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REDUCIBILITY FOR NON-CONNECTED p-ADIC GROUPS, 
WITH G° OF PRIME INDEX 

DAVID GOLDBERG 

ABSTRACT. We determine the structure of representations induced from discrete 
series of parabolic subgroups of quasi-split p-adic groups G with G/G° a cyclic group 
of prime order. We attach to each such representation an #-group which extends the 
definition of the Knapp-Stein /?-group. We show that this ft-group has the properties 
predicted by Arthur. We apply our results to the case of Orthogonal groups. 

Introduction. Let F be a locally compact, non-discrete, nonarchimedean local field 
of characteristic zero. In [7, 8,9] we described the component structure of those parabol-
ically induced from discrete series representations of certain connected classical groups 
defined over F. Our method was to compute the Knapp-Stein /^-groups which can arise. 
We were able to compute the /^-groups because the action of the Weyl groups is well 
understood in these cases. There is another construction of the 7?-group which relies on 
the conjectural parameterization of discrete series L-packets [19]. Arthur has given an 
extension of this /?-group construction to the case where G is disconnected [3]. Arthur 
suggests that this generalized /?-group should play a role in determining the reducibility 
of induced representations. We examine some properties of induced representations for 
disconnected groups, under the assumption that the connected component is of prime 
index. We are able to construct an 7?-group, on the group side, and we show that it plays 
a similar role to that of the Knapp-Stein 7?-group in the connected case. We also note that 
modulo some very deep conjectures, this 7?-group is the one predicted by Arthur in [3]. 

Let G be a reductive quasi-split group, defined over F, and assume that G/G° ~ 
Z/pZ, with/? prime. Let G = G(F), and G° = G°(F). Suppose P = MN is a parabolic 
subgroup of G (see Section 1), and a is a discrete series representation of M = M(F). 
Let P° = P n G°, and suppose that A° is the split component of P°. Suppose a0 is an 
irreducible subrepresentation of (J\M° . Let Z'G,A/(C) be the representation of G, unitarily in­
duced from <J, and let ÎGOM°(^O) be the representation of G°, induced from cr0. We write 
Yla(G) and ITCT0(G

o) for the collection of equivalence classes of components of /G,A/(O")
 a nd 

iG°,M°(&o) respectively. Using Frobenius reciprocity, and the theory of Gelbart and Knapp, 
we are able to describe the relationship between /G,M(CO and /G°,MO(O"O)- This is equiva­
lent to describing the structure of the representation /G,A/O(O"O) = Ind^o(/G°,yV/o(̂ o))- It is 
this representation whose component structure should be related to Arthur's ^-group. We 
break our results into several cases. First of all, it is possible that M ^ M°,andcr|yv/o = cr0. 
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In this case the relationship is quite easy to describe, because /C°,A/°(^O) — [*G,A/(0")]|G°-

It follows that every component of /G,M(O") restricts to G° irreducibly (Proposition 2.2). 

Thus, the structure of /G,M°(^O) can be easily stated (Corollary 2.3). If M ^ M°, and CJ\M° 

is reducible, then /G,M°(^O) = ÎGM^)- Here relationship between /'G,A/(^) and /G°,M°(OO) 

depends on the action of the Weyl group W(G, A°) on <J0. If wcro ~ cr0 implies w G 

J^(G0, A°), then each component of /G,A/(C) restricts to G° reducibly, and there is a one-to-

one correspondence between the components of/^^/(cr), and those of /CO,M°(^"O) (Proposi­

tion 2.4). If wcr0 ~ <7o, for some w G W(G, A°) \ ̂ ( G ° , A°), then we can easily determine 

the dimension of HomG(/G,M°(^o)^G,M°(cro)) (Lemma 2.5). If M = M°, then the extent 

of our description of /G,A/(O") = Ind^o (JG°,M(°')) is similar to that of the case where CT\M° 

is reducible (Lemma 2.6). 

We construct an 7?-group to reflect the structure of /G,M°(^O)- We call this the Arthur 

R-group, because of its connection with the group R^G predicted in [3, 7] (see Section 4). 

Let W' be the subgroup of W(G°, A°) generated by the root reflections in the zeros of the 

Plancherel measures of o$. We can construct a group RG(&O) SO that: 

^ G ( ^ O ) ={we W(G,A°) | wa0 ~ a0} = RG(a0) tx W 

(Lemma 2.7). Moreover, RG°((JO) C 7^G(^O)5 where RG°(<JQ) is the Knapp-Stein /?-group 

attached to i^ ,M° (GO )• 

There is a 2-cocycle, 77, of RG°(PO) SO that the commuting algebra C(oo) of h°M°(ao) 

is isomorphic to the twisted group algebra C[7?Go(cr0)]7/. Let ^ 0 be a central extension 

of Rc°(cro) by an abelian group Z over which r/ splits. Since 7?(;(cro)/^Go(cro) is cyclic, 

there is a central extension /? of RG(&O) by Z with R/Ro ~ RG(VO)/RG°(&O)' For a char­

acter UJ of Z, we let n(/?o,^) be the equivalence classes of irreducible representations 

of ^o which have Z-central character u~x. Then, for some character cjao of Z, there is a 

one to one correspondence between Yl(Ro, ^ 0 ) a n d ^G°(^O) [!]• Moreover, if this corre­

spondence is given by p i—> 7rp, then dimHomc;°(7rp, *G°,A/O(0"O)) = dim p. Arthur writes 

down the projections of /G°,A/°(0"O) onto its isotypic components by using the charac­

ter theory of YI(Ro,ujao). Using these projections we are able to describe the action of 

RG(VO)/RGO(&O) = R/Ro on the elements of Ylao(G°) (Theorem 2.10). This leads to our 

main result (Theorem 2.11), which we restate below. 

THEOREM A. There is a bijective map r i—> ITr between H{R, o;CTo) and ITCTo(G) such 

that: 

(1) dimHomG(nT,7r) = dimr; 

(2) Ifp G I\(RQ,U)GQ), then TTP C UT\G- if and only if p C T\^Q. m 

We then turn to the orthogonal group On(F). Here we use the explicit description of 

*'G°,À/°(0"O)- Suppose n is even. In [8], we showed that there are non-negative integers d\9 

^2, and d = d\ + di, such that 

RG°(°O) - \ ^d 

d
2~

x if ^2 > 0 
\fd2 = 0 (Theorem 3.1). 
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In Theorem 3.3, we show that RG(&O) — Zd
2

 o r ^2+1> w^m m e ^at te r occurring when 
M 7̂  M°, CJ\M° is irreducible, and M° satisfies one additional condition. Thus, /G,A/O(O"O) 

has either 2d or 2d+l components, and is a multiplicity one representation (Corollary 3.4). 
The case where G = G° x Z/pZ is subsumed by Proposition 2.2 (Lemma 3.5). The 
explicit description of the reducibility and multiplicity structure for Om+xiF) then follows 
from the results of [8] (Corollary 3.6). 

