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Differential modular forms on Shimura curves, II:
Serre operators

Alexandru Buium

ABSTRACT

One of the main results announced in Part I (Compositio Math. 139 (2003), 197-237)
is proved. The main technique consists in developing a coordinate free version of some
of the theory of Serre operators on differential modular forms introduced by Barcau.

1. Introduction, main concepts, and main results

1.1 Introduction

This paper is a direct continuation of [Bui03]; among other things we will prove here the last
assertion of Theorem 1.2 in [Bui03] which was stated without proof in [Bui03]. For the convenience
of the reader, the Introduction to the present paper will be made independent of [Bui03]; on the
other hand, in the main body of the paper, we will rely heavily on the concepts and results of
[Bui03].

Differential modular forms were introduced in [Bui00]. Our main motivation was to provide a geo-
metric setting for the quotient of a modular curve by the isogeny equivalence relation. This quotient
does not exist in usual algebraic geometry but, rather, in an extension of the latter; this extension
of algebraic geometry can be called d-algebraic geometry and was introduced in [Bui95] and [Bui96].
In [Bar03], Barcau introduced a new technique in the study of differential modular forms. His tech-
nique was based on an analogue, in §-algebraic geometry, of Serre’s operators on classical modular
forms [Kat73b]. Some of the main results in [Bar03] depend however on the explicit structure of
the algebra of classical modular forms and involve computations in the ‘coordinates given by the
Eisenstein series F4 and Eg’. One of the aims of the present paper is to develop a ‘coordinate free’
approach to some of the theory in [Bar03]. This allows us to apply the technique of Serre operators
to differential modular forms in situations where ‘no coordinates are available’ (e.g. for modular
curves with level structures or for Shimura curves); for instance we will prove, in this way, the last
assertion of Theorem 1.2 in [Bui03].

Throughout this paper we denote by W := Z[¢] the ring of polynomials with Z-coefficients in
a variable ¢. For w = w(¢) = Y a;¢' € W and s € Z we set w(s) = > a;s. We set deg(w) :=
> a; =w(l). (So deg here is not the degree of w as a polynomial in ¢ but rather as an element in
the semigroup ring of the semigroup Z,.) We let ord(w) be the largest integer i such that a; # 0;
if w = 0 we set ord(w) = 0. We denote by ord(w) the largest integer i such that a; # 0 mod p; we
set ord(w) = 0 if w € pW. We let W be the set of all w € W with a; > 0 for all i. We let W (r)
be the subgroup of all w € W such that ord(w) < r. Let ¢ act as a ring endomorphism of a ring A.
Assume that either A € A*, w € W, or that A € A, w € W, ; then we write

AP = AP (P(N)™ -+ (¢ (V)" € A.
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A. Buium

Throughout the paper R will denote the completion of the maximum unramified extension of the
ring of p-adic integers, Z,, where p is a prime > 5. We let £ = R/pR = Fp, and we let K be
the quotient field of R. We let ¢ act on R as the unique ring automorphism lifting the p-power
Frobenius on k. The rest of this section is devoted to introducing our main objects and stating our
main results. In §§ 2-7 we develop the Serre operator theory (discussing the modular and Shimura
cases simultaneously). Section 8 is devoted to the conclusion of the proofs of our main results.

1.2 Shimura curves

Let D be a non-split indefinite quaternion algebra over the rationals equipped with an order Op
which is stable under the canonical involution. We assume D is split at p. Let X be a smooth affine
curve over R with geometrically irreducible fibers and let (A, 1,0) be a polarized false elliptic curve
over X which is formally universal at each k-point of X; here ¢ : Op — End(A) is the ‘multiplication
by Op’ map, 0 is the unique ‘natural principal polarization compatible with 7’, and A is said to be
formally universal at a k-point of X if the completion of A along its fiber at that point is the formal
universal deformation of that fiber (cf. [DT94], [Buz97], [Bui03]). For simplicity, we shall refer to X
as being a Shimura curve. (For instance X can be an affine étale open set of the pull-back to R of a
Shimura curve over Z[1/N], N # 0 mod p, parameterizing families of false elliptic curves with some
level structure that makes the moduli problem representable, cf. [Buz97]; sometimes these curves
are referred to as fake/false modular curves.) We fix now a k-point Py € X (k) of X and we let
(Ao, i0,0p) be the polarized false elliptic curve over k obtained from (A,i,6) by pull-back via Fj.
We assume Ay is ordinary and (Ag,6p) is a Jacobian. (By [Bui03, Lemma 2.6], for any fixed D,
there exists pg such that for all primes p > pg there exists a Shimura curve X containing a k-point
that corresponds to an ordinary Jacobian.) We denote by X the p-adic completion of X and by Xfer
the completion of X at the closed point Py. We let S = O(X ) and Sg,, = O(X™). By abuse of
notation we still denote by (A, 4, 6) the induced false elliptic curve over S or St respectively. If, in
addition, one is given bases b and b of the physical Tate modules T, »Ap and Tp/lo respectively such
that (Ao, 49,00, b, ) is a D-frame (in the sense of [Bui03, § 2.4]) then we have a natural identification
Stor ~ R[[T]]. (Recall that (Ag,io, 0, b,b) is called a D-frame if b and b correspond to each other via
the polarization #y : Ag — Ay and, in addition, any lifting of (Ag,ip) to R has Serre-Tate matrix,
with respect to b and b, of the form diag(q, ¢%), d := disc(D).) Throughout the paper, whenever we
refer to the Shimura curve X we assume that we have fixed the data:

A,i, Py, b,b.

Let us note that Op acts on the S-module H'° := H?(A, 9}4/5). Let ej; be the image of the
idempotent (§9) via the map

Mats(S)°P ~ OF ®7 S — Endg(H"), (1.1)
where the isomorphism above is induced by a fixed isomorphism
Jj: Op ® Z,, ~ Maty(Zy) (1.2)
as in [Bui03, § 1.2]. Then define the S-module of false 1-forms
L:=e HY.

Replacing S by St in the construction above we define in a similar way the Sg,,-module Lg;.

1.3 Modular curves

Similar objects can be considered in the modular curve context. If X is a smooth curve over R,
with geometrically irreducible fibers, and A is a smooth elliptic curve over X which is formally
universal at each k-point of X, then we shall refer to X as being a modular curve. (For instance
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X can be an étale affine open set of the pull-back to R of a modular curve over Z[1/N], N # 0
mod p, parameterizing families of elliptic curves with some level structure that makes the moduli
problem representable.) We fix a k-point Py € X (k) corresponding to an ordinary elliptic curve.
We may consider the corresponding objects S, Sior, A, Ag, etc. We define the S-module of 1-forms,
as usual, by £ = H® = HY(A,Q, /s)- Replacing S by Sg,r in the construction above we define
in a similar way the So,-module Lgo,. If § : A — A is the natural polarization and (Ao, 6, b, D)
is a l-frame (in the sense of [Bui03, § 2]) then we have an induced identification St,, ~ R[[T]].
(Recall that (Ag,6p,b,b) is a 1-frame if b and b are bases of the physical Tate modules T,Ap and
Tpfvlo respectively which correspond to each other via the polarization 6y.) Throughout the paper,
whenever we refer to the modular curve X we will assume we have fixed the data:

A, Py, b,b.

