga, then G has a Néron model [BLR90, 10.2 Thm.2]. (More generally, this holds if S is merely
a semilocal Dedekind scheme.) We write Φ(G) for the component group (Gs/G0

s )(k
sep). If k is

perfect, then by Chevalley’s theorem [Con02] Gs has a unique maximal connected affine smooth
subgroup scheme G0,lin

s , and we then write X(G) for the character group Hom(G0,lin
s ⊗k k̄,Gm),

a finite free Z-module with a continuous action of Gal(k̄/k).
Let 0 → G1 → G2 → G3 → 0 be an exact sequence of smooth connected F -groups which have

Néron models Gi. Consider the complexes

0 → G1 → G2 → G3 → 0, (1.1.1)

0 → G0
1 → G0

2 → G0
3 → 0, (1.1.2)

0 → Φ(G1) → Φ(G2) → Φ(G3) → 0. (1.1.3)

The following two exactness results are a restatement of [Cha00, Remark (4.8)(a)], with the same
proof, which we give for the reader’s convenience.

Lemma 1.1. Suppose that the induced map G2 → G3 is a surjection of sheaves for the smooth
topology. Then:

(a) the sequence (1.1.1) is exact;
(b) if Φ(G1) is torsion-free, then the sequences (1.1.2) and (1.1.3) are exact.
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Modular curves and Néron models of generalized Jacobians

Proof. (a) Since locally for the smooth topology the morphism G2 → G3 of group schemes has
a section, it is evidently surjective. Let G′ denote its kernel. By [LL01, Lemma 4.3(b)], G′ is
smooth. The canonical morphism G1 → G2 factors though a morphism γ : G1 → G′ which is the
identity on generic fibres, and since G1 is a Néron model, there is a morphism δ : G′ → G1 which
is the identity on generic fibres. As G1 and G′ are separated over S, γ and δ are mutually inverse
isomorphisms.

(b) The map G0
2 → G0

3 is surjective, so we have an exact sequence

0 → G1 ∩ G0
2 → G0

2 → G0
3 → 0

in which each term is of finite type over S. Hence, G0
1,s has finite index in G1,s ∩ G0

2,s, and since
Φ(G1) is torsion-free we have G1 ∩ G0

2 = G0
1 . Thus, (1.1.2) and therefore also (1.1.3) are exact. �

Corollary 1.2. Suppose that G1 is a product of tori of the form RF ′/FT , where F ′/F is
finite separable, T is an F ′-torus which splits over an unramified extension, and RF ′/F is Weil
restriction of scalars. Then (1.1.1)–(1.1.3) are exact.

Proof. Replacing R by Rsh, we may assume that each T/F ′ is split. According to [BX96, 4.2],
[Cha00, (4.5)], one then has R1jsm ∗G1 = 0, where jsm : (SpecF )sm → Ssm is the inclusion of small
smooth sites. Therefore, G2 → G3 is surjective as a map of sheaves on Ssm. By Proposition 1.4(a)
below, Φ(G1) is torsion-free, so everything follows from the lemma. �

We will need the following minor generalization of a result from [BLR90].

Proposition 1.3. Let

0 → G1 → G2 → G3 → 0

be an exact sequence of smooth S-group schemes. If G1 and G3 are the Néron models of their
generic fibres, the same is true for G2.

Proof. This follows by the same argument as in the proof of § 7.5, Proposition 1(b) in [BLR90]
(middle of p. 185), using the criterion of § 10.1, Proposition 2. �

From [BLR90, § 7.6] we recall basic properties of Weil restriction. Let Z ′/Z be a finite flat
morphism of finite presentation. If Y is a quasiprojective Z ′-scheme, then the Weil restriction
RZ′/ZY exists, and is characterized by its functor of points RZ′/ZY (−) = Y (−×Z Z

′). If Y is
smooth over Z ′, then RZ′/ZY is smooth over Z. If Y → X is a closed immersion of quasiprojective
Z ′-schemes, then RZ′/ZY → RZ′/ZX is a closed immersion. If Z ′ → Z is surjective and Y is a
quasiprojective Z-scheme, then the canonical map Y → RZ′/Z(Y ×Z Z

′) is a closed immersion.
Now let k be a field, k′ a finite k-algebra, and k′′ a finite flat k′-algebra. Let Y be a

quasiprojective k-scheme. There is then a canonical map

g : Rk′/k(Y ⊗k k
′) → Rk′′/k(Y ⊗k k

′′).

We may write k′ = k′1 × k′2 where Spec k′1 ⊂ Spec k′ is the image of Spec k′′ (and k′2 is possibly
zero). The morphism g then factors

Rk′/k(Y ⊗k k
′) = Rk′1/k(Y ⊗k k

′
1) ×Spec k Rk′2/k(Y ⊗k k

′
2)

pr1−−→ Rk′1/k(Y ⊗k k
′
1) → Rk′1/kRk′′/k′1(Y ⊗k k

′′) = Rk′′/k(Y ⊗k k
′′)

and the second arrow is a closed immersion. In particular, if Y is a smooth k-group, then g is a
surjection onto a closed subgroup scheme, and its cokernel is smooth.

Let k be a field and k′ a finite k-algebra. Then Rk′/kGm is a connected smooth k-group
scheme of finite type. It is a torus if and only if k′/k is étale.
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We return to Néron models. Recall that the multiplicative group Gm/F has a Néron model
Gm/S, whose special fibre is Gm × Z. It fits into an exact sequence of group schemes

0 → Gm → Gm
vF−→ s∗Z → 0,

where on R-points vF is the normalized valuation vF : Gm(R) = F× →→ Z.
Let F ′ be a finite étale F -algebra, R′ ⊂ F ′ the normalization of R in F ′, S′ = SpecR′. Let

F ′ ⊗F F
sh =

∏
i∈I Fi, where the fields Fi are totally ramified extensions of F sh, of degrees eipsi ,

where psi is the degree of the (purely inseparable) residue class extension.

Proposition 1.4.

(a) The Néron model of RF ′/FGm is RS′/SGm, and the product of the valuations

RS′/SGm(F sh) =
∏
i∈I

F×
i

(vFi
)

−−−→ ZI (1.1.4)

induces an isomorphism

Φ(RF ′/FGm) = π0((RS′/SGm)s)
∼−−→ ZI . (1.1.5)

(b) The adjunction map Gm → RS′/SGm is a closed immersion, and its cokernel is the Néron
model of (RF ′/FGm)/Gm, inducing a isomorphism

Φ((RF ′/FGm)/Gm) ∼−−→ coker(e = (ei) : Z → ZI).

Here we use Gm to denote also the Néron model of Gm over the semilocal base S′.

Proof. (a) The first statement follows from [BLR90, Propositions 10.1/4 and 6]. For the second,
replacing F by F sh we are reduced to the case of a totally ramified field extension F ′/F . Then as
Gm,s � Gm,s × Z, we have (RS′/SGm)s = RR′⊗k/kGm ×RR′⊗k/kZ. As the first factor is connected,
and the second is Z (since R′ ⊗ k/k is radicial) we get Φ(RF ′/FGm) � Z, and the fact that this
isomorphism is given by the valuation follows from [BLR90, 1.1/Proposition 7].

(b) By Corollary 1.2, the exact sequence 0 → Gm → RF ′/FGm → (RF ′/FGm)/Gm → 0 gives
rise to exact sequences of Néron models and component groups. It is therefore enough to show
that the map Φ(Gm) = Z → Φ(RF ′/FGm) = ZI is equal to e. Replacing F by F sh again, we are
reduced to the case when F ′/F is a totally ramified field extension of degree eps with residue
degree ps. Then by part (a) we have a commutative square

proving the result. �

1.2 Graphs and Picard schemes of singular curves
In this section we work over an arbitrary field k. By a curve over k we shall mean a k-scheme X of
finite type which is equidimensional of dimension 1 and Cohen–Macaulay (i.e. has no embedded
points). Let {Xj} be the irreducible components of X, and ηj the generic point of Xj . The
local ring OX,ηj is Artinian, and following Raynaud [Ray70, (6.1.1) and (8.1.1)] we write dj for
its length, and δj for the total multiplicity of Xj in X. If k′/k is a radicial closure of k, and
η′j ∈ X ⊗ k′ is the point lying over ηj , then δj equals the length of the local ring of η′j . Moreover,
δj = dj [κ(ηj) ∩ k′ : k] = djp

nj for some nj ≥ 0.

950

https://doi.org/10.1112/S0010437X23007662 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007662
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Until the end of this section, k denotes an algebraically closed field. We review the well-known
description of the toric part of the Picard scheme of a singular curve over k.

Let Y/k be a reduced proper curve, and Y sing ⊂ Y (k) its set of singular points. Write φ : Ỹ →
Y for its normalization. Define sets

A = Y sing ⊂ Y (k), B = φ−1(Y sing) ⊂ Ỹ (k), C = π0(Ỹ ).

We have maps

φ : B → A, ψ : B → C,

where ψ maps x ∈ B to the connected component of Ỹ containing it.
The extended graph Γ̃Y = (Ṽ , Ẽ) of Y is the graph with vertices Ṽ and edges Ẽ, where:

– Ṽ = A 
 C, Ẽ = B;
– the endpoints of an edge b ∈ B are φ(b) ∈ A and ψ(b) ∈ C.

The graph Γ̃Y is bipartite, and therefore has a canonical structure of directed graph, by directing
the edge b so that its source is φ(b).

Suppose Y only has double points (meaning that if y ∈ Y sing then φ−1(y) has exactly two
elements). The reduced graph ΓY = (V,E) is the undirected graph (possibly with multiple edges
and loops) whose vertex set is V = π0(Ỹ ) and edge set is E = Y sing. It is obtained from Γ̃Y by, for
each vertex v ∈ A, deleting v and replacing the two edges incident to v with a single edge. There
is a canonical homeomorphism between the geometric realizations of Γ̃Y and ΓY , under which
v ∈ A is mapped to the midpoint of the replacing edge. If Y/k is a proper curve, not necessarily
reduced, we define Γ̃Y = Γ̃Y red , ΓY = ΓY red , where Y red ⊂ Y is the reduced subscheme.

Let G = Pic0
Y be the identity component of the Picard scheme of Y . It is a smooth group

scheme of finite type over k, classifying line bundles on Y whose restriction to each irreducible
component has degree zero. The filtration of G by its linear and unipotent subgroups is described
as follows.

Let Y ′ → Y be the ‘seminormalization’ of Y , which is obtained from Y by replacing its
singularities with singularities which are étale locally isomorphic to the union of coordinate axes

in AN
k . The normalization map factors into a pair of finite morphisms Ỹ

φ′→ Y ′ → Y . These give
rise to a commutative diagram, whose rows are exact:

(where Gunip is the maximal connected unipotent subgroup ofG) giving an isomorphism kerφ′∗ �
Gtor = Glin/Gunip by the snake lemma.

To give a line bundle on Y ′ is equivalent to giving a line bundle on Ỹ together with descent
data for φ′ : Ỹ → Y ′, so the toric part Gtor classifies trivial line bundles on Ỹ equipped with
descent data to Y ′. For the trivial bundle O

Ỹ
, to give such descent data is equivalent to giving,

for each singular point y ∈ Y , an element of (k×)φ
−1(y)/k×. The automorphism group of O

Ỹ
is

(k×)π0(Ỹ ). Hence, Gtor is canonically

Gπ0(Ỹ )
m \

∏
y∈Y sing

(
Gφ−1(y)

m /diag(Gm)
)
.
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Here G
π0(Ỹ )
m acts on G

φ−1(y)
m by the dual of the map φ−1(y) ⊂ Ỹ (k)

ψ→ π0(Y ) associating to x ∈ Ỹ
the connected component of Ỹ containing it. The character group of Gtor is therefore the kernel
of the map

Z[B]
(ψ,φ)−−−→ Z[C] ⊕ Z[A],

which (after replacing φ with −φ) is the chain complex of Γ̃Y . This gives the formula [DR73, I.3]

Hom(Glin,Gm) = H1(Γ̃Y ,Z). (1.2.1)

Suppose now that Y is a proper curve over k, not necessarily reduced. The map Pic0
Y → Pic0

Y red

is an epimorphism, and its kernel is a connected unipotent group scheme, so (1.2.1) remains
valid.

