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REDUCIBILITY FOR NON-CONNECTED p-ADIC GROUPS,
WITH G° OF PRIME INDEX

DAVID GOLDBERG

ABSTRACT.  We determine the structure of representations induced from discrete
series of parabolic subgroups of quasi-split p-adic groups G with G/G° a cyclic group
of prime order. We attach to each such representation an R-group which extends the
definition of the Knapp-Stein R-group. We show that this R-group has the properties
predicted by Arthur. We apply our results to the case of Orthogonal groups.

Introduction. Let /' be a locally compact, non-discrete, nonarchimedean local field
of characteristic zero. In [7, 8, 9] we described the component structure of those parabol-
ically induced from discrete series representations of certain connected classical groups
defined over F. Our method was to compute the Knapp-Stein R-groups which can arise.
We were able to compute the R-groups because the action of the Weyl groups is well
understood in these cases. There is another construction of the R-group which relies on
the conjectural parameterization of discrete series L-packets [19]. Arthur has given an
extension of this R-group construction to the case where G is disconnected [3]. Arthur
suggests that this generalized R-group should play a role in determining the reducibility
of induced representations. We examine some properties of induced representations for
disconnected groups, under the assumption that the connected component is of prime
index. We are able to construct an R-group, on the group side, and we show that it plays
a similar role to that of the Knapp-Stein R-group in the connected case. We also note that
modulo some very deep conjectures, this R-group is the one predicted by Arthur in [3].

Let G be a reductive quasi-split group, defined over F, and assume that G/G° ~
Z/pZ, with p prime. Let G = G(F), and G° = G°(F). Suppose P = MN is a parabolic
subgroup of G (see Section 1), and o is a discrete series representation of M = M(F).
Let P° = P N G®, and suppose that A° is the split component of P°. Suppose oy is an
irreducible subrepresentation of o s . Let i a(0) be the representation of G, unitarily in-
duced from o, and let ig- pr(00) be the representation of G°, induced from oy. We write
I[1,(G) and I'1,,(G°) for the collection of equivalence classes of components of i y(o') and
ige.me(00) respectively. Using Frobenius reciprocity, and the theory of Gelbart and Knapp,
we are able to describe the relationship between ig (o) and igo ar- (o). This is equiva-
lent to describing the structure of the representation ig ae-(09) = Indgo (i(;o,,w(oo)). It is
this representation whose component structure should be related to Arthur’s R-group. We
break our results into several cases. First of all, it is possible that M # M°, and oy = oy.
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In this case the relationship is quite easy to describe, because ige pr(0) = [iG.m(0)]|G--
It follows that every component of i¢ y(0) restricts to G° irreducibly (Proposition 2.2).
Thus, the structure of ig y (00) can be easily stated (Corollary 2.3). f M # M°, and 7|y
is reducible, then i p-(00) = igm(0). Here relationship between ig ap(0) and ige pe(ap)
depends on the action of the Weyl group W(G, A°) on gy. If woy =~ o( implies w €
W(G®, A°), then each component of ig (o) restricts to G° reducibly, and there is a one-to-
one correspondence between the components of i 1(0), and those of ig- y- (00 ) (Proposi-
tion 2.4). If woy =~ 0y, for some w € W(G, A°)\ W(G°, A°), then we can easily determine
the dimension of Hom(;(i(;,Mo(cro), iGme (00)) (Lemma 2.5). If M = M°, then the extent
of our description of ig y(0) = Indgo (iGo,M(U)) is similar to that of the case where o
is reducible (Lemma 2.6).

We construct an R-group to reflect the structure of ig 4 (00). We call this the Arthur
R-group, because of its connection with the group Ry, , predicted in [3, 7] (see Section 4).
Let W’ be the subgroup of W(G°, A°) generated by the root reflections in the zeros of the
Plancherel measures of 0. We can construct a group Rg(op) so that:

Me

W(;(O’o) = {W S W(G, AO) | woog 0’0} = RG((T()) x W

(Lemma 2.7). Moreover, Rg-(0¢) C Rg(09), where Rge(0p) is the Knapp-Stein R-group
attached to ige a-(00).

There is a 2-cocycle, 1), of Rg-(09) so that the commuting algebra C(og) of ige pe(0)
is isomorphic to the twisted group algebra C[Rg-(09)],. Let Ry be a central extension
of Rg-(09) by an abelian group Z over which 7 splits. Since Rg(09)/Rg(00) is cyclic,
there is a central extension R of Rg(09) by Z with R/ Ry ~ Rg(09)/Rg-(00). For a char-
acter w of Z, we let TT1(Ry, w) be the equivalence classes of irreducible representations
of Ry which have Z-central character w™'. Then, for some character wg, of Z, there is a
one to one correspondence between [T(Ry, Wg,) and [ge(0¢) [1]. Moreover, if this corre-
spondence is given by p +— m,, then dim Homg. (7@,, igo,Mo(ao)) = dim p. Arthur writes
down the projections of ig- p-(00) onto its isotypic components by using the charac-
ter theory of TI(Ry, w,,). Using these projections we are able to describe the action of
RG(00)/Rg+(00) = R /Ry on the elements of I1,,(G°) (Theorem 2.10). This leads to our
main result (Theorem 2.11), which we restate below.

THEOREM A. There is a bijective map T — I, between H(R, We,) and I, (G) such

that:
(1) dimHomg(I1,, 7) = dim7;
(2) If p € TI(Ry, wy, ), then m, C I|ge if and only if p C k- n

We then turn to the orthogonal group O,(F). Here we use the explicit description of
ico e (00). Suppose # is even. In [8], we showed that there are non-negative integers d|,
d>,and d = d| + d,, such that

787" ifd, >0

Reo(0p) = 74 if d, = 0 (Theorem 3.1).
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In Theorem 3.3, we show that Rg(0g) ~ Z4 or Z4"', with the latter occurring when
M # M°, gy is irreducible, and M° satisfies one additional condition. Thus, i¢ 1 (c9)
has either 2¢ or 24! components, and is a multiplicity one representation (Corollary 3.4).
The case where G = G° x Z/pZ is subsumed by Proposition 2.2 (Lemma 3.5). The
explicit description of the reducibility and multiplicity structure for Oy,+ (F) then follows
from the results of [8] (Corollary 3.6).