1.4 Differential modular forms on X and Xfor
In what follows we assume X is either a modular or a Shimura curve and we consider a certain
sequence of rings (S™) and morphisms ¢, ¢ : S” — S™T! as follows. We define S” to be the ring of
global sections
ST =0J"(X))

on the p-jet space of order r, J’”(X) = J"(X) of X/R in the sense of [Bui00, p. 103]. The morphisms ¢
are induced by the natural projections J"1(X) — J"(X) while the morphisms ¢ are defined by
¢(z) = aP + dx where § is the natural ‘p-derivation’ in the theory of p-jet spaces of [Bui00, § 1].
The datum S* = (S”, ¢, ¢) defines a prolongation sequence in the sense of [Bui00, § 1]; for the purpose
of this introduction we may ignore this. Also if Si,, >~ R][[T]] corresponds to a given D-frame or
1-frame respectively, we consider a certain sequence of rings (Sf, ) and morphisms ¢, ¢ : S, — Sfotl
as follows. We set

St = R[[T)[T,..., T,
where ~ denotes p-adic completion. The morphisms ¢ are the natural inclusions. The morphisms
¢ are defined by ¢(x) = 2P + dx where § is the unique p-derivation with 67 = 77, §T' = T”, and
so on. Again we have defined a prolongation sequence St . For each i < r we may consider the ring
homomorphism

(pr—i(bi:SgslgSnggSigSiﬂgmiSr’
and we may define
L8 = Log (ST )
where (S, 0" '¢") is S viewed as an S-algebra via ¢""¢¢’. Furthermore, if w € W(r), w = Y a;¢’,
we define the S"-module
M (w) = (L)B% @ (L 9)90 @ ... @ (£77)%ar,

We may call MY (w) the space of §-modular forms of weight w on X. Replacing, in the definition
above, S" by Sp = we may define Sy -modules

)®e0 @ (ﬁ@“%)@al Q- ® (£¢’“

for for

Mg (w) := (LE

for

)®ar.

We may call M7,

Ytor (W) the space of d-modular forms of weight w on Xfor,

1.5 Isogeny covariant series
For v € Z,, set
INT)=T,(T)=Q1Q+T)" —1€Zy[T].
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Let F € S = R[[T))[T’,...,T™)] be a series and m > 0 an integer. Let us say that F is isogeny
covariant of weight m if I’ satisfies the functional equation

F(D(T),8(T(T)),...,6"(D(T))) =~™ - F(T,T',..., T™) (1.3)

for all v € Z,. Recall from [Bui03, Theorem 3.11] that if F' satisfies Equation (1.3) for some
v € 7Z, which is not a root of unity then F satisfies Equation (1.3) for all v € Z,. Also, by
[Bui03, Theorem 3.11], we have that F' is isogeny covariant of weight m if and only if there exists
a homogeneous polynomial ® € K[xy,...,z,] of degree m, such that

F=oW,0? .. . v, (1.4)
where W is the series
gz Lgg LT+
P (1+T)P
So the isogeny covariant series of weight m in R[[T]][T’,...,T")]" form an R-module of rank
(m—+7r—1!/[m!(r—1).

€ R[[TNT"

1.6 Formally isogeny covariant differential modular forms
By ‘functoriality’, there is a naturally induced injective ‘Serre-Tate’ expansion map (at Pp):

E : My (w) — MY, (w) = 8§ = R[[T[T",..., T"]
(cf. the beginning of § 7 for details). A differential modular form g € MY (w) with deg(w) even will
be called formally isogeny covariant (at Py) if E(g) is an isogeny covariant series of weight m :=
— deg(w)/2. (Our terminology is explained by the fact, to be exploited below, that if g € M (w)
‘comes from’ an isogeny covariant J-modular form of weight w, in the sense of [Bui03, § 1], then g is
formally isogeny covariant; cf. [Bui03, Theorem 3.12].) Let us denote by I (w) the R-submodule of
all forms in M (w) which are formally isogeny covariant (at Fp). The first main result of the present
paper (Theorem 1.1) states that, if all k-points of X are ordinary, then I% (w) has the maximum
possible rank (m + r — 1)!/[m!(r — 1)!]. Our second main result (Theorem 1.2) shows that the
above fails in the presence of supersingular points. This phenomenon was first discovered by Barcau
[Bar03] in the special case of differential modular forms on ‘modular curves of level 1’; as already
mentioned, his proofs depended on ‘computations’ in the coordinates F4 and Eg. Our proofs will
follow Barcau’s strategy in [Bar03] but will require a coordinate free approach.

THEOREM 1.1. Assume all k-points of X are ordinary. Let w € W be such that
deg(w) = —2m € 2Z, m >0, ord(w) <,

and let ® € R[xy,...,x,] be a homogeneous polynomial of degree m. Then there exists a d-modular
form g € M (w) such that

E(g) = ®(V, 2, .. 0w ).
In particular
(m+r—1)!
k I =
rank Iy (w) m!(r —1)!
In the statement below for v = Z;:(} a;¢' € W, we write
¥ =0 aprt
Also we denote by | | : K — R the p-adic absolute value such that, say, |p| = p~'.
THEOREM 1.2. Assume X contains a supersingular k-point. Let w € W be such that
deg(w) = -2m €2Z, 0<m<p, w(p) <—-2mp, ordlw)<r.
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Let 0 # g € M%(w) be a 0-modular form such that
E(g) = ®(V, 0, .. 0w,
where

Q:ZAU:E” € Klxi,...,z,]

is a homogeneous polynomial of degree m. Then there exists v such that
[Auf > [Aml.
In particular ® ¢ K - 27", hence

(m+r—1)!

T
rankIX(w) < m

Theorem 1.2 shows that, in the presence of supersingular points, there are p-adic restrictions for
the coefficients of the polynomials ® that represent formally isogeny covariant forms. As we will see
in this paper, for any fixed D, there exists pg such that for all primes p > pg there exists a Shimura
curve X containing a k-point that corresponds to an ordinary Jacobian and a supersingular k-point.
Note that the condition w(p) < —2mp is essential; as we shall recall from [Bui03], Theorem 1.2 above
fails for w = —1 — ¢.

Theorem 1.2 will imply, for instance, the following corollary.

COROLLARY 1.3. Assume X contains a supersingular k-point. Then the following hold:

1) The R-modules I (=1 — ¢), I%(—1 — ¢*), and I%(—¢ — ¢*) have rank one.

2) The R-modules I (w) vanish for all w with deg(w) = 0 and either w(p) < 0 or 0 < w(p) <
ord(w) __ ,ord(w)—1
p p .

As explained in [Bui03] the weights —1 — ¢ and —1 — ¢? in assertion 4 of Theorem 1.4 are the
two ‘basic weights’ in this theory.