If k is merely assumed to be perfect, (1.2.1) holds as an isomorphism of Gal(k̄/k)-modules.
If Y only has double points with distinct branches, then by the homeomorphism Γ̃Y → ΓY

we obtain the formula
Hom(Glin,Gm) = H1(ΓY ,Z). (1.2.2)

1.3 The Néron model of J
In preparation for § 1.6, we review in more detail the results of Raynaud. We will follow mainly
the notation of [Ray70] (see also [BLR90], where the notation is slightly different).

We consider a proper flat morphism X → S = SpecR, satisfying the following hypotheses
(H1)–(H3).

(H1) The generic fibre X := XF is a smooth geometrically connected curve over F (in particular,
Γ(X ,OX ) = R).

(H2) The scheme X is regular.

Let the irreducible components of Xs be indexed by the set C, and for j ∈ C, let Xj ⊂ Xs
be the scheme-theoretic closure of the corresponding maximal point of Xs, δj = pnjdj its total
multiplicity (§ 1.2), and Yj = X red

j . Define δ = gcd{δj}, d = gcd{dj}.
(H3) We have (δ, p) = 1.

Hypotheses (H1) and (H2) imply that Raynaud’s condition (N)∗ is satisfied [Ray70, (6.1.4)].
Hypothesis (H1) is not particularly restrictive, since one may always reduce to this case using
Stein factorization. In the presence of hypotheses (H1) and (H2), hypothesis (H3) implies that
X/S is cohomologically flat (equivalently, that Γ(Xs,OXs) = k), by [Ray70, (7.2.1)].

Let J = Pic0
X/F be the Jacobian variety of X, and let J be the Néron model of J .

The relative Picard functor P = PicX/S is the sheafification (for the fppf topology) of the
functor on the category of S-schemes

S′ �→ Pic(X ×S S
′).

There is a morphism of abelian sheaves deg : P → Z which takes a line bundle to its total degree
along the fibres, and P ′ ⊂ P denotes its kernel. By [Ray70, (5.2) and (2.3.2)], P and P ′ are
formally smooth algebraic spaces over S, and the closure E ⊂ P of the zero section is an étale
algebraic space over S, contained in P ′. The maximal separated quotient Q = P/E is a smooth
separated S-group scheme, and the subgroup Q′ = P ′/E is the closure in Q of the identity
component Q0 (proof of [Ray70, (8.1.2)(iii)]). One also has the subgroup Qτ ⊂ Q, which is the
inverse image of the torsion subgroup of Q/Q0. As X is regular, condition d) of [Ray70, (8.1.2)]
holds, and so Qτ is closed in Q. By definition deg(Qτ ) = 0, and therefore Q′ = Qτ . Therefore,
[Ray70, (8.1.2) and (8.1.4)(b)] imply that J = Q′ = P ′/E.
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(If hypothesis (H3) is not satisfied, then P is in general not representable, but it still has a
maximal separated quotient Q which is a smooth separated S-group scheme [Ray70, (4.1.1)]. If
moreover k is perfect, then Q′ again equals J (see [Ray70, (8.1.4)(a)]).)

Let P 0
s be the identity component of Ps. We have P 0

s = Pic0
Xs/k

, the identity component of
the Picard scheme of Xs. By [Ray70, (6.4.1)(3)], the intersection P 0

s ∩ Es is a constant group
scheme over k, cyclic of order d, generated by the class of the line bundle L′ = O(

∑
j(dj/d)Yj).

(Because X is regular, the integers d and d′ (see [Ray70, (6.1.11)(3)]) are equal.) Therefore, J 0
s

is canonically isomorphic to Pic0
Xs/k

/〈L′〉 and, in particular, if d = 1, then J 0
s = Pic0

Xs/k
.

Suppose that k is perfect and d = 1. Combining the above with the discussion in § 2.2, we
then have an isomorphism of Gal(k̄/k)-modules

X(J) := Hom(J 0,lin
s ⊗k k̄,Gm) = H1(Γ̃Xs⊗k̄,Z).

Finally, we recall the description of the component group. First suppose that R is strictly
Henselian (k not necessarily perfect). Then [Ray70, (8.1.2)] shows that the component group
Φ(J) = Js/J 0

s is computed as follows: by the above, Φ(J) = Q′
s/Q

0
s is the cokernel of the map

Es → P ′
s/P

0
s = ker(deg : Ps/P 0

s → Z).

One has an isomorphism

Ps/P
0
s � ZC , (L ∈ Ps) �→ (degL|Yj )j .

Let D ⊂ DivX be the group of Cartier divisors supported in the special fibre, and D0 ⊂ D the
subgroup of principal divisors. By [Ray70, (6.1.3)] one has Es = D/D0. As X is regular and
R = Γ(X ,OX ), D is freely generated by the set of reduced components {Yj}, and D0 is the
subgroup generated by the divisor (�) of the special fibre. The complex of [Ray70, (8.1.2)(i)]
then becomes

0 → Z
i−→ Z[C] a−→ ZC

b−→ Z → 0 (1.3.1)

where the maps are

i(1) =
∑
j∈C

dj(j),

a(�) =
(

1
δj

degOX (Y�)|Yj

)
j∈C

=
(

1
pnj

(Yj .Y�)
)
j∈C

(� ∈ C),

b(m) =
∑
j∈C

δjmj , m = (mj) ∈ ZC , (1.3.2)

and Φ(J) = ker(b)/ im(a).
If X is semistable (meaning that Xs is smooth over k apart from double points with distinct

tangents), then both the character group and component group can be described in terms of
the reduced graph ΓXs . The character group equals the homology of ΓXs . The map a : Z[C] →
ker(b) = ZC,0 ⊂ ZC is, after identifying Z[C] with ZC , the Laplacian of the graph ΓXs , which takes
a vertex v ∈ C to

∑
(v) − (v′) ∈ Z[C]0, the sum taken over all edges joining v to an adjacent

vertex v′.
In general, we have an isomorphism of Gal(k̄/k)-modules Φ(J) = ker(b)/ im(a), where a, b

are the maps in the complex (1.3.1) for the base change X ⊗R R
sh.
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1.4 Generalized Picard schemes of singular curves
Let k be a field, and Y/k a proper curve (in the sense of § 1.2). Write k′ for the k-algebra
Γ(Y,OY ). By a generalized modulus on Y we mean a morphism of k-schemes Σ → Y , where Σ
is a finite k-scheme, flat over Spec k′.

Lemma 1.5. Let g : Σ → Y be a generalized modulus. Suppose that g(Σ) meets each connected
component of Y . Then (Σ, g) is a rigidifier1 of PicX/k, in the sense of [Ray70, (2.1.1)]

Proof. For (Σ, g) to be a rigidifier, it is necessary and sufficient that for every k-algebra A, the
map g∗ : Γ(Y ⊗k A,OY⊗A) → Γ(Σ ⊗A,OΣ⊗A) is injective. As k is a field it is enough to show
this for A = k, and this holds since by hypothesis Σ/k′ is faithfully flat. �

We define Pic(Y,Σ)/k to be the scheme classifying line bundles on Y together with a triv-
ialization of the pullback to Σ. Precisely, consider the functor F which to a k-scheme S
associates the set of equivalence classes of pairs (L, α), where L is a line bundle on Y × S
and α : OΣ×S

∼−→ (g × idS)∗L is a trivialization, and where pairs (L, α), (L′, α′) are equivalent if
there exists an isomorphism σ : L ∼−→ L′ such that α′ = g∗(σ) ◦ α.

Let Y = Y1 
 Y2 where g(Σ) is disjoint from Y2 and meets each connected component of Y1.
If Y2 = ∅, then by Lemma 1.5 we are in the situation of [Ray70, § 2], and F is a sheaf for the
fppf topology which we denote Pic(Y,Σ)/k. In general, we define Pic(Y,Σ)/k to be the sheafification
of F for the fppf topology. Obviously Pic(Y,Σ)/k = Pic(Y1,Σ)/k×k PicY2/k. Put k′ = k1 × k2 where
ki = Γ(Yi,OYi). From [Ray70] we then obtain the following.

Proposition 1.6. The functor Pic(Y,Σ)/k is represented by a smooth k-group scheme, and there
is an exact sequence of smooth group schemes

0 → H → Pic(Y,Σ)/k → PicY/k → 0, (1.4.1)

where

H = HΣ := coker
(
Rk′/k(Gm) → RΣ/k(Gm)

)
.

Proof. From (2.1.2), (2.4.1), and (2.4.3) of [Ray70] we get the representability of Pic(Y1,Σ)/k along
with an exact sequence

0 → Rk1/kGm → RΣ/kGm → Pic(Y1,Σ)/k → PicY1/k → 0

of smooth group schemes (since, in this setting, Raynaud’s Γ∗
X and Γ∗

R are just Rk1/kGm and
RΣ/kGm). By § 1.1, the quotient H is a smooth group scheme, and taking products with PicY2/k

gives the result. �
Let Pic0

(Y,Σ)/k denote the inverse image of Pic0
Y/k (classifying line bundles which are of degree

zero on every irreducible component of Y ). Then Pic0
(Y,Σ)/k is a smooth connected k-group scheme

of finite type.

Example 1.7. Suppose Y is smooth over k and absolutely irreducible, and that Σ → Y is a closed
immersion. Then the image of Σ is an effective divisor m =

∑
mi(yi) for points yi ∈ Y (k). In

this case Pic0
(Y,Σ)/k is none other than the classical [Ros54, Ser84] generalized Jacobian Jm(Y )

of Y . The isomorphism Jm(Y ) ∼−→ Pic0
(Y,Σ)/k is given on k-points by mapping the class of a divisor

D ∈ Div0(Y � Σ) to the class of the pair (OY (D), αtriv), where αtriv is the canonical trivialization
OΣ

∼−→ OY |Σ = OY (D)|Σ.

1 ‘rigidificateur’ in [Ray70]; ‘rigidificator’ in [BLR90].
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Let k be perfect. Then Pic0
(Y,Σ)/k has a maximal connected affine subgroup Pic0,lin

(Y,Σ)/k which is
a linear group, and its character group has the following combinatorial description, generalizing
§ 1.2.

First suppose that k is algebraically closed, and that Y , Σ are reduced. As in § 1.2, let
φ : Ỹ → Y be the normalization, and define A = Y sing, B = φ−1(A), C = π0(Ỹ ). Decompose
Σ = Σsing 
 Σreg, where z ∈ Σsing (respectively, Σreg) if g(z) is a singular (respectively, smooth)
point of Y . There are maps

where φ, ψ are as before, λ is the restriction of g to Σsing, and θ(z) is the component of Ỹ
containing g(z).

Define the extended graph of (Y,Σ) to be the directed graph Γ̃Y,Σ obtained by adding to the
graph Γ̃Y :

– a single vertex v0;
– for each z ∈ Σsing, an edge from v0 to the vertex λ(z) ∈ A ⊂ V (Γ̃Y );
– for each z ∈ Σreg, an edge from v0 to the vertex θ(z) ∈ C ⊂ V (Γ̃Y ).

If Y only has double points and Σ = Σreg, then we may likewise define the reduced graph ΓY,Σ,
which is the undirected graph obtained by adding to ΓY a single vertex v0 and, for each z ∈ Σ,
an edge joining v0 to θ(z) ∈ C = V (ΓY ). As before, the geometric realizations of Γ̃Y,Σ and ΓY,Σ
are canonically homeomorphic.

For arbitrary perfect k and proper curve Y , we define Γ̃Y,Σ, ΓY,Σ to be the graphs attached
to the curve with modulus (Y red ⊗ k̄,Σred ⊗ k̄), which are graphs with a continuous action of
Gal(k̄/k).

Proposition 1.8.

(a) The character group Hom(Pic0,lin
(Y,Σ)/k,Gm) is canonically isomorphic, as a Gal(k̄/k)-module,

to H1(Γ̃Y,Σ,Z).
(b) If Y red has only double points, then Hom(Pic0,lin

(Y,Σ)/k,Gm) � H1(ΓY,Σ,Z).