Finally, we make some remarks about the connection between the group RG(GQ\ and 
Arthur's conjectural group R^t(T. Shelstad has shown [ 19] that, for real groups, the Knapp-
Stein ̂ -group, RG°(<JO), can be computed in terms of the Langlands parameterization. It is 
conjectured that Shelstad's construction will be valid in general. Since the parameteriza­
tion is understood when M° is a torus, [12, 16], Keys was able to confirm that Shelstad's 
R-group, and the Knapp-Stein #-group are isomorphic in some cases [13]. However, the 
parameterization is far from understood in general, and therefore, the conjecture on R-
groups is also far from understood. Arthur has extended the construction of Shelstad to a 
group, R^fj which should reflect the structure of /G,A/°(O"O)- If we assume that Shelstad's 
conjecture holds, then we can show that RG(&O) — R^,a (Proposition 4.1). Thus, by The­
orem A, R^a would have the properties conjectured by Arthur in [3]. Though our results 
are only for G/G° of prime order, we hope to be able to extend them in the near future. 

I would like to thank Jeff Adams, Jim Arthur, Rebecca Herb, Chris Jantzen, and Frey-
doon Shahidi for answering questions, and engaging in discussions which helped shape 
these results. 

1. Preliminaries. Let F be a locally compact, non-discrete, nonarchimedean local 
field of characteristic zero and residual characteristic q. Suppose G is a reductive quasi-
split algebraic group defined over F. Let G° be the connected component of the identity 
in G. We will assume that, if G ^ G°, then G/G° is cyclic of prime order. We let 

X: G/G° :—• Cx be a generator of GJG°. 

Let B° = T°U be a Borel subgroup of G°, and denote by cp(G0,T°) the roots of T° 
in G°. Let A be the simple roots with respect to this choice of Borel subgroup. If 0 C A, 
then there is a parabolic subgroup, PJ D B°, of G° attached to 0 [22]. Moreover, any 
parabolic subgroup of G° containing B° arises from this construction. A subgroup P of 
G is called a parabolic subgroup if P = /VG(P°), for some parabolic subgroup P° of 
G°. Since P° is conjugate in G° to some PjJ, P is conjugate in G to some Pg — A/G(P^). 

Note that, by our assumption on G/G°, we either have P# = P^, or P# intersects every 
connected component of G. Suppose A° is the split component of P°, i.e., the maximal 
split torus in the center of M°. Then P° = M°N, with M° = ZGo(A°). If M = NG(M°l 
then P = MN, with M = M D P. We call the group M the Levi component of P, and 
call a group a Levi subgroup of G if it is the Levi component of a parabolic subgroup of 
G. Note that if M ^ M°, then M/M° ~ Z/pZ. Let A be the maximal split torus in the 
centralizer of M in M°. Then A C A°, and A is called the split component of P. 

Suppose that g G NG(M°)\ JVGO(M°). Then g ^ T g is a maximal torus of M°. There­
fore, there is some mo G M°, with mQlg~lT°gmo — T°. So, without loss of generality, 
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we may assume that g G NG(T°). Note that if a G A°, and mo G M°, then, since 
gmog~l G M°, we have (g_Iag)mo(g~lcTxg) — mo. Thus, g_1A°g is a split torus in 
Z(M°), and hence g"1 A°g = A°. 

We let W(G°, A°) = NGo(A°)/M° be the Weyl group of G° with respect to A°. We 
define W(G,A°) to be NG(A°)/M°. We call JF(G,A°)the Weyl group of G with respect 
to A°. We have seen that if M ^ M°, then NG(A°) n (M \ M°) ^ 0. Let g G À^A0) H 
(M\M°). Then g represents a class in ^(G, A°)\ PF(G°,A°). Moreover,^7 G M°,while 
clearly g* £ M°, for 1 < * < p - 1. Thus, when M ^ M°, we have W(G, A°) = 
ff(G°,A°)KZ/pZ. 

Recall that G acts on G° by conjugation, and this action is represented by a graph 
automorphism of the Dynkin diagram for the root system 0(G°, T°). If g G W(G, T°), 
then we also denote by g the associated action on 0(G°, T°). 

For a locally compact, totally disconnected, topological group H, we denote by ^(H) 
the equivalence classes of irreducible admissible, representations of//. We let ^(H) be 
the collection of equivalence classes of discrete series representations, and let %{H) be 
the collection of irreducible tempered representations of//. 

Let P = MN be a parabolic subgroup of G, i.e. P = P(F), with P C G. Sup­
pose a G 'Ec(M) and assume that G acts on a vector space V. Let 8p be the modular 
function of P. Denote by V(G) the space of smooth functions from G to V satisfying 

1 /2 

f(mng) = 5p (m)(j(m)f{g), for all m G M, « G Af, and g G G. Then G acts on V(G) by 
right translations, and we call this the representation of G unitarily induced from G. We 
denote this representation by Indp(cr). If a is unitary, the class of Indp(er) depends only on 
M, and not on the choice of N, and in this case we may write icM^) f° r Indp (a). Suppose 
a is unitary and UQ is an irreducible component of cr\Mo. We denote by iG,M°(ao) the rep­
resentation lnd%((io) = Ind^o (/GO,A/°(°"O))- A straightforward computation shows that, if 
M ^ M°, then /G,M(^)|G° - 'G°,M°0|M°). Thus, the structure of /G,A/0)> *'G°,A/OOO), and 
'"G,A/°(0"O) are all closely related. When cr G ^ ( ^ O , determining the structure of /G,M(^") in 
terms of the number of components and multiplicities, is fundamental to understanding 
the representation theory of G. Moreover, understanding the commuting algebra of inter­
twining operators CG(CFQ) of Z'G,MO(0"O) is an important aspect of the twisted trace formula 
[2,3]. 

We review the theory of intertwining operators and /^-groups. We first concentrate on 
the case G = G°, and then discuss the extensions of this theory which exist for non-
connected groups, along with some conjectures of Arthur [3]. 

Suppose G = G°. Let P = MN be a parabolic subgroup of G, with split component 
A. For G G 'EciM) and w G W(G, A), we define WG by wcr(m) = cr(w~lmw)9 where w 
is any representative for w. This gives an action of W(G, A) on *£c(M). Let WG(G) = 
{w G W(G, A) | WG ̂  cr}. We may write W{G) for WG(G) if G is implicit. We let 
a — Hom(X(M)/r, IRV where X(M)/r is the group of F-rational characters of M. Then a 
is the real Lie algebra of A. Its dual a* is given by X(M)p ®Z ^ and the complexified dual 
is a£ = a* ®R C. There is a homomorphism Hp.M —• a, given by gO-W™)) = |z/(m)|/r, 
for each i/ G ^(MV, and all m G M, [10]. 
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For any // G a*, and a G £2(M), we let 7(z/, a) = Inciter 0 q(">HpO)). If w G W(G, A), 
we let NH; = U Pi w 'Nw, where N is the unipotent radical opposed to N. We formally 
define an operator by 

(1. 1) A(u,a, wY(g) = jNJ(w'xng)dn. 

If A(i/9 a, w) converges for every choice off and g, then we say that A(i/,cr,w) con­
verges. If A(i/, a, w) converges, then it defines an intertwining operator between l(y, a) 
and /(W, wo). 