Finally, we make some remarks about the connection between the group R¢(oy), and
Arthur’s conjectural group R, ,. Shelstad has shown [ 19] that, for real groups, the Knapp-
Stein R-group, Rg-(09), can be computed in terms of the Langlands parameterization. It is
conjectured that Shelstad’s construction will be valid in general. Since the parameteriza-
tion is understood when M is a torus, [12, 16], Keys was able to confirm that Shelstad’s
R-group, and the Knapp-Stein R-group are isomorphic in some cases [13]. However, the
parameterization is far from understood in general, and therefore, the conjecture on R-
groups is also far from understood. Arthur has extended the construction of Shelstad to a
group, Ry, , which should reflect the structure of i¢ a-(00). If we assume that Shelstad’s
conjecture holds, then we can show that R(0o) >~ Ry, (Proposition 4.1). Thus, by The-
orem A, R, , would have the properties conjectured by Arthur in [3]. Though our results
are only for G/G° of prime order, we hope to be able to extend them in the near future.

I would like to thank Jeff Adams, Jim Arthur, Rebecca Herb, Chris Jantzen, and Frey-
doon Shahidi for answering questions, and engaging in discussions which helped shape
these results.

1. Preliminaries. Let F be a locally compact, non-discrete, nonarchimedean local
field of characteristic zero and residual characteristic ¢. Suppose G is a reductive quasi-
split algebraic group defined over F. Let G° be the connected component of the identity
in G. We will assume that, if G # G°, then G/GO is cyclic of prime order. We let
x:G/G° :— C* be a generator ofG/AGO.

Let B° = T°U be a Borel subgroup of G°, and denote by ®(G°, T°) the roots of T°
in G°. Let A be the simple roots with respect to this choice of Borel subgroup. If § C A,
then there is a parabolic subgroup, Py O B°, of G° attached to § [22]. Moreover, any
parabolic subgroup of G° containing B° arises from this construction. A subgroup P of
G is called a parabolic subgroup if P = Ng(P°), for some parabolic subgroup P° of
G°. Since P° is conjugate in G° to some Py, P is conjugate in G to some Py = Ng(Pj).
Note that, by our assumption on G/G°, we either have Py = Pj, or Py intersects every
connected component of G. Suppose A° is the split component of P°, i.e., the maximal
split torus in the center of M®. Then P° = MPN, with M° = Z;.(A°). If M = Ng(M°),
then P = MN, with M = M (N P. We call the group M the Levi component of P, and
call a group a Levi subgroup of G if it is the Levi component of a parabolic subgroup of
G. Note that if M # M°, then M/M° ~ 7 /pZ. Let A be the maximal split torus in the
centralizer of M in M°. Then A C A°, and A is called the split component of P.

Suppose that g € Ng(M°) \ Ng-(M°). Then g~ ! T°g is a maximal torus of M°. There-
fore, there is some my € M°, with m;'g ' T°gmy = T°. So, without loss of generality,
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we may assume that g € Ng(T°). Note that if a € A°, and my € M°, then, since
gmog~' € M°, we have (g7 'ag)mo(g'a"'g) = mo. Thus, g 'A°g is a split torus in
Z(M°), and hence g 'A°g = A°.

We let W(G°,A°) = Ng-(A°)/M° be the Weyl group of G° with respect to A°. We
define W(G, A°) to be Ng(A°)/M°. We call W(G, A°) the Weyl group of G with respect
to A°. We have seen that if M # M°, then Ng(A°) N (M \ M°) # (. Let g € Ng(A°)N
(M\ M°). Then g represents a class in W(G, A°)\ W(G°, A°). Moreover, g’ € M°, while
clearly g8 & M°, for I < k < p — 1. Thus, when M # M°, we have W(G,A°) =
W(G°,A°) x Z/pZ.

Recall that G acts on G° by conjugation, and this action is represented by a graph
automorphism of the Dynkin diagram for the root system ®(G°, T°). If g € W(G,T°),
then we also denote by g the associated action on ®(G°, T°).

For a locally compact, totally disconnected, topological group H, we denote by E.(H)
the equivalence classes of irreducible admissible, representations of H. We let E,(H) be
the collection of equivalence classes of discrete series representations, and let E,(H) be
the collection of irreducible tempered representations of H.

Let P = MN be a parabolic subgroup of G, i.e. P = P(F), with P C G. Sup-
pose 0 € ‘E.(M) and assume that o acts on a vector space V. Let ép be the modular
function of P. Denote by V(o) the space of smooth functions from G to V satisfying
f(mng) = 5,1)/2(m)a(m)f(g), forallm € M, n € N,and g € G. Then G acts on V(o) by
right translations, and we call this the representation of G unitarily induced from 0. We
denote this representation by Ind$ (). If o is unitary, the class of Ind$(c’) depends only on
M, and not on the choice of N, and in this case we may write i (o) for Ind$ (o). Suppose
o is unitary and oy is an irreducible component of o|4-. We denote by ig a-(0¢) the rep-
resentation Ind$. (o) = Ind%, (I'GO‘MO(O'())>. A straightforward computation shows that, if
M # M°, then ig p(0)|ge = ige pe(0|are). Thus, the structure of i p(0), ige pme(00), and
igme(0p) are all closely related. When o € (M), determining the structure of i (o) in
terms of the number of components and multiplicities, is fundamental to understanding
the representation theory of G. Moreover, understanding the commuting algebra of inter-
twining operators Cg(00) of i e (00) is an important aspect of the twisted trace formula
(2, 3].

We review the theory of intertwining operators and R-groups. We first concentrate on
the case G = G°, and then discuss the extensions of this theory which exist for non-
connected groups, along with some conjectures of Arthur [3].

Suppose G = G°. Let P = MN be a parabolic subgroup of G, with split component
A.Foro € E(M)and w € W(G, A), we define wo by wo(m) = o(Ww~ ' mw), where W
is any representative for w. This gives an action of W(G, A) on ‘E.(M). Let Wg(o) =
{w € W(G,A) | wo ~ o}. We may write W(o) for Ws(o) if G is implicit. We let
a= Hom(X(M)F, [R), where X(M)y is the group of F-rational characters of M. Then a
is the real Lie algebra of 4. Its dual a* is given by X(M)r ®z R, and the complexified dual
is a5 = a* ®g C. There is a homomorphism Hp: M — a, given by ¢/ ™) = |v(m)|r,
for each v € X(M)p, and all m € M, [10].

https://doi.org/10.4153/CJM-1995-019-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-019-8

348 DAVID GOLDBERG

Forany v € af, and 0 € Fy(M), we let [(v,0) = IndS(0 @ ¢""0)). If w € W(G, A),
we let N, = UM 'Nw, where N is the unipotent radical opposed to N. We formally
define an operator by

(1.1 A0, w)f(g) = [ S5 ng)dn.

If A(v,o,W) converges for every choice of /" and g, then we say that A(v, o, W) con-
verges. If A(v, 0, W) converges, then it defines an intertwining operator between /(v, o)
and I(wv, wo).

