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Experimental results on the immune response to cancer indicate that activation of cytotoxic T
lymphocytes (CTLs) through interactions with dendritic cells (DCs) can trigger a change in CTL
migration patterns. In particular, while CTLs in the pre-activation state move in a non-local search
pattern, the search pattern of activated CTLs is more localised. In this paper, we develop a kinetic
model for such a switch in CTL migration modes. The model is formulated as a coupled system
of balance equations for the one-particle distribution functions of CTLs in the pre-activation state,
activated CTLs and DCs. CTL activation is modelled via binary interactions between CTLs in the
pre-activation state and DCs. Moreover, cell motion is represented as a velocity-jump process, with
the running time of CTLs in the pre-activation state following a long-tailed distribution, which is
consistent with a Lévy walk, and the running time of activated CTLs following a Poisson distri-
bution, which corresponds to Brownian motion. We formally show that the macroscopic limit of
the model comprises a coupled system of balance equations for the cell densities, whereby acti-
vated CTL movement is described via a classical diffusion term, whilst a fractional diffusion term
describes the movement of CTLs in the pre-activation state. The modelling approach presented here
and its possible generalisations are expected to find applications in the study of the immune response
to cancer and in other biological contexts in which switch from non-local to localised migration
patterns occurs.

Key words: T cell movement, velocity-jump process, binary interactions, macroscopic limit,
fractional diffusion
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1 Introduction

The interaction between dendritic cells (DCs) and cytotoxic T lymphocytes (CTLs) plays a piv-
otal role in the immune response to cancer. DCs recognise the antigens expressed by cancer
cells and present them to CTLs, which then become selectively activated against those anti-
gens [28, 29]. Growing experimental evidence indicates that activation of CTLs via antigen
presentation by DCs can bring about a switch in CTL migration modes [5, 17]. In fact, while
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CTLs in the pre-activation state move in a non-local search pattern, which enables them to
rapidly scan DCs for the presence of possible tumour antigens, the search pattern of activated
CTLs is more localised. This allows activated CTLs to stay within a confined area for longer, thus
facilitating their encounter with tumour cells expressing the antigens they have been activated
against.

Stochastic individual-based models of immune response to cancer taking explicitly into
account this difference in movement between CTLs have recently been developed [19, 20]. In
these models, cell motion is described as a space-jump process [22]. In particular, CTLs in the
pre-activation state undergo a space-jump process consistent with a Lévy walk, whereas a space-
jump process corresponding to Brownian motion is used to describe the movement of activated
CTLs. Such individual-based models enable representation of biological processes at the level
of single cells and account for possible stochastic variability in cell dynamics, which allow for
greater adaptability and higher accuracy in mathematical modelling. However, as the numerical
exploration of these models requires large computational times for clinically relevant cell num-
bers (e.g. cell numbers of orders of magnitude between 10° and 10° [3]) and the models are not
analytically tractable, it is desirable to derive corresponding deterministic continuum models in
a suitable limit.

In this paper, integrating the ideas proposed in [19, 20] with the modelling approach presented
in [11, 12], we develop a kinetic model for the switch in CTL migration modes that is caused by
activation through interactions with DCs. Cells are grouped into three populations: CTLs in the
pre-activation state (i.e. inactive CTLs), activated CTLs and DCs. In the model, DCs are assumed
to present a given tumour antigen on their surface so that they can activate inactive CTLs by
contact. Since the focus of this study is on the mathematical modelling of the change in CTL
migration mode upon activation, we do not take into account biological processes involving cell
division and death. Furthermore, for simplicity, we do not consider the occurrence of molecular
processes leading activated CTLs to re-enter a pre-activation state [30].

The model is formulated as a coupled system of balance equations for the one-particle dis-
tribution functions of the three cell populations. CTL activation is modelled as a process of
population switching among CTLs induced by binary interactions between inactive CTLs and
DCs. Moreover, cell motion is represented as a velocity-jump process [22], with the running
time of inactive CTLs following a long-tailed distribution, which is consistent with a Lévy
walk [11, 12], and the running time of activated CTLs following a Poisson distribution, which
corresponds to Brownian motion. Using a method similar to that previously employed in [11], we
formally show that the macroscopic limit of this model comprises a coupled system of balance
equations for the cell densities, whereby activated CTL movement is described via a classi-
cal diffusion term, whilst a fractional diffusion term describes the movement of CTLs in the
pre-activation state.

The paper is organised as follows. In Section 2, we introduce the modelling strategies and the
main assumptions used to describe the spatio-temporal dynamics of CTLs and DCs at the scale
of single cells, which provide a microscopic representation of the biological system. In Section 3,
we present the kinetic model, which constitutes a mesoscopic analogue of the underlying micro-
scopic scale model. In Section 4, we derive the macroscopic limit of a suitably rescaled version of
the kinetic model. Section 5 concludes the paper providing a brief overview of possible research
perspectives.
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T cell migration modes via binary interactions 3
2 Description of the system at the microscopic scale

Biological system and cell populations We label the three cell populations by a letter /4 e
{4, D, I}, that is, activated CTLs are labelled by # =4, DCs are labelled by # =D and inac-
tive CTLs are labelled by # =1. We let the total number of cells in the system be denoted by
N = Np + N7, where Np € N is the number of DCs and N7 € N is the total number of CTLs.
Moreover, we describe the number of inactive and activated CTLs in the system at time 1 € R
by means of the functions N;(¢) and N,(t), respectively, with N;(f) + N4(t) = Ny for all ¢.

Mathematical representation of individual cells Every individual cell is modelled as a sphere of
diameter ¢ € RY, and is labelled by an index i =1, ..., N. The phase-space state of the ith cell is
represented by a pair (x;, v;), where the vector x; € R” describes the position of the centre of the
cell and the vectorv; e VC R", with V := {v; e R": |v;| = 1} (i.e. V is the unit n-sphere), repre-
sents the direction of the cell velocity. Moreover, the magnitude of the cell velocity is assumed to
be constant and is denoted by ¢ € R . The value of n =1, 2, 3 depends on the biological scenario
under study.

2.1 Description of cell motion

Velocity-jump process We describe the motion of a cell labelled by an index i as a run-and-
tumble process with run time 7; € R} and running probability v (x;, ;), where 0 < y(-,-) <1
and 0,V (-,-) < 0. The running probability v (x;, 7;) correlates with the stopping rate B(x;, ;)
through the relations given by the following definition [11]:

Y(X;, T;) 1= exp (/ori B(xi, 5) ds> , B =§ with ¢ = =0,y . (2.1)

Hence, starting at position x; at time ¢, the ith cell will continue moving along a straight path in
the direction given by the vector v; with constant speed ¢ for a period of time t;, after which it
may stop with rate 8(X;, ;). The cell will then instantaneously resume moving in a new randomly
selected direction given by a vector v;, which is prescribed by a turning kernel £(x;, ¢, v;; V;), that
is, cells undergo a velocity-jump process [22].