THEOREM 1.1 (HARISH-CHANDRA). Letw G JF(G,A), and a G T^M). Let P' = 
w~lPw. Then A(i/,a,w) converges for v in the positive Weyl chamber, and can be ex­
tended to a meromorphic function of v on a £. Moreover, there is a complex number 
\±(y, a, w) so that 

(1.2) A(v9 a, w)A{wv, wcr, w~]) = ^(v,cj,wyxlw(G /P)lwAG /'/*), 

where the constantsW(G jP) is defined in [10]. Moreover, v \—> [i(y, a, w) is meromorphic 
on a£, holomorphic and non-negative on /a*. • 

When w0 is the longest element of the Weyl group, then we call \i{y,o, w0) the 
Plancherel measure attached to a and v. We write [i(o) for /i(0, a, WQ). By using 
Plancherel measures, one can normalize the operators A(y, a, w) by a meromorphic (in v) 
scalar factor, to obtain a family of intertwining operators which are holomorphic on the 
unitary axis ia* [17, 22]. Shahidi, [18], has shown that Plancherel measures and normal­
izing factors are related to conjectural LanglandsL-functions. We denote the normalized 
operators by JA(i/, a, w) and write JA(CT, W) for J3(0, or, w). These normalized operators 
satisfy the cocycle condition 

(1 .3) J3(<7,WiM>2) = J3(w20%Wi)J2(o-,W2), 

for all w\, w2 G W(G, A). 
Suppose w G W(cr). Choose an operator Tw: V —> V with Twwa = aTw. Then 

JAf(<7, w) = TwJA(or, w) is a self intertwining operator for lndp(a). 

THEOREM 1.2 (HARISH-CHANDRA) [22, THEOREM 5.5.3.2]. The commuting algebra 
C{p) 6>/Indp(<r) is spanned by {JA'(cr, w) | w G W(a)}. m 

The theory of /^-groups gives an algorithm for computing a basis of C(a) from among 
the operators JA'(a, w). Let <2>(P? A) be the reduced roots of P with respect to A, and let 
(3 G 0(P, A). Let A[3 be the torus ker(/3 n A)°. We denote by M^ the centralizer of Afj 

in G. Then M is a maximal proper Levi subgroup of M^. Let fif^d) be the Plancherel 
measure attached to /A ,̂A/(O"). Then Hp(cr) — 0 if and only if WMA(P) ^ 1, and iM^Mi0) 
is irreducible [22]. Let A' = {/? G 0(P, A) | /^(cr) = 0}. Denote by W the subgroup 
of W(a) generated by the reflections in the elements of A'. Let RG(&) = {w G W(G) \ 
w/3 > 0, V/3 G A7}. If G and cr are implicit, we may denote Rc(cr) by 7?. 
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THEOREM 1.3 (KNAPP-STEIN, SILBERGER [14, 20, 21]). For a e £i(Af), we have 
W(cr) = R\K W. Moreover, W = {w € W(a) | J^7(a, w) is scalar}. m 

So, {Si'{a, r) | r e R} is a basis for C(a). Note that if n , r2 e R, then 

(1.4) #(°,hh) = rKri,r2)^ /(a,r1)^ /(a^2), 

where the 2-cocycle 77 is given by 

(1.5) Tr,r2 =ri(rur2)TnTr2. 

Thus, C(cr) ™ C|7?]r/, the group algebra of/?, twisted by the cocycle 77. 
We recall the role this cocycle plays in the description of/G,M(C)- Let 1 —> Z —-» 7? —> 

/£ —» 1 be a central extension over which r? splits. We identify 77 with its pullback to 
R x R. Choose a function £:7? —» Cx splitting 77, /.e., C(n)_1C(r2)_1C(ri^2) — ^(^1,^2). 
Let cja be the character of Z satisfying cja(z)£(r) = £(zr). We get a unitary intertwining 
operator Â(a, r) — £(r)~l ̂ ' (a , f), for r £ R. Now r 1—> Â(a, r) is a homomorphism with 
Â(a,zr) — u)~l(z)Â(cr,r) for z E Z. Let n(^,o;CT) be the set of equivalence classes of 
irreducible representations of R with Z-central character LJ~{ . 

THEOREM 1.4 (ARTHUR [1]). 77zm? is a bijection p \-^ irpfrom Yl(R,uja) to Ua(G) 

with the property that dim Home (np, iG,M((J)) = dim p. • 

Arthur writes down the projections of iG,M(G) o n t o ^ts isotypic components, and we 
use this description in Section 2. 

There is a conjectural construction of the 7?-group, based on Langlands's conjectured 
parameterization. We describe this construction briefly, and refer the reader to [3, 15,19] 
for more details. Let Wp be the Weil group of F. We denote by Lp the Langlands group 
Wp x SU(2, R). Let G be the complex group whose root datum is dual to that of G. The 
L-group of G is given by LG — G ix Wp, where Wp acts on G via its action on root 
data [5]. 

We assume that %{G) and ^(M) can be partitioned into finite subsets, called L-
packets, with the properties described in [5]. Suppose that i/j:Lp x SL(2,C) —> LG is 
a parameterization for the 7,-packet IT of G, as conjectured by Langlands. Let S^ — 
zAlm(\l))\, and let Sfy be its connected component. Choose a maximal torus 7^ C *Ŝ , 
and let N^ = Ns^T^). We denote by N^ the group N^/T^, and by S^ the group S^/S0^. 
Then there is a map N^ —> S^ given by nT^ 1—> nS^. Since any two maximal tori of 
S°L are conjugate in S°,, this map is surjective, with kernel W°, — W(S?^ 7^). Similarly, 
there is a surjective map N^ —> W(S^, 7^) = W^. Call S^ the kernel of this map. Then 
Rj, = W4,/W

0^ ~ S^/S^ is called the R-group of ^ 
Suppose now that i/>: L/̂  —̂  LM parameterizes a discrete series L-packet IT of M. Then 

Lp —* LM ^ LG should define a tempered L-packet of G. One expects that Yl^G) = 
Uaen Ll^G) is this L-packet. 

Now, by duality, one can identify W^ with those elements w in W(G, A) such that 
wa G FT for each a E IT. So ^ G ( ^ ) should be isomorphic to a subgroup W^a of l^,. 

https://doi.org/10.4153/CJM-1995-019-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-019-8


350 DAVID GOLDBERG 

L e t ^ = W^ n ^ / • T h e n t h e ^-g r°up, R^a = * * W ^ , a , should be isomorphic to 

the #-group given by WG((T)I W [3, 19]. When F = R, Shelstad has confirmed this last 

isomorphism. If Fis/?-adic, then Keys has confirmed the isomorphism of R^G a n d / f o ^ ) 

in some cases [13]. 

Now suppose G / G ° ~ Z/pZ. Let P = MN be a parabolic subgroup of G and P° = 

P D G°. Suppose G G ^(M). One can still define the operators, A(i/,a,w), now for 

w G W(G,\°). Arthur has studied these operators, and their normalization [2]. Many 

of the preliminary results on these operators match with those for connected groups, [2, 

Theorem 2.1]. It is not yet clear what the analogues of Theorems 1.2 and 1.3 should 

be. On the other hand one can attempt to extend the dual group construction of the R-

group. Namely, one can define an L-group LG D LG° [4], and one hopes to describe the 

irreducible tempered representations of G (in packets) via parameters ip: Lf x SL(2, C) —-> 
LG°, such that Z ^ ( ( / w ^ ) ) n ( G \ G ° ) ^ 0. In fact, Arthur points out that these maps should 

define those packets {a} such that a\c° is irreducible [3]. Now suppose a G T^iM) is 

parameterized by i[). Arthur extends the definitions of S^, N^, S^, W^, and R.^. Note that 

5^, 7^„ and thus, W°, depend only on ty and G°, not on the larger group G [3]. 