Proof. We may assume that k is algebraically closed; the Galois equivariance of the isomorphisms
will be clear from the construction. By the homeomorphism between the extended and reduced
graphs, it suffices to prove part (a).

The map gred : Σred → Y red is a reduced modulus, and the obvious morphism induced by
pullback

Pic0
(Y,Σ)/k → Pic0

(Y red,Σred)/k

has unipotent kernel, since the same is true for the maps RΣ/kGm → RΣred/kGm and Pic0
Y/k →

Pic0
Y red/k. Thus, the character group of Pic0,lin

(Y,Σ)/k is unchanged by passing to reduced sub-
schemes; hence, we may assume that both Y and Σ are reduced. Next, let Y ′ → Y be the
seminormalization. Then as Σ is reduced, Σ → Y factors uniquely through Y ′, and the resulting
map

Pic0
(Y,Σ)/k → Pic0

(Y ′,Σ)/k
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has unipotent kernel. Therefore, we may assume in addition that Y is seminormal. Finally,
normalization induces an exact sequence

0 → G→ Pic0
(Y,Σ)/k

φ∗−→ Pic0
Ỹ /k

→ 0 (1.4.2)

where G classifies equivalence classes of pairs (L, β), where L is a line bundle on Y whose pullback
to Ỹ is trivial, and β is a trivialization of the pullback of L to Σ. There is a surjective map

GB
m × GΣsing

m × GΣreg

m → G (1.4.3)

given as follows: a tuple

((ax)x∈B, (bz)z∈Σsing , (cz)z∈Σreg) ∈ (GB
m × GΣsing

m × GΣreg

m )(k)

determines:

(i) for every y ∈ A, and any x, x′ ∈ φ−1(y), isomorphisms a−1
x ax′ : x∗OỸ = k

∼−→ k = x′∗OỸ
satisfying the cocycle condition and, thus, a descent of OỸ to a line bundle L on Y ;

(ii) for every z ∈ Σsing, and every x ∈ φ−1(g(z)), a trivialization bza
−1
x : k ∼−→ k = x∗OỸ ; these

trivializations are compatible with the descent data (i) and therefore give trivializations
k

∼−→ z∗L for every z ∈ Σsing;
(iii) for every z ∈ Σreg, a trivialization k ∼−→ z∗L = k given by multiplication by cz.

What is the kernel of the map (1.4.3)? Fix y ∈ A. Then multiplying ax, for x ∈ φ−1(y), and
bz, for z ∈ Σsing such that g(z) = y, by a common element of k× does not change the descent
data (i) or the trivialization (ii), so we obtain the same (L, β). The equivalence relation on pairs
is realized by the automorphism group GC

m of φ∗L = OỸ , which acts on tuples by

(dj)j∈C : ((ax)x∈B, (bz)z∈Σsing , (cx)x∈Σreg) �→ ((dψ(x)ax), (bz), (dθ(z)cz)).

Therefore, G is the torus whose character group is the kernel of the map

Z[B] ⊕ Z[Σsing] ⊕ Z[Σreg] → Z[C] ⊕ Z[A] (1.4.4)

with matrix [
ψ 0 θ
φ λ 0

]
.

The homology complex of Γ̃Y,Σ is

Z[B] ⊕ Z[Σsing] ⊕ Z[Σreg] → Z[C] ⊕ Z[A] ⊕ Z (1.4.5)

with differential given by the matrix ⎡⎣ ψ 0 θ
−φ λ 0
0 −ε −ε

⎤⎦ ,
where ε : Z[Σ?] → Z is the augmentation z �→ 1, for z ∈ Σ?, ? ∈ {reg, sing}. There is an obvi-
ous map from the complex (1.4.5) to the complex (1.4.4) which induces an isomorphism on
kernels. Since G is by (1.4.2) the maximal multiplicative quotient of Pic0,lin

(Y,Σ)/k, this gives the
isomorphism (a). The construction is Galois equivariant by transport of structure. �

1.5 Functoriality I
Let g : Σ → Y , g′ : Σ′ → Y ′ be generalized moduli on proper curves over k as in the
previous section, and suppose we have finite morphisms f , fΣ fitting into the following
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commutative diagram.

(1.5.1)

Then there is an associated pullback morphism

(f, fΣ)∗ : Pic(Y,Σ)/k → Pic(Y ′,Σ′)/k

taking a pair (L, α : OΣ
∼−→ g∗L) to the pair(

f∗L, f∗Σα : OΣ′
∼−→ f∗Σg

∗L = g′∗(f∗L)
)
,

which we will simply denote by f∗ if no confusion can arise.
To define pushforward, consider the following commutative diagram.

We assume that f is flat, and that h is a closed immersion whose ideal sheaf I is nilpotent and
satisfies

NΣ×Y Y ′/Σ(1 + I) = {1}. (1.5.2)

We may then define a morphism f∗ = (f,Σ)∗ : Pic(Y ′,Σ′)/k → Pic(Y,Σ)/k by f∗ : (L′, α′) �→ (L, α),
where L = Nf (L′), the norm of L′ (see [Gro61, 6.5]) and α is given as follows: if I = 0 is zero,
then (1.5.1) is Cartesian, and α is the composite

α : OΣ
∼−−−−→

Nf (α′)
Nf (g′∗L′) ∼−→ g∗L

(the second isomorphism given by [Gro61, (6.5.8)]). In general, α′ : OΣ′
∼−→ g′∗L′ can at least

locally be extended to an isomorphism α′′ : OΣ×Y Y ′
∼−→ pr∗2L′, well-defined up to local sections of

1 + I. Taking norms, we then get a well-defined global isomorphism α = NΣ×Y Y ′/Σ(α′′) : OΣ
∼−→

g∗L.
The maps f∗, f∗ preserve Pic0 in all cases.

Example 1.9. Suppose that Y , Y ′ are smooth over k and absolutely irreducible, and that Σ ⊂ Y ,
Σ′ ⊂ Y ′ are closed subschemes defined by reduced moduli m, m′. Let Jm = Pic0

(Y,Σ)/k, J
′
m′ =

Pic0
(Y ′,Σ′)/k, be the associated generalized Jacobians. Let f : Y ′ → Y be a finite morphism with

f−1(Σ)red = Σ′. Then (1.5.2) holds and, therefore, we get morphisms

f∗ : Jm → J ′
m′ , f∗ : J ′

m′ → Jm.

If f ′ : Y ′ → Y is another finite morphism with f ′−1(Σ) ⊃ Σ′, then we get an induced endo-
morphism f∗f ′∗ : Jm → Jm, compatible with the usual correspondence action on J (pullback
along f ′ followed by norm with respect to f). For later reference, we will say that the modulus
m is stable under the correspondence f∗f ′∗.

Returning to the general case, assume that k is algebraically closed, that f is flat and that
(1.5.2) holds. Write

X = Hom(Pic0,lin
(Y,Σ)/k,Gm), X′ = Hom(Pic0,lin

(Y ′,Σ′)/k,Gm)
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for the character groups of the linear parts of the generalized Picard schemes. Then f∗, f∗ induce
by functoriality homomorphisms

X(f∗) : X′ → X, X(f∗) : X → X′. (1.5.3)

By Proposition 1.8 and (1.4.4) we have canonical isomorphisms

X = ker
( [

ψ 0 θ
φ λ 0

]
: Z[B] ⊕ Z[Σsing] ⊕ Z[Σreg] → Z[C] ⊕ Z[A]

)
= H1(Γ̃Y,Σ,Z),

where A = (Y red)sing, B = φ−1(A), C = π0(Ỹ ), and similarly for X′. We now describe the maps
(1.5.3) combinatorially, under further hypotheses. Let A′, B′, C ′ denote the corresponding sets
for Y ′, and assume the following.

Hypotheses 1.10.

(i) f−1(A) = A′, and f is étale at each point of A′;
(ii) Σsing = ∅ = Σ′sing, and Σ, Σ′ are reduced;
(iii) Σ′ = f−1(Σ)red.

Hypotheses 1.10(ii) and (iii) together imply that (1.5.2) is satisfied. Then f induces maps
A′ → A, B′ → B, C ′ → C which we also denote by f . The diagram

(1.5.4)

commutes, and so we have the following commutative square.

(1.5.5)

Proposition 1.11. Assume Hypotheses 1.10. The homomorphism X(f∗) is induced by the
vertical maps in (1.5.5).

Proof. We first observe that we may assume that Y and Y ′ are reduced and seminormal. Indeed,
the description of the character groups X and X′ is unchanged after replacing the curves by their
seminormalizations. It remains to verify that the induced map on seminormalizations f sn : Y ′sn →
Y sn is flat. But Y sn �A = Y red �A is smooth, and so the restriction of f sn to Y ′sn �A′ is
automatically flat. By hypothesis, there is a neighbourhood U ⊂ Y of A such that f : U ′ :=
f−1(U) → U is étale. Then by [GT80, Proposition 5.1], we have a Cartesian square

and, in particular, f sn restricted to U ′sn is étale.
We now compute the dual map f∗ : Pic0,lin

(Y,Σ)/k → Pic0,lin
(Y ′,Σ′)/k which is a morphism of tori

(since we are assuming that Y and Y ′ are seminormal and Σ, Σ′ are reduced). As explained in
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§ 1.4, a k-point of Pic0,lin
(Y,Σ)/k is represented by a pair ((ax)x∈B, (cz)z∈Σ) ∈ (k×)B × (k×)Σ, where

(ax) determines descent data for O
Ỹ

with respect to the normalization morphism φ : Ỹ → Y ,
and (cz) determines trivializations ×cz : k ∼−→ k = z∗O

Ỹ
which descend to a rigidification along

Σ of the descended line bundle.
Let a′x′ = af(x′) (x′ ∈ B′) and c′z′ = cf(z′) (z′ ∈ Σ′). Then if (L, α) ∈ Pic0,lin

(Y,Σ)/k(k) is repre-
sented by the pair ((ax), (cz)), the pullback f∗(L, α) is represented by ((a′x′), (c

′
z′)). The obvious

map

AutO
Ỹ

= (k×)C → AutO
Ỹ ′ = (k×)C

′

is induced by f : C ′ → C and, therefore, X(f∗) is induced by the vertical maps f in (1.5.5) as
required. �

We now compute X(f∗) assuming Hypotheses 1.10. Let

f∗ :

⎧⎪⎨⎪⎩
Z[Σ] → Z[Σ′]
Z[A] → Z[A′]
Z[B] → Z[B′]

be the inverse image maps on divisors. By Hypothesis 1.10(i), this means that if x ∈ A or x ∈ B,
then f∗ : (x) �→

∑
f(x′)=x(x

′), and if z ∈ Σ, then

f∗ : (z) �→
∑

f(z′)=z

rz′/z(z
′)

where rz′/z is the ramification degree of f at z′. Finally, define f∗ : Z[C] → Z[C ′] by

f∗ : (Z) �→
∑

f(Z′)=Z

[κ(Z ′) : κ(Z)] (Z ′),

where Z ⊂ Ỹ , Z ′ ⊂ Ỹ ′ are connected components. These maps fit into the following diagram.

(1.5.6)

Proposition 1.12. Assume Hypotheses 1.10. The diagram (1.5.6) commutes, and the vertical
maps induce the homomorphism X(f∗) : X → X′.

Proof. As in Proposition 1.11, we may assume that Y and Y ′ are seminormal. Consider again
the dual map of tori f∗ : Pic0,lin

(Y ′,Σ′)/k → Pic0,lin
(Y,Σ)/k. Let (L′, α′) ∈ Pic0,lin

(Y ′,Σ′)/k(k), represented by

the pair ((a′x′)x′∈B′ , (c′z′)z′∈Σ′). Since f is étale at B′, the normalized map f̃ : Ỹ ′ → Ỹ induces a
norm homomorphism

Nf̃ : Γ(φ′−1(Y ′sing),O×) = (k×)B
′ → Γ(φ−1(Y sing),O×) = (k×)B,

which equals the homomorphism f! : (k×)B
′ → (k×)B given by

f! : (a′x′)x′∈B′ �→ (ax)x∈B, ax =
∏

f(x′)=x

a′x′ .
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The analogous statement holds for

Nf : Γ(Y ′sing,O×) = (k×)A
′ → Γ(Y sing,O×) = (k×)A.