Running probability The running probability ¥ (Xx;, ;) determines the distribution of the running
time 7; and depends on the way in which the ith cell moves. Note that the running probabil-
ity is here assumed to be independent from the cell velocity v;. On the basis of experimental
evidence reported in [5, 10], we assume that inactive CTLs move in a non-local search pattern
corresponding to trajectories that are characterised by a strong presence of long runs, which
enable them to cover larger areas. On the other hand, activated CTLs and DCs' move in a more
localised search pattern. In particular, building upon the modelling approach presented in [20],
we describe the motion of activated CTLs and DCs as a Brownian motion, whereas we let inac-
tive CTLs undergo superdiffusive motion consistent with a Lévy walk, whereby the mean square
displacement grows nonlinearly with time. In particular, the mean square displacement at time ¢ is
proportional to #7/%, where a € (1, 2) is the Lévy exponent. We recall that « = 1 and o = 2 would

'"We remind the reader that we consider DCs presenting a given tumour antigen on their surface.
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correspond to ballistic motion (i.e. a form of motion whereby the mean square displacement at
time 7 is proportional to #2) and classical diffusion, respectively.

Under these assumptions, if the ith cell belongs to population 4 or population D, we let the
value of the running time 7; follow a Poisson distribution [23]. Hence, under the additional sim-
plifying assumption that cells in populations 4 and D are characterised by the same stopping rate,
which is assumed to be constant and thus modelled by a parameter b € R* , we use the following
definition of the running probability:

Y, ) =Y(n) = exp(=b1), ¢oX,)=¢(r) =bexp(=bT) . (2.2)

On the other hand, if the ith cell belongs to population /, we let the value of the running time t;
follow a long-tailed distribution, and we define the running probability along the lines of [11] as:

To(X;) )"‘ o To(X;)*
X, 7)) =———) , X, ;) = ———  «ae(l,2). 2.3
V& ) (To(Xi) +7 w0 ) (to(x) + 7;)*H! .2 @3
Here, the function ty(x;) > 0 captures possible spatial inhomogeneities in the running time
distribution.

Turning kernel and turning operator We consider the case where the new direction of cell
motion given by v; is symmetrically distributed with respect to the original direction given by v;
and, therefore, we let the turning kernel £(x;, ¢, v;; V;) satisfy the following assumptions [2]:

fxutvim) =t -wh. [ v edv=1, @4)
v
where e; =(1,0,...,0) € R" is a unit vector.
Moreover, we let the integral operator 7 be a turning operator such that for all test functions
(Vi)
TEIC 50 = [ s viswo) dvi, 25)
v

where ¢ is the turning kernel defined via (2.4). Since / £(-,-,;v))dv; =1, we have
v

/V (1 = DG ¥) d¥, =0, 2.6)

where 1 is the identity operator.
Finally, we recall that in n-dimensions the surface area of the unit sphere V is

27"?
T for n even,
_Jr@)
V=1 2, @.7)
———, fornodd
r(2+1)

where I'(+) is the Gamma function, and we also recall some useful properties of the spectrum of
the turning operator 7 [2]:

Lemma 1 [f the turning kernel L(-, -, |V; — V;|) is continuous, then T is a symmetric compact
operator. In particular, there exists an orthonormal basis of L*>(V) consisting of eigenfunctions
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{dr, k =0} of T. Using the notation v; = (vé, v’i, R v;_l) eV, we have

1
do(vi) = |— is an eigenfunction associated with the eigenvalue 1y=1,

Vi
. nv]’f
& (vi) = m are eigenfunctions associated with the eigenvalue:
0= [ et et dw <1 2.8)
\%
wheree=(1,1,...,1) € R" is the vector with all components equal to 1. Moreover, any function

pi € LX(R" x Ry x V) admits a unique decomposition of the form:

1
pi=— (pi+nv;-w;) +2, (2.9
[V

where z is orthogonal to all linear polynomials in v;,
pi(Xi, 1) = f PilXi £, Vo (Vi) dvi, WX, 1) = / pi(Xi, 1, Vi), (vi) dvi,
v v

and w; = (wf), . ,wfq_l).

2.2 Description of the interactions between cells

Building on previous work on individual-based models of interaction dynamics between DCs
and CTLs [19, 20], we consider only the effects of binary cell—cell interactions, thus neglecting
interactions that involve more than two cells.

Moreover, given that the focus of this work is on modelling the switch in T cell migration
modes mediated by interactions between inactive CTLs and DCs, we explicitly model the effects
of interactions between cells of population / and cells of population D, while for simplicity,
we neglect the effects of intrapopulation cell—cell interactions and interactions between cells of
population / and cells of population A.

Furthermore, the spatial dynamics of DCs are primarily affected by interactions with inactive
CTLs [6, 14, 26]. Hence, for simplicity, we explicitly model the effect of interactions between
cells of population D and cells of population 4 on the motion of 4 cells, while we neglect the
effect of these interactions on the motion of D cells, since we take it to be negligible compared
to that of interactions with cells of population /.

On the basis of these considerations, we incorporate into the model only the effects of interac-
tions between pairs of cells that are summarised by the schematics in Figure 1, which correspond
to the following definitions and assumptions.

Definition 2.1 (Conservative interactions) Conservative interactions are those that preserve the
number of cells in every population and only modify the velocity of the cells according to (2.11).

Otherwise, the interaction is a population-switching interaction.

Definition 2.2 (Population-switching interactions) Population-switching interactions are those
that lead a cell to enter a different population. These interactions are destructive for the
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¢ 1-¢ teraction.

Population-switching Conservative
interaction interaction

@A

FIGURE 1. Schematics of cell-cell interactions corresponding to Assumptions 1 and 2. Prime symbols
indicate a change in cell velocity upon interaction.

original population of the cell and creative for the population in which the cell will be upon
interaction.

Assumption 1 (Interactions between inactive CTLs and DCs) We model activation of CTLs
upon interaction with DCs by assuming that, when a cell in population / interacts with a cell
in population D, the I cell switches from population [ to population 4 (i.e. the interaction is
population-switching in the sense of Definition 2.2) with probability ¢ € (0, 1). For simplicity,
we assume that the 7 cell enters population 4 without changing its velocity. If activation does not
occur, event that happens with probability 1 — ¢, the  cell remains in the same population (i.e.
the interaction is conservative in the sense of Definition 2.1) and acquires the post-interaction
velocity defined via (2.11). Upon interaction, the D cell always acquires a post-interaction
velocity defined as in (2.11).

Assumption 2 (Interactions between activated CTLs and DCs) We assume that when a cell in
population 4 interacts with a cell in population D, the A cell remains in the same population
and acquires the post-interaction velocity defined via (2.11), and the interaction is conservative
in the sense of Definition 2.1. As explained above, we do not take into account the effect of
interactions between cells of population D and cells of population 4 on the motion of the
D cells.

We allow interactions between a cell i in the phase-space state (X;, v;) and a cell j in the phase-
space state (x;, v;) to occur when the cell j is in the domain of interaction of the cell i, which is
defined as the set:

Qj(xi) = {Xj eR": Ix; — Xj| > Q} =R" \BQ(Xi) , (210)

where B, (x;) denotes the ball of radius ¢ centred at x; (see the schematics in Figure 2). If a cell i
acquires a new velocity upon interaction with a cell j, the new velocity is defined, for simplicity,
as the following post-interaction velocity:

X; — Xj

Vi=v;i—2(v;-v)v with v = ——— (2.11)
Xl'—Xj

https://doi.org/10.1017/50956792521000358 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792521000358

T cell migration modes via binary interactions 7

Q;(x)

FIGURE 2. Schematics of the interaction domain defined in (2.10).

where v is the normal vector at the point of interaction (i.e. v is the unit normal that points
outward from £2;(x;) and inward to B,(x;)) [7].