If -0: LF -^ LM° parameterizes a discrete series L-packet ITo of M°, then we let n be 

the collection of components of Ind^o(cr0) for GO £ n 0 . Then IT is an L-packet of M, and 

every L-packet of M should arise in this way. Composing with the inclusion map, we get 

a parameter for the L-packet of components of ic,,M{&) for cr G n . Again, we can identify 

Wi} with {w G W(G, A°) | wIT = IT}. Thus, WG(G0) = {w G W(G, A) | WG0 ~ <r0}, 

should be isomorphic to a subgroup W^a of W^. Note that, since W^ C W(G°, A°), we 

have W°^ = W^a H W°r We let R^a = W^/W0^. Arthur, [3, Section 7], indicates 

that R^ should be associated to the reducibility and component structure of /V;,A/°(^O)-

We recall some results of Gelbart and Knapp. 

THEOREM 1.5 (GELBART-KNAPP [6]). Suppose H is a totally disconnected group 

and Ho C H is an open normal subgroup such that Hj HQ is finite abelian. Let n be an 

irreducible admissible representation ofH. 

(a) 7r|//0 is a finite direct sum of irreducible admissible representations of Ho. 

(b) Ifir\f{0 — E,Lj AW/7T/, with TTJ irreducible, 7T/ qd njfor i ^ j , and each raz > 0, then 

m\ = nt2 = • - • = ntf_. We denote this integer by m. 

(c) IfH7T[ — {h G H I h'ïïx ̂  TÏ\ } , then HjH1Xx permutes the classes ofir, simply and 

transitively. 

(d) Let A//0(7r) be the collection of one dimensional characters ofH, trivial on Ho, 

with the property that IT ® V — IT. Then \XH0(TT)\ — m2L 

(e) If 7r|//0 and 7T/|//0 are multiplicity free and have a common constituent, then 

7r|/y° = n\'H , and IT' = TT ® v for some character v ofH, trivial on HQ. • 

2. Reducibility when G/G° ^ Z/pZ. We assume that G is the F-points of a re­

ductive quasi-split algebraic group G, and G/G° ~ Z/pZ, with p prime. 
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LEMMA 2.1. If'TT is an irreducible admissible representation of G, then 7T|G° is a 

multiplicity one representation. 

PROOF. Since |G/G°| = P,\XG°(TT)\ is square free. Thus, by part (d) of Theorem 1.5, 

m = 1. • 

We now describe the reducibility of/G,A/(<J) in the case where M ^ M°, and a\M° is 
irreducible. 

PROPOSITION 2.2. Suppose P = MN, and M ^ M°. Suppose (a, V) G %i{M), 

with (To = CT\M° irreducible. Let TTQ = /G°,M°(0"O)» and IT — IGM^P)- Suppose that, TTO = 

n\ir\ ®- • -(&nsTTs, with 717 irreducible, andiri C/L TTj,fori ^j. Then TT c^ n\H\ 0 - • -(BnsT[s, 

with IT/ irreducible, and IT/ q/L I\j, for i ^ j . 

PROOF. Since a\^ — cr0, we have TT\G° = TTQ- Thus, 7r has at most s inequivalent 

components, and if 7T/ Ç n |c° , then IT appears in TT with multiplicity less than or equal to 

nt. In fact, since M ^ M°, and CJ\M° = cro, we see that restriction of functions, from the 

space V{a) of IT to the space V(ao) of TT$ is an isomorphism. Moreover, since G = MG°, 

we see that if T G Horned, TT) is non-zero, then r|^(ao) ^ 0. Therefore, restriction gives 

an embedding Horned, TT) C-^ Homco(7ro, TTQ). 

Let w G WG°((TQ). Then wcr|Mo = cro, so wcr ~ cr 0 x7, for somey. Let 7^ be a linear 

automorphism of V such that 7^wcr = (cr® xO^w Note that rw gives an M° isomorphism 

between a0 and wa0. Let 7^: V(a) -> F(a) be given by T^fe) = rw( / (g)) (8) X~J\g\ We 

let ^ ' ( a , w) = T'w^L(cr, w), where Jï(cr, w) is the normalized operator given in [2]. Since 

Twwao = a0Tw, mdA(a,w)\V{(To) = ^(cr0,w), we see that fl!(a,w)\y{(To) = Rf(a0,w). 

Since {^(CTQ, w) | w G 7?G°(^O)} is a basis for Hoirie (7ro,7ro), the restriction of inter­

twining operators is surjective. Thus, Homc(7r, TT) = HoiriG°(7ro,7ro), giving the desired 

result. • 

COROLLARY 2.3. Suppose P = MN, and M ^ M°. Suppose a G ^(M), with 

co = &\M° irreducible. Let TTO = /'GO,MO(CO)- Suppose that, TTQ = /?i7Ti ® • • • 0 «57r5, WZY/Z 

7T/ irreducible, and 717 9̂  7ry, ̂ or / 7̂  7. For each i, choose an irreducible representation 

IT/ of G with L1/|GO ^ 717. 77ze« 

/=i y=o 

Moreover, the collection {LI/ (8) x7}y arepairwise inequivalent. 

PROOF. By Proposition 2.2, we can take IT/ so that TT = /G,M(O") = 0«/lT/, and 

L1/|GO = TT/. Moreover, since IT/|(7° is irreducible, we know that 11/ 9̂  IT/ (g> X- Since 

<T|A/O = cr0, Theorem 1.5 implies Ind^o(cro) = 0 / a <8) X7- Thus, 

/>-i p-i 

/G,M°(^O) = © ÎGM(° ® XÔ - © TT 0 x7' 

y=o ./=o 

= ©^©n/0xy, 
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as claimed. • 

Now suppose that a\M° = cr\ 0 • • • 0 ap. Then, for each /, IndjJJo (a/) = a. Moreover, 

(J ~ cr 0 X- Let TX = icM^X a n d ni = iG°,M°(ai)' T n e n AG° = ÎGM&W) = ©f=| ^ 

Note that, for each /, we have Ind^o(7T/) = (/G,M°(^/)) = ÎGM^) = lï- Now, by Frobenius 

reciprocity, 

HomG(7r,7r) ~ Hom^o(7ri,7r|(7o) ^ Hom^o ( ̂ 1 , 0 ^ j . 

By [22, Theorem 2.5.8], we know that, for i ^ 1, Homco(7ri, TT/) = 0, unless w0<7i ~ a,, 

for some w0 G W(G°, A°). Note that, for such a wo, wo<Ji ^ a\, but, w0a ~ a, (see 

Theorem 1.5(e)) 

Now suppose that w0cr\ = 02. We further suppose that m G M\M° has the property 

that mai — cn+\,i = 1,2,...,/?— 1. Assume that, for 1 < / <j\ there is a w/ G W(G°, A°) 

with vv/cri ^ a/. Let vvy = mwj-\tn~^wo. Then wy<Ji = Awoy_i = aj. SO, in this case, for 

each7, there is a w G ^ (G° ,A° ) with wcri c^ ay. Note that the existence of such a 

wo G W(G°, A°) is equivalent to the condition ^ G ( C O ) 7̂  ^G°(C"O)-

PROPOSITION 2.4. Suppose M ^ M°, owd <7|M° ^ reducible. Let GQ be any irreducible 

component of (J\M°• Let TX = iG,M0(ao), and TX<^ — /G°,/V/O(^O)- If WG(VO) — Wç,°(p§\ 

then Homc(7r, TT) ~ HomG°(7To, TXQ), and each component ofix restricts to G° reducibly. 