1.7 Application to isogeny covariant differential modular forms

Fix a quaternion algebra D and a sufficiently big prime p. For any w € W of even degree we defined
in [Bui03] the Z,-module Ip(w) of isogeny covariant §-modular forms on D of weight w (cf. [Bui03,
§ 1.8]. We have the following theorem.

THEOREM 1.4.

1) The Z,-modules Ip(w) are finitely generated.

2) Ip(w) =0 for deg(w) > 0.
3) Ip(0) = Zp.
4) The R-modules Ip(—1— ¢), Ip(—1 — ¢?), and Ip(—¢ — ¢?) have rank one.
5) The R-modules Ip(w) vanish for all w with deg(w) = 0, and either w(p) < 0 or 0 < w(p) <
ord(w) __ ,ord(w)—1
p p .

Assertions 1-3 in Theorem 1.4 (and also assertion 4 for Ip(—1 — ¢)) were proved in [Bui03,
Theorem 1.2]. The rest of the assertions will be proved in the present paper. Note that assertion 4
in Theorem 1.4 proves, in particular, the last assertion in Theorem 1.2 [Bui03], which was stated
there without proof.
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2. Normalized basis of H1

Assume first X is a Shimura curve. Let us consider the Op-equivariant exact sequence of S-modules

0—HY - H' - H" -0, (2.1)
where
H':= H°(A, Q) ), H':=Hpgp(A/S), H" :=H'(A,0),
and let us choose an Op-equivariant right inverse
r:HY — gt (2.2)

to the projection m : H' — HO'; this will induce an Op-equivariant splitting of (2.1). Such an
Op-equivariant right inverse always exists; indeed, if 7/ is any right inverse of H' — H! then

T:=ent'enn + e1a7'en
is an Op-equivariant right inverse. In the above formula,
€11, €12, €21, e € Endg(H") (2.3)
are the images of the natural idempotents via the map
Mat(9)P ~ OF ®z S — Endg(H"),

where the isomorphism above is induced by the isomorphism (1.2).

At various points in this paper we are going to make constructions depending ‘functorially’ (in a
sense to be made precise later) on (X, 7). Some of the constructions will actually not depend on 7
and we are going to point out the situations when this happens.

Define
L= 611H10, H .= 611H1, Q = 611H01. (24)

(Note that our notations are at variance with those in [DT94].) The restriction of the map (2.2)
induces a right inverse 7 : @ — H to the projection H — Q; we set L := 7(Q).

Replacing S by St in the constructions above we have Sg,-modules

1 /
Hf0r7 Efora Hfora Qf()h Efor-

If X is a modular curve then, since 6 is invertible in R, the exact sequence (2.1) has a splitting
7: HO — H'; cof. [Kat73b, p. 163]. We set, in this case,

L:=HY H:=H' Q:=H" [ :=7(Q). (2.5)

We define corresponding St,-modules Hflor, Liors - - -
Going back to the case X is a Shimura curve, let w! be a local basis of £ and w = (w!,w?)*
the corresponding false 1-form in the sense of [Bui03, § 1.4]; in particular w? = ejow!. (Here the

t superscript denotes the transpose of a row vector.) The commutative diagrams
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for a € Op, induce commutative diagrams

HO(A,Ta/5) ~— H'(A,0)

i(a“')l li(a)*

HO(A, Tyj5) 2~ H'(A,0)

at the level of Lie algebras; here + is the involution considered in [Bui03, § 1.2]. Let ¢ = (&1, £2)°
be the unique local basis of H(A, Q) such that

<9*_1£>wt> =1, (26)

where [ is the identity matrix; we call £ the #-dual of w. We claim that the following formula holds:

()¢ =j(a")'¢, a€Op. (2.7)
Indeed, if i(a)*¢ = k() then
jlah)t = (071¢, 0" (a)Y) = (071€ i(a™) W)
= (i(@")0.7€,w") = (0.1i(a) "¢, ') = K(a),
which proves (2.7). Note that by our normalizations in [Bui03, § 1.2],

s = (o Vi@ (% Y).

where d is the discriminant of D. In particular (2.7) shows that

en€ =€ ent? =€, et =de?

so &1 is a local basis of Q. Define

by Op-equivariance of 7 we have
eun' =n', exnn’ =0%,  ewn' =dy’ (28)
in particular n! is a local basis of £’. Note that
wh nt w?, n? (2.9)

is a local basis of H'. A local basis of this form will be called normalized; it is uniquely determined
by its first vector w!. Note that

<77¢ wt>9 =1,
where { , )g is the bilinear, antisymmetric pairing on H' induced by @ (cf. [FC90, p. 81]). Recall that,

(A, ) is isomorphic to the Jacobian of a curve then (,)g identifies with the cup product on the
curve.

If X is a modular curve, w = w! is a local basis of £, and & = ¢! satisfies Equation (2.6) then
we set n! := 7(¢) and we refer to

wh, n! (2.10)
as a normalized basis for H'.

One defines normalized bases of Hflor similarly; we use the same notations as above with for as
a subscript: wflor, ... . When no confusion is likely to arise we will drop, however, the for subscript.
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3. The operators 9 and 0,

Let X be either a Shimura curve or a modular curve.

Let  denote the p-adic completion of Qf s and let Qfor = R[[T]] dT. Recall that we have at our
disposal the Gauss—Manin connection

V:H' - H' ©Q. (3.1)
By the functoriality of the Gauss—Manin connection, V commutes with e;; so (3.1) induces a con-
nection
V:H—-H0 (3.2)
If X is a Shimura curve then, with respect to a basis as in (2.9), we may write (3.1) as
le 011 012 0 0 wl
Vil | _[om o2 0 0 n'
VWQ - 0 0 011 012d w2 ’ (3 3)
vn? 0 0 ond! o n?

where 0;; € Q. Similarly, if X is a modular curve, we have

le (011 012 wl
<V771> B <021 022 771 ' (3.4)
In particular the ‘Kodaira—Spencer matrix’

(Vw, wt>9

o1 <é 2) (3.5)

in the Shimura curve case and equals 012 in the modular curve case. Since A is formally universal
at all k-points, the reduction mod p of the matrix (3.5) is nowhere vanishing. It follows that o9 is
a nowhere vanishing 1-form. Note that 015 is independent of the choice of 7.

equals

We claim now that the bilinear maps

LXL—Q LxL—S (3.6)

(I’,y) = <V$7y>9
induce isomorphisms
L2~ 0, 8D~ (3.7)
(The isomorphisms (3.7) are well known; cf. [DT94, Lemma 7, p. 454], for Shimura curves and
[Kat73b] for modular curves; we will reprove them here in order to review the explicit bilinear

maps (3.6) that realize them.) Indeed, in the Shimura curve case, it is enough to check (3.7) in a
local normalized basis (2.9). In such a basis, however, the bilinear maps (3.6) send

(wlvwl) = 012, (7717001) =1, (38)
and we are done. Of course, the isomorphisms (3.7) are independent of 7. A similar argument works
for modular curves.

For the rest of this section we let X be either a Shimura curve or a modular curve.