Remark 1 Definition (2.11) relies on the observation that, although binary collisions between
cells are not elastic in nature, they may result in cell outgoing trajectories compatible with those
observed in elastic collisions [1, 18].

3 Mesoscopic scale model

In this section, we derive the mesoscopic scale model corresponding to the microscopic scale
description presented in Section 2, which comprises a system of transport equations for the one-
particle distribution functions of inactive CTLs, activated CTLs and DCs.

3.1 Preliminaries, assumptions and notation

The state of the system at time ¢ is described by the N-particle distribution function
fN X1y e o3 XN, 6 VI, o o, VN, T, - - -, Ty) [7, 27]. In the case where cell dynamics at the micro-
scopic scale obey the rules presented in Section 2, the evolution of f/V is governed by the
following transport equation [16]:

N N
oY + 30 Hevi VM) ==Y B G.1)
i=1 i=1

posed on Y x R% x VN x R*N, with
QY = {(x1, ., xy) e RN 1 x; — x;| > 0 Vi, j}

We consider the transport equation (3.1) subject to smooth, compactly supported initial condi-
tions at # = 0, boundary conditions corresponding to elastic interactions on 32", and suitable
Dirichlet boundary conditions at t; = 0 linked to the running probability ¥ fori=1,...,N. In
the mathematical framework given by (3.1), the probability of finding at position x; and at time ¢
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the cell labelled by the index 1 that is moving in direction v; for a period of time t; is related to
the one-particle marginal:

1
f(xl,t,V1,T1): NIN—1 fN(x19' - XN LV, o, VN, T, '-5TN)
IVIT= Jroav=t Jay 1) Jvi=

x dvy dxy d1y . .. dvy dxy dTy .

Here, |V| denotes the surface area of the unit sphere V and Qy_;(x1) := {(X2,...,Xy) €
RPN (x1, %), ..., xy) € Q).

A comprehensive description of cell dynamics would in principle require considering possible
interactions between all cells. However, as mentioned earlier, building on previous work on
the mathematical modelling of the interaction dynamics between DCs and CTLs [19, 20], we
consider only the effect of binary cell—cell interactions, thus neglecting interactions that involve
more than two cells. Therefore, as per the scaling and assumptions introduced in Section 4.1,
which are similar to those typically considered in low-density regimes [7, 22, 27], we truncate
the hierarchy of equations corresponding to (3.1) at the second order by integrating out cells
3,...,N from the N-particle distribution function /v (X1, ..., XN, 6, Vi, ..., VN, T1, - - - » TN).

Two-particle distribution functions Let fi(Xp, X, £, Vi, Vie, Thy Tr) With bk € {A, D, I} and k £ h
denote the two-particle distribution function associated with:

— acell of population /% in the generic phase-space state (x;, v;) € R” x V, with generic run time
7, € [0, £] and stopping rate S;,(Xy, t,) defined via (2.1);

— acell of population £ in the generic phase-space state (xx, vi) € R” x V, with generic run time
7 € [0, f] and stopping rate S (X, t;) defined via (2.1).

Truncating the hierarchy of equations corresponding to (3.1) at the second order, we obtain the
following transport equation for fi,x(Xp, Xk, ¢, Vi, Vi, Th, Tk):

(0 + 0r, + 0g, + Vi - Vi, + Vi - Vi Wik = —(Br + B )ik (3.2)
posed on % x Ry x V2 x R*2, with
Q% = {(xp, xx) eR™?: |x; —Xi| =0 VA, K} . (3.3)

This equation is subject to a smooth, compactly supported initial condition at ¢t =0, specular
reflective boundary conditions corresponding to elastic interactions on 3%, and with boundary
conditions at 7z = 0 and 7, = 0 given by:

t
k(X Xpes 8, Vi, Vie, Th, Te = 0) = T/ Bifne(Xp, Xk, £, Vi, Vi, T, Tr) ATz,
0

) (3.4)
Sk (Xns Xy £, Viy Vie, T = 0, 7)) = T/ Bufik(Xns Xes £, Viy Vies Ty Thc) AT, -
0
One-particle distribution functions Given the two-particle distribution function:
~ t t
Sk (Xns X £, Vi, Vi) 1= / / S dzy dze (3.5)
o Jo
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the one-particle distribution function of population % is given by:

1 =
D(Xhs V1) = — f / T dvi dx (3.6)
VI Qr(xp) JV

with the set Q(x;) defined via (2.10). The function p;(x;, t, v;;) describes the density of cells
of population 2 which at position x; and time ¢ move with velocity v, (i.e. the quantity
pir(Xp, t, vy) dvy, dx; is the number of cells of population % in the volume element dv;, dx;, centred
at the point (x;, v;) of the phase space). Moreover, we will consider the weighted two-particle
distribution function given by:

~ t t
T (X Xr £, Vs Vi) :=f0 /0 B fudrpdry, zel{hk}, (3.7)

and the weighted one-particle distribution function given by:
1 =
pfh(xh: t, Vh) = / / f}lih de dxk . (38)
|V| Qr(xp) JV

Here, | V| denotes the surface area of the unit sphere V.

3.2 Derivation of a system of transport equations

Transport equations for two-particle distribution functions The dynamics of the two-particle
distribution functions f;p and f4p are governed by the following specific forms of transport
equation (3.2):

(at + 87.'] + 31’[) + cVvy- VXI + CVp - pr).f} = _(ﬂl + ﬁD)ﬁ s (39)
(04 0z + 0rp +cVa- Vi, +cVp- Vi) fun=—(Ba+ Bp) fap (3.10)

which are posed on Q2 x R% x V2 x R*f. The boundary conditions at 74 =0, tp=0and 7; =0
are analogous to (3.4). Starting from transport equations (3.9)—(3.10) and using the method
employed in [11], it is possible to show (see Appendix A) that the two-particle distribution

functions f”,D and fAD given by (3.5) satisfy the following transport equations:
@+ cvi- Vo +evp- Vi) ip=— A =T [/ ] - =T [7] . (3.11)
@ +cva Vo, +evp Vo) fin=— =T [fis] - a - [7i2] , (3.12)

posefi on 92 x R% x V2. Here, 7;, Tp and T are the turning operators defined via (2.5), and fhih
and ﬂi" are the weighted two-particle distribution functions given by (3.7).

Remark 2 Notice that the equation describing the evolution of the one-particle distribution
Sfunction pp will be derived from the transport equation (3.11) for the two-particle distribution

function fip by integrating the variables corresponding to the I cell and using the interaction
rules described in Assumption 1.

Transport equation for py, Starting from transport equation (3.2) and building upon the method
presented in [11], it is possible to show (see Appendix B) that the one-particle distribution
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function p,(xs, £, v;,) given by (3.6) satisfies the following transport equation:
Apn + ¢ Vi - Vypp = —(1 = Tp) [Pfh] +Qu, xR teR,,v,eV. (3.13)

Here, the turning operator 7}, is defined via (2.5), the weighted one-particle distribution function
p,’j” (X4, 2, v1) is given by (3.8) and

C =
Onk(Xp, 1, V) 1= —f / v (v — Vi) dvi do . (3.14)
VI JoBoxy) Jv

In (3.14), v is the unit normal defined in (2.11) and do denotes the surface element.