THEOREM 1.1 (HARISH-CHANDRA). Letw € W(G,A), and o0 € Bp(M). Let P’ =
W lPW. Then A(v, o, W) converges for v in the positive Weyl chamber, and can be ex-
tended to a meromorphic function of v on af. Moreover, there is a complex number
w(v,o,w) so that

(1.2) A, o, Wy A(wv, wo, ") = u(v, 0, w)"'" V(G /Py, (G| P,

where the constant,,(G | P) is defined in [10]. Moreover, v +— (v, o, w) is meromorphic
on ag, holomorphic and non-negative on ia*. L

When wy is the longest element of the Weyl group, then we call u(v,o,wp) the
Plancherel measure attached to o and v. We write pu(o) for p(0,0,wy). By using
Plancherel measures, one can normalize the operators A(v, o, W) by a meromorphic (in v/)
scalar factor, to obtain a family of intertwining operators which are holomorphic on the
unitary axis ia* [17, 22]. Shahidi, [18], has shown that Plancherel measures and normal-
izing factors are related to conjectural Langlands L-functions. We denote the normalized
operators by A(v,o,w) and write A(o, w) for A4(0, o, w). These normalized operators
satisty the cocycle condition

(1.3) A(o, wiwy) = Awyo, W) A(o, Wr),

for all w;,w, € W(G, A).
Suppose w € W(o). Choose an operator T,,: V' — V with T,wo = oT,. Then
A'(0,Ww) = T,,A(0, W) is a self intertwining operator for Ind$ (o).

THEOREM 1.2 (HARISH-CHANDRA) [22, THEOREM 5.5.3.2].  The commuting algebra
C(0) of Ind$(0) is spanned by {A'(a, W) | w € W(0)}. =

The theory of R-groups gives an algorithm for computing a basis of C(0) from among
the operators 4'(a, w). Let ®(P, A) be the reduced roots of P with respect to A, and let
B € ®(P,A). Let Aj be the torus ker(5 M A)°. We denote by Mj; the centralizer of Ay
in G. Then M is a maximal proper Levi subgroup of M. Let j145(0) be the Plancherel
measure attached to iy, p(0). Then pg(o) = 0 if and only if Wy, (o) # 1, and iy, p(0)
is irreducible [22]. Let A" = {3 € ®(P,A) | us(o) = 0}. Denote by W' the subgroup
of W(o) generated by the reflections in the elements of A". Let Rg(0) = {w € W(o) |
w3 > 0,V € A’} If G and o are implicit, we may denote Rg(o) by R.
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THEOREM 1.3 (KNAPP-STEIN, SILBERGER [14, 20, 21]). For o € E(M), we have
W(o) = R W'. Moreover, W' = {w € W(o) | A'(c,W) is scalar}. =

So, {A4'(c,7) | r € R} is a basis for C(0). Note that if i, r, € R, then
(1.4) A (0, 717) = n(r1,r) A (0,71)A (0, 7),
where the 2-cocycle 7 is given by
(1.5) Tor, = 0(ri,r2) T4 Ty

Thus, C(o) ~ C[R],, the group algebra of R, twisted by the cocycle 7.

We recall the role this cocycle plays in the description of ig y(0). Let 1 — Z — R —
R — 1 be a central extension over which 7 splits. We identify 1 with its pullback to
R x R. Choose a function &: R — C* splitting 1), i.e., £(r1) "' &(r2) " €(r17r2) = n(r1, 72).
Let w, be the character of Z satisfying w,(2)£(r) = &(zr). We get a unitary intertwining
operator A(o, 7) = £(7)~' 4'(0, 7), for 7 € R. Now 7 +— A(o, 7) is a homomorphism with
A(0,27) = w;'(2)A(0,7) for z € Z. Let TI(R, w,) be the set of equivalence classes of
irreducible representations of R with Z-central character w; !

THEOREM 1.4 (ARTHUR [1]). There is a bijection p — T, from II(R, w,) to T1,(G)
with the property that dim Homc(ﬂp, l'G,M(O')) = dimp. n

Arthur writes down the projections of ig (o) onto its isotypic components, and we
use this description in Section 2.

There is a conjectural construction of the R-group, based on Langlands’s conjectured
parameterization. We describe this construction briefly, and refer the reader to [3, 15, 19]
for more details. Let W be the Weil group of F. We denote by Ly the Langlands group
Wr x SU(2, R). Let G be the complex group whose root datum is dual to that of G. The
L-group of G is given by /G = G x Wy, where W acts on G via its action on root
data [5].

We assume that E(G) and (M) can be partitioned into finite subsets, called L-
packets, with the properties described in [5]. Suppose that ¥: L x SL(2,C) — LG is
a parameterization for the L-packet IT of G, as conjectured by Langlands. Let S, =
ZG(I,,,(w)), and let S, be its connected component. Choose a maximal torus 7y C S},
and let Ny, = N, (T,;). We denote by N, the group N,, /T, and by S,, the group S /S5,
Then there is a map Ny — Sy given by nT;, +— nS),. Since any two maximal tori of
S, are conjugate in Sy, this map is surjective, with kernel W), = W(S}, T). Similarly,
there is a surjective map Ny, — W(Sy, Ty) = W,,. Call Sllp the kernel of this map. Then
Ry = Wy |W; ~S,/S, is called the R-group of ).

Suppose now that 1: L — M parameterizes a discrete series L-packet [T of M. Then
Lg Y LM < LG should define a tempered L-packet of G. One expects that I1,(G) =
Ugen [1s(G) is this L-packet.

Now, by duality, one can identify W, with those elements w in W(G, A) such that
wo € T for each o € I1. So Wg(o) should be isomorphic to a subgroup Wy, , of W,.
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Let Wi, , = Wy, (1 W,. Then the R-group, R, = V,,U/wa, should be isomorphic to
the R-group given by Wq(o)/ W' [3, 19]. When F = R, Shelstad has confirmed this last
isomorphism. If F'is p-adic, then Keys has confirmed the isomorphism of R, , and R ()
in some cases [13].

Now suppose G/G° ~ Z /pZ. Let P = MN be a parabolic subgroup of G and P° =
P N G°. Suppose o € ‘E(M). One can still define the operators, A(v, o, w), now for
w € W(G,A®). Arthur has studied these operators, and their normalization [2]. Many
of the preliminary results on these operators match with those for connected groups, [2,
Theorem 2.1]. It is not yet clear what the analogues of Theorems 1.2 and 1.3 should
be. On the other hand one can attempt to extend the dual group construction of the R-
group. Namely, one can define an L-group “G D *G° [4], and one hopes to describe the
irreducible tempered representations of G (in packets) via parameters 1: Ly X SL(2,C) —
LGe, such that ZG(([m 1/;)) M(G\ G°) # (. In fact, Arthur points out that these maps should
define those packets {o} such that o|g- is irreducible [3]. Now suppose 0 € Eo(M) is
parameterized by 1. Arthur extends the definitions of Sy, Ny, Sl W, and R,. Note that
S, Ty, and thus, W7 depend only on v and G°, not on the larger group G [3].