Since f is étale at A′, the square

is Cartesian and, therefore,

φ∗ ◦ f! = f! ◦ φ′∗ : (k×)B
′ → (k×)A.

Next, we consider the rigidification α′ : OΣ′
∼−→ g′∗L = g′∗O

Ỹ
= OΣ′ given by multiplication by

(c′z′) ∈ (k×)Σ
′
. Let Σ′′ = f−1(Σ) be the scheme-theoretic inverse image of Σ. Then Σ′′ =

∐
z′∈Σ′ z̃′

say, where z̃′ � Spec k[t]/(trz′/z). According to the discussion preceding Example 1.9, to compute
f∗(L′, α′) we need to extend α′ to a rigidification

α′′ : OΣ′′
∼−→ L′|Σ′′ = OΣ′′

and we may as well take α′′ to be the sum of the maps Oz̃′
∼−→ Oz̃′ given by multiplication

by c′z′ . Then N (α′′) : OΣ
∼−→ OΣ is multiplication by (cz) = f̂!(c′z′), where f̂! : (k×)Σ

′ → (k×)Σ is
the map

f̂! : (c′z′) �→ (cz), cz =
∏

f(z′)=z

(c′z′)
rz′/z

whose dual is the map f∗ : Z[Σ′] → Z[Σ] defined above.
Finally, we need to compute the action of AutO

Ỹ ′ = (k×)C
′
. From § 1.4 we know that

d′ ∈ (k×)C
′
maps ((a′x′)x′∈B′ , (c′z′)z′∈Σ′) to ((d′ψ′(x′)a

′
x′), (d

′
θ′(z′)c

′
z′)), which under the norm maps

to (( ∏
f̃(x′)=x

d′ψ′(x′)a
′
x′

)
x∈B

,

( ∏
f̃(z′)=z

(d′θ′(z′)c
′
z′)

rz′/z

)
z∈Σ

)
. (1.5.7)

Let x ∈ B be fixed. Then if Z = ψ(x) ∈ C is the component containing x, and Z ′ ∈ C ′ is a
component of Ỹ ′ lying over Z, the set f−1(x) ∩ Z ′ has cardinality [κ(Z ′) : κ(Z)], since f is étale
at f−1(x). Therefore, ∏

f̃(x′)=x

d′ψ′(x′) =
∏
Z′∈C′

f(Z′)=ψ(x)

(d′Z′)[κ(Z
′):κ(Z)].

Similarly, let z ∈ Σ be fixed, and Z = θ(z) ∈ C the component of Ỹ containing it. Then if Z ′ ∈ C ′

is a component of Ỹ ′ lying over Z, ∑
z′∈f−1(z)∩Z′

rz′/z = [κ(Z ′) : κ(Z)]

and, therefore, ∏
f̃(z′)=z

(d′θ′(z′))
rz′/z =

∏
Z′∈C′

f(Z′)=θ(z)

(d′Z′)[κ(Z
′):κ(Z)].

In other words, the pair (1.5.7) equals

(dψ(x)(f!a
′)x, dθ(Z)(f̂!c

′)Z),
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where
dZ =

∏
Z′∈C′
f(Z′)=Z

(d′Z′)[κ(Z
′):κ(Z)].

The dual of this map d′ �→ d is therefore the homomorphism f∗ : Z[C] → Z[C ′] defined above. �

1.6 Generalized Jacobians over discrete valuation rings
We resume the notations and hypotheses of § 1.3. Let (xi)i∈I be a nonempty finite family of
distinct closed points of X, whose residue fields Fi are separable over F . Let m =

∑
i∈I(xi) be

the associated modulus on X, and let Jm = Pic0
(X,m)/F be the generalized Jacobian of X with

respect to m. The semiabelian variety Jm is an extension of J by the torus

Tm =
( ∏
i∈I

RFi/FGm

)
/Gm.

Write Jm for the Néron model of Jm.
Let Ri be the integral closure of R in Fi. Then the inclusion of the points (xi) in X extends

to a unique morphism

Σ :=
∐
i∈I

SpecRi
g−→ X .

As Γ(Xs,OXs) = k, the special fibre gs : Σs → Xs is a generalized modulus, in the sense of the
previous section. By Proposition 1.4(b) the Néron model Tm of Tm equals (RΣ/SGm)/Gm, and its
identity subgroup is T 0

m = (RΣ/SGm)/Gm.

Lemma 1.13. The pair (Σ, g) is a rigidifier [Ray70, (2.1.1)] of PicX/S .

Proof. Let S′ be any S-scheme. Since X/S is cohomologically flat and Σ is flat over S, we have

Γ(X ×S S
′,OX×SS′) = Γ(S′,OS′) and

Γ(Σ ×S S
′,OΣ×SS′) = Γ(Σ,OΣ) ⊗R Γ(S′,OS′).

As Σ is nonempty, R→ Γ(Σ,OΣ) is a split injection of R-modules, and therefore Γ(X ×S

S′,OX×SS′) → Γ(Σ ×S S
′,OΣ×SS′) is injective. �

Let PΣ denote the rigidified Picard functor of [Ray70, (2.1)]: for any S-scheme S′, PΣ(S′)
is the group of equivalence classes of pairs (L, α), where L is a line bundle on X ×S S

′, and
α : OΣ×SS′

∼−→ (g × idS′)∗L is a trivialization. Pairs (L, α) and (L′, α′) are equivalent if there
exists an isomorphism σ : L ∼−→ L′ such that α′ = (g × idS′)∗(σ) ◦ α. By [Ray70, (2.3.1–2)], PΣ is
a smooth algebraic space in groups over S, and we have an exact sequence of algebraic spaces
in groups [Ray70, (2.4.1)]

0 → T 0
m = RΣ/SGm/Gm → PΣ

r−→ P → 0,

where r is the ‘forget the rigidification’ functor. (Since X/S is cohomologically flat and f∗OX =
OS , one has Γ∗

X = Gm.) If S is strictly Henselian, PΣ is a scheme; indeed, P is a scheme, and
T 0

m is affine, so by flat descent for affine schemes [Stacks, tag 0245], the T 0
m-torsor PΣ over P is

representable.
Define the sheaf Pm to be the following pushout of fppf sheaves.

(1.6.1)
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Explicitly, Pm is the sheafification of the functor on S-schemes

S′ �→ T 0
m(S′)\(PΣ(S′) × Tm(S′)), (1.6.2)

where T 0
m(S′) acts on the product by a(b, c) = (ab, a−1c).

Proposition 1.14. The sheaf Pm is a smooth algebraic space in groups over S. If S is strictly
Henselian, Pm is represented by a smooth S-group scheme.

Proof. We have an exact sequence 0 → T 0
m → Tm

π−→ s∗Φ(T ) → 0 of S-group schemes. For h ∈
Φ(T ) = (s∗Φ(T ))(S), let Uh = π−1(h), an affine open subscheme of Tm. Then Tm is the union
of the Uh, glued along their generic fibres. If ĥ ∈ Tm(S) = T (F ) is any lift of h, then Uh is the
translate of T 0

m by ĥ. Therefore, Pm is the union of copies of PΣ indexed by Φ(T ), glued along
their generic fibres by the isomorphism given by translation by ĥ ∈ PΣ(F ), and the result follows
from the corresponding statement for PΣ. �

This result implies that Pm is determined by its restriction to (Sm/S), the category of
essentially smooth S-schemes. We can describe this functor explicitly. Let F∗ be the functor on
(Sm/S) whose value on S′ is the group of equivalence classes of pairs (L, β = (βi)i∈I), where L is
a line bundle on X ×S S

′ and for each i ∈ I, βi : OS′ ⊗R Fi
∼−→ (xi × idS′)∗L is a trivialization of

L at xi ×S S
′. Pairs (L, β) and (L′, β′) are equivalent if there exists an isomorphism σ : L ∼−→ L′

and some u ∈ O×(S′ ⊗R F ) such that for every i the following diagram commutes.

(1.6.3)

Note that u is uniquely determined by σ. If S′ ∈ (Sm/S) is actually an F -scheme, then giving a
pair (u, σ) is the same as giving an isomorphism (L, β) ∼−→ (L′, β′), since we can absorb u into σ
and, therefore, the restrictions of F∗ and PΣ to (Sm/F ) are equal.

Theorem 1.15. The restriction of Pm to (Sm/S)ét is the sheafification for the étale topology
of the presheaf F∗.

Proof. We have an exact sequence of fppf sheaves

0 → Gm
diag−−→ RΣ/SGm × Gm

ψ−→ PΣ ×RΣ/SGm,

where the map ψ on S′-valued points is given by

ψ : (a, b) �→ ((OX×SS′ , a · idOΣ×S′ ), a
−1b) ∈ PΣ(S′) × Gm(Σ ×S S

′).

By definition, Pm is the cokernel of ψ in the category of fppf sheaves. As the coimage of ψ is
a smooth S-group scheme, Pm is also the cokernel of ψ in the category of étale sheaves. Let
S′ ∈ (Sm/S) and consider the map

φS′ : PΣ(S′) ×RΣ/SGm(S′) = PΣ(S′) × Gm(ΣF ×S S
′) → F∗(S′)

given as follows: let (L, α) represent an element of PΣ(S′) and v ∈ Gm(ΣF ×S S
′). We map the

pair ((L, α), v) to the equivalence class of (L, β), where β = α⊗ v : OΣ×S′⊗F
∼−→ (g × idS′⊗F )∗L.

It is easy to see that this is well-defined and functorial, and that the resulting sequence of
presheaves on (Sm/S)

RΣ/SGm × Gm
ψ−→ PΣ ×RΣ/SGm

φ−→ F∗

is exact. Moreover, for any (L, β) ∈ F∗(S′), there exists a Zariski cover S′′ → S′ such that
(L, β)|S′′ is in the image of φS′′ . The result follows. �
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Let Em denote the closure in Pm of the zero section. It is contained in

P ′
m = ker(deg : Pm → P → Z).

Theorem 1.16.

(a) The map r′ (1.6.1) induces an isomorphism Em
∼−→ E.

(b) The quotient P ′
m/Em is represented by the Néron model Jm of Jm.

(c) There is an exact sequence of Néron models

0 → Tm → Jm → J → 0.

(d) Assume that S is strictly Henselian. Then there is a canonical isomorphism

Pm,s/P
0
m,s

∼−→ ZC ⊕ ZI/eZ,

where e = (ei) : Z → ZI is as in Proposition 1.4.

The analogue of assertion (a) need not hold for PΣ: see Example 1.17 after the proof.

Proof. (a) By [Ray70, (3.3.5)] and Proposition 1.14, Em is an étale algebraic space in groups
over S. We may therefore compute it by restriction to (Sm/S)ét, using the description of
Theorem 1.15, and we may also assume that S is strictly Henselian. In this case, from § 1.3
we have that E(S) is generated by the classes of the line bundles OX (Yj). Let βtriv = (βtriv,i) be
the trivial rigidification of the generic fibre OX (Yj)F = OX at (xi). Then Em is generated by the
equivalence classes of pairs (OX (Yj), βtriv), and therefore Em � E.

(b),(c) We now have an exact sequence

0 → Tm → P ′
m/Em → P ′/E → 0

of smooth separated S-algebraic spaces in groups, which are therefore separated S-group schemes
[Ray70, (3.3.1)], whose generic fibre is the sequence 0 → Tm → Jm → J → 0. As Tm and P ′/E
are the Néron models of T and J , the result follows from Proposition 1.3.