The first term on the right-hand side of transport equation (3.13) represents the rate of change
of the one-particle distribution function due to cell movement, while the term Qy is the rate of
change due to interactions between cells. The specific forms of these terms depend, respectively,
on the way in which cells move and the interactions they undergo, as discussed in the remainder
of this section.

Expressions for pf” The specific form of the first term on the right-hand side of transport equa-
tion (3.13) depends on the expression for pfh which, in turn, will depend on the definition of the

stopping rate $;.
When cells move in a local search pattern (i.e. for 2 =4 and & = D), the stopping rate 8, is
defined via (2.1) and (2.2). In this case, inserting the definition of B into (3.8) yields

P X £,93) = b pr(Xns 1, Vi) . (3.15)

On the other hand, when cells move in a non-local search pattern (i.e. for # =1), the stopping
rate B, is defined via (2.1) and (2.3). In this case, it is possible to show (see Appendix C) that

P tas 1, V1) = Blpal(u, 1, va) (3.16)
where B is a convolution operator such that

Blpnl(Xp, t, vi) = /0 B(xy, t — s)p(xp, — (cvy, + b)(t — 5), s, Vi) ds, (3.17)

with B being defined through its Laplace transform in time B as:

On(Xp A +b+cvy - Vy,)
Un(Xns A +b4cvy - Vy,)

BXj, A +b+cvy-Vy,) = (3.18)

Here, A is the Laplace variable, ¢;, and @h are the Laplace transforms in 7, of the functions ¢,
and v, defined via (2.3), and the parameter b is defined via (2.2).

Expressions for Q. Following [11, 13], we first note that when a cell in the phase-space state
(xp, vp) interacts with a cell in the phase-space state (xi, vx), we have |x;, — x| = 0. Hence,
the normal vector at the point of physical contact between the interacting cells, v € V, defined
via (2.11) can be written as v = (X, — Xx)/0, that is, Xx; = X; — vo. As a result, using the fact that
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B, = oV along with the change of variable v — —v, we rewrite (3.14) as:

C =
Qni(Xp, £, V) 1= — / / v - (Vi — Vi )fir dvi do
VI JoBoxy Jv

C =
=— —Q”’l f / V- (Vi — Vi) (Xn, X + vo, t, Vi, Vi) dvi dv . (3.19)
VI vJv

Following [11], we also note that V = V;, UV;, with

V;[k =f{veV:iv-(vy—v;) >0},
(3.20)
Vi =WeViv - (vpy—v)<0}={—veV:iv (v —vi)>0}.
Therefore, a cell moving in direction v, and a cell moving in direction v; will move towards each
other if v € V' and away from each otherif v e V™.
Under Assumptions 1-2, denoting the post-interaction directions corresponding to v, and vy
by v; and v/, which are defined via (2.11), we consider two different types of interactions between
cells:

— conservative interactions (cf. Definition 2.1), between a cell of population % and a cell of
population %, whereby both cells remain in their original populations upon interaction and
acquire the post-interaction velocities;

— population-switching interactions (cf. Definition 2.2), between a cell in population / and a
cell in population k, whereby the / cell switches from its original population to a different one
upon interaction.

From (3.19), we define the rate of change of the one-particle distribution function p,(xy, ¢, v;)
due to conservative interactions as:

C =
Kne(Xn, t,Vh) = —an_l Ni(1) |:/+ / v - (Vi — Vilfie(Xn, X + 10, 1, Vi, Vi) dvg dv
v v

+/ /V'(Vh—Vk)ﬂk(xh,xh+VQ,f,Vh,Vk)dedV
v Jv

C _ N / /
= _Qn ! Nk(t) f / V- (Vh - Vk)l:ﬁlk(xl’la X, — Vo, Z Vh: Vk)
V] Vi v

_ﬁlk(xh’ Xp + Vo, 1, Vp, vk):l dvk dv 5 (321)

with Ni(#) being the number of cells in population k& at time ¢. The second equality in (3.21) is

obtained by using the normal vector —v and the post-interaction directions v, and v, in fj over
the set V. Notice that the following property holds

f K(es s Vi) dvy =0 | (3.22)
A%

which ensures that the density of cells in population # will be preserved in the course of such
interactions.

Moreover, based on (3.19) and (3.21), we define the rate of change of the one-particle dis-
tribution function p, (X, ¢, v,) due to population-switching interactions leading the cell to leave
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population /4 as:

c B >
Tne(Xns t,Vp) 1= —— 0"~ Ni(t) /+ / V- (Vi — Vi) fuk (X, X + v0, £, Vi, Vi) dv dv
th A\

V]
(3.23)
Analogously, we define the rate of change of p;(x;, ¢, v;,) due to population-switching interac-
tions leading a cell to leave a generic population / # /4 and enter population /4 as:

C
Thx, t,vy) = T 0" Ni(t) / / 8(X; — X4) 8(V — Vi)
| | Qi(xg) YV

X /+ / V(v — Vk);lk(x,, X; + vo, t, v, Vi) dvi dv dv; dx; (3.24)
viE Jv

with §(z — z*) being the Dirac delta distribution centred at z*. Definition (3.24) ensures that the
density of cells that leave population / due to such interactions will appear in population 4. In
fact, we have

T, ¥) = — f f 8(%1 — Xn)8(Y1 — Vi) Tie (s, £, v1) dvi dx,
Q(xg) JV

In summary, the term Oy in transport equation (3.13) is defined in terms of (3.21)—(3.24) in
different possible ways depending on the cell—cell interactions that are considered.

Under Assumptions 1-2 and definitions (3.21), (3.23) and (3.24), the rates of change of the
one-particle distribution functions p;(x;, t, v;), p4(X4,t,v4) and pp(Xp,t,vp) due to cell—cell
interactions will be, respectively,

O, t,v) =1 =KX, t,v))+L Tip(X1, ., Vi), (3.25)
Qup(Xa, 1, V4) = Kup(Xa, £, V.a) + ¢ Tin (X, £, V.4) (3.26)
Opi(xp, t,vp) = Kpi(xp, t, vp) . (3.27)

Substituting (3.15), (3.16) and (3.25)—(3.27) into transport equation (3.13), we obtain the
following transport equations for p;(X;, t, Vi), p4(X4, t, V4) and pp(Xp, t, Vp):

Opr +cvr-Vypr =—10 = T)Blp/] +(1 - )Kp

cell motion interactions

+¢Tp, xR teR,veV, (3.28)
——

outflow due

to activation

Opa+cva-Vypa=—bA =TYpal+ Kup
_— T =~

cell motion interactions
A
+¢ Iips xseR", teR,v eV, (3.29)
N———
inflow due

to activation
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dpp+cvp - Vy,pp=—b (1 —Tp)ppl
—_—

cell motion
+Kpr, xpeR" teR},vpeV. (3.30)
—_——
interactions

The terms on the right-hand sides of (3.28)—(3.30) represent the rate of change of the one-particle
distributions due to the biophysical phenomena specified below each term.

4 Macroscopic scale model

In this section, we derive a macroscopic system of equations corresponding to the mescoscopic
scale model given by transport equations (3.28)—(3.30). Such a model consists of a coupled
system of balance equations for the macroscopic densities of inactive CTLs, activated CTLs
and DCs.

4.1 Preliminaries, assumptions and notation

Scaling We assume the mean run time 7 to be small compared to the characteristic temporal
scale for the dynamics of the macroscopic cell densities, which is represented by the parameter
T € R%, that is, we make the assumption:

= exKl.