If i L — “M° parameterizes a discrete series L-packet [Ty of M°, then we let IT be
the collection of components of Ind}k () for oy € Ty. Then IT s an L-packet of M, and
every L-packet of M should arise in this way. Composing with the inclusion map, we get
a parameter for the L-packet of components of i y(o) for o € T1. Again, we can identify
W, with {w € W(G,A°) | wll = [1}. Thus, Ws(oo) = {w € W(G,A) | woy ~ ap},
should be isomorphic to a subgroup W, , of W,,. Note that, since W, C W(G°,A°), we
have Wy, .= W, W, . WeletR,, = u‘w/WuD;.ao' Arthur, [3, Section 7], indicates
that R, , should be associated to the reducibility and component structure of i¢ ar-(00).

We recall some results of Gelbart and Knapp.

THEOREM 1.5 (GELBART-KNAPP [6]). Suppose H is a totally disconnected group
and Hy C H is an open normal subgroup such that H | Hy is finite abelian. Let w be an
irreducible admissible representation of H.

(a) 7|u, is a finite direct sum of irreducible admissible representations of Hy.

(b) If |y, ~ YL, mim;, with m; irreducible, m; % i for i # j, and each m; > 0, then

my = myp = --- = my. We denote this integer by m.
(c) IfHyy = {h € H| hm; ~ m}, then H] H, permutes the classes of m; simply and
transitively.

(d) Let Xy, () be the collection of one dimensional characters of H, trivial on Hy,
with the property that T ® v ~ . Then |Xy,(r)| = m*(.

(e) If w|y, and |y, are multiplicity free and have a common constituent, then
7l = 7y, and 1" = 1w Qv for some character v of H, trivial on Hy. =

2. Reducibility when G/G° ~ 7 /pZ. We assume that G is the F-points of a re-
ductive quasi-split algebraic group G, and G/ G° =~ Z /pZ, with p prime.
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LEMMA 2.1.  If w is an irreducible admissible representation of G, then
multiplicity one representation.

G Is a

PROOF.  Since IG/AGOI = p, | Xg-(m)| is square free. Thus, by part (d) of Theorem 1.5,

m=1. n
We now describe the reducibility of ig (o) in the case where M # M°, and oyp is
irreducible.

PROPOSITION 2.2. Suppose P = MN, and M # M°. Suppose (0,V) € E(M),
with 0y = oy irreducible. Let oy = ico pe(00), and ™ = igu(0). Suppose that, my =
- - - Bngmy, with T; irreducible, and T; % w;, for i # j. Thenm ~ mI1,®- - - ®n,Il,,
with T1; irreducible, and T1; % T1;, for i # j.

PROOF. Since |y = 0p, we have 7
components, and if m; C [1|¢., then [T appears in 7 with multiplicity less than or equal to
n;. In fact, since M # M°, and o|y» = 09, we see that restriction of functions, from the
space V(o) of 7 to the space V'(0¢) of 7y is an isomorphism. Moreover, since G = MG°,
we see that if 7 € Homg(, ) is non-zero, then T|y(,,) # 0. Therefore, restriction gives
an embedding Homg (7, m) < Homge (79, 7).

Letw € Wgo(09). Then woye = 09, 50 wo ~ 0 @ ¥/, for some j. Let T,, be a linear
automorphism of ¥ such that T,,wo = (c®/)T,,. Note that T,, gives an M° isomorphism
between o and way. Let T.,: V(o) — V(o) be givenby T,f(g) = T., (f (g)) ®x7(g). We
let 4'(c,w) = T, A(c, w), where A(c, W) is the normalized operator given in [2]. Since
Twway = ooT,, and A(o, W)|y(go) = A(og, w), we see that /q/((f, W)IV(UO) = /ql(O'(),W).
Since {A'(0p, W) | w € Rgo(00)} is a basis for Homg-(mo, 7o), the restriction of inter-
twining operators is surjective. Thus, Homg(m, 7) = Homg- (7o, m9), giving the desired
result. n

e = mo. Thus, 7 has at most s inequivalent

COROLLARY 2.3. Suppose P = MN, and M # M°. Suppose o € E(M), with
me irreducible. Let my = ige pme(00). Suppose that, 1o = nym @ - - - ® ngm,, with
w; irreducible, and m; % w;, for i # j. For each i, choose an irreducible representation
IT; of G with [1;|ge ~ m;. Then

gy = 0

s p—1 .
igme(o0) =Pn P ® .
=1 j=0

Moreover, the collection {I1; ® ¥/ };; are pairwise inequivalent.

PROOF. By Proposition 2.2, we can take I1; so that 7 = igu(o) = @ nll;, and
[|g- = m;. Moreover, since I1;|g- is irreducible, we know that TT; % TT; ® x. Since
o|lme = 09, Theorem 1.5 implies Ind%o(oo) =@io® ¥’. Thus,

p—1 ) p—1 .
iGme(00) = Picmoc @ X)) ~ Py
j=0 j=0

j=

s p—1 .
=PnPDILY,
=1 j=0
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as claimed. L]

Now suppose that o|y = 01 & - - - & 0,. Then, for each i, lnd%u(m) = ¢. Moreover,
o~o®yx. Letm = l'(;yM(O'), and m; = l'(;o,Mu(U,‘). Then ’R'l(,'o = l'(]‘M(O' M) = G}Z:I .
Note that, for each i, we have Ind% (m;) = (iG,Mo (m)) = igm(0) = m. Now, by Frobenius

reciprocity,

Homg(w, m) ~ Homg- (7,

(;o) ~ H()m(;o (7‘(1, : 7r,->.

i=
By [22, Theorem 2.5.8], we know that, for i # 1, Homg. (7, 7;) = 0, unless wyo| ~ 0;,
for some wy € W(G°,A°). Note that, for such a wy, woo; # oy, but, woo =~ g, (see
Theorem 1.5(¢))

Now suppose that woo; = o,. We further suppose that m € M \ M° has the property
that mo; ~ 04,1 = 1,2,...,p—1. Assume that, for 1 <i <j, thercisaw; € W(G°,A°)
with w;o ~ o;. Let w; = mw;_ym~'wy. Then wyoy = mo;_| = o;. So, in this case, for
each j, there is a w € W(G°,A°) with wo; ~ ;. Note that the existence of such a
wo € W(G°,A°) is equivalent to the condition Wg(oo) # We-(00).