Thus, if the decomposition of TXQ into irreducibles is TX$ = 0 ? = 1 nji, then we have TX = 

®s
i=}niYlhwithTi c n , j G o . 

PROOF. We have already noted that Hom^Tr, TT) = Hom<y>(7ro, TX0). Let m G M\ M°. 

Since woo is a different component of CT\M°, we know w7ro and TXQ have no common 

constituents. Thus, for each component r of 7ro, mr 9̂  r , so IT = Ind^o(r) is irreducible. 

Therefore, we get the result on the decomposition of TX. Moreover, 1T|GO = ©£T0 m/r, and 

only T appears in 7To. • 

LEMMA 2.5. Suppose M ^ M°, and G\M° = &\ 0 • • • 0 crp. Let TX = /G,M°(^O) arid 

717 — iGo,M°(&i)- Suppose that WG(GO) ^ WG°{GQ). Then, for each i, 

dim(HomG(7r, TX)) = p dim(HomG°(7T/, 717)). 

PROOF. We know H o n i e d , TT) ̂  HomG°(7ri, ©?=1 717). By our assumption, and the 

discussion preceding Proposition 2.4, we know 717 ~ 71) for all 1 < i <j < p. Conse­

quently, Horned , TX) ~ HomG°(7Ti ,/?7Ti), giving the result. • 

We now look at the case where M = M°. Since /G,M(O") — ^G,M°(^")? we again need to 

explore the reducibility of the representations I n d ^ r ) , with r Ç /G°,M(O")-

LEMMA 2.6. Suppose M = M°, and G G ^{M). Let TTO = ÎGO,M(&)> and sup­

pose TXQ = ®s
i=l n-iTi. If for some i, Ind^o(r/) is reducible, then wa ~ a for some w G 
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W(G,A°) \ W(G°,A°). Furthermore, if such a w exists, then dim(HomG(7r, n)) = 

^dim(HomGo(7r0,7To)). 

PROOF. Let g G G \ G°. We may assume that g G NG(T°). Let M' = gMg~{. 
Let a' — go. We know that Ind^o(r/) is reducible, if and only if gn — 77. Since gr,- is a 
subrepresentationof/G^A/'C^O^wes^th^CT ~ r/implies that, for some w0 € W(G,A°), 
WOMWQ1 = M7, and w0a ~ a'. Now, if w = g_1wo, then w G NG{M) \ NGo(M), and 
wa ~ a. We have seen that such a w lies in NG(A°) \ NGo(A°), and thus, represents an 
element of W(G9 A°) \ ^(G°, A°). 

Now suppose that wa ~ a, for some w G W(G,A) \ W(G°,A). Choose a represen­
tative w for w. We have w7To — 7r0, and therefore, each connected component of G/G° 
fixes the representation 7ro. By Frobenius reciprocity and Mackey theory, 

Homc(7r,7r) ~ HomG°(7iV,7r0) ~ HorriG°( 0 (g7ro,7ro)) ~ HomG°(p7ro,7ro), 
V G/G° y 

giving the result. • 

Let 0(P°, A) be the reduced roots of A° in P°. Suppose a0 G ^(M0). For a G 
<D(P°, A°), let /ia(^o) be the Plancherel measure attached to a0 and a. We let A' = {a \ 

/ia(Or0) = 0} and W = W{M) be the subgroup of W(G°, A°) generated by the root re­
flections in A7. Then WGo(ao)/W O± RG°(ao), is the /?-group attached to /G°,A/O(0"O)- We 
let RG(a0) = {w G WG(a0) \ wa > 0 Va G A'}. Notice that i?G°Oo) C #GOO). This 
should reflect the fact that /G,M°(0*O) may have more components than Z'GO,M°(̂ O). 

LEMMA 2.7. Z,Étf P° = M°N be a parabolic subgroup ofG°. Suppose a0 G ^(M0). 
Then WG(a0) = RG(a0) K FF7. 

PROOF. We first show that W < WG(a0). Let a G A7 and w G ^G(^O). If y8 = wa, 
then w^ = wwaw~l G ^G°(^O)- Note that 

ÙÇM°Oo) = 'M°a,M°(>cro) ~ w(/M°,M°(^o)), 

which is irreducible, since a G A7. Thus, (3 G ±A7, and consequently, wp G W. There­
fore, W'<WG{GO). Moreover, since ±A7 is a root system, it is clear that WfC\RG(ao) = {1}. 

Let w G WG(a0). Define tf(» = {a G A7 | wa < 0}. If i?(w) = 0, then w G /*G(<70). 

Suppose that, for w\ with |i?(wi)| < |/?(w)|, we have w\ = rw7, with r G RG(CTO), and 
w7 G W. Suppose a G A7, and wa < 0. Let w\ = ww«. Then wja > 0. Moreover, since 
±A7 is a root system, wa(A

7 \ {a}) = A7 \ {a}. Therefore, if (5 G A7, and W\f5 < 0, then 
wa/3 G /?(V) \ {a}. Consequently, |iR(wi)| < |^(w)|, and we can write w\ = rw\, with 
r G RG((To), and w\ G JF7. Thus, w = rw', with w7 = w\wa. m 

We call RG(&O) The Arthur ^-group attached to /G,M°(^O)« We will show that the struc­
ture of /G,M°(CO) is reflected in the representation theory of RG(ao). In Section 4, we show 
that, if Arthur's group R^a exists, then it must be isomorphic to RG{GQ). 
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THEOREM 2.8. Suppose that P° = M°N, and a0 G ^(M0). Choose any a G £2(A/) 

with o"o C (J\M°' 

(a) If M ^ M°, and ^o — O\M°> then RG(&O) — RG°(&O) K 1/ p i . 

(b) Ifcr\Mo is reducible, or M = M°, then 

I 1 ifWG(a0)= WGo((io). 

PROOF, (a) Since M ^ M°, and a0 = CT\M°9 we know that m<j0 ~ cro, for all m G 

M\M°. Fix such an m. Then m represents an element w G ^ ( G , A°) \ W(G°, A°), and 

thus, w G ^ G ( ^ O ) \ ^G°(O"O)- We can write w = rw7, with r G RG(&O) and w7 G ^ 7 . 

Since Jf7 C WG°(VO)9 we have r G RG(&O) \RG°(&O)- Note that, since m̂ 7 G M°, we have 

H^ = 1. Since W is normal in WG((TQ)9 we have 1 = wP = (rw7f = ^w77, with w77 G W. 

However, since RG{&O) H J^7 = {1}, we see that r? = 1. Since M/M° = Z//?Z, we now 

have^G(ao) = RG°{°o) *'(r). 

(b) If ^ G ( C O ) — ^c°(o"o)5
 m e n we clearly have RG(&O) = RG°(&O)- On the other 

hand, if w G ^ ( o o ) \ ^ G ° ( ^ O ) , then we have w = rw7, with r G RG(&O) \ RG°(PO)-

Since ^ ( G , A°) ~ ^ ( G ° , A°) K Z//?Z, we see that r is of order/? modulo / M ^ o ) - If 

H G RG(O~O), then, in W(G, A°), we can write r\ = r^'ro, for some 0 <j < p — 1, and 

r0 G PF(G°, A°). Clearly r0 G / f o ^ o ) , and therefore, RG(CTO)/RG>((7O) ^ Z/pZ. • 

COROLLARY 2.9. Le/ P° = M°N be a parabolic subgroup of G°. Suppose that 

o'o G Œ^iM0), and let CG(CTQ) be the commuting algebra O//G,A/O(^"O)- Then dim Cc(o"o) = 

| *G(*O)| . 