~1

Moreover, we let X € R} represent the characteristic spatial scale for the dynamics of the
macroscopic cell densities and introduce the rescaled quantities:
t X T

I=—, X=—, T=

. T
B ) cC=¢C— .
T X T X

As similarly done in [2, 11], in order to obtain a mathematical model for the dynamics of the
cells at the macroscopic scale, we consider the scaling:
(X, t,c,T) > (X/e,1/e, ¢/, T /e"), @.1)
with
y,LneR, y<l and pu>1-—y. 4.2)

Throughout the rest of the paper, we will drop the carets from (4.1) and we will study two-
dimensional cell dynamics (i.e. we assume #n = 2).

Furthermore, noting that the diameter of the cells is small compared to the characteristic spatial
scale for the dynamics of the macroscopic cell densities, and considering a biological scenario
where the number of cells in the system is large and activation of CTL occurs with a small
probability ¢, we assume

o=¢, N@=e", Np=e", =¢", £,9,keRY . (4.3)
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In particular, we will be focussing on a biological scenario corresponding to the following
assumptions:

y = - g—ﬁ:zl—L and K=—(é;'—19)+§>0~ 4.4
a—1 2

Notice that &€ — ¢ <0 when o < 3/2. In the case where cells follow a Brownian motion (i.e.
for h=A and h = D) we have @ =2 and, therefore, § — ¢ =1 — y = 1/2. Under scaling (4.1)
definitions (2.3) become

el 1o(x;)

erto(x) + T

a e To(x;)*
(e" To(x;) + 7))@t

vees = ( ) e = ac(l)).  (45)

Moreover, under assumption (4.3) on o we have
Tk s X £ 00, 1, Vi, Vie) = fiue (X, Xp £ 650, 2, Vi, Vi) - (4.6)

‘Molecular chaos’ assumption Considering a biological scenario where cell densities are suf-
ficiently low, we assume the velocities of any two cells which are about to interact to be
uncorrelated, that is, we make the so-called ‘molecular chaos’ assumption, which holds at low
densities and is commonly used in kinetic theory [7, 22, 27]. Under this assumption, the two-

particle distribution function f;,k(xh, x;, = &5, 1, v;, vi) can be approximately expressed as the
product of the corresponding one-particle distribution functions, that is,

fhk(xh, X, £ €%, 1, Vi, Vi) = pi(Xn, t, Vi) Pr(Xn, t, Vi) + O(e%) . 4.7)

We draw the attention of the reader to the fact that, throughout the rest of the paper, superscripts
and subscripts related to the scaling should not be confused with cell population indices.

Under scaling (4.1) and assumptions (4.3), using (4.6), (4.7) and assuming n =2, the
interaction terms defined via (3.21), (3.23) and (3.24) read as:

1
K (Xns 8, Vi) = — e V(v — vk)[pZ(xh, t, VP (Xn, 1, V)
[V] vi v

— Pi%s £, VP (s £, V1) | dvi dv (4.8)

T (Xn, t, Vi) = —MS / / V- (Vi = Vi) P Xy £, V)P (X, £, Vi) dvi dv o (4.9)
th A\

and

e Tt (X £, V1) =7 &7 ¢ / / 8(x; — xp) 8(Vi — Vi)
| | Q(Xx)

X / . / V- (Vi = Vipy (X1, 1, Vpi (X1, t, Vi) dvi dv dv; dx; (4.10)
Vlk A\

Expansion of p;, and macroscopic cell quantities Exploiting the results established by Lemma 1
in the case where n = 2, we expand the one-particle distribution function pj, in terms of its zeroth
moment p; (i.e. the macroscopic cell density) and its first moment wj, (i.e. the local macroscopic
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direction of cell motion). This is possible because, as one can see from the right-hand side of
transport equation (4.13), the interaction terms are of higher order in ¢ (¢f the scaling used in
(4.8)—(4.10)) and, therefore, we can write

1
JACIRADES m(phg(xh, 1)+ &¥ 2 vy - wi(Xp, t)) +o(g¥), hel{d,D,I}, (4.11)
where
1
o5 (Xp, 1) = /PZ(Xh,t, vi)dvy, wi(xp, 1) = - / Vi D (Xns 1, Vi) dvy (4.12)
v v

We refer the reader to [23, 24] and the seminal work [2] for a complete derivation in the case
of no interactions and to [11, 13] for the case of velocity-jump models with interacting particles.
The appropriate choice of scaling for the local macroscopic direction of motion is found by first
inserting (4.11) into (4.13) and then integrating over V in order to obtain a suitable macroscopic
equation (see transport equation (4.19)).

4.2 Derivation of a macroscopic scale system

Transport equation for p; Under scaling (4.1) and assumptions (4.3), using (4.6) and (4.7) and
assuming n = 2, we rewrite transport equation (3.13) for the one-particle distribution function
Pr(Xn, 1, Vi) as:

3l + e vy - Vg ph = —(1 — To)lepy' 1+ Qi (4.13)

where Qf, is defined in terms of K, J), and .7, as per (3.25)—(3.27), that is,

Qinxr, t,v) = (1 — e (xr, 8, V1) + € T (X1, 8, Vi) (4.14)
Qi (X 1, V.4) = KX, 1, V.4) + 6 o Th(Xas 1, V) (4.15)

and
Q5,(xp, t,vp) = K5, (Xp, t, Vp) . (4.16)

We recall that in the case where cells move in a local search pattern (i.e. for 2 = 4 and h = D),
By is defined via (2.1) and (2.2), and thus gpfh (xp, t,vp) is given as in (3.15). On the other hand,
in the case where cells move in a non-local search pattern (i.e. for 4 =1), B is defined via (2.1)
and (2.3), and thus .p}" (x;, 1, v;) is given by (3.16) with

BE[pi (X, t, vi) = /(; B (xp, t — )p,(xin — (cvi + b)(t — 5),5) ds .

As before, B® is defined through its Laplace transform in time B¢ and, in particular, under
assumptions (4.2), we make the approximation:

Es(xh, e+ etb+e' Ve, - Vy,) = Es(xh, e evy, - Vy,) -

Using the properties of the Laplace transform of a convolution, we write

t
/ B (Xp, t — $)P5(X5 — (Vi + b)Yt — 5), 5, Vi) ds = B (X, €7 vy - Vi DX 1, V1)
0
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with

@ (xn, €177 vy - Vy,)
i &1 evy - V)

Analogous calculations are fully detailed in Appendix C. Substituting the expressions of ¢} and
Y into (4.17), calculations similar to those carried out in [11, 12] allow one to show that

B (xp, &'V evy, - V) = (4.17)

a—1 g7
d, 2—«

R .
Bf(xj, e Vevy - Vy,) = cvy - Vy,

—d* 2@ D ey, V) @ — 1D (—a + 1)+ O@*"'2%) . (4.18)
In (4.18), d.(x;) := to(xs) €, where 1y(x) is defined via (2.3).