PROPOSITION2.4.  Suppose M # M°, and o
component of olye. Let 1 = igme(00), and mog = ico pe(00). If We(o0) = Wee(00),
then Homg(m, m) ~ Homg-(m, mo), and each component of w restricts to G° reducibly.
Thus, if the decomposition of Ty into irreducibles is mg = @}_, n;7;, then we have m =
@?:, I’l,'l_l,', with Ti g FI,~

Mo is reducible. Let oy be any irreducible

G-

PROOF. We have already noted that Homg(w, 7) = Homg- (o, mo). Let m € M\ M°.
Since moy is a different component of oy, we know mmy and mp have no common
constituents. Thus, for each component 7 of wg, mr % 7, so I[1 = lndgo(T) is irreducible.
Therefore, we get the result on the decomposition of . Moreover, IT|ge = EB;’;OI m'T, and
only 7 appears in 7. L]

LEMMA 2.5. Suppose M # M°, and o|ye = 01 B -+ B 0,. Let ™ = igae(00) and
i = ige o (0;). Suppose that Wg(00) # We-(00). Then, for each i,

dim(Homg(r, 7)) = p dim(Homg-(m;, ;).

PROOF.  We know Homg(, 1) >~ Homge (7, GB‘[”:] ;). By our assumption, and the
discussion preceding Proposition 2.4, we know m; ~ 7; forall 1 < i <j < p. Conse-
quently, Homg(m, m) ~ Homge(m,, pm)), giving the result. [ ]

We now look at the case where M = M°. Since i p(0) = iG.ae(0), we again need to
explore the reducibility of the representations Ind% (1), with 7 C ige (o).

LEMMA 2.6. Suppose M = M°, and o € Fp(M). Let 7o = i m(o), and sup-
pose mg = @i, nii. If] for some | Il’ldgo(’f,') is reducible, then wo >~ o for some w €
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W(G,A°) \ W(G°,A°). Furthermore, if such a w exists, then dim(Homg(w, 7r)) =
p dim(Homgo (7o, 7r0)).

PROOF. Letg € G\ G°. We may assume that g € Ng(T°). Let M’ = gMg".
Let 0/ = go. We know that Indgo(ri) is reducible, if and only if gr; ~ 7;. Since g7; is a
subrepresentation of ig- ys(0”), we see that gr; ~ 7; implies that, for some wy € W(G, A°),
woMwy ' = M, and woo ~ o’. Now, if w = g~ 'wy, then w € Ng(M) \ Ng-(M), and
wo ~ . We have seen that such a w lies in Ng(A°) \ Ng-(A°), and thus, represents an
element of W(G, A°) \ W(G°, A°).

Now suppose that wo ~ ¢, for some w € W(G,A) \ W(G°, A). Choose a represen-
tative w for w. We have W ~ 7, and therefore, each connected component of G /G°
fixes the representation my. By Frobenius reciprocity and Mackey theory,

G, o) H0m6°( &b (gﬂoﬂro)) ~ Homg-(pmo, ),
G/G°

Homg (7, ) ~ Homge (7

giving the result. n

Let ®(P°, A) be the reduced roots of A° in P°. Suppose 09 € Fr(M°). For o €
D(P°, A°), let pq(og) be the Plancherel measure attached to ¢ and «. We let A’ = {« |
tal(oo) = 0} and W' = W(A’) be the subgroup of W(G°, A°) generated by the root re-
flections in A’. Then We(09)/ W' =~ Rg-(00), is the R-group attached to ige ar(09). We
let Rg(op) = {w € Wg(ap) | wae > 0V € A'}. Notice that Rg-(00) C Rg(0o). This
should reflect the fact that ig s-(0¢) may have more components than ig- s (00).

LEMMA 2.7. Let P° = M°N be a parabolic subgroup of G°. Suppose oy € Er(M°).
Then Wg(oo) = Rg(op) X /48

PROOF. We first show that W’ <t Wg(0y). Let « € A" and w € We(0p). If B = wa,
then wy = wwew™! € Wgs(0). Note that

ints M= (00) = ingg, pe(WO0) = W(iM;,M°(Uo)),

which is irreducible, since o € A’. Thus, 3 € A/, and consequently, wg € W’. There-
fore, W'<Wg(0o). Moreover, since +A’ is a root system, it is clear that W/MRg(00) = {1}.

Let w € Wg(09). Define R(w) = {a € A’ | wa < 0}. If R(w) = 0, then w € Rg(09).
Suppose that, for w; with |R(w;)| < |R(w)|, we have w; = rw/, with r € Rg(09), and
w’ € W'. Suppose @ € A’, and war < 0. Let w; = ww,. Then wia > 0. Moreover, since
+A’ is aroot system, wo(A’ \ {a}) = A"\ {a}. Therefore, if 3 € A, and w8 < 0, then
woB € R(w) \ {a}. Consequently, [R(w;)| < |R(w)|, and we can write w; = rw}, with
r € Rg(09), and w) € W'. Thus, w = rw’, with w' = wiw,. .

We call Rg(0p) The Arthur R-group attached to ig s (00 ). We will show that the struc-
ture of ig o (00) is reflected in the representation theory of Rg(ay). In Section 4, we show
that, if Arthur’s group R, exists, then it must be isomorphic to Rg(09).
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THEOREM 2.8.  Suppose that P° = M°N, and oy € E,(M°). Choose any o € (M)

with oy C 0|ppe.
(@) If M # M°, and og = o|ure, then Rg(oo) = Rgo(00) X Z/pL.
(b) If o|ue is reducible, or M = M®, then

[ Z/pZ ifWs(o0) # We-(00)
R(o)/Rax(o0) = | | if We(00) = W (00).

PROOF. (a) Since M # M°, and oy = oy, we know that moy ~ oy, for allm €
M\ M°. Fix such an m. Then m represents an element w € W(G,A°) \ W(G°,A°), and
thus, w € Wg(oo) \ Wee(00). We can write w = rw/, with ¥ € Rg(op) and w' € W'.
Since W' C Wge(09), we have r € Rg(ao) \ Rg+(09). Note that, since m” € M°, we have
w? = 1. Since W' is normal in W(0y), we have 1 = w? = (W'Y = W, withw” € W',
However, since Rg(o9) N W' = {1}, we see that ¥’ = 1. Since M/M° = 7/ pZ, we now
have Rg(Uo) = R¢-(09) [><'<r>.

(b) If Wg(og) = Wee(0p), then we clearly have Rg(og) = Rg-(09). On the other
hand, if w € Wg(oo) \ We(00), then we have w = rw/, with r € Rg(00) \ Rg-(00).
Since W(G, A°) ~ W(G°,A°) X Z/pZ, we see that r is of order p modulo R¢-(09). If
ri € Rg(oo), then, in W(G, A°), we can write r; = Frg, for some 0 < j < p — 1, and
ro € W(G®, A°). Clearly ry € R¢-(00), and therefore, R;(00)/Rg-(00) ~ Z /pZ. n

COROLLARY 2.9. Let P° = M°N be a parabolic subgroup of G°. Suppose that
00 € Ep(M®), and let C;(00) be the commuting algebra of iG pm(00). Then dim Cg(op) =
|RG(a0)].