The connection (3.2) induces a connection

V : Symm(H) — Symm(H) ® (3.9)
1120
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on the symmetric algebra of H. Using the natural inclusion £ — H, its right inverse given by the
second projection 7 : H = L & L' — L, and the isomorphism (3.7), we get an R-derivation 9 = 97,
depending on the splitting map 7 in (2.2):

0 : @£®" = Symm(L) — Symm(H) AA Symm(H) ® QS/R ~ Symm(H) ® L£%?
n=>0
mult s . mn
— Symm(H) ® Symm(H) — Symm(H) — Symm(L) = @ Lo,
n=>0
If we choose a normalized local basis (2.9) or (2.10) (according as X is a Shimura curve or a modular
curve) then €0, L™ is locally isomorphic to a ring of polynomials S[z], where the variable z
corresponds to w', and the derivation O satisfies

a(z) = T 43 (3.10)
J12
Jd(s) = j—ixz, seSs. (3.11)

(The above formulae make sense because 019 is an invertible 1-form. Note also that the value of 9(s)
does not depend on the choice of 7.) In particular (L&) ¢ L&+, (If X is a modular curve then
the R-derivation 0 is, of course, the Serre operator for modular curves; cf. [Kat73b, Appendix].)
We claim that 0 above uniquely extends to an R-derivation:

o:PLem— gL
neL nez

Indeed, by the uniqueness part of the claim, it is enough to check the claim locally on S; but, locally
on S, @,z LE" is a ring of fractions of @),y LZ" (because R[z,z~"] is a ring of fractions of R[z])
and the claim is clearly true in this case.

All that was said so far in this section can be done for the Gauss—Manin connection
vfor : 7_‘for - Hfor ® Qfor

in place of V; one just has to put subscripts (or, if one prefers, superscripts) ‘for’ to all objects
involved.

Recall that we defined in § 1 the S"-module MY (w) of 6-modular forms of weight w on X

and the S, -module M., (w) of 6-modular forms of weight w on X . We will also need to consider

the space

MY (w) = M%(w) ®r k.
which we call the space of d-modular forms of weight w on X mod p. Let M (w) = Mp(w) be the
space of d-modular forms of weight w on D (in the sense of [Bui03, § 1.8]) or M (w) = M;(w) be
the space of d-modular forms of weight w and genus 1 (in the sense of [Bui03, § 1.7]) according
as X is a Shimura curve or a modular curve. Then there are natural R-module maps

M(w) ®z, R — Mx(w) (3.12)

defined as follows. Let f € M(w) and let # = w! be a local basis of £; then, in the Shimura curve

case, consider the false 1-form w := (w!,w?)!, where w? := ejow!, and consider the element of

MY (w) defined locally by
f(A7i707w) ' x@w, (313)
where, if w =Y a;¢", then
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The ‘local section’ (3.13) does not depend on the choice of w! and defines a ‘global’ element in
M% (w) which we take to be the image of f in MY (w). A similar definition can be given in the
modular curve case. Note also that we have natural ring homomorphisms

po: P My - P Miw
weW (r—1) weW (r)
induced by the homomorphisms
o My (w) — My (w), ¢ My (w) — M (¢w).

As a rule we shall view ¢ as an inclusion. Let us define a sequence of rings (MY ) by

w-ofr(sn(( @) )

where J” denotes, as usual, the p-jet space of order r of a smooth formal scheme; cf. § 1.4. Similarly

we define a prolongation sequence (M§(for) as follows. We choose a basis x,, of Lg,; when it is clear

that we are dealing with the formal case we will usually write = in place of zg,. (However, note
that, typically, the basis xg, will not come from a local basis of L!) We let

P g ~ R([T))[z, 27"]
meZ

be the corresponding isomorphism and we set
o = R[[T)[z, 22!, 2 T T (3.15)

The St -algebras M.,

can be called the spaces of §-modular functions on X©*. We also let
7)7‘(for = )T(for ®R k

and call this the space of 6-modular functions on X mod p.

PRrROPOSITION 3.1. Fix r > 1. Then the following hold.

i) There are natural inclusions

P My(w) c Mk
weW (r)
inducing inclusions
MY (w) € M%
for each w.
ii) There is a unique derivation
Op : My — M,
depending on T, with the following properties:
1) 9, vanishes on M !,
2) 900" =¢"0d on @P,,c, LY, and
3) 0, (M (w)) € M (w+26").
iii) The MY '-derivation
Or: M% — MY%
o_btained by reducing 0, modulo p has the property that its restriction to any of the spaces
M% (w) does not depend on T.

iv) If an element f € MY (w) is invertible in MY then its inverse lies in M (—w).
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v) If X1 C X is an affine open subscheme then
M N My, (w) = Mx (w).
Before we give the proof, some remarks are in order.

Remark 3.2. As will be clear from the proof:

1) MY is not the p-adic closure of @, cpy () Mx (w).

2) The induced map @,y () M (w) — MY is not injective.
Let us also note that:

3) Conditions 1 and 2 in Proposition 3.1 formally imply that

Oro¢" =p"¢" 00 on @ Lo,
meEZ
4) A statement identical to that of Proposition 3.1 holds for X, £ replaced by X, L.
We need the following general construction in [BZ04].

LEMMA 3.3 [BZ04]. Let (B") be a prolongation sequence such that either

i) B is the p-adic completion of a smooth R-algebra and J"(Spf B) = Spf B" are the p-jet spaces

of Spf B or

i) B" = R[[T)][z,z~,2/,...,2", 1" ..., T™]", B := B°.

Let 0 : B — B be an R-derivation. Then, for each r > 1, there exists a unique derivation
0,:B" — B"

with the following properties:

1) O, vanishes on B™™ %,

2) 0, 06" =¢"0d on B.
Proof of Proposition 3.1. The proposition is, clearly, a local statement on X. So we may, and will,

assume that £ is a free S-module and, hence, upon choosing a basis x of £, we have induced
identifications

P o = Sz, 271, (3.16)
meZ
@ My (w) = By := S"[x, 27 ga, o™ ¢ w, ¢" Y, (3.17)

weW (r)
where ¢’z are variables and ¢ sends ¢’z into ¢z, for i <r — 1. Set
B:= S[z,z71]".
Then, by continuity, the derivation
d:S[x,x '] — Sz, 2]

induces an R-derivation 0 : B — B. Let B" := MY, ie. Spf B" := J"(Spf B). By the general
properties of p-jet spaces in [Bui00, pp. 104-105],

B =Sz, 2", 2], (3.18)

where 2/, ..., (") are new variables with §2() = £(0+1), The ring B, in (3.17) is embedded into the
ring B” of (3.18) via

¢z — 2P +pr', ¢’z — (a4 pa')? + p((z')? + pz”),
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Note that if 5" := S”/pS” then the image of M%(w) = S”-z®" in M’ equals S” - z*®) 5o the map
M5 (w) — MY is injective. This proves assertion i in Proposition 3.1.
By Lemma 3.3 there is a derivation
0,:B" — B"

satisfying the properties listed there. We claim that 0, sends the ring B, into itself. To check the
claim, note first that, by property 1 in Lemma 3.3, we have 9(S"~!) = 0 and