PROOF. Let C(cr0) be the commuting algebra of iG°,M°(^o). Then, we know that 

dimC(cro) = |/?G°(0"O)|- From Proposition 2.2, Proposition 2.4, Lemma 2.5, and 

Lemma 2.6, we know that 

fdimCOo) if WG(<TQ) = WG°(CTO) 
dimCc((To)-{pdimC(cro) otherwise. 

By Theorem 2.8, we see that dim CG(O"O) = |^G(^"O)|- • 

We wish to prove an extension of Theorem 1.4 in this case. Let R = RG(&O) and 

Ro — RG°((JO)' Let r/ be the 2-cocycle of RQ given by (1.5). If r G R\Ro, we choose 

an equivalence Tr between a and ra. This gives us an extension of r\ to a 2-cocycle of 

R which is also defined by (1.5). We also denote this extension by 7/. We take a central 

extension R of R by Z over which r/ splits. Since R/RQ is cyclic, we have the following 
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diagram 

1 1 

î î 
1 —> I/nl --t l/nl 

Î î î 
z —> R --> R 

II î î 
z —> *o --> Ro 
Î î î 
1 1 1 

with n = 1 or p. Thus, we can choose ^:R —-> Cx which splits 7], and the restriction of 
£ to $o is a choice for the function discussed is Section 1. Let r denote both a generator 
of R/Ro, and its image in R/Ro. Then it makes sense to compare rp and r7rp, for p G 
n(#o,^0). 

PROPOSITION 2.10. Let GO e ^(M0)- LetR0 = RG°(cro), andR = RG(<ro). Suppose 

that R/Ro — Z/pZ. Let p £ Yl(Ro, coao), and suppose np is the irreducible component of 

TTo = iGoM°(ao) attached to p. Then, for each r £ R/Ro = R/Ro, we have rnp ^ irrp. 

PROOF. From [1, Section 2] we know that, if Qp is the character of p, then 

(2.1) Qp = ITT £ W ^ o , w ) 
1̂ 01 weR0 

is the orthogonal projection of 7ro onto its 7rp-isotypic subspace. Suppose <§>pf = / , and 

let Vp(f) be the G°-span of/. Then 7r01 vp(f) — np. For h G 7r0, let Th(x) = h(r~xxr). Then 

we can realize ri[p on the G°-span W of Tf. Note that we have W d 7ro, if we realize 

7ro as Ind^y,(rcro), where N' = rNr~x C rUr~x. To show that r7rp ~ 7i>p, it is enough to 

show that <b'rp{Tf) — Tf, where $>'rp is the operator given by (2.1), with respect to our 

second realization of 7To. 

First note that, in this second realization of 7ro, the intertwining operator Tw: wao —> do 

is replaced by the operator T'w — Tr-\ TwTr, and thus the cocycle here is rjr(w\, W2) — 

rj(r~lw\r,r~lW2r). Of course r]r and r\ define the same class in H2(R, C x ) . Therefore, to 

get the same map p y—-> 7rp, we need to define Â(rao, w) = £(r~~ x wr)2l!{rGQ, w). Now note 

that 

A(0,ra0,w)Tf(g)= ( f{r~xw~xngr)dn 

(2.2) w 

— I ff(r
 lw XKr Xnr)(r xgrfjdn. 

A straightforward calculation shows that r~xN'wr = Nr-iwr. Thus, we can rewrite (2.2) as 

/ f(r~xw~xrn(r~xgr)) dn — A(0, do, r~x wr)f(r~x gr) = T^A(0,a0,r~xwr)fj(g). 
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Therefore, 

lKo| weR0 

= ITT £ ^ W ^ r - ' v v r ^ V o , ^ / 

= 7?f £ ^l^)Ctr1wr)r(^'(ao,rlw)f) 

= rev) = r/. 

Thus, we have shown that rixp ^ irrp. m 
We can now prove our main result. 

THEOREM 2.11. Suppose that G/G° ~ Z/pZ. Let P° = M°N be a parabolic sub­
group of G°. Suppose GO G ^(M0). Let IT — /G,A/°(^O)> and HO — ÎGOMO((TO)' Denote 
by R = Rdo'o) the Arthur R-group attached to ir, and Ro = RG°(CTQ) C R the Knapp-
Stein R-group attached to 7ro. Then, to each r G T\{R, ujaQ), we can attach an element of 
lTr G Hao(G) such that: 

(1) Ifr ^ T', then I l r <£ UT>. 
(2) The multiplicity ofHT in TT is dimr. 
(3) If p G Yl(Ro,(joao), then p C r\^ if and only ifnp C nr|G°, where irp is the 

component ofi^o which is attached to p. 
(4) Every irreducible component of IT is isomorphic to I\T, for some r. 

PROOF. Suppose that R = Ro. Then, by Theorem 2.8, we know that M — M° or 
<7o C CT|M°, for some a G %i(M). Moreover, Theorem 2.8 also implies that WG(O~O) = 

JPGO(O"O)- Therefore, by Proposition 2.4 and Lemma 2.6, each component ixp of TTO induces 
irreducibly to G. We let Ylp — Ind^o(7rp). Then, Proposition 2.4 and Lemma 2.6 imply 
that lip 9̂  Lip/ for p ^ p'. Thus, the correspondence p\—> Ylp has the desired properties. 

Now suppose that R/Ro — Z/pZ. We identify R/Ro, and G/G°. Suppose p G 
n(^o,^a0)- Let r G R \ Ro, and also denote by r its projection to R. Then Ind^0(7rp) 
is reducible if and only if rirp ^ TTP. By Proposition 2.10, this is equivalent to rp ~ p, 
which is equivalent to the reducibility of Ind| p. 

If rixp yk 7TP, then there are distinct elements p — pi , . . .,pp G U(Ro, ^ 0 ) , such that 

rJiTp = 7TP 19 for 1 < j < p — 1. Of course, we then know that p7+i = ^p, for each 

1 < 7 < /? — 1. Let r = Ind^ p. Then r is irreducible, and T = Indj- (pj) for each j . 

Similarly, I1T = Ind^o(7rp) is irreducible, and n r = Ind^o(7Tp/) for each 1 <j<p. Thus, 

dim(HomG(ilT, 7r)) =pdim(HomG°(7rp,7ro)) ~ pdimp = dimr. 

Moreover, nr|G° = ©y=1 irPj9 and only those components of ix equivalent with n r contain 
any irp upon restriction to G°. 
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On the other hand, if rp ~ p, then Ind^ (p) ~ (B^J r® \J'. Let YlT, be any irreducible 

component of Ind^o(7Tp). Then 

I n d g o ( 7 r , ) - 0 n r ^ x y , 

and nT 9̂  n r (g) x- Let 1 1 ^ = n r 0 xy. Then, for eachy, 

dimHomc(n7tg)x./,7r) = dim(HomG°(7rp,7ro)) = dimp = dimrtg) x7. 