PROOF. Let C(0p) be the commuting algebra of ige pe(09). Then, we know that
dimC(op) = |Rg(00)|. From Proposition 2.2, Proposition 2.4, Lemma 2.5, and
Lemma 2.6, we know that

. _ [dimC0)  if W(00) = Wee(o0)
dim Co(oo) = pdim C(op) otherwise.

By Theorem 2.8, we see that dim Cg(00) = |Rg(00)|. .

We wish to prove an extension of Theorem 1.4 in this case. Let R = Rg(0p) and
Ry = Rg-(00). Let 1 be the 2-cocycle of Ry given by (1.5). If ¥ € R \ Ry, we choose
an equivalence 7, between o and ro. This gives us an extension of 1) to a 2-cocycle of
R which is also defined by (1.5). We also denote this extension by 7). We take a central
extension R of R by Z over which 7 splits. Since R /Ry is cyclic, we have the following
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diagram
1 1
T T
1 — Z/nl — Z/nZ — 1
T T T
1 — Z — R — R — 1
| 1 T
1 — Z — Ry — Ry — 1
T T T
1 1 1

with n = 1 or p. Thus, we can choose ¢: R — C* which splits 17, and the restriction of
€ to Ry is a choice for the function discussed is Section 1. Let » denote both a generator
of R/Ry, and its image in R/R,. Then it makes sense to compare rp and r,, for p €
TI(Ro, wWoy )-

PROPOSITION 2.10.  Let oy € Ey(M°). Let Ry = Rg-(00), and R = Rg(ov). Suppose
that R/Ry ~ Z/pZ. Let p € [(Ro, ws, ), and suppose T, is the irreducible component of
mo = igo pe(00) attached to p. Then, for eachr € R Ry = R/Ro, we have rrr, ~ m,,.

PROOF. From [1, Section 2] we know that, if 8, is the character of p, then

— > Bp(w)ﬂl(cro, w)

wERy

2.1 D, =

is the orthogonal projection of g onto its 7,-isotypic subspace. Suppose ®,f = f, and
let V,(/) be the G°-span of /. Then mo|y, ) ~ ,. For h € m, let Th(x) = h(+"'xr). Then
we can realize rm, on the G°-span W of Tf. Note that we have W C m, if we realize
o as Ind$y (ray), where N' = rNr=' C rUr™". To show that rm, ~ m,,, it is enough to
show that @, (Tf) = Tf, where ®;, is the operator given by (2.1), with respect to our
second realization of .

First note that, in this second realization of 7y, the intertwining operator 7,,: woy — 0y
is replaced by the operator 7, = 7,1 T,,T,, and thus the cocycle here is n,(w;, w;) =
n(r~'wyr, 7 'wyr). Of course 7, and 7 define the same class in H*(R, C*). Therefore, to
get the same map p +— 7,, we need to define A(rog, w) = £('wr) A (rog, w). Now note

that
A0, rop, w)Tf(g) = / j(r W ngr)dn
2.2
) = v S (rf WVIF(F”nF)(F’l gF)) dn

A straightforward calculation shows that #~! N’ # = N,.1,,. Thus, we can rewrite (2.2) as

[V S G gi) dn = A, 00,7 WA gF) = T(A(O, 00,7 ' WP ) (g).
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Therefore,

rp(Tf) = 2 0//)(W)/q(r00’ W)Tf

‘ 0| WERy

= —— 3" 0, 'wr)e(r 'wr) A (rag, W) T

WER()

DY 0,(r 'wre(r wr)T(.ﬂ (00,7 "WFY)

wERg
= T(@,f) = Tf.

Thus, we have shown that rm, ~ 7,,. n
We can now prove our main result.

THEOREM 2.11.  Suppose that G/ G° ~ 7 /pZ. Let P° = M°N be a parabolic sub-
group of G°. Suppose oy € E(M°). Let m = igupe(00), and my = ige po(00). Denote
by R = Rg(00) the Arthur R-group attached to w, and Ry = Rg-(00) C R the Knapp-
Stein R-group attached to my. Then, to each T € TI(R, Way ), We can attach an element of
I1. € I1,,(G) such that:

() If T2 7, then T, % I,

(2) The multiplicity of T, in 7 is dimT.

(3) If p € TI(Ry,wy,), then p C 7lg, if and only if m, C TI;

component of Ty which is attached to p.

Go, Where m, is the

(4) Every irreducible component of w is isomorphic to 11, for some T.

PROOF. Suppose that R = Ry. Then, by Theorem 2.8, we know that M = M° or
o9 C o|ae, for some o € ‘E,(M). Moreover, Theorem 2.8 also implies that Wg(oy) =
/

Wge(09). Therefore, by Proposition 2.4 and Lemma 2.6, each component 7, of 7y induces
irreducibly to G. We let I, IndGQ(w,,) Then, Proposition 2.4 and Lemma 2.6 imply
that I, % I, for p % p'. Thus, the correspondence p +— F[,, has the desired properties.

Now suppose that R/Ry ~ Z/pZ. We identify R/Ro, and G/GO Suppose p €
[T(Ro,ws,). Let ¥ € R\ Ry, and also denote by r its projection to R. Then Ind{.(r,)
is reducible if and only if rm, >~ m,. By Proposition 2.10, this is equivalent to rp =~ p,
which is equivalent to the reducibility of lndﬁ;0 p

If rr, % m,, then there are distinct elements p = py,...,p, € I](Ro,w(,0 ), such that
Pr, = m,,, for 1 < j < p— 1. Of course, we then know that p;; = #p, for each
1 <j<p—1lLetr= lndR p. Then 7 is irreducible, and 7 = lnd’g (p,v) for each j.
Similarly, I, = Ind%, (m,) is lrredumble and I1, = Ind%, %o(my,) for each 1 < j < p. Thus,

dim(Hom(;(l'lT, Tr)) = pdim(l—lom(;o(w,,, 770)) = pdimp = dimr.

Moreover, I';|ge = EBf=| 7y, and only those components of m equivalent with I, contain
any T, upoti restriction to G°.
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On the other hand, if rp >~ p, then lndﬁi0 (p) ~ EBj,:O' 7® /. Let I1,, be any irreducible
component of Ind&, (m,). Then

p=l )
IndG.(m,) ~ PIL @ ¥,
j=0

and [T, £ IT; ® x. Let IL,, = I, ® ). Then, for each,
dim Homg(IL,;, ) = dim(Homg:(r,, ) = dim p = dim7® x'.