Transport equations for p;, p§ and pp Integrating both sides of transport equation (4.13) with
respect to v, over the set V and using the fact that the turning operator 7, satisfies (2.6), we
find that the macroscopic cell density pj(x;, f) given by (4.12) satisfies the following transport
equation:

3tp;_|_7_cvx,1.w;=g*1/ Qi dvy, x,eR"teR}. (4.19)
\'%

Moreover, substituting the expressions for pj (X, ¢, v;) and pi (X, ¢, vi) given by (4.11) into the
definitions of K5, J;, and .7}, given by (4.8)—(4.10), we find

/ KiXn, t,vi)dv, =0 (4.20)
v
and, neglecting higher-order terms, we also obtain

f T Gns 1,V3) dvyy = =577 ¢ M pj; pf / e Tin, 1, Vi) dvy =577 ¢ M pf pf
v \

(4.21)
where M is given by:

1
M= — / / / v-(vp—vi)dvdvydvy, hkef{d,D, I}, h#k. (4.22)
V1> Jv Jv Vi
Notice that relation (4.20) is obtained using property (3.22).

In conclusion, using (4.20) and (4.21) along with (4.14)—(4.16), from transport equation (4.19)
we obtain the following equations for the macroscopic cell densities p;(x;,?), p§(X4,?) and

Pp(Xp, 1):
dpj +2¢ Vx, - wp=—cM pjpp, x;eR%teRY, (4.23)
ap5 +2¢ Vy, - W= cM p;pj, , xR reRY, (4.24)
dpp +2¢Vyy - wp =0, xpeR% reRY . (4.25)

Here, we have used the scaling relations in (4.4) for the parameter . On the right-hand side
of (4.23), we have the density of cells that are leaving the state / (due to interactions with cells
in the population D) and are appearing in the new state 4 in (4.24).
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Transport equations for wi, w% and wi, Multiplying both sides of transport equation (4.13) by
v, and then integrating both sides of the resulting equation with respect to v, over the set V,
we find that the local macroscopic direction of cell motion wj(xy, f) given by (4.12) satisfies the
following transport equation:

el+”28,w§l+81_ycvxh/Vh®VhpZth=_/Vh(]1_777) [apfh] dvy
\% \'

+ / Vi Q5 dvy, . (4.26)
\Y%

In the case where B, is defined via (2.1) and (2.2), using (4.11) and (3.15), and the properties
of the turning operator 7, established by Lemma 1, we find that the first term on the right-hand
side of (4.26) is given by:

/ Vit = T [opf] dvi = 21 — 427)
’

IVI
Here, t1(xy, ¢) is the first non-zero eigenvalue of the turning operator 7, which is given by (2.8).
On the other hand, when g}, is defined via (2.1) and (2.3), using (4.11) and (3.16) and the proper-
ties of the turning operator 7, established by Lemma 1, it was proved in [12] that the following
approximate expression of the first term on the right-hand side of (4.26) holds

2@ —1
fvh(ﬂ Tolep " dv, =g ~a @,v*b;—%(t] - 1)wz) +Lot., (4.28)
0
where
- 78 (1 — @)™ 4y — |V for T(ca4 1) s 429
o X ’ = . T - - . .
Sl sin(ra)T (@) V] or e sin(ra)T (@)

Notice that g, (-, -) > 0 since sin(ra) < 0 for o € (1,2) and 4¢; — |V| < 0 by using (2.7) forn =2
and recalling that ¢; < 1.

Moreover, as similarly done in [11], using the fact that ()’ : V— V is a bijection and v, - v =
—V; - v, whence v - (v, — vi) = —v - (v}, — V}.), we find

/Vh Kfzk th
v

1 / /
= Vi g7 e (/v /v /w Vi Dy (Xn, £, Vi)Pi (X, £, Vi)V - (Vi — Vi) dv dvy dvy,
hk

_f f/ Vi D5 (X, £, Vi)PE(Xpy 8, Vi)V - (Vi — Vi) dv dvy dv;,)
v IV IV
=—mss e / // (Vi) Ph(ns £, V)P (X, £, Vi)V - (v, — V) dv dv;, dv

—/ /f Vi, (Xn, £, Vi)Pi(Xn, £, ViV - (Vi — Vi) dv dvy, dvy
v Jv IV,
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1
e / / / V), = V)P, (Xis £, Vi)Ps Xy £, Vi)V = (Vi — Vi) dv dvy, dvy
VI vJvJvh
U ey 4 ¢ :
=——2¢ cx Vi — Vil Vi p5 (Xns 2, Vi) PE(Xns 2, Vi) dvy, dvy (4.30)
VI 3 vy

The last equality in (4.30) is obtained using the fact that vj — v, = —2(v; - v)v. Substituting the
expressions for p7(xy, t, vi) and p}(xs, ¢, vi) given by (4.11) into (4.30) and into definitions (4.9)
and (4.10) of J}, and . 7}, neglecting higher-order terms we find

s 8 1 e .
/ Vi K dvy = - ¢ 3 [P DRV 4.31)
v
and
&5772¢ _ g2 _
fvvh Ty dvi = —thpEWZ , /Vvh i dvy = thpiwi ; (4.32)
where g5, and g, are defined as:
an = / Vi—veldv, G = / WIve—vildv, heldD.1}.  (433)
v v

hk

Finally, substituting the expression of p7(x;, ¢, v;) into the second term on the left-hand side
of (4.26) and neglecting higher-order terms yields

c V"h / v, Q vy p; dv, =C, Vxhphs , (4.34)
v
with C, being defined as:
Cp = — / vi®vydvy, held,D,I). (4.35)
VI Jv
In conclusion, using (3.15) and (3.16), (4.31), (4.32) and (4.34) along with (4.14)—(4.16), from

transport equation (4.26) we obtain the following transport equations for the local macroscopic
directions of cell motion wj(xy, ), w5 (X4, t) and wi,(Xp, 1)

2 —1
e 23,w8 + 7V Cy Vg, pf = _glmam QV“’IpE—M(q — 1w}
1 1 P1 & i 1
70| V|
8 1 2 .
- c ((1 - SK)g Wéh ppWi + WQIPE“’?) , xeR%teRy, (4.36)

2eY
81+y28[W1€4 + Sl_yCA VXApj = —mb(l - Ll)wf‘l

8 1 2¢
e (81 o 2 , )
V¢ <3 B4 PHWs —|V|261APBWA> , xR’ teR:, (4.37)
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and
+1 £ 1- £ 2e¥ £
e’ 20wl +¢& 7 Cp Vyppop = _mb(“ — Dwp
—st"yc§L wy xpeR% teR: (4.38)
3 |V|3 4D IO[ D> D 5 4. .
Macroscopic scale model Noting that 1 — Ll <1—y since a €(1,2) and using assump-

o —
tions (4.4) for the scaling parameters, letting ¢ — 0 in (4.36)—(4.38), we formally find the
following expressions for the leading-order terms wy(X, £), w4(X, ) and wp(x, ¢) of the asymptotic
expansions for the local macroscopic directions of cell motion wy.(X, 1), w4 (X, ) and wp,(X, £):

— From (4.36) and choosing the scaling parameters as 1 — X5 =& — 1, we have

Ae—1)1—1) 8¢

8
—= 0. 4.39
V] + Vg > (4.39)

Hy

wy = velp,, where H; =

— From (4.37) and choosing & — ¢ = y in agreement with (4.4), we obtain

Cy 2b 8¢
== , where Hy:= —(1— — 0. 4.40
Wa= =gy Vxpa s where Hy IVI( )+ 3V PP > (4.40)

— Finally, using the same scaling rules as in the previous case, we obtain from (4.38)

Cp 2b 8¢
=—— R h Hp = —( — — 0. 441
Wp == Vxpp, Wwhere Hp |V|( u)+ 3V IPP> (4.41)
Furthermore, under assumptions (4.4), letting ¢ — 0 in (4.23)—(4.25) and using(4.39)—(4.41),
we formally obtain the following balance equations for the leading-order terms p;(X, #), p4(X, ?)

and pp(X, t) of the asymptotic expansions for the macroscopic cell densities p; (X, t), p5(x, ) and

Pp(X, 1)
3,01 — Vi - (D, v;j—lp,) ——appp, ae(l,2), xeR%,teR, (4.42)
0:04 — Vy - (DA prA> =ap;pp, xeR%te RY , (4.43)
dpp — Vy - (DD Vx,oD> —0, xeR%,teR, (4.44)
where
Dy = 2;{;2“, D, = 2;[5/1, Dp = 21(;]?3, a:=cM.