Furthermore, only the representations L L ^ contain 7rp upon restriction to G°. Therefore, 
we have a correspondence r H-> n r exhibiting the properties (l)-{4). • 

3. Reductibility for On. Here we use the results of Section 2 to determine the R-
groups and reducibility for On(F). Since the results for 02n+\ are trivial, we leave them 
to the end of the section. 

Let Jn — 
1 

\ l 

G GLW. We let G = C^, defined with respect to Jin- That 

/ 
is, G - {g G GL2„ | tgJ2ng = J2«}. Then G° = S6>2„ = {g G G | detg - 1}. Clearly 
G/G° is of order 2. We often write G = G(n) or G° = G°(n) in order to specify the rank 
of G. By convention, we take G(0) = G°(0) = 1. Note that 

and 
G(1) = G°(1)U 

We may write GL(m) for the group GLm(F). The non-trivial character \ of G/G° is 
given by x(g) = sgn(detg). 

Let T° be the maximal torus of diagonal elements in G°, 

T ° = I 

/A, \ 

A„ 

\ 

A, G GL| 

A r ' / 

We often write (2 = (Ai,..., An) or a — diag{Aj,...,Xn, A"1 , . . . , Af1}, for a G T°. 
Let (D(G°, T°) be the roots of T° in G°. Then 0(G°, T°) is of type Dn. The Weyl group 
W(G°, A°) is isomorphic to Sn K Z^ 1 . We recall the explicit description of W(G°,T°). 
First, let the transposition (if) be given by 

(ij): (X\,..., A/,..., Ay,..., X„) i—> (Ai,... , Ay,..., A/,..., Aw). 
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A representative for (ij) is given by ^ „ J, where Ey is the standard permutation 

matrix of GL„ associated to (ij). 
For each / we let the sign change c/ be given by 

Ci'. (A/,..., A/,..., Xn) i > (A/,..., Xi , . . . , Xn). 

Note that c/ has no representative in G°. However, 

/ //-

C; = 

0 1 
hn-2i 

1 0 
\ 

\ 

Ii-l / 

EG\G°, 

represents ch Thus, FF(G°,T°) = ((//), C/Cy | 1 < / <j < n) ~ Sn x Z ^ 1 . Now, it is 
clear that W(G9 A°) ~ £„ x Z^, given by {{ij\ck \ \ <i <j <n,\ <k <n). 

We take the collection of simple roots, 

A = {et - ei+x}?"/ U {en-\ + <?„}, 

so that the Borel subgroup B° = T°U is the upper triangular matrices in G°. Note that 
if u — (uy) G U, then u„tn+\ = 0. Thus, C = cn G NQ(B°), and consequently, B = 
NG(B°) = B° U B°C. Moreover, the Levi component of B is T = T° U T°C. 

Suppose P° = M°N is a parabolic subgroup of G° containing B°. Then there are 
positive integers m\,..., mr and a non-negative integer k, so that 

M° ~ GLWl x • • • x GLWr xG°(k). 

In fact, without loss of generality, we can suppose that the split component, A°, of P° is 
of the form 

A° = {diag{Ai/Wl,...,Ar/Wr,/2*,Ar
 {Imr,...,Xl

 lImi}}, 

and thus, 

M° 

(g\ 

'gr 

l\ 

gi ^ GLW, 

h e G°(k) 

Tgi 

Here Tg means the transpose of g with respect to the second diagonal. We make the 
further assumption that m\ > m2 > • • • > mr. Notice that there is one ambiguity in 
our notation. Namely, if M° = GLWl x • • • x GLmr.., x GLi, then we can also write 
M° = GLWl x • • • x GLm^, xG°(l). We take the convention that k^ 1, i.e., we choose 
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the first notation. This makes our description of M° consistent with that of A°. Moreover, 
it is consistent with the notation in [8]. However, with this convention, if mr — 1 and 
k = 0, then P = iVG(P°) = MN, with 

M = GLWl x • • • x GLW,_, xG(l). 

In all other cases, P = = MN, with 

M = GLWl x • ••xGU,rxG(t). 

While this may cause some confusion, it seems to be the less confusing of the two options. 
If M° = QLm[ x • • • xGLW/ xG°(t), then we may write M = GLWl x • • • xGLm, xG(ic'), 
with the understanding that t = r or r — 1, and k! = k or 1, as appropriate. 

Suppose that M = GLmi x • • • x GLW, xG(^). If a G *Ea(M), then o ~ o\ ® • • • ® 
ot <g) p, with Gi G 2^(GL(/w/)), and p G £2(G(F)). Note that if k' > 0, then G(k') acts 
on £ 2 ( ^ 0 by conjugation. We take C to be the representative of this action. 

Suppose thatylf3 ~ GL(mi) x • • • x GL(mr) x G°{k). Then W(G9K°) is a subgroup 
of Sr x Z5. More precisely, W(G, A°) is generated by the elements, 

C/: (Ai,.. . , A/,..., Ar) \-> (Ai,... , A,"1,..., Ar), 

for 1 < / < r, and the permutations 

w/,-: (Ai,. . . , A/,..., Ay,..., Ar) >—-> (Ai,... , Ay,..., A/,..., Ar), 

for those 1 < / < j < r, with m, = my. Note that if g = (gi, . . . ,gr,h) G M, then 
Qg = ( g i , . . . , ^ 1 - - - ^ ^ and w.yg = (gi, . . . ,gy,... ,gh... ,gr,h). If k = 0, then 
C/ G ^F(G0, A°) if and only if w, is even. If & = 0, and both ntf and rrij are odd, then 
CJCJE W(G°,A°). 

Suppose a0 = (j\ (g) • • • 0 o> 0 po £ ^ ( A O - Then we have 

(3.1) C/cr0 ~ <TI ® • • • ® az- (8) • • • 0 or (g) po» and 

(3.2) ŴyCTo ~ a i (g) • • • (g) Oy (g) • • • (g) a/ ® • • • <g) a r (g) /0()-

Thus, 

(3.3) C/cr0 ~ o0 if and only if a, ^ 07; 

(3.4) W/ytJo — <Jo if and only if ot ^ cry; 

(3.5) WJJQCJOO ~ a0 if and only if a,- ~ ay. 

Note that woç> ~ OQ for some non-trivial w G W(G, A°) if and only if at least one of the 
conditions (3.3)—(3.5) holds. 

If k > 0, then (3.3)—(3.5) also give the conditions for wo0 ~ a0 for some non-trivial 
w G W(G°,A°). However, if k = 0, then Ç- £ ^(G°, A°) if m, is odd. Thus, if both 
mi and my are odd, then QCyao — <7o if and only if both 07 ~ oy, and ay ~ ày. This, 
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along with (3.3) for m, even, (3.4), and (3.5), give the conditions for wao ~ vo for some 
we W(G°,A°)[Sl 

Let I\ (M) — {/ | m{ is even}, and 

f , x = f { l ,2 , . . . , r } i f&>0andCp 0 - Po, 
11 0) \Ii(M) otherwise. 

Let /2(<70) = {1,2, . . . , r} \ h (a0). Now take 

Ji(cro) = {/ e I\((TO) | iG°(mi+k\GL(mi)xG°{k)(^i ® Po) is reducible}, 

and ^(^o) = {* £ M^o) I 07 — ^/}- For y = 1 or 2, we let dy be the number of 
equivalence classes of a, with i G JJ(CTO), and let d = di + d2. 