(d) From § 1.1, Tm,s/T 0
m,s � coker(e : Z → ZI). We then have a commutative diagram of

étale sheaves on (Sm/S)

whose rows are exact (since π0 is right exact). For S′/S smooth, and (L, β = (βi)) representing
an element of F∗(S′), βi(1) is a rational section of (gi × idS′)∗L so has a well-defined order along
the special fibre ordL βi(1) ∈ Γ(S′, s∗Z). If (L′, β′) is equivalent to (L, β), then (ordL β′i(1) −
ordL′ βi(1))i ∈ Γ(S′, s∗(eZ)), which gives a splitting of the bottom row in the diagram (which is,
therefore, also exact on the left). �
Example 1.17. Let us work out the simplest nontrivial example: assume that char(F ) 
= 2, and let
X be the closed subscheme of P2

R given by the equation T1T2 = �T 2
0 . Then X = XF is a smooth

conic, split over F , and Xs is the line pair T1T2 = 0. Hypotheses (H1)–(H3) of § 1.3 are all
satisfied. Let x0, x1 ∈ X(F ) = X (S) be distinct points. Let Xs = Y ∪ Y ′, where the components
are labelled in such a way that x0 meets Y ′. We consider the generalized Jacobian Jm with
m = (x0) + (x1). The relative Picard space P = PicX/S is a scheme, and is the union of its
sections over S. We have P (F ) = Z, generated by the class of OX (x0), and P (R) = Ps(k) = Z2,
generated by the classes of OX (Y ) � OX (−Y ′) and OX (x0). The restriction map P (S) → P (F )
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is the second projection Z2 → Z, and equals the degree map. Therefore, P ′ = E is the ‘skyscraper
scheme’ s∗Z, obtained by gluing copies of S indexed by Z along their generic points, and P ′(S)
is generated by the class of OX (Y ).

There is an isomorphism Gm
∼−→ Jm = P ′

Σ ⊗ F , which on F -points takes a ∈ F× to the equiv-
alence class of the pair (OX , α = (α0, α1)), where αi : F → x∗iOX = F is the identity for i = 0
and multiplication by a for i = 1. As x0 does not meet Y we also have x∗0OX (Y ) = OS . We now
have two cases.

– If x1 meets Y ′, then x∗1OX (Y ) = OS as well. Thus, there is a canonical rigidification (αi)
of OX (Y ) along Σ, for which each αi is the identity map on OS . Therefore, PΣ � Gm × P
splits (and is not separated); likewise, P ′

Σ � Gm × s∗Z. The pushout P ′
m is simply the product

Gm × s∗Z.
– If x1 meets Y , then x∗1OX (Y ) = OS(s) = �−1OS . Thus, there is a bijection Z ×R× ∼−→ P ′

Σ(S)
which takes (n, a) to the line bundle OX (nY ) with rigidification α0 = id, α1(1) = �−n. Its
composition with restriction to the generic fibre is the bijection Z ×R× → PΣ(F ) = F× given
by (n, a) �→ �−1a. Therefore, P ′

Σ is separated, and is isomorphic to the Néron model Gm. The
pushout P ′

m is then the tautological splitting of the extension Gm → Gm → s∗Z after pushing
out through Gm → Gm, so is isomorphic to Gm × s∗Z in this case as well.

We return to the general case. From § 1.3, P 0
s ∩ Es is finite constant and cyclic of order d,

generated by the class of the line bundle L′. Therefore, P 0
m,s ∩ Em,s is finite constant and cyclic

of order dividing d. Applying the results of § 1.4, we obtain the following.

Corollary 1.18. Assume that d = 1. Then:

(a) J 0
m,s = Pic0

(Xs,Σs)/k
;

(b) if k is perfect, there is a canonical isomorphism of Gal(k̄/k)-modules

Hom(J 0,lin
m,s ⊗k k̄,Gm) = H1(Γ̃Xs̄,Σs̄ ,Z)

where the graph Γ̃Xs̄,Σs̄ is as in § 1.4.

Finally, we compute the component group Φ(Jm).

Theorem 1.19. Suppose that R is strictly Henselian. Then Φ(Jm) is canonically isomorphic to
the homology of the complex

Z[C]
(a,h)−−−→ ZC ⊕ ZI/eZ

b⊕0−−→ Z, (1.6.4)

where a and b are as in (1.3.2), and h : Z[C] → ZI/eZ is induced by the map

C × I → Z

(j, i) �→ hij := ordOX (Yj) βtriv,i(1).

(Equivalently, hij is the degree of the divisor g∗i Yj on SpecRi.)

Proof. By Theorem 1.16, Φ(Jm) is the group of connected components of the quotient P ′
m,s/Em,s,

hence is the homology of the complex Em(k) → π0(Pm,s)
deg−−→ Z. By Theorem 1.16(d), we may

rewrite this complex as (1.6.4). What remains is to identify the map h. By the proof of
Theorem 1.16(a), Em(k) is generated by the equivalence class of pairs (OX (Yj), βtriv), and the
proof of Theorem 1.16(d) then gives the desired formula for h. �

For general S we have Σ ×S S
sh =

∐
ĩ∈Ĩ Sĩ, where Sĩ is the spectrum of a discrete valuation

ring finite over Rsh. Let C̃ be the set of irreducible components of X ⊗ ksep. Then Gal(F sep/F )
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acts on Ĩ and C̃ through its quotient Gal(ksep/k), and the above gives a Gal(ksep/k)-equivariant
isomorphism between Φ(Jm) and the homology of the complex

Z[C̃]
(a,h)−−−→ ZC̃ ⊕ ZĨ/eZ

b⊕0−−→ Z (1.6.5)

attached to X ×S S
sh.

In the semistable case we can describe both the character and component groups in terms
of the reduced extended graph.

Corollary 1.20. Suppose that X ⊗Rsh is semistable and I = Ireg. Then we have the
following.

(a) If k is perfect, there is a canonical isomorphism of Gal(k̄/k)-modules

Hom(J 0,lin
m,s ⊗k k̄,Gm) = H1(ΓXs̄,Σs̄ ,Z),

where the reduced extended graph ΓXs̄,Σs̄ is as in § 1.4.
(b) Assume that R is strictly Henselian. There is a canonical isomorphism

Φ(Jm) = coker
(
(�, θ∗) : Z[C] → Z[C]0 ⊕ ZI

)
,

where � is the Laplacian of the reduced graph ΓXs , and θ : I → C is the map from § 1.4.

Note that θ depends only on the labelled graph (ΓXs,Σs , v0). The hypothesis I = Ireg is
satisfied if, for example, {xi} ⊂ X(F sh).

Proof. Part (a) follows immediately from Corollary 1.18(b) and the fact that the geometric
realizations of ΓXs,Σs and Γ̃Xs,Σs are homeomorphic. For part (b), it is enough to observe that
(�, θ∗) maps 1 ∈ Z[C] to (0, 1) ∈ Z[C]0 ⊕ ZI , and so the result follows from Theorem 1.19. �

1.7 Description via Néron models of 1-motives [Suz35]
An alternative approach to the determination of the component group Φ(Jm) is via duality and
the theory of Néron models of 1-motives developed in [Suz19]. We recall some of the notions and
results of that paper. Recall that a 1-motive over F is a two-term complex of group schemes
over F ,

M = [L
f−→ G],

where L is étale, free and finitely generated (i.e. L⊗F F
sep � Zr), and G/F is a semiabelian

variety. Let T ⊂ G be its toric part, and A = G/T the abelian variety quotient. We assume
here that L and T split over an extension of F in which R is unramified. Then L extends to
a local system Λ on S. Let G be the Néron model of G. By the Néron property, f extends to
a morphism fS : Λ → G of S-group schemes and, by definition, the Néron model of M is the
complex of S-group schemes

M = [Λ
fS−→ G].

Its component complex is the complex of Gal(ksep/k)-modules

Φ(M) = [Λs̄ → Φ(G)]

in degrees −1 and 0. (In [Suz19] this complex is denoted by P(M).)
Let M ′ be the 1-motive dual to M , so that

M ′ = [L′ f ′−→ G′],
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where L′ = Hom(T,Gm) is the character group of T , and G′ is an extension T ′ → G′ → A′, where
A′ is the dual abelian variety of A, and T ′ is the torus with character group L. Then [Suz19,
Theorem B] shows that if either:

(i) A has semistable reduction; or
(ii) k is perfect;

there is a canonical isomorphism, in the derived category of Gal(ksep/k)-modules, between Φ(M ′)
and RHom(Φ(M),Z)[1].

Now let X/S be as in § 1.6. We will assume that R is strictly Henselian. Suppose that all nj
are zero (which holds, for example, if k is perfect), that δ = 1, and that the points (xi)i∈I are
all F -rational.

Since J is autodual, the dual 1-motive to Jm is the 1-motive

M = [Z[I]0 → J ], i �→ OX(xi)

whose component complex Φ(M) is the complex [Z[I]0 → Φ(J)] of abelian groups, concentrated
in degrees −1 and 0. Using the description (1.3.1) of Φ(J), this is isomorphic to the complex
[Z[I]0 → ZC,0/a(ZC)].

As δ = 1, by [Ray70, (8.1.2)] the complex (1.3.1) has only one nonzero homology group,
namely ker(b)/ im(a) = Φ(J), and the map a is given by the intersection pairing on the
components of the special fibre. Therefore Φ(M) is quasi-isomorphic to the following complex.

(1.7.1)

Here th : Z[I]0 → ZC is the transpose of h, and the term ZC is in degree 0. The dual of (1.7.1)
is the following complex.

The assumption nj = 0 ensures that a is symmetric, and that i and b are transposes of one
another, by (1.3.2). Assuming that one of assumptions (i) or (ii) above holds, we then recover
the description of Φ(Jm) as the homology of (1.6.4).

1.8 Functoriality II
We will need to understand the action of correspondences on generalized Jacobians and their
Néron models.

Suppose that we have two smooth geometrically connected curves X, X ′ over F , with regular
models X , X ′ satisfying the hypotheses of § 1.3. Let m =

∑
i∈I(xi), m′ =

∑
j∈I′(x

′
j), be nonzero

moduli on X, X ′. As in § 1.6 we assume that the points xi, x′j are distinct, and that their residue
fields

Fi = κ(xi), F ′
j = κ(x′j)

are separable over F . Let Ri, R′
j denote the integral closures of R in Fi, F ′

j , and Σ =
∐
i∈I SpecRi,

Σ′ =
∐
j∈I′ SpecR′

j . Let Jm, J ′
m′ be the associated generalized Jacobians.

Let f : X ′ → X be a finite morphism such that f−1(ΣF ) = Σ′
F as sets. We write f : I ′ → I

also for the induced surjective map on index sets. For j ∈ I ′, denote by rj the ramification degree
of f at x′j .

The discussion in § 1.5 applies, and since f∗, f∗ preserve line bundles of degree zero, we
obtain morphisms

f∗ : Jm → J ′
m′ , f∗ : J ′

m′ → Jm.
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By the universal Néron property, they extend uniquely to morphisms f∗, f∗ of the Néron models
Jm, J ′

m′ . Let the induced homomorphisms of character groups be X(f∗), X(f∗) and of component
groups Φ(f∗), Φ(f∗). In the next section we will need to know explicitly the restriction of these
maps to the tori Tm, T ′

m′ . For parts (a) and (b) below, recall that we have a canonical isomorphism

Hom(Tm ⊗ F sep,Gm) ∼−→ Z[Σ(F sep)]deg=0

and similarly for T ′
m′ .

Proposition 1.21.

(a) The map

f∗ : Tm =
( ∏
i∈I

RFi/FGm

)
/Gm → T ′

m′ =
( ∏
j∈I′

RF ′
j/F

Gm

)
/Gm

is induced by the inclusions f∗ : Fi ↪→ F ′
j , i = f(j). Its transpose is the homomorphism

f∗ : Z[Σ′(F sep)]deg=0 → Z[Σ(F sep)]deg=0

given by pushforward of divisors of degree zero.
(b) The map f∗ : T ′

m′ → Tm is given by the morphisms of tori, for i = f(j),

RF ′
j/Fi

Gm → RFi/FGm

t �→ (NF ′
j/Fi

t)rj .

Its transpose is the homomorphism

f∗ : Z[Σ(F sep)]deg=0 → Z[Σ′(F sep)]deg=0

given by pullback of divisors.
(c) Assume that R = Rsh. Then the induced maps between component groups Φ(Tm), Φ(T ′

m′)
are as follows.

(d) Assume that R = Rsh, and that k is algebraically closed (so that Σ(k) � I, Σ′(k) � I ′).
Then the induced maps on character groups of Néron models are as follows.
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Proof. For parts (a) and (b), it suffices to compute the map on character groups. The formulae
are then special cases of Propositions 1.11 and 1.12 with A = B = Σsing = ∅, C = {∗}.