Remark 3 Notice that the the functions Dy, Dy and Dp are strictly positive. Moreover, the
dependence of these functions on the cell densities follows from conservative interactions
between cells of different populations, while population-switching interactions do not affect their
values.

Considerations on the macroscopic scale model (4.42)—(4.44) The functions p;(X, 1), p4(X, 1)
and pp(x, t) model, respectively, the density of CTLs in the pre-activation state, activated CTLs
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and DCs presenting a tumour antigen on their surface at position x and time ¢. The spatio-
temporal coevolution of CTLs and DCs is modelled through the coupled system of balance
equations (4.42)—(4.44), which governs the dynamics of the cell density functions.

The mathematical model defined by (4.42)—(4.44) provides a macroscopic description of cell
dynamics that takes explicitly into account the effects of cell—cell interactions and the charac-
teristics of cell motion that are encapsulated in the parameters ¢ (i.e. the magnitude of the cell
velocity, which is assumed to be constant), « (i.e. the characteristic exponent of the long-tailed
distribution followed by the running time of CTLs in the pre-activation state) and b (i.e. the char-
acteristic exponent of the Poisson distribution followed by the running time of activated CTLs
and DCs).

This model effectively captures the fact that interactions between DCs presenting a tumour
antigen on their surface and CTLs in the pre-activation state lead to CTL activation. In particular,
the term on the right-hand side of (4.42) models the decay in the density of CTLs in the pre-
activation state at position x and time ¢ due to contact interactions with DCs which result in
CTL activation, while the term on the right-hand side of (4.43) models the corresponding growth
in the density of activated CTLs. As one would expect, these two terms differ only in their
signs and are proportional to the product between the cell density functions p;(X, f) and pp(X, 7).
The factor of proportionality a increases with the value of the parameter c. This is coherent
with the observation that higher cell motilities may increase the encounter rate of CTLs in the
pre-activation state with DCs.

The model captures also the fact that CTLs in the pre-activation state move in a non-local
search pattern, while the search pattern of activated CTLs is more localised. In fact, the rate of
change of the density of CTLs in the pre-activation state due to cell movement (i.e. the second
term on the left-hand side of (4.42)) is a fractional diffusion term, while that of the density of acti-
vated CTLs (i.e. the second term on the left-hand side of (4.43)) is a classical diffusion term. The
function modelling the diffusivity of CTLs in the pre-activation state (i.e. the function D;) and
the function modelling the diffusivity of activated CTLs (i.e. the function D) are proportional
to the parameter ¢. This is coherent with the observation that, ceteris paribus, a higher magni-
tude of the cell velocity correlates with a higher cell motility. Both D; and D, are monotonically
decreasing functions of the cell density function pp(x, f), which means that, all else being equal,
the higher the density of DCs at a given position, the lower the diffusivity of CTLs. This reflects
the fact that higher densities of DCs will make it more likely that interactions between CTLs and
DCs occur and, since these interactions force CTLs to change their direction of movement at the
mesoscopic scale, this will ultimately result in a lower cell diffusivity at the macroscopic scale.
Moreover, D, is an increasing function of b. This is coherent with the fact that larger values of
this parameter correspond to larger mean values of the cell running times.

The fact that the right-hand side of (4.44) is zero translates in mathematical terms the idea that
we are not taking into account the effects of division and death of DCs. Moreover, coherently
with the fact that the motion of DCs is here described as a Brownian motion, the rate of change of
the density of DCs due to cell movement (i.e. the second term on the left-hand side of (4.44)) isa
classical diffusion term. Considerations analogous to those made above about the dependence of
the function D4 on the parameters ¢ and b apply to the function modelling the diffusivity of DCs
(i.e. the function Dp) as well. Furthermore, considerations similar to those made above about the
dependence of D; on the density function pp(X, #) hold for the dependence of Dp on the density
function p;(X, 7).
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5 Research perspectives

The modelling approach for the switch between cell migration modes presented here could be
generalised by including additional cellular phenomena involved in the immune response to can-
cer, and considering other aspects of immune cell movement as well. For the case of movement
in bacteria, a recent work in this direction is [25], where the switch in type of movement, that
is, the switch between Lévy and Brownian strategies, was determined by chemical pathways
internal to the bacteria.

With reference to the mathematical modelling of the immune response to cancer, a natural gen-
eralisation would be to include a population of cancer cells and allow activated CTLs to induce
death in cancer cells via binary interactions. Moreover, the recognition phase of the adaptive
immune response to cancer could be modelled by splitting the population of DCs into a subpop-
ulation of cells with no tumour antigens on their surface and a subpopulation of cells presenting
some antigen — which would move in a non-local and in a more localised search pattern, respec-
tively [10] — and letting DCs switch from one subpopulation to the other via binary interactions
with cancer cells [28, 29]. The strategy we have used here to model non-conservative cell—
cell interactions may prove useful to the development of both generalisations of our modelling
approach.

In regard to the mathematical modelling of other aspects of immune cell movement, our
modelling approach could be extended to represent other switches in T cell migration pat-
terns observed in the immune response to different pathogens, which are driven by possible
chemotactic cues and by the conditions of the surrounding microenvironment [17]. Moreover,
further generalisations of the modelling approach could be developed in relation to experimen-
tal results indicating that T cells can also undergo subdiffusive [32] and fully ballistic [31]
migration.

In general, it would be interesting to apply the modelling approach presented in this paper
and its possible developments to other biological and ecological contexts whereby switch from
non-local to localised migration patterns has been reported [4, 8, 9, 15, 21].