THEOREM 3.1 (SEE [8]). The R-group, Ro, attached to /G°,M°(^O) is given by 

f Z{ ifd2 = 0 
R»-\ztx ifd2^o. 

In either case Ro is a subgroup of(CtCj \ i ^j). m 

COROLLARY 3.2. For any ao G ŒJziM), ico,M°(ao) is a multiplicity one representation 
with \RQ\ components. Moreover, C(a) ~ C[Ro], i.e. the cocycle r\ splits. m 

The last statement of this corollary was proved by Herb [11]. 

THEOREM 3.3. Let G = G(n) = 02n, and suppose that P° = M°N is a parabolic 
subgroup ofG°. Let M° = GLWl ® • • • <g) GLW/. (g)G°(Ar). PFe rfewote èy C = c„ the odd 
sign change in both W(G, A°), and W{G(k), S°), where S° is the maximal torus ofG°(k). 
Let <7o = cr\ ® • • • (8) oy & Po £ ^(M0). Suppose d — d\ + d2 is as in Theorem 3.1. Then 

Rr(<Tiï~lZ™ (fk>landCpo^po 
G l o j " \li otherwise. 

PROOF. Let R = RG{po)- Suppose that k> 1, and Cp0 - Po- Then M ^ AT, and 
<7|M° is irreducible. Thus, by Theorem 2.8(a), RG(OO) — Ro K Z/2Z. Moreover, since 
{a e cD(G°,T°) | Ca < 0} = 0, and C G ^G(CTO), we clearly have C e R. Thus 

We now consider all the other cases, except for the case where mr = 1 and k = 0. 
Suppose that d2 = 0. Then, from (3.2)-(3.5), we see that ^G(^O) = WG°(CTO), so R = 
Ro = Zd

2. Now suppose that rf2 > 0. For / = 1 or 2, let 

Bfao) = {je Ji(a0) | at ^ ah W >y}. 

Our assumption that d2 > 0 implies that B2((io)^^. Now, from [8] we have 

tfo - (Cj \j e 5,(a0)) x (CjCt | £ J G B2(or0)) ~ Zf1 . 
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Now, for/ G B2((To), we have Cj G WG(ao) \ WGO{GQ). Moreover, from Lemmas 3.4,6.6, 
and 6.9 of [8], we have Cj G R. Thus, 

R = (Cj\j£B]((To)UB2((To))^Zi 

Finally assume that mr = 1 and k = 0. Then 

M=GL m i x - - xGLWr_, xG(l). 

Note that crr £ Fx, so Cor — ar = cr^1. Let cr = ĉ  ® • • • 0 a>-i ® p. Note that 
dimp = 1 or 2. If dim p = 1, then P|GL(1) = o>, a nd thus of = 1. Therefore, d2 > 0, so 
R0 ~ld

2-
{. Since C G WG(a0) \ WGo(a0), we have CeR,soR = Z{. On the other hand, 

if dim p — 2, then C ^ ^G(^O)- If ^2 = 0, then ^G(^O) — ^G°(^O), and Theorems 3.1 
and 2.8(b) imply R = R0 ~ Zd

2. If d2 ^ 0, then WG(a0) ^ ^G°(^O), and in particular 
Cj G ^G(^O)9 f°r some y with my odd. By Lemmas 3.4, 6.6, and 6.9 of [8], we have 
Cj £R,soR~ Zd

2. m 

COROLLARY 3.4. Let G, M, M°, and a0 be as in Theorem 3.3. Then /G,A/O(< )̂ is a 
multiplicity one representation. Moreover, ifd is an in Theorem 3. I, then /G,A/°(^O) has 2d 

components, unless k > 1 and Cpo ~ po, in which case /G,M°(<^O) has 2d+l components. 

PROOF. This follows immediately from Corollary 3.2, Theorem 3.3, and 
Theorem 2.11. • 

We now consider the case where G = G° x Z/pZ. This case is quite simple, and 
includes the case G = 02n+\. Let P = MN be a parabolic subgroup of G, with split 
component A. Then A = A°, the split component of M°, and M = M° x Z/pZ. Let 
a G ̂ (M). If GO is a subrepresentation of OJA/°, then, for m G M\M°, mao ~ GQ. Thus, 
G\M° is irreducible. By Proposition 2.2 and Theorem 2.11, we get the following result. 

LEMMA 3.5. Suppose G = G° x Z/pZ. Let P° = M°N be a parabolic subgroup 
ofG°, and G G ^(M). Let <7o = cr|Mo. Then RG(cro) — RG°(po) x Z/pZ. Suppose 
iGo,M0(ao) — 0/=i W/7T/. For each i, choose an irreducible admissible representation IT/ 
ofG, with 7T/ = H/1 Go. Then 

s p-\ 

icM°o) = 0 ni 0 ni ® Xy• • 
/= i y=o 

We apply this result to 02n+\ = S02n+\ x {±/}. We write G = G(«). For the particulars 
on the parabolic subgroups and ^-groups of S02n+\, we refer the reader to [8]. 

COROLLARY 3.6. Let G = 02n+\, and suppose that M° — GLWl x • • • x GLm/ x 
G°(k). Let do = ai (g) • • • (8) a> (8) po £ ^(M0). ^ ^ £e ^*e number of equivalence 
classes of at such that iG°(mi+k),GL(mi)xGo(k)(o'i ® Po) is reducible. Then RG(ao) — Zd+l, and 
iG,M°(ao) is a multiplicity one representation with 2d+l components. m 
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4. Relation with Arthur's conjecture. We conclude with some remarks on the the 
connection between our results and the conjectural 7?-group R^G of Arthur. Since con­
struction of R^a depends on the solution to the Langlands parameterization problem, we 
are certainly a long way from proving either Shelstad's or Arthur's conjecture. However, 
it is worth noting that our results, which do not rely on the conjectures of Langlands, do 
not contradict Arthur's conjecture. 

PROPOSITION 4.1. Suppose that G/G° ~ Z//?Z, and P = MN is a parabolic sub­
group ofG. Let a G £2 (A/), and suppose that CTQ = CT\MO is irreducible. We assume 
that 

(1) the parameterization of discrete series L-packets ofM° by admissible homomor-
phisms I/J: Lp x SL(2, C) —» LM° is understood, and 

(2) ifip is a parameter for the L-packet ofM° containing GQ, then we have RG°(CTO) — 

K ip,a0 • 

Ifip is a parameter for the L-packet Ilo ofM° containing GQ, then RG(&) — R^a, where 
R^a is the group constructed by Arthur in [3]. 

PROOF. Recall that R^ao = W^ao / W^ ŒQ. We are assuming that W^GQ is isomorphic 
to W°G{(JQ), and and thus, W°^ ao ^ W'. We have also (conjecturally) identified W^G with 
WG(CTO), and thus, 

R^ = W^/W;^ ~ WG(a0)/W ~ RG(cro), 

the last equivalence coming from Lemma 2.7 • 
Thus, from Theorem 2.11 and Proposition 4.1, we see that one can expect that the 

Arthur's conjectural ^-group, R^, should determine the structure of /G,A/°(CTO), at least 
when G/G° is of prime order. Furthermore, RG^O) predicts the structure of /G,A/°(0"O)> 

even if a\M° is reducible. Consequently, there should be a dual side construction of such 
7?-groups as well. In future work, we hope to extend these results to the case where G/G° 
is any finite cyclic group. 
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