Combining these with Proposition 1.4 then gives the remaining parts. �
Remark. From parts (a) and (b) we see that if f , f ′ : X ′ → X are finite morphisms and m is
a reduced modulus on X which is stable under the correspondence A = f∗f

′∗ (in the sense of
Example 1.9), then the induced endomorphism tA of the character group Hom(Tm ⊗ F sep,Gm)
equals the map D �→ f ′∗f∗D on divisors of degree zero.

2. Generalized Jacobians of modular curves

2.1 Generalities on modular curves
For an integer N ≥ 1, let X0(N)Q denote the usual complete modular curve over Q. Its non-
cuspidal points parametrize pairs (E,C), where E is an elliptic curve (over some Q-scheme) and
C ⊂ E is a subgroup scheme which is cyclic of order N . We write X0(N)Z for the integral model
constructed by Katz and Mazur [KM85, Ch. 8], which they denote M([Γ0(N)]). Its non-cuspidal
points parametrize pairs (E,C), where C ⊂ E is a subgroup scheme of rank N which is cyclic
in the sense of [KM85, § 6.1]; see also [Edi90, § 1.1].

For every prime � we have a Hecke correspondence T� = v∗u∗, where the finite morphisms
u = u�, v = v� are given as follows.

For � � N (respectively, � | N), the morphisms u, v are of degree �+ 1 (respectively, �). For p | N
we also have the Atkin–Lehner involution Wp : X0(N) → X0(N). If vp(N) = r ≥ 1, then

Wp : (E,C) �→ (E/(C ∩ E[pr]), (C + E[pr])/(C ∩ E[pr])).

When � � N , u = v ◦W�, and the correspondence T� is symmetric. When � | N , T� is no longer
symmetric, and what we call T� is often elsewhere defined to be the transpose of T� (and also
often written U�). We have chosen our normalizations so that the endomorphism T� = v∗u∗

of the Jacobian J0(N)Q agrees with the Hecke operator in [Rib90, p. 445] defined by ‘Picard
functoriality’.

Write X0(N)∞Q ⊂ X0(N)Q for the cuspidal subscheme. It is classical that X0(N)∞Q is the
disjoint union, over positive divisors d | N , of schemes zd � Spec Q(lμ.. (d,N/d)) (where here (d,N/d)
denotes greatest common divisor). We recall (e.g. from [DR73, IV.4.11–13]) that the cusps of
X0(N)Q can be conveniently described using generalized elliptic curves. Suppose that d | N , and
let Nérd denote the standard Néron polygon over Q with d sides [DR73, II.1.1], whose smooth
locus Nérregd equals Gm × Z/d. For a primitive Nth root of unity ζN ∈ Q, let Cd,ζN denote the
cyclic subgroup scheme

Cd,ζN = 〈(ζN , 1)〉 ⊂ Nérregd .

Then the pair (Nérd, Cd,ζN ) determines a Q-point of X0(N)∞. If σ ∈ Gal(Q/Q(lμ.. d)), then
Cd,σζN = Cd,ζN , and if σ ∈ Gal(Q/Q(lμ.. (d,N/d))), then the pairs (Nérd, Cd,σζN) and (Nérd, Cd,ζN)
are isomorphic (and the isomorphism is unique if it is required to be the identity on the identity
component of Nérd). Therefore, the isomorphism class of (Nérd, Cd,ζN ) over Q is determined by
the pair (d, ζN/(d,N/d)N ) and gives rise to a closed point zd = zN,d � Spec Q(lμ.. (d,N/d)) of X0(N)∞Q .
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In particular, the (rational) cusps ∞ = zN,1 and 0 = zN,N correspond to the pairs (Nér1, lμ.. N )
and (NérN , {1} × Z/N), respectively. We also know that the scheme-theoretic closure of X0(N)∞Q
in X0(N)Z is the disjoint union of copies of Spec Z(lμ.. (d,N/d)) (this follows from [Edi90,
Thm. 1.2.2.1]).

Now let m be a reduced modulus on X0(N)Q, whose support is contained in X0(N)∞Q . Let �
be any prime such that the support of m is stable under T�, in the sense of Example 1.9. Then
T� determines an endomorphism T� = v∗u∗ of Jm. Let p | N , and let Jm be the Néron model
of Jm over Z(p). By the universal Néron property, T� extends to an endomorphism of Jm and,
therefore, induces endomorphisms

T� : Φ(Jm) → Φ(Jm),
tT� : X(Jm) → X(Jm).

In order to compute these endomorphisms combinatorially, we need to compute the action of T�
on the torus Tm, using the formulae of Proposition 1.21. In other words, we need to compute the
restrictions of u = u�, v = v� to the cusps, along with the ramification degrees.

Let ζN� ∈ Q be a primitive N�th root of unity, and for L | N�, ζL = ζ
N�/L
N� . Let z =

(Nérd, Cd,ζN�
) ∈ X0(N�)∞(Q) be a cusp. Then u(z) ∈ X0(N)∞(Q) is obtained as follows: replace

Cd,ζN�
by �Cd,ζN�

= 〈(ζN , �)〉 ⊂ Gm × Z/d, and then contract any components of Nérd which do
not meet it [DR73, IV.1.2]. Similarly, we obtain v(z) as the quotient of (Nérd, Cd,ζN�

) by the
rank-� group scheme NCd,ζN�

= 〈(ζ�, N)〉 ⊂ Gm × Z/d.
Explicitly, suppose that N = M�k, (�,M) = 1, and that d | N�. Let a, b ∈ Z with

a�+ bM = 1 and a ≡ 1 (mod �k). Then, if � � d,

(Nérd, 〈(ζN , �)〉) = (Nérd, Cd,ζa
N

),

but if � | d, the subgroup 〈(ζN , �)〉) does not meet the components Gm × {i} with (i, �) = 1. The
map Nérd → Nérd/� contracting them takes 〈(ζN , �)〉 to Cd,ζN , and so

u : (Nérd, Cd,ζN�
) �→

{
(Nérd, Cd,ζa

N
) if � � d

(Nérd/�, Cd/�,ζN ) otherwise.

On closed points of X0(N)∞Q we then have

u−1(zN,d) =

{
{zN�,d�} if �|d
{zN�,d, zN�,d�} otherwise.

(2.1.1)

If � � N , then u has degree �+ 1 and

deg zN,d = deg zN�,d = deg zN�,d� = φ((d,N/d)).

It is well known (and follows, for example, from the Eichler–Shimura congruence relation) that
u is étale at zN�,d, and so has ramification degree � at zN�,d�.

Suppose now that k ≥ 1 and d0|M , d = d0�
s. Then u has degree � and

deg zN�,d = φ(�min(s,k+1−s))φ((d0,M/d0)),

deg zN�,d/� = φ(�min(s−1,k+1−s))φ((d0,M/d0)) if s ≥ 1

so by (2.1.1), the ramification degree of u at zN�,d equals

1 if 1 < s ≤ (k + 1)/2,

� if (k + 1)/2 < s ≤ k + 1.

969

https://doi.org/10.1112/S0010437X23007662 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007662


B.W. Jordan, K.A. Ribet and A.J. Scholl

Moreover, since

deg zN�,d0� = (�− 1)φ((d0,M/d0)),

deg zN�,d0 = deg zN,d0 = φ((d0,M/d0))

the ramification degree equals 1 also for s ∈ {0, 1}.
Similarly, if d | N , then the subgroup NCd,ζN�

⊂ Nérregd = Gm × Z/d equals lμ.. � × {0} and,
therefore, is the kernel of the endomorphism (t, i) �→ (t�, i) of Nérd. If d | N� but d � N , then
NCd,ζN�

= 〈(ζ�, N)〉 is the kernel of the map Nérd → Nérd/�, (t, i) �→ (tζ−bi
�k+1

, i mod d/�), which
maps (ζN�, 1) to (ζaN , 1) and, therefore,

v : (Nérd, Cd,ζN�
) �→

{
(Nérd, Cd,ζN) if d | N ,
(Nérd/�, Cd/�,ζa

N
) otherwise.

A similar computation as for u shows that the ramification degree of v at zN�,d is 1 if v�(d) ≥
(k + 1)/2, and � otherwise.

In particular, if m is any reduced modulus supported on X0(N)∞Q , then for every � � N , m is
stable under T� (in the sense of Example 1.9) and, therefore, we obtain an endomorphism T� =
v∗u∗ of the generalized Jacobian Jm = J0(N)m. If m is the full cuspidal modulus (i.e. the reduced
modulus whose support is X0(N)∞Q ) then m is stable under T� for every �. Using the formulae

from Proposition 1.21 together with the fact that (Nérd, Cd,ζN ) depends only on (d, ζN/(d,N/d)N ),
we can compute the induced endomorphism tT� of the character group

Hom(Tm ⊗ Q,Gm) = Z[X0(N)∞(Q)]deg=0,

which is the restriction of u∗v∗ to divisors of degree zero.

Proposition 2.1. (a) If (�,N) = 1, then

tT�(Nérd, Cd,ζN ) = (Nérd, Cd,ζ�
N

) + �(Nérd, Cd,ζa
N

).

(b) If N = M�k with (M, �) = 1 and k > 0, and v�(d) = i, then let d = d0�
i, e0 = (d0,M/d0),

Γi = Gal(Q(lμ.. e0�k+1−i)/Q(lμ.. e0�k−i)). Then

tT�(Nérd, Cd,ζN ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�(Nérd, Cd,ζa

N
) i = 0,

�(Nérd/�, Cd/�,ζN) 0 < i < (k + 1)/2,∑
σ∈Γi

σ(Nérd/�, Cd/�,ζN) (k + 1)/2 ≤ i < k,∑
σ∈Γk

σ(Nérd/�, Cd/�,ζN) + (Nérd, Cd,ζq
N
) i = k,

where a, b are as above, and aq ≡ 1 (mod N).

(In part (b) Γi � (Z/�Z)× if i = k and Z/�Z otherwise, so consistent with deg tT� = �.)

Proof. First note that if v�(d) = k + 1, then

v : (Nérd, Cd,ζq
N�

) �→ (Nérd/�, Cd/�,ζN ).

k = 0 Then

v∗(Nérd, Cd,ζN ) = �(Nérd, Cd,ζN�
) + (Nérd�, Cd�,ζq

N�
),

hence (since q ≡ � mod N when k = 0)
tT�(Nérd, Cd,ζN ) = �(Nérd, Cd,ζa

N
) + (Nérd, Cd�,ζ�

N
).
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k > 0 Then if v�(d) < (k + 1)/2,

v∗(Nérd, Cd,ζN ) = �(Nérd, Cd,ζN�
)

and applying u∗ to this gives �(Nérd, Cd,ζa
N

).
If (k + 1)/2 ≤ v�(d) < k, then the inverse image of the cusp (Nérd, Cd,ζN ) is the union of �

cusps conjugate to (Nérd, Cd,ζN�
), namely

v∗(Nérd, Cd,ζN ) =
∑
σ∈Γi

σ(Nérd, Cd,ζN�
).

Finally, if v�(d) = k, then

v∗(Nérd, Cd,ζN ) =
∑
σ

σ(Nérd, Cd,ζN�
) (�− 1 terms)

+ (Nérd�, Cd�,ζq
N�

).

Applying u∗ to this, we get the claimed formula. �

Example 2.2. Set D = (0) − (∞). The following are particular cases we will need.

(a) (�,N) = 1, m = (∞) + (0) = (Nér1, lμ.. N ) + (NérN ,Z/N). Then tT� : D �→ (�+ 1)D.
(b) N = p prime, m = (∞) + (0). Then tTp : D �→ D.
(c) N = p2. Then there are (p+ 1) elements of X0(p2)∞(Q), namely

(∞) = (Nér1, C1,ζp2 ), (0) = (Nérp2 , Cp2,ζp2
), (ζp) = (Nérp, Cp,ζp2 ) (1 
= ζp ∈ lμ.. p),

and if � 
= p,

tT� : D �→ (�+ 1)D

(ζp) − (∞) �→ �(ζ1/�
p ) + (ζ�p) − (�+ 1)(∞)

and

tTp : D �→
∑

1
=ζp∈lμ.. p

(ζp) + (0) − p(∞)

(ζp) − (∞) �→ 0.