Op(x) == 0p(¢" 'a) = 0,
which implies, of course, that
Oz = =0.(¢" Tz =0.
Also, for s € S, Equation (3.11) implies that
067) = o 00) = o (20t} =07 (22 ) (@ap e 57 o

Note that 9,(6"s) is independent of the choice of 7. Since any element of S is a p-adic limit of
S~ Llinear combinations of products of elements of the form §"s, with s € S, it follows easily that

Opsy € 8" (¢"x)? (3.19)

for all s, € S™ and that the value of 9,s, does not depend on the choice of 7. Finally, Equation (3.10)
implies that, for any m € Z,

0((62)™) = B (¢" (&™) = P&’ (B(z™)) = p " <mﬂxm+2>

012
= mp' ¢’ <j—i> (¢ )™+, (3.20)

Note that the value of 0,((¢"z)™) really depends on the choice of 7; but its reduction mod p
vanishes, so, in particular, it does not depend on 7. This ends the proof of our claim and hence
the construction of J,.. Assertions 1 and 2 in part ii of Proposition 3.1 have already been checked.
Assertion 3 in part ii as well as part iii of Proposition 3.1 follow immediately from (3.19) and (3.20).

To prove assertion iv of Proposition 3.1, we, again, note that this is a local matter so we
are reduced to showing that if an element s € S" is such that s - " is invertible in the ring
STz, x~ ', 2/, ..., 2] then s is invertible in S (and hence s~ -2~% is the inverse of s-z"). Write

szt (Zsioil.,,iTﬂﬂio(aC,)il ...(x(r))z'r) — 1
with all s;,;, 4, in S”. Denoting by upper bar classes in §r .= S /pS” we obtain
S - <Z§io,i1,...,irxio+w(p) (') - (:L,(r))ir> —1,
and hence we get
55 wp)0..0=1 nS"

So 5 is invertible in S”; since S is p-adically complete, it follows that s itself is invertible in S”.

Assertion v of Proposition 3.1 is again local so we need to show that if S; = O(X;)" and s; € ST
is such that s - 2 belongs to S"[z,z~ ', 2/,..., 2] then s; € S™. Write w = 3" a;¢’,

s1-xz%¥ =851 2% (:L‘p —|—px’)a1 L ((x(r))p —|—pl‘(r+l))a’"7

S1 - ¥ = Z sioilmuazio (.’E/)il HE (m(r))ir’
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with all s;.;,..4,. in S". Picking out the coefficient of
290 (:L‘/)al . (:L,(r+1))ar,

we get that pdes(®) . g = Sagay..ar € S". Since p™ST N S" = p"S” (cf. Lemma 4.2 below) we get that
s1€8". O

Note that all our constructions above are functorial in (X, 7), in the following sense. Assume we
have pairs (X;,7;), ¢ = 1,2, and an open immersion Xo — X; of schemes such that the pull-back
of 71 is 73. Then it is easy to check that there is a natural ring homomorphism MY — MY, that
is compatible with weights and with the actions of 0, and ¢. Similarly if we have a pair (X, 7) and
a k-point P% then there is a natural ring homomorphism MYy — MY, that is compatible with
weights and with the actions of 0, and ¢.

4. The Hasse invariant

Assume first that X is a Shimura curve.
Let (A,4,0), £, © and ¢ be obtained, from (4,14, 0), a false 1-form w, and its #-dual ¢ (cf. Equa-
tion (2.6)), by base change to S := S/pS. Note that the semilinear map
F*:HY(A,0) - H'(A,0)
induced by the absolute p-power Frobenius on A commutes with all S-linear endomorphisms
i()*: HY(A,0) — HY(A,0).
Consider the Hasse-Witt matrix h € Maty(S) of A with respect to the basis &; hence, by definition,

F*¢ = hé. (4.1)
Let
Ly — Fy, x+— c(x)
be the canonical projection. Then, for all « € Op, we have
he(j(a™)")€ = hi(e)"€ = i(a)*hE = i(a) F*E = F*i(a)"¢
c

= £
= F*(c(j(a")")g) = F(c(j(a®)")FE = c(j(a’)")hE.
We conclude that
he(j(a™)") = c(j(a™)")h
for all . This forces h to be a scalar matrix, h € S. Consider now the local section
H:=h(@"Y e MY (p—1).

It is easy to see that the above section does not depend on the choice of w; hence these local sections
are well defined and glue together to give a ‘global section’ H € ]\_49( (p — 1) which we may call the
Hasse invariant. (This H is well known to the experts and is alluded to in [DT94].) Now L is, of
course, algebraizable, i.e. there exists an invertible O(X)-module L such that £ = L". We choose
now a section H € L&®=1) whose reduction modulo p is H and we set

Xord := Spec { < &b L®m<P—1>> /(H - 1)}, Sord = O(Xora) -

m=0

If x is a local basis for L, then, locally,
Xorq = Spec O(X) [P~ /H] (4.2)
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so Xorq is an affine open subscheme of X. Note that the p-adic completion of X,.q does not depend
on the particular choice of H. In what follows we let the index ‘ord’ denote ‘base change from
X to Xord- If X ® k contains supersingular points (i.e. false elliptic curves with non-invertible
Hasse-Witt matrix), then, of course, Xoq @ k # X @ k.

LEMMA 4.1. Fix a quaternion algebra D. Then, for all except finitely many primes p, one can find a
Shimura curve X that contains a supersingular k-point and a k-point corresponding to an ordinary
Jacobian.

Proof. Consider a Shimura curve X over Z[1/N] parameterizing false elliptic curves with an
appropriate level structure such that the corresponding moduli functor is representable; cf.,
say, [Buz97]. By [Bui03, Lemma 2.6], for all but finitely many primes p, the curve X ® F}, has
a k-point (k = Fp) corresponding to an ordinary Jacobian. By [DT94, p. 454, proof of Corollary 3],
for all but finitely many primes p, the curve X ® F), has a k-point corresponding to a supersingular
false elliptic curve. We conclude by noting that any two closed points on a curve are contained in
an affine open set. O

If X is a modular curve then the Hasse invariant is, again, a section H € M% (p—1) and we
define X, X .q by the same formulae as above.

For the rest of this section we continue to assume that X is either a Shimura curve or a modular
curve.

We will need later a number of technical facts about the spaces MY and M}}md; we collect them
in the Corollary 4.3 below. We first prove a general lemma.

LEMMA 4.2. Let B be the p-adic completion of a smooth R-algebra such that B ® k is an integral
domain. Let b € B\pB and let C' be the p-adic completion of B[1/b]. Let

J"(Spf B) = Spf B", J"(SpfC) =SpfC",
B "=B"®k C :=C"®k.
The the following hold:

1) The maps B"~! — B" are injective. In particular the maps B"~' — B are injective with
torsion free cokernel. M01£eover B_’” and B" are integral domains and we have an equality
between groups of units (B")* = B*.

2) The maps B" — C" are injective. In particular the maps B" — C" are injective with torsion

free cokernel.