Furthermore, only the representations I'1,,, contain 7, upon restriction to G°. Therefore,
we have a correspondence 7 +— 11, exhibiting the properties (1)(4). n

3. Reducibility for O,. Here we use the results of Section 2 to determine the R-
groups and reducibility for O,(F). Since the results for Oy,+; are trivial, we leave them
to the end of the section.

LetJ, = ( € GL,. We let G = 0,,, defined with respect to J»,. That

\1
is, G = {g € GLy, | 'gJ2ng = Jan}- Then G° = SO,, = {g € G | detg = 1}. Clearly
G/G? is of order 2. We often write G = G(n) or G° = G°(n) in order to specify the rank
of G. By convention, we take G(0) = G°(0) = 1. Note that

co-{[3 2=

G(1) = G°(I)U{(a91 ‘O’)}

We may write GL(m) for the group GL,,(F). The non-trivial character x of G/G° is
given by x(g) = sgn(detg).
Let T° be the maximal torus of diagonal elements in G°,

Al

1

and

T =

/\*] | )\,‘ S GL|

A
We often write @ = (\1,...,\,) or @ = diag{\i,..., A, N\, .., A1}, fora € T°.
Let ®(G°, T°) be the roots of T° in G°. Then ®(G°, T°) is of type D,. The Weyl group
W(G®, A°) is isomorphic to S, X Z4~'. We recall the explicit description of W(G®, T°).
First, let the transposition (if) be given by

(U.)I(Al,...,)\,’,...,/\j,...,)\,,)’——?(/\|,...,)\_,‘,...,/\,',..,,)\,,).
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A representative for (ij) is given by (%’ lff) ), where Ej; is the standard permutation

matrix of GL, associated to (if).
For each i we let the sign change ¢; be given by

IS CTTID VNRNED W TR O VNS WL ISR W )

Note that ¢; has no representative in G°. However,

Iiy
ci = bn—i €G\G’,

Iy

represents ¢;. Thus, W(G°, T°) = ((ij),cic; | 1 <i <j < n)~ S, x Z3 " Now, it is
clear that W(G, A°) >~ S, x 74, given by ((i/),cx | 1 <i<j<n,1 <k <n).
We take the collection of simple roots,

A={ei—ein}i=! Ufen 1 +en},

so that the Borel subgroup B° = T°U is the upper triangular matrices in G°. Note that
ifu = (uy) € U, then u, 01 = 0. Thus, C = &, € Ng(B°), and consequently, B =
Ng(B°) = B° UB°C. Moreover, the Levi componentof Bis T = T° U T°C.

Suppose P° = MP°N is a parabolic subgroup of G° containing B°. Then there are
positive integers my, ..., m, and a non-negative integer k, so that

M° ~ GL,, X --- X GL,,, xG°(k).

In fact, without loss of generality, we can suppose that the split component, A°, of P° is
of the form

A° = {diag{MLn,, .., Mo Do Ay o A T
and thus,

14

8 gi € GL,,
o1 h € G°(k)

Il
=

MO

To—|

81

Here g means the transpose of g with respect to the second diagonal. We make the
further assumption that m; > m; > --- > m,. Notice that there is one ambiguity in
our notation. Namely, if M°® = GL,,, x--- x GL,, , x GL, then we can also write
M° = GL,, x--- x GL,, , xG°(1). We take the convention that k # 1, i.e., we choose
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the first notation. This makes our description of M° consistent with that of A°. Moreover,
it is consistent with the notation in [8]. However, with this convention, if m, = 1 and
k = 0, then P = Ng(P°) = MN, with

M = GL,,, X -+ X GL,,_, XG(1).
In all other cases, P = MN, with
M = GL,,, X - -+ X GL,,, XG(k).

While this may cause some confusion, it seems to be the less confusing of the two options.
IfM° = GL,, X - --XGL,, XG°(k), then we may write M = GL,,, X - - - XGL,, XG(k"),
with the understanding that # = r or » — 1, and &’ = k or 1, as appropriate.

Suppose that M = GL,,, X - -+ X GL,, XG(K'). If 0 € BEo(M), theno ~ 01 ® -+ ®
o1 ® p, with 0; € T»(GL(m;)), and p € E>(G(K')). Note that if &' > 0, then G(K’) acts
on F,(M°) by conjugation. We take C to be the representative of this action.

Suppose that M° ~ GL(m,) X --- X GL(m,) X G°(k). Then W(G, A®) is a subgroup
of S, X Z5. More precisely, W(G, A°) is generated by the elements,

C,»:()\l,...,/\,-,...,)\,)r——>(AI,...,)\i“,...,A,),
for 1 <i <r, and the permutations
Wit (Ao Ao A S A = (AL L A A ),

for those 1 < i < j < r, with m; = m;. Note that if g = (g1,...,8.h) € M, then
Cig=(g,....'¢7"...,gh), and wyg = (g1,..-,&j>---»&i»---»&rh). If k = 0, then
C; € W(G°,A°) if and only if m; is even. If k = 0, and both m; and m; are odd, then
CC; € W(G°,A°).

Suppose 0g =01 ® - -+ ® 0, ® po € Ep(M°). Then we have

3.D Copy~o® - Q6® Q0 py, and
(3.2) Wigg X0 Q- Q0Q Qo ® - &0y po.
Thus,

(3.3) Ciop ~ 0o ifandonly if 0; ~ 6;

(3.4) wiiog ~ oo ifand only if o; ™ 0j;

3.5) w;CiCjog >~ ao ifand only if 0; ~ &;.

Note that woy =~ o for some non-trivial w € W(G, A°) if and only if at least one of the
conditions (3.3)~3.5) holds.

If £ > 0, then (3.3)+3.5) also give the conditions for woy ~ gy for some non-trivial
w € W(G°,A°). However, if k = 0, then C; & W(G°,A°) if m; is odd. Thus, if both
m; and m; are odd, then C;Cjop ~ oy if and only if both 0; ~ §&;, and 0; ~ §;. This,

https://doi.org/10.4153/CJM-1995-019-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-019-8

360 DAVID GOLDBERG

along with (3.3) for m; even, (3.4), and (3.5), give the conditions for wog =~ o for some
w € W(G°,A°) [8].
Let [;(M) = {i | m; is even}, and

{1,2,...,r} ifk>0and Cpy =~ po,
I/(M) otherwise .

Ii(a9) =
Let L(og) = {1,2,...,r} \ [1(0p). Now take
Ji(00) = {i € 11(00) | iGo(m+0.GL@m)x Gk (07 @ po) is reducible},

and Jy(09) = {i € h(oo) | 0; =~ 6;}. Forj = 1 or 2, we let d; be the number of
equivalence classes of o; with i € Jj(0y), and letd = d, + d,.