2.2 Character groups
Assume that N = pM , with p > 3 prime and (p,M) = 1. Let SSM be the set of supersingular
points of X0(M)(Fp), which is the set of isomorphism classes of pairs (E,C), where E/Fp is a
supersingular elliptic curve and C ⊂ E is a cyclic subgroup scheme of order M .

For � � M , we have the Hecke operator

T� : Z[SSM ] → Z[SSM ]

(E,C) �→
∑

D⊂E, #D=�

(E/D, (C +D)/D).
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Theorem 2.3. Let m = (∞) + (0) and J = J0(N) with N = pM as above. Then there is a
canonical isomorphism

X(Jm) ∼−→ Z[SSM ]

taking tT� to T� for every � � N . Its restriction to X(J) ↪→ X(Jm) is an isomorphism X(J) ∼−→
Z[SSM ]0.

(The second isomorphism is, of course, well known: see [Rib90, Proposition 3.1].)

Proof. We work over S, the strict henselization of Spec Z(p), and use the notation from § 2,
so that k = Fp. Let X ′ denote the Deligne–Rapoport model of X0(N) over S. Since p exactly
divides N , X ′ is regular apart from possible A2 or A3 singularities at supersingular points in
the special fibre where j = 0 or 1728. Let X → X ′ be its minimal desingularization. The special
fibre X ′

s is the union of two copies of the modular curve X0(M)
Fp

meeting transversally at the
supersingular points. The cusp ∞ (respectively, 0) meets the component of X ′

s parametrizing
(E,C) where C contains the kernel of Frobenius (respectively, Verschiebung). Let us refer to
these as the ∞-component Z∞ and 0-component Z0 of Xs.

First we assume that X ′ = X is regular (which holds, for example, if M is divisible by
some prime q ≡ −1 (mod 12) or by 36; see the second table in [Edi91, 4.1.1]). Since Xs has
an irreducible component of multiplicity one, hypotheses (H1)–(H3) of § 1.3 are satisfied. Let
Σ → X be the morphism induced by m, so that Σ is the disjoint union of two sections of X
over S. Then

J0
m/Fp

� Pic0
(Xs,Σs)/k

(2.2.1)

and since Σs ⊂ X reg
s , by (1.4.4) we have

X(Jm) = ker
[
Z[S̃S] ⊕ Z[Σs]

[
ψ θ
φ 0

]
−−−−→ Z[C] ⊕ Z[SS]

]
, (2.2.2)

where C = π0(X̃s), SS = SSM � X sing
s and S̃S is the inverse image of SS in the normalization X̃s

of Xs.
The map θ : Z[Σs] → Z[C] is a bijection since the cusps meets different components, and Xs

has only ordinary double points, so the vertical maps between the three 2-term complexes

are quasi-isomorphisms. Here i is the map taking x ∈ SS to x(∞) − x(0), with x(∞), x(0) ∈ Xs
being the supersingular points above x lying in the components containing ∞, 0 respectively.
These quasi-isomorphisms then induce the isomorphism X(Jm) � Z[SS]. To get X(J) we drop
the factor Z[Σs] from (2.2.2), and then the kernel becomes Z[SS]0.

Still assuming that X ′ is regular, let � 
= p be prime. Then the Deligne–Rapoport model for
X0(N�) over S is also regular. Let us denote it X (�). Then maps u, v extend to finite morphisms
X (�) → X which are therefore also flat. Therefore, the endomorphism T� of J 0

m,s is, under the
isomorphism (2.2.1), identified with the endomorphism T� = u∗v∗ of Pic0

(Xs,Σs)/k
. Now the maps
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u, v : X (�)
s → Xs map the ∞- and 0-component of X (�)

s to the ∞- and 0-component, respectively,
of Xs, and on each of these, they are just the maps u, v : X0(M�) → X0(M). Thus, u∗v∗ induces
the map T� on Z[SSM ].

In general, choose a multiple N ′ = nN = pM ′ of N with (p, n) = 1 such that the
Deligne–Rapoport model of X0(N ′) over S is regular. Let f : X0(N ′) → X0(N) be the
map (E,C) �→ (E, nC), and m′ the reduced modulus f−1((∞) + (0))red on X0(N ′). Then
f∗ : J0(N)m → J0(N ′)m′ induces a surjection

which is equivariant with respect to tT� for all � � N ′. According to Proposition 1.11 this is induced
by the map f : SSM ′ → SSM , hence commutes with the maps T� on Z[SSM ′ ] and Z[SSM ]. �

Remark. Restricting to the case when p exactly divides N is rather natural, since the toric part
of the special fibre of the Néron model of J0(prM), r > 1, is a product of copies of the toric part
for J0(pM).

In the case N = p we may describe everything (including Tp) in terms of the classical Brandt
matrices, whose definition we now recall [Gro87]. Let {Ei | 1 ≤ i ≤ h} be representatives of the
isomorphism classes of supersingular elliptic curves over Fp (so that h is the class number of the
definite quaternion algebra End(Ei) ⊗ Q). Let Hom(Ei, Ej)n be the set of isogenies from Ei to
Ej of degree n. Define an equivalence relation ∼ on Hom(Ei, Ej)n by

f ∼ g ⇐⇒ ker f = ker g ⇐⇒ f = αg for an automorphism α of Ej

and set Hom(Ei, Ej)n = Hom(Ei, Ej)/ ∼. We then define the h× h Brandt matrix B(n) for
n ≥ 1 by

B(n)ij = #Hom(Ei, Ej)n. (2.2.3)

The matrices B(n) for n ≥ 1 commute. They are constant row-sum matrices, with the sum of
the entries in any row of B(n) equal to

σ′(n) =
∑

d|n, (p,d)=1

d

for n ≥ 1.

Theorem 2.4. Let N = p and m = (∞) + (0). The isomorphism X(Jm) ∼−→ Z[SS1] of
Theorem 2.3 takes tT� to the transpose tB(�) of the Brandt matrix, for every prime � (including
� = p).

Proof. For � 
= p this follows immediately from the definition of the Brandt matrix B(�). For
� = p, we first note that the endomorphism Tp +Wp of J0(p)m is zero. Indeed, on the quotient
J0(p) it is zero, by [Rib90, Proposition 3.7], and since Wp interchanges the two cusps and tTp
fixes (0) − (∞), it is zero on the torus Tm = Gm ⊂ J0(p)m. Thus, as any morphism from J0(p)
to Gm is constant, Tp +Wp is zero on J0(p)m. Therefore, it is enough to compute the action of
Wp in X(J0(p)m). For this, it is convenient to compute using the extended reduced graph ΓX ′

s,Σ
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defined in § 1.4, with Σ = X0(p)∞s = {∞, 0} (where we have fixed an orientation) as follows.

As the regular model X is obtained by replacing the A2- and A3-singularities by chains of
lines, the extended graphs of Xs and X ′

s are homotopy equivalent, and so we may restrict
to X ′

s. On the special fibre X ′
s, Wp interchanges the two irreducible components. Recall also

that the supersingular points SS1 are Fp2-rational, and if x ∈ SS1 is a supersingular point, cor-
responding to the class of a supersingular elliptic curve E/Fp, then Wp(x) = x(p) is the point
corresponding to E(p) = E/ ker(F ). Thus, the automorphism Wp extends to an automorphism
of the graph, fixing v0 and interchanging Z0 and Z∞, and mapping the edges labelled Ei to
E

(p)
i . The homology H1(ΓX ′

s,Σ,Z) is freely generated by the cycles γi = (0) + (Ei) − (∞), and
Wp : γi �→ −γ(p)

i = −(0) − (E(p)
i ) + (∞). Now the only element of Hom(Ei, Ej)p is the Frobenius

Ei → E
(p)
i = Ej and, therefore, the matrix of Tp = −Wp equals tB(p). �

2.3 Component groups
Throughout this section, we assume that p > 3. Let N = prM , with (p,M) = 1 and r ≥ 1.
As in the previous section, work over S, the strict henselization of Spec Z(p). Let m be a
reduced modulus on X0(N) supported at the cusps, and T a subalgebra of the Hecke algebra
Z[{T�}] which preserves the support of m. Let Jm be the generalized Jacobian of X0(N) for the
modulus m. Then T acts on Jm, stabilizing the torus Tm. It therefore acts on the extension of
component groups

0 → Φ(Tm) → Φ(Jm) → Φ(J) → 0

and the action commutes with the action of Gal(Fp/Fp). For the action of T on Φ(J) we have
the following result, proved by Edixhoven [Edi91], generalizing Ribet [Rib88] who treated the
case of N squarefree.

Theorem 2.5. For every � � N , T� acts on Φ(J) as multiplication by �+ 1.

Corollary 2.6. Assume that M is squarefree and p > 3. Then for every � � N , T� acts on Φ(Jm)
as multiplication by �+ 1.

Proof. Let x � Spec Q(lμ.. (d,N/d)) ⊂ X0(N)∞ be a cusp, where d | N . As M is squarefree, (d,N/d)
is a power of p. Therefore, Gal(Q/Q) acts trivially on Φ(Tm) by (1.1.5). Thus, T� acts on Φ(Tm)
as multiplication by �+ 1, and the endomorphism T� − �− 1 of Φ(Jm) factors through a map
Φ(J) → Φ(Tm), which is zero as Φ(J) is finite and Φ(Tm) is free. �

Remark. Similarly, let N be arbitrary, and m the reduced modulus on X0(N) which is the sum
of all the cusps. Write Tm → Tp-spl for the maximal quotient which is split over Q(lμ.. pr). Let Jp-spl
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be the corresponding quotient of Jm. Then by Corollary 1.2 the sequence of Néron models

0 → Tp-spl → Jp-spl → J → 0

is exact, and the same argument shows that T� = �+ 1 on Φ(Jp-spl).

Now we turn to the abelian group structure of Φ(Jm).
For N = pM , (p,M) = 1, the structure of Φ(J) was determined completely by Deligne, and

described by Mazur and Rapoport in [MR77], using the description of the regular model of
X0(N) given in [DR73]; see Table 2 on p. 174 and the calculations of § 2 in [DR73] and the
corrections to their calculations made by Edixhoven [Edi91, 4.4.1]. We recall these formulae in
Corollary 2.8.

For general N , the minimal desingularization X → X ′ was computed by Edixhoven [Edi90]
using the description of X ′ in [KM85]. Since the component of X ′

s meeting the cusp ∞ has
multiplicity one, X satisfies hypotheses (H1)–(H3). From this it is, in principle, an exercise to
compute Φ(J) in any given case, and in [Edi91, 4.4.2] this is done for N = p2.

We will compute Φ(Jm) in various cases. First some notation: as in the previous section, let
SSM ⊂ X0(M)(Fp) be the set of supersingular points, and n = #SSM . For j ∈ {2, 3} let ej be
the number of elements (E,C) ∈ SSM for which #Aut(E,C) = 2j.

2.3.1 X0(pM) with (p,M) = 1 and m = (∞) + (0).

Theorem 2.7. Let N = pM with (p,M) = 1. Let Jm be the generalized Jacobian of X0(N)
with respect to the modulus m = (∞) + (0). Then:

(a) Φ(Jm) � Z ⊕ (Z/2Z)max(e2−1,0) ⊕ (Z/3Z)max(e3−1,0);
(b) the homomorphism Φ(Tm) = Z → Φ(Jm) is given in terms of the isomorphism (a) by

1 �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n if e2 = e3 = 0,
(2n− e2; 1, . . . , 1) if e2 > 0, e3 = 0,
(3n− 2e3; 1, . . . , 1) if e2 = 0, e3 > 0,
(6n− 3e2 − 4e3; 1, . . . , 1; 1, . . . , 1) otherwise.