CrinBr =B,

If f,ge B", fg e p"B", f € pB" then g € p"B".

BT’ ﬂpTLOT — pTLB’r‘.

Ifce (C7)%, 1 < v(p) < p°d®) and ¢ € B™+o'(W) | then ¢ € B". Similarly, if ¢ € C" and
¢® € B™t!, then c € B".

S Ot = W
= D = D

Proof. By the ‘local product property’ of p-jet spaces [Bui00, p. 105], Spec B” — Spec B"1 is
a locally trivial bundle in the Zariski topology with fiber an affine space. In particular B” are
integral domains and (B")* = (B"~1)*. Then assertion 1 follows. By the ‘compatibility with open
immersions’ of p-jet spaces [Bui00, p. 105], we have C" = B"[1/b]". So C" = B"[1/b] is a ring of
fractions of B"; this proves assertion 2 and, due to faithful flatness of B"~! C B", it also proves
assertion 3. Now assertions 4 and 5 easily follow by induction. Let us check assertion 6. We will only
check the case c is invertible in C”; the case ¢ non-invertible and v = ¢ is similar. Let v = Y a;¢",
s :=ord(v), t := ord(v). It is enough to prove that for any integer n > 1 we can write

c=b, +p'c,, withb, e B", ¢, cC"tL (4.3)
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(For if this is so then b, converges to ¢ in C"; but b,, is a Cauchy sequence in B" due to assertion 5
and B" is complete, so b, converges to an element in B” and we are done.) We shall check (4.3) by
induction on n. Denote by = — Z the canonical surjection C* — C?. To check the case n = 1 note
that since ¢V € B"t* we have ¢*(®) € B"$. Since Spec Bt is smooth over k and connected, B"**
is an integrally closed domain. Also B""% and C"** have the same quotient field. Since ¢ is integral
over B"t$ we must have ¢ € B"T*. By assertion 3 we get ¢ € B". So we can write ¢ = by + pcy,
bp € B", ¢c; € C"; this settles the case n = 1 in our induction. Assume now that condition (4.3)
holds for some n > 1. In particular we must have b, € (C")* so we may write

P (bn + pncn)ao (bﬁ —|—p”c£)a1 . (bzs —l—pnC£s)a5
s
=by +p" < Z aibg—%f) + p*"y,
i=0

with v € C"%. Hence ¢V — b¥ € B" ™ N p"C""5 = p"B""%; cf. assertion 5. Write b% — ¢V = p"3,,
with 3, € B"*. We have 0 £ ¢ € C" C C™1, b, # 0, and

Now the latter equation shows that &, is integral over B"™*. Hence, as before, ¢, € B"*%, and hence
¢, € B". So there exists b € B" and ¢, 1 € C" such that ¢, = b+pc,41. Hence ¢ = b, 1 +p" T lepi,
where b, 11 = b, + p"b, and our induction step follows. O

COROLLARY 4.3. The conclusions of Lemma 4.2 are true for

B" =My, C"=My

ord”’

Proof. The conclusions of Lemma 4.2 are local on B. But, locally on X, M}}md is the p-adic com-
pletion of M [1/h] for some h. O

5. The unit root space

Let X be either a Shimura curve or a modular curve.

By [Kat73a, p. 178, Theorem 4.1], there exists a subcrystal U C H, érd, the unit root subspace, of
slope zero, and transversal to H'0, i.e.

ord’
Hgq = Hopg ® UL
The following holds for X a Shimura curve.
LEMMA 5.1. The unit root space U is an Op-submodule of Holrd.

Proof. 1t is enough to check that Up is an Op-submodule of H}D for all R-points P of X.q; here the
index P means ‘base change from S to R via P’. Now, by the functoriality of crystalline cohomology,
the semilinear Frobenius ¢ acting on the de Rham module H}g commutes with the action of Op.
By [Kat73a, p. 172, Theorem 2|, there is a basis of H}; of the form u!,u?, v', v2, where u!, u? form
a basis of Up, and

du = u,
ov = pBv + Cu,

where u := (u!,u?), v := (v!,v?)!, and B,C € Maty(R). Write
i(a)*u = Mu+ Nv, acOp
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for some M, N € Maty(R). We get
Mu + Nv = i(a)*(¢u) = ¢(i(a)*u) = M®u+ N®(pBv + Cu),

hence N = pN?B. By induction, N must be divisible by p" for all n so N = 0. Consequently
i(a)*U CU. O

Next we define I/ := e11U in the Shimura curve case and &/ = U in the modular curve case.
Then U is a locally free S,.q-module of rank one and, clearly, H = £ @ U. We claim that, if u' is

a local basis of U and w = (w!,w?)! is an invertible false 1-form or w = w! is an invertible 1-form

(according as X is a Shimura curve or a modular curve), then

(u',wh)g € 8%

ord*

Indeed, if we consider a normalized basis (2.9) or (2.10) respectively and we write

1 1
w 1 0 w
()= (o) ) o
with s91, 599 € Sgrq then s99 is invertible and
<U1,w1>9 = 522,
which proves our claim.
Finally let us note that if X is a Shimura curve and one is given a basis u = (u!,u?)" of U and
a false 1-form w = (w',w?)" such that
(u,w") € Z -1, (5.2)
then ejju! = ul, exu? = u?, and ejpu! = du?; in particular ! must be a basis of U. Indeed, we
may assume the pairing in (5.2) is the identity. Let ¢',£2 be the images of u!,u? in H°' and set
§=(¢',€%)" Then
(0,1 0") = L.
So u = 7Y(¢) where 7V : ngld ~U C Holrd is the Op-equivariant splitting defined by U and our
claim follows from (2.8).

6. The forms f@ and P

Let X be a Shimura curve or a modular curve.

Following [Bar03] let us define the §-modular form on X,q
foe My, (-1+¢)

as follows. Consider a normalized local basis (2.9) or (2.10) (according as X is a Shimura curve or
a modular curve) of H! ;. let u! be a basis of U and consider the local sections

<¢ul ) wl >9
P((u',wh)p)
Clearly the above local sections are independent of the choices of w! and u' so they glue together

to give a global section of M }(md(—l + ¢). Similarly, following [Kat73b], we define the d-modular
form on X.q (which is really ‘of order zero’, hence ‘non-differential’)

PeM% (2)=LS

ord

70— (w1)®(—1+¢) € M)l(ord(_l + ¢).

as follows. We consider, as before, a normalized local basis (2.9) or (2.10) respectively of H! ; plus
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a basis u! of U and then we consider the local section

(u',n")e 1\®2 ®2 0
P = m : (W ) € Eord = MXord (2)
Again this local definition gives a correct global definition.

Let us view f? and H as elements of M }(Ord and let us denote by fo, H € M )1<0rd their images.
We have the following result (due to Barcau [Bar03] in the modular curve case).

PROPOSITION 6.1. f7 = H in M} .