THEOREM 3.1 (SEE [8]). The R-group, Ry, attached to ig- p-(00) is given by

ro_ L5 ifdr=0
Tl a0
In either case Ry is a subgroup of (CiC; | i # j). ]

COROLLARY 3.2.  Foranyoy € Eo(M), ice mo(00) is a multiplicity one representation
with |Ry| components. Moreover, C(0) ~ C[Ry), i.e. the cocycle n splits. n

The last statement of this corollary was proved by Herb [11].

THEOREM 3.3. Let G = G(n) = Oy, and suppose that P° = M°N is a parabolic
subgroup of G°. Let M° = GL,;, ® - - - ® GL,,, ®G°(k). We denote by C = ¢, the odd
sign change in both W(G, A°), and W(G(k), S°), where S° is the maximal torus of G°(k).
Letog =01 ® - @0, ® po € Fo(M°). Suppose d = d\ + d, is as in Theorem 3.1. Then

[ 724" ifk > 1and Cpy ~ po
Rg(oo) ~ { thi otherwise .

PROOF. Let R = Rg(0y). Suppose that k£ > 1, and Cpy ~ po. Then M # M°, and
o|M" is irreducible. Thus, by Theorem 2.8(a), Rg(0p) =~ Ry X Z/2Z. Moreover, since
{a € ®G°,T°) | Ca < 0} = (0, and C € Wg(0y), we clearly have C € R. Thus
R~ 74"

We now consider all the other cases, except for the case where m, = 1 and £ = 0.
Suppose that d, = 0. Then, from (3.2)3.5), we see that W(0o) = Wee(00), S0 R =
Ry = Zg. Now suppose that d, > 0. Fori = 1 or 2, let

Bi(oo) = {j € Ji(00) | ¢ # 0j, VI > j}.
Our assumption that d, > 0 implies that By(09) # (). Now, from [8] we have

Ro = (C;|j € Bi(00)) X (C;C | £,j € By(00)) ~ 75"
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Now, for j € By(0y), we have C; € Wi (09) \ Wee(00). Moreover, from Lemmas 3.4, 6.6,
and 6.9 of [8], we have C; € R. Thus,

R = (Gj|j € Bi(00) U Ba(00)) ~ 75,
Finally assume that m, = 1 and £ = 0. Then
M= GL,, x--- xGL,, , xG(1).

Note that o, € f;, so Co, = 6, = o, '. Letoc = 0 ® -+ ® 0,1 ® p. Note that
dimp = 1 or 2. If dim p = 1, then p|gL) = 0, and thus o? = 1. Therefore, d, > 0, so
Ry ~ 747", Since C € W5(a9) \ We-(00), we have C € R, so R = Z4. On the other hand,
if dimp = 2, then C & Wg(0p). If d; = 0, then Wg(a9) = Wee(09), and Theorems 3.1
and 2.8(b) imply R = Ry ~ Z4.If d, # 0, then W5(00) # Wg-(00), and in particular
C; € Wg(0o), for some j with m; odd. By Lemmas 3.4, 6.6, and 6.9 of [8], we have
G €R,soR~ 74 .

COROLLARY 3.4. Let G, M, M°, and oy be as in Theorem 3.3. Then i e (0) is a
multiplicity one representation. Moreover, if d is an in Theorem 3.1, then ig pe(00) has 2¢
components, unless k > 1 and Cpo ~ pq, in which case i y-(00) has 2%+ components.

PROOF. This follows immediately from Corollary 3.2, Theorem 3.3, and
Theorem 2.11. =

We now consider the case where G = G° x Z/pZ. This case is quite simple, and
includes the case G = Oy,+;. Let P = MN be a parabolic subgroup of G, with split
component A. Then A = A°, the split component of M°, and M = M° x Z/pZ. Let
o € B(M). If g is a subrepresentation of o, then, for m € M\ M°, moy ~ oq. Thus,
o|ae is irreducible. By Proposition 2.2 and Theorem 2.11, we get the following resuit.

LEMMA 3.5. Suppose G = G° x Z/pZ. Let P° = M°N be a parabolic subgroup
of G°, and 0 € Ey(M). Let 09 = o|pe. Then Rg(o0) = Rgo(00) X Z/pZ. Suppose
ige me(00) = ®j_, nim;. For each i, choose an irreducible admissible representation I1;
of G, with w; = | go. Then

s p—1 )
icme(00) = PriPIL® . L]
=1 j=0

We apply this result to Opp = SOppe1 X {£1}. We write G = G(n). For the particulars
on the parabolic subgroups and R-groups of SO»,+, we refer the reader to [8].

COROLLARY 3.6. Let G = Oap41, and suppose that M° ~ GL,, X --- X GL,,, X
Go(k). Letog = 01 ® - ® 0, R po € Fo(M°). Let d be the number of equivalence
classes of a; such that iGegm+ky,GL(m)x G>(k)(0i @ po) is reducible. Then Rg(oo) ~ Z‘zj”, and

icme(00) is @ multiplicity one representation with 24*' components. [
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4. Relation with Arthur’s conjecture. We conclude with some remarks on the the
connection between our results and the conjectural R-group Ry, of Arthur. Since con-
struction of R, , depends on the solution to the Langlands parameterization problem, we
are certainly a long way from proving either Shelstad’s or Arthur’s conjecture. However,
it is worth noting that our results, which do not rely on the conjectures of Langlands, do
not contradict Arthur’s conjecture.

PROPOSITION 4.1.  Suppose that G/G° ~ Z /pZ, and P = MN is a parabolic sub-
group of G. Let 0 € E(M), and suppose that oy = o
that

(1) the parameterization of discrete series L-packets of M° by admissible homomor-

phisms 1): Lp x SL(2,C) — YM" is understood, and

(2) ify is a parameter for the L-packet of M° containing oy, then we have Rg-(0¢) ~

Mo IS irreducible. We assume

Ry,
If Y is a parameter for the L-packet Iy of M° containing oy, then Rg(0) ~ R, 5, where
Ry, is the group constructed by Arthur in [3].

PROOF. Recall that Ry, 5, = Wy, /W, , . We are assuming that Wy, o, is isomorphic
to Wg(09), and and thus, Wy |~ W'. We have also (conjecturally) identified Wy, with
Wa(o9), and thus,

Ryo = Wyo| Wy 4 ~ Welo0)/ W =~ Ra(00),

the last equivalence coming from Lemma 2.7 (]

Thus, from Theorem 2.11 and Proposition 4.1, we see that one can expect that the
Arthur’s conjectural R-group, R, ;, should determine the structure of ig (o), at least
when G/G° is of prime order. Furthermore, R;(09) predicts the structure of ig a-(09),
even if oy is reducible. Consequently, there should be a dual side construction of such
R-groups as well. In future work, we hope to extend these results to the case where G/ G°
is any finite cyclic group.
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