Proof. Recall that the special fibre X ′
s of the Deligne–Rapoport model of X0(N) is the union of

two copies of X0(M)
Fp

, meeting tranversally at the supersingular points. The cusps ∞ and 0
belong to different components. The total space X ′ has a type Aj quotient singularity at each
point where # Aut(E,C) = 2j ∈ {4, 6}. Taking their minimal resolution gives the model X . Its
special fibre is obtained by replacing each crossing point which is an Aj-singularity with a chain
of (j − 1) copies of P1. In other words, Xs has 2 + e2 + 2e3 irreducible components:

– Z∞ and Z0, the strict transforms of the irreducible components of X ′
s, isomorphic to X0(M)

Fp
,

and labelled in such a way that the cusp α ∈ {∞, 0} belongs to Zα;
– components in the fibres of Xs → X ′

s which we denote as Ei (for 1 ≤ i ≤ e2) and F∞,i, F0,i

(for 1 ≤ i ≤ e3), where Fα,i intersects Zα.

Their intersection numbers are:

– (Zα.Zα) = −n, (Z∞.Z0) = n− e2 − e3;
– (Zα.Ei) = 1 = (Zα.Fα,i);
– all other intersection numbers are zero.

We now use the formula for Φ(Jm) from Theorem 1.19. We have C = π0(X̃s), and write Y ∨ ∈ ZC

for the basis element dual to Y ∈ C. We also have I = {∞, 0}, and e (as in Theorem 1.19)
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equals (1, 1). Therefore, ZI/eZ = Z.V where V is the image of the dual of ∞ (so that −V is the
image of the dual of 0). The map h : Z[C] → ZI/eZ takes Z∞ to V and Z0 to −V , and all other
elements of C to 0. The map (a, h) : Z[C] → ZC ⊕ ZI/eZ is then given by the matrix

Z∞ Z0 E1 · · · Ee2 F∞,1 F0,1 · · · F∞,e3 F0,e3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z∨∞ −n n− e2 − e3 1 · · · 1 1 0 · · · 1 0
Z∨

0 n− e2 − e3 −n 1 · · · 1 0 1 · · · 0 1
E∨

1 1 1 −2
...

...
...

. . .
E∨
e2 1 1 −2

F∨∞,1 1 0 −2 1
F∨

0,c1
0 1 1 −2

...
...

...
. . .

F∨∞,e3 1 0 −2 1
F∨

0,e3
0 1 1 −2

V 1 −1 0 · · · 0

.

As a basis for ZC,0 we take Z = Z∨∞ − Z∨
0 , Ei = E∨

i − Z∨
0 , Fα,i = F∨

α,i − Z∨
0 . Thus, Φ(Jm) is

isomorphic to the quotient of the free module generated by Z, {Ei}, {Fα,i} and V by the
submodule of relations

Z = 2Ei = 3F 0,i, F∞,i = 2F 0,i,

V = nZ −
e2∑
i=1

Ei − 2
e3∑
i=1

F 0,i.

If e2 > 1, then for every i > 1, Ui = Ei − E0 has order 2, and if e3 > 1, then Vi = F 0,i − F 0,0

has order 3. The subgroup generated by Z, E1 (if e1 ≥ 1) and F 1,0 (if e3 ≥ 1) is infinite cyclic,
with generator

Z if e2 = e3 = 0,

E1 if e2 > 0, e3 = 0,

F 0,1 if e2 = 0, e3 > 0,

E1 − F 0,1 otherwise.

This gives the first part, and the second follows since the inclusion Φ(Tm) = Z → Φ(Jm) maps 1
to V . �

Since Φ(J) = Φ(Jm)/Φ(Tm), an easy computation gives the following.

Corollary 2.8 ([MR77, table 2]; [Edi91, 4.4.1]). We have

Φ(J) � Z/PZ ⊕ (Z/2Z)max(e2−2,0) ⊕ (Z/3Z)max(e3−2,0),

where

P = 2min(e2,2)3min(e3,2)

(
n− e2

2
− 2e3

3

)
.

2.3.2 X0(p) with m = (∞) + (0). In the setting of Theorem 2.7, if e2 and e3 are at most 1,
then Φ(Jm) is infinite cyclic and the map Φ(Tm) � Z → Φ(Jm) is, up to sign, multiplication by
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the order of the cyclic group Φ(J). Therefore, the actions of all the Hecke operators T� (including
for p | N) can be computed from the actions on Φ(Tm). For example, suppose N = p. Then by
Example 2.2(b), without appealing to the results of Ribet and Edixhoven we obtain the following.

Corollary 2.9. Suppose that N = p and m = (∞) + (0). Then:

– Φ(Jm) is infinite cyclic;
– Φ(J) = coker(Φ(Tm) → Φ(Jm)) is cyclic of order n, the numerator of (p− 1)/12;
– for � 
= p, T� = �+ 1 on Φ(Jm), and Tp = 1 on Φ(Jm).

2.3.3 X0(pM) with (p,M) = 1 and m a general cuspidal modulus. Now let m be any nonzero
reduced modulus supported on the cusps of X0(N), with p exactly dividing N . Recall that we
are working over the strict henselization R of Z(p). Then since p2 � N , all the cusps are rational
over F so e = (1, . . . , 1) and

Φ(Jm) = coker
(
Z[C]

(a,h)−−−→ ZC,0 ⊕ ZI/diag(Z)
)

with I = supp(m) ⊂ X0(N)∞(Q).

Proposition 2.10. If the closure of the support of m meets just one component of the special
fibre X ′

s, then there is a canonical splitting

Φ(Jm) = Φ(J) ⊕ Φ(Tm).

Otherwise, if x0 = ∞, x0 ∈ supp(m) meet Z∞, Z0, respectively, and m′ = (x∞) + (x0), then there
is a canonical splitting

Φ(Jm) = Φ(Jm′) ⊕ ZI�{x∞,x0}.

Proof. In the first case, we may assume that the closure of the support of m meets only the
component Z∞. If Y ∈ C and Y 
= Z∞, then h(Y ) = 0, but h(Z∞) = (1, . . . , 1), so the composite
h : Z[C] → ZI/diag(Z) is zero.

In the second case, we have h(Y ) = 0 if Y /∈ {Z∞, Z0}, and

h(Z∞) = (1, . . . , 1, 0, . . . , 0),

h(Z0) = (0, . . . , 0, 1, . . . , 1)

for a suitable ordering of I. Therefore,

ZI/diag(Z) = im(h) ⊕ {b ∈ ZI | b(Z∞) = b(Z0)}/diag(Z)

giving the splitting. �

2.3.4 X0(p2). Finally, let us consider the curve X0(p2), p > 3. The Katz–Mazur model X ′

over S has three irreducible components in its special fibre, which we denote by Z ′
i (0 ≤ i ≤ 2).

The non-supersingular non-cuspidal points of Z ′
i parametrize pairs (E,C), where E is an elliptic

curve and C is a cyclic (in the sense of Drinfeld) subgroup scheme of rank p2, whose étale quotient
has rank pi. The components Z ′

0, Z
′
2 have multiplicity 1, and Z ′

1 has multiplicity p− 1. They
meet at the supersingular points.

The cuspidal divisor X0(p2)∞Q consists of three closed points ∞ = z1 = Spec Q, zp =
Spec Q(lμ.. p) and 0 = zp2 = Spec Q, in the notation of § 2.1. For each i, the closure in X ′ of
the point zpi meets the component Z ′

i in a single point, and the completed local ring at the
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intersection is computed in [Edi90, Proposition 1.2.2.1] as

Zp[[q]] if i = 0,

Zp[lμ.. p][[q]] if i = 1, (2.3.1)

Zp[[q1/p
2
]] if i = 2,

where q is the usual parameter at infinity on the modular curve of level 1.
The minimal resolution π : X → X ′ is described in detail in [Edi90, § 1.5]. We summarize

the final result. Write p = 12k + 1 + 4a+ 6b, with a, b ∈ {0, 1}. We again work over the strict
henselization R of Z(p).

The Katz–Mazur model X ′ has exactly two singular points, which are the points x0, x1728 ∈
Z ′

1 lying over the points j = 0, 1728 in the curve X(1)
Fp

. Let E = π−1(x1728)red, F = π−1(x0).
Then E � F � P1, E has multiplicity (p− 1 + 2b)/2 and F has multiplicity (p− 1 + 2a)/3.

Let Zi be the reduced strict transform of Z ′
i. The intersection matrix of Xs is

Z0 Z1 Z2 E F⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Z0 −L k k b a
Z1 k −1 k 1 1
Z2 k k −L b a
E b 1 b −2 0
F a 1 a 0 −3

, (2.3.2)

where L = (p2 − 1)/12 − k. As a basis for ker(ZC b−→ Z) we take Y = Y ∨ − dY Z
∨
2 , for Y ∈

{Z0, Z1, E, F} and where dY is the multiplicity of Y . (Since the residue field is perfect,
dY = δY .)

We first consider the modulus m = X0(p2)∞Q =
∑

0≤i≤2(zpi) of all cusps. Since the cusp zp is
isomorphic to Spec Q(lμ.. p), and the other cusps are rational, e = (1, p− 1, 1). From the description
(2.3.1) of the completed local rings at the cusps, we see that Σ � SpecR 
 SpecR[lμ.. p] 
 SpecR,
and the pullback of the divisor Zi to the component of Σ which it meets has degree 1. Therefore,
the matrix (hij) giving the pairing C × I → Z in Theorem 1.19 is

Z0 Z1 Z2 E F[ ]z1 1 0 0 0 0
zp 0 1 0 0 0
zp2 0 0 1 0 0

.

Let Vi ∈ ZI/eZ be the image of the ith basis vector (dual to zpi) of ZI . We will take {V0, V1} as
basis for ZI/eZ.

Next consider the modulus m′ = (∞) + (0) = (z1) + (zp2). Then e = (1, 1), and the pairing
C × I → Z is given by the same matrix with the zp-row deleted, and ZI/eZ is generated by
V0 = −V2.

Under the isomorphism of Theorem 1.19, the image of ZI/eZ in the homology of
the complex (1.3.1) is the subgroup Φ(Tm) of Φ(Jm). The analogous statement holds
for m′.

Theorem 2.11. (a) The component group Φ(Jm) is isomorphic to Z2, and (for a suitable choice
of isomorphism), the image of the generators V0, V1 of Φ(Tm) are

(L+ (3b− 2a)k − a+ b,−6k − 2a− 3b) and (−k − b, 1).
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(b) The component group Φ(Jm′) is isomorphic to Z, and (up to sign), the image of the generator
V0 of Φ(Tm) is (p2 − 1)/24.

Remark. (i) From the computation in part (b) we recover the result [Edi91, § 4.1, Proposition 2]
that Φ(J) is cyclic of order (p2 − 1)/24.

(ii) In both cases the map Φ(Tm) → Φ(Jm) is an injection of free abelian groups of the same
rank, so the action of Hecke operators on Φ(Tm) determines that on Φ(Jm) and, therefore, on
the quotient Φ(J), ‘by pure thought’.

Proof. From (2.3.2) we see that Φ(Jm) is generated by {V0, V1, Z0, Z1, E, F} with relations

V0 = LZ0 − kZ1 − bE − aF ,

V1 = −kZ0 + Z1 − E − F ,

bZ0 + Z1 − 2E = 0 = aZ0 + Z1 − 3F

and linear algebra then gives an isomorphism Φ(Jm) ∼−→ Z2 by

Z0 �→ (1, 0),

Z1 �→ (2a− 3b, 6),

E �→ (a− b, 3),

F �→ (a− b, 2),

V0 �→ (L− (2k + 1)a+ (3k + 1)b,−6k − 2a− 3b),

V1 �→ (−k − b, 1).

This proves part (a). For part (b), we compose with the map Z2 (1,k+b)−−−−→ Z, whose kernel is the
subgroup generated by V1, and which takes V0 to

L− (2k + 1)a+ (3k + 1)b+ (k + b)(−6k − 2a− 3b) =
p2 − 1

24
. �
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ihrer Grenzgebiete (3), vol. 21 (Springer, Berlin, 1990); MR1045822.

BX96 S. Bosch and X. Xarles, Component groups of Néron models via rigid uniformization, Math.
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(2021), arXiv:2110.00545.
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Théorie des Nombres, 1987–1988 (Talence, 1987–1988) (Université de Bordeaux I, Talence,
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