Proof. Assume X is a Shimura curve; the case of modular curves is similar [Bar03]. Let w be a
false 1-form, ¢ the f-dual basis of HOl and u a basis of the unit root space U such that 7(u) = &

or'
where 7: H! = — Hmd is the canonical projection. In particular (u,w')y = I, so u! is a basis of U.

ord or

Write F*¢ = h-€ asin (4.1). For any g € M)1<Ord let g € M}(md denote the image of g. Also, let (, )5
be the pairing on H'! := H' ® k induged by 6, denote by v — © the natural map H' — H', and
denote by F* the semilinear map on H' induced by the p-power Frobenius. We get

2= (Frat, oM g(@hH)2e ) = (07w et ot (0! B
= <§*_1F*7Tﬂ1,(31>(@1)®(p_1) _ <§;1F*£_1,c_d1>((,—u1)®(p_l)
= R (0718, oV (@H)2PD = . (@)D = . .
COROLLARY 6.2. There is a form fg € M)lfom(l — ¢) such that f - fa -1

In view of this corollary it is reasonable to define, for any
v=vr+v_€eW, vy, —v_eW,,

the form

(fO) = (fO) - (fa) "~ € M, (v(¢ = 1)).

Proof. By Proposition 6.1 it follows that f is invertible in M }(md. Since M }(md is p-adically com-
plete, f? itself must be invertible in M }(md. We may conclude by assertion iv in Proposition 3.1. [

7. Serre—Tate expansion of forms on X

For any weight w = Y a;¢" € W(r) we have a natural ring homomorphism (which we call the
Serre—Tate expansion map)

B MY, — Sf, = RIT)T,.... 0] (7.)
defined as follows. First, by functoriality, we have a ring homomorphism

M;( - g(for’ (72)

ord

Next assume X is a Shimura curve. The first component © = z¢,, := w' of the canonical false 1-form
w = wyef,p constructed in [Bui03, § 2.4] is a basis of Ly, hence its image 28 = WO in Mo (w)
is a basis of the latter. (Note that x does not come a priori from a local basis of £!) Consider the
ring homomorphism

Tior = R[[T))[z, 2~ a2 T O = SE = R[T)[T,..., T, (7.3)
defined by z +— 1, 2/ — 0, 2" — 0, etc.; note that this homomorphism sends
2OV = g% (a;¢)‘“ e (a;(z’r)ar — 1,
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hence it maps MY, (w) isomorphically onto Sf .. We define the map (7.1) as the composition of
(7.2) and (7.3). In particular, if we view the map (7.2) as an inclusion, then

f=E(f)z"" (7.4)

for any f e MY | (w). If X is a modular curve, the same construction can be performed with w!
the canonical 1-form wger in [Bui03, § 2.1].

Now, if X is either a Shimura curve or a modular curve, then, exactly as in [Bui03, Theorem 2.7],

we have the following ‘Serre—Tate expansion principle’.

THEOREM 7.1. The restriction of the homomorphism (7.1) to each M (w) is injective.

Consider now, in the Shimura curve case, the normalized basis w',n',w?,n? of H}  whose first
vector is © = w!, cf. (2.9), and let u = wuger,p be the basis of the unit root space Uy, defined by
Equation (2.6) in [Bui03, § 2.1]. In the modular curve case we let w!,n! be a normalized basis of
HflOr with 2 = w! and we let u = uqet be the corresponding basis of Us,. So recall that

pu=u, (uw,w')=e-I, ecl; (7.5)
(cf. [Bui03, §§ 2.1 and 2.2]). (From that work, € = 1 in the modular curve case.) In particular u! is a

basis for . Viewing f? as an element of M }(Ord(—l + ¢), its image under the Serre-Tate expansion
map

E: My, (=14 ¢) — R[[T][T']
is particularly simple, as the next proposition shows.

PROPOSITION 7.2. E(f9) = E(fs) = 1. In particular
fa € Igford,for(qb - 1)7 f@ € I}(md,for(l - ¢)

Proof. Tt is enough to prove E(f?) = 1. Using (7.5), we get that the image of f? in M )1<for equals
(pu',wh) 1 4 € —1.¢_ 1.9
— L’ =——a 2’ =1
o((u',wh)) ¢(e)
and we are done by (7.4). O

In what follows write u! = sojw! + s0on!, with so1 € R[[T]], se2 = R[[T]]*, as in (5.1). Note that

e = (ul,w!) = s99.

Consequently
<7]l7ul> = S21,
hence
1,1
2 _ uLn)e o 2
So1x” = _6<u1,w1>9m = —eE(P)x*,
and hence
§91 — —EE(P).
By Equations (2.5) and (2.20) in [Bui03, § 2.1], we get
dT T dT
Vuwl = L= _¢B(P ! L
W =yt T BT e
In view of Equations (3.3), (3.10), and (3.11) we get

d(z) = —E(P)z?, (7.6)
ANT)=e (1 +T)z%
The next proposition describes the effect of 9, on Serre-Tate expansions.

1130

https://doi.org/10.1112/50010437X04000351 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000351

DIFFERENTIAL MODULAR FORMS ON SHIMURA CURVES, II

T

PROPOSITION 7.3. Let w =Y. ,a;¢". Then, for any f € My (w), the following formula holds:
0
or)
Proof. Let w' = w — a,¢". By (7.4) we may write

f = E(f)z® (@)™
Then, using Equations (7.6) and (7.7), Proposition 3.1, and Remark 3.2, we may compute:
0r(f) = 2" [0(E(f)) - ()™ + E(f) - 0p((2*")™)]

- [&f&) (BT () + E(f)armwwr-lar(ﬂ’“)]

E@:(f) =€ 1+T%) (B(f)) = arp" E(/)(E(P)”".

— oo | DS T P )

+ B(f)ar (@) (=p"E(P)? (7))
= ) ) 1+ T) e BB .
This concludes the proof. O
Recall from [Bui03, §§ 1.8 and 1.7] respectively that we denoted by Ip(w) and I;(w) the spaces
of isogeny covariant differential modular forms of weight w in the Shimura curve and the modular

curve case respectively; let I(w) be Ip(w) or I (w) according as X is a Shimura or a modular curve.
Note that by the Serre-Tate expansion principle in [Bui03, Theorem 2.7], the map

M(w) ®z, R — Mx(w)

in (3.12) is injective; on the other hand, by [Bui03, Theorem 3.12], this map sends I(w) ®z, R into
Iy (w). So we get an injective map

I(w) @z, R — Iy (w). (7.8)

Let f¢ € I(—1 — ¢%) be the d-modular forms defined in [Bui03, § 1.10], and view f!, 2, P? as
elements in M )l(ord.

PROPOSITION 7.4. Oy f' = f2 + pP?fL.

Proof. Both members of the equality belong to M }(md(—l + ¢); cf. Proposition 3.1. By the Serre-
Tate expansion principle in Theorem 7.1 it is enough to show that the images of the two members
of the above equality under

E: My, (~=1+¢) — R[]I
coincide. Now, by [Bui03, Corollary 2.10] (in the Shimura curve case) and by the proof of [Bui03,
Lemma 2.4] (in the modular curve case), E(f!) = ¢¥ while, by Proposition 7.2, we have E(f?) = 1.

A trivial computation, using the latter two formulae plus Proposition 7.3, shows that F(d; f!) and
E(f? + pP? 1) coincide. O

COROLLARY 7.5. O f! = H in M.
Proof. By Propositions 7.4 and 6.1 we have
of' = =Helrk .
We conclude by the injectivity of M )1< — M }(Ord; cf. Corollary 4.3. U
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8. Proofs of Theorems 1.1, 1.2, and 1.4

Proof of Theorem 1.4 (Assuming Corollary 1.3). Assertions 1-3 of Theorem 1.4 were proved in
[Bui03, Theorem 1.2]. To prove assertion 4 it is enough to show that the R-modules

Ip(-1—¢)®z, R, Ip(-1—¢°) @z, R, Ip(—¢—¢*) @z, R (8.1)

have rank one. Note that
f17 f27 (fl)(z)? (8'2)
are elements of the modules (8.1) respectively; (cf. [Bui03, Corollary 2.10]). So these modules have
rank at least one. By Lemma 4.1 one can find X containing a supersingular k-point and a point

corresponding to an ordinary Jacobian. On the other hand the three modules (8.1) can be embedded
into the modules

Ix(~1=9), Ix(=1—-9¢%), Ix(~6—¢°)
via the map (7.8). So the modules (8.1) have rank at most one by Corollary 1.3. This proves
assertion 4 in our theorem. Assertion 5 is proved similarly. U

Proof of Corollary 1.3 (Assuming Theorem 1.2). The R-modules in assertion 1 of the corollary have
rank at least one because they contain (the images of the elements) (8.2). The module I} (—1 — ¢)
has rank at most one by Theorem 7.1. Hence the module I (—1 — ¢) has rank one. The modules
Ig((—l — ¢?) and I%(—gb — ¢?) have rank at most 2 by Theorem 7.1 again. However, they cannot
have rank 2 due to Theorem 1.2. So they have rank one. This proves assertion 1 in the corollary.
Let us prove assertion 2. The case w(p) < 0 follows directly from Theorem 1.1. So assume

deg(w) =0, 0 < w(p) < pod® — pord@)-1, (8.3)

In particular w ¢ pW. Let us examine the case w = ¢ —1 first. Take g € I)l((qﬁ— 1). So, by definition,
E(g) = A € R. Consequently the form h := g - (f!)? belongs to I%(—1 — ¢*) and has Serre-Tate
expansion E(h) = AeW?. On the other hand, by [Bui03, Corollary 2.10], the form f2? € I%(—1— ¢?)
has Serre-Tate expansion
E(f?) = e(¥? 4 p¥).

Since, by assertion 1 of Corollary 1.3, Ig((—l — $?) has rank one, it follows that h and f2 are linearly
dependent; hence E(h) and E(f?) are linearly dependent. This forces A = 0 hence g = 0. This proves
assertion 2 for w = ¢ — 1. Let us note that f? ¢ M3 ; for if f?e MY, since f?e M)l(ord(qﬁ - 1),
it would follow that f7 € M (¢ —1) (cf. assertion v in Proposition 3.1). Since E(f?) = 1 we would
get 9 ¢ I}((qb— 1), contradicting the case w = ¢ — 1 of assertion 2 that we just proved. Let us prove
now assertion 2 for arbitrary w satisfying condition (8.3). Let g € I (w). So again E(g) = A € R.
Since deg(w) = 0 we may write w = (¢ — 1)v’. Hence

E(g) = B\~ (f9)"),

hence g = X - (f2)?'. Note that m’ := ord(?’) = ord(@w) — 1 =: m — 1 and v'(p) = w(p)/(p — 1) so
v & pW and
1< ’U,(p) < (pm _pm—l)/(p _ 1) —_ pm—l _ pm/‘
If A # 0 we get
g € My N AM e = AMx
(cf. assertion 5 in Lemma 4.2). So (f9)”" € M. Since f? € (M)l(ord)x’ by assertion 6 in Lemma 4.2
we get f9 € M)l(, a contradiction. So A = 0 and, hence, g = 0. O
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Proof of Theorem 1.2. Assume |\,| < |\y,| for all v and seek a contradiction. We may assume
E(g) = €"p" 0" +p" > A,
vEmM
where A\, € R, and the summation extends over all v € W,, v # m, such that ord(v) < r — 1 and
deg(v) = m. Since deg(—w +m(—1—¢)) =0, —w + m(—1 — ¢) is divisible by ¢ — 1 in Z[¢]. Write
—wtm(-1— @)= —m'- (6—1), ' €Z[g).
Similarly, for any v as above, we may write
—wtv(-1—¢)= - (p—1), o €Zlg]

Note that since w(p) < —2mp we have —m/(p) > m. We claim that

g = (O + 5 S A (O in M, (5.4)

vEmM

Indeed, both members of Equation (8.4) belong to My | (w) and, by Proposition 7.2, they have

the same image via the Serre-Tate expansion map. By the Serre-Tate expansion principle in
Theorem 7.1, Equation (8.4) follows. By Corollary 4.3,

geEP'Myx  NMy=p"Mx,
so g = p"g1 with g1 € MY and, hence, by Proposition 6.1,
gi=(FHym E™®) £ NP HEYY i My (8.5)
v#EmM
where an upper bar on top of an element in M;}Ord denotes, as usual, the image of the corresponding

element in M}}Ord. By Lemma 4.2, assertion 1, the equality (8.5) holds in M }(Ord. Now take 5{” in
the above equality. By Corollary 7.5, we get

agr = m!- H™™ @ 13" Po(p), m)A, (f1) '@ H™ @) in My (8.6)
v£EmM
where we set P(a,b) =a(a—1)---(a— b+ 1). Since v(0) < m we must have
0 = P(0(0),m) = P(v(p),m) mod (p),
hence the sum ), ~m in Equation (8.6) vanishes; so we get
Ogr) - H ™= =l £0 in My (8.7)

Since —m/(p) — m > 0, both members of the equality (8.7) belong to M. By Lemma 4.2,
assertion 2, the equality (8.7) holds in M%. Hence H is invertible in M, hence H is invertible in M%
(cf. Corollary 4.3). Now if z is a local basis of £, then, locally on X, M% has the form S|z, z7!],
hence H has, locally on X, the form hzP~!, with h € S*. We deduce that Xopq @ k = X ® k,
a contradiction. This closes the proof. O

Proof of Theorem 1.1. By our assumptions, X = X,.q; we may assume & = ™z’ --- 2 "' Set v =

io + i1+ - +i,_1¢" L. Since deg(v) = m the weight w + (1 + ¢)v is divisible by ¢ — 1 in Z[@] so
we may write w + (1 + ¢)v = (¢ — 1)v’ for some v' € Z[¢]. But then

E((f) - (fO)) = ™ 0" = O(T,...,¢" ). 0
Let us remark that the proof above shows that, in Theorem 1.1, the set
{(H7- () | v e Wy, ord(v) < 7, deg(v) = —deg(w)/2}
is a basis of the K-linear space Iy (w) ® K.
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