We conclude by remarking that, as previously noted, although they may result in cell outgoing
trajectories compatible with those observed in elastic collisions, binary collisions between cells
are not elastic in nature. Hence, it will be necessary to go beyond the definition of post-collision
velocities used here in order to have a more biophysically faithful representation of cell—cell
interactions. This is beyond the scope of the present work, which is primarily focused on mod-
elling the switch in T cell migration modes mediated by interactions between inactive CTLs and
DCs. Moreover, the formal approach employed in this article to derive a macroscopic limit of
the mesoscopic model relies on the assumption that cell densities are sufficiently low so that
cell velocities can be assumed to be uncorrelated. As such, it may lead to an inaccurate mean
field representation of the dynamics of the underlying biological system in cases where cell den-
sities are not sufficiently low, or cell—cell interactions introduce a stronger correlation between
cell velocities. Therefore, another fruitful avenue of research would lie in extending this for-
mal approach to these more complex cases by identifying alternative ways of obtaining a closed
system of coupled equations for the macroscopic cell densities starting from the corresponding
kinetic model.
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Appendix A Derivation of transport equations (3.11)-(3.12)

Using the method presented in [11], we show how to derive a transport equation for the two-

particle distribution function ﬁk(xh, Xk, t, Vi, Vi) starting from transport equation (3.2) for the
two-particle distribution function fu;(Xp, Xk, £, Vi, Vi, Ty Tk)-
We first introduce the notation:
- t
ffh (Xp, Xy B, Vi Vi, Tp) 2= /0 fhk(xh’ Xis &, Vi, Vi, Tny Tr) AT

and

t
S (Xn, Xp, £, Vi, Vi, T) 1= fﬁzk(xh9xk;lavhavka T, ) ATy,
0
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and then note that, when 8, and B are given by (2.1) with v, and v defined via (2.2) or (2.3),
the solutions of (3.2) subject to the initial and boundary conditions considered here are such that
f, decays monotonically as 7, increases, and f;, exhibits an analogous behaviour. Hence, inte-
grating (3.2) with respect to (7, 7;) over (0, £)> with ¢ large enough so that S, (Xn, Xi, £, Vi, Vi, Ty =
1) is negligitN)le compared to fr(z (Xp, Xk, £, Vi, Vi) and fr, (Xp, Xg, 2, Vi, Vi, Tp = 1) is negligible
compared to /) (X4, X, £, Vi, Vi), With
I (hs X 1, Vs Vi) = fo, (X1 X £, Vity Vi, Ty = 0)

and

So Xy Xies £, Vi Vi) = o (Xns Xks £, Vi, Viey T4 = 0)

we obtain the following transport equation for fhk(xh, Xk, b, Vi, Vi)

~ t t
(0 + v+ Vy, +cvi - Vi) fir = —f / (B + BV dvw di + /7 + /7
o Jo
which can be rewritten as:
B+ Vi Va, + Vi Vo) fiw =~ — Tk + 10 +72, (A1)

withf,ih (Xp, Xiy £, Viy Vi) andﬂi"(xh, X, 1, Vp, Vi) given by (3.7).
When cell movement at the microscopic scale obeys the rules presented in Section 2, we have

R=Ti] ad R =[] (A2)

with the turning operators 7, and 7; being defined via (2.5). The first two terms on the right-hand
side of (A1) describe the density of cells that stop with rates 8, and S;. The initial conditions
at t, = 0 and t; = 0 (i.e. at the beginning of a new run phase) given by (A2) describes how the
cells will resume their motion in a new direction dictated by the turning operators 7, and 7y,
respectively.

Substituting the expressions for ;31 and fg{ given by (A2) into transport equation (A1) yields

(0 +cvp-Vy, +cvi- ka)fhk =—(1—-"Tn [ﬁq]
- (1 - 77\?)[;}5(,{] > (Xha Xk) € QZ: te R+a (Vhavk) € V2 . (A3)

Remark 4 Since we consider transport equation (3.2) complemented with a smooth, com-
pactly supported initial condition, the initial condition for transport equation (A3) will be a
smooth, compactly supported function as well. Therefore, the two-particle distribution function

fhk(xh, Xk, t, Vi, Vi) will have compact support on Q2 x szor allteRY.

Appendix B Derivation of the equation for the one-particle distribution

Transport equation (3.13) for the one-particle distribution function py(x;, ¢, v) can derived from

transport equation (A3) for the two-particle distribution function fhk(xh, Xk, t, Vi, Vi) in Six steps
as previously done in [11].

https://doi.org/10.1017/50956792521000358 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792521000358

T cell migration modes via binary interactions 25

(I) We integrate transport equation (A3) with respect to (Xx, vi) over the set Q;(x;) x V and
multiply both sides of the resulting equation by |V|~! to obtain

|V|71 / /(8t+cvh~Vxh+cvk~ka)ﬁk dv; dx; =
Q) SV

vt [ [ 7 [if] v e
Qr(xp) SV

v [ [T [ aveas (B1)
Qp(xp) JV

(IT) Using the fact that p;, is given by (3.6) and integrals with respect to x; and v; commute, we
rewrite the first term on the left-hand side of (B1) as:

V719, / / S dvi dx; = d,py, .
Qr(xp) JV

(IIT) Using Reynold’s transport theorem in the variable x;, we rewrite the second term on the
left-hand side of (B1) as:

|V|7IC/ /(Vh -V Wi dvie dxi = [Vt e vy - Vi, pp
Qi(xp) JV

— |V|_1c/ /(Vh . v)/ihkdvkdo .
IBo(xp) JV

Here, v is the unit normal to d€2(x;) that points outward from Q(x;) and inward to B,(x;), and
do denotes the surface element.

(IV) Since fjx has compact support on Q? x V2 (vid. Remark 4), we use the divergence
theorem and rewrite the third term on the left-hand side of (B1) as:

IVI’lc/ / (Vi - Vi) fok dvi dxk=|V|’1c[ f(vk~v)ﬁ,k dv, do .
Qr(xp) JV 8BQ(xh) Vv

(V) Changing order of integration, we rewrite the first term on the right-hand side of (B1) as:

M [ [ ] avas=—a mow,

h

with p? (x4, 7, v4) given by (3.8).

(VI) Since 7 satisfies (2.6), the second term on the right-hand side of (B1) is identically
ZEero.

Taken together, the results obtained in Steps (I)-(VI) allow one to conclude that the one-
particle distribution function p; (X, t, v;) satisfies the following transport equation:

Opr+cvy - Vypr=—1—="Tp) [pfh] +OQu, xeRteR v, eV, (B2)
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with the weighted one-particle distribution function p,’f’“ (X, t, v,) being given by (3.8) and the
term Qi (X, ¢, ;) being defined according to (3.14).

Appendix C Derivation of the non-local trajectory term

In the case where B, is defined via (2.1) and (2.3) (i.e. for A =1) and B; is defined via (2.1)
and (2.2) (i.e. for £k = D), applying the method of characteristics to (3.2) and using the fact that

M e "™ one finds [11]
Yi(e, T — Th)
Sk =ik (Xp, — € Vi Ty X — CVETho £ — Ty Vi, Vi Tn = 0, T4 — 1) Wi (Xp, i) €77 (CD)

Introducing the notation:

t
f = / / / k(s X — CViTh, 5 -, Vi, Ty = 0, T — T3,) Aty dvy dxye
Qp(xp) 0

and substituting (C1) into (3.8) gives

1 <Ph(Xh,Th)/' //
Bh(xp, 1, Vi) = dry dvy dx; dt
PO V) = TG L o tn) Sy Jy Jo 4 e ek o

1 ! -
—bty, 70
=W / ©n(Xn, Th)e "o (Xn — ¢ VTR, E— Ty, V) dTy,

=NV f (X, 1 = $)e”TICHVNFL (x5, vy) ds (€2)

The last equality in (C2) is obtained using the change of variables s =t — 1, along with the
following Taylor expansion:

ef(ffs)cv.vf(x) _ Z (—(f — Sr)r:' V- V)mf(x)

m=0

>
= — (=) V'V ) =f(x = (1= 5)cV).
m=0 !

Hence, the Laplace transform in time of pg’“ (Xp, t,Vp) 1S

N 1, 2
pf”(xh, )», Vh) = m(ph(xh, A + b +c A\ Vxh)f,gc(xh, )\., Vh) . (C3)

Here, A is the Laplace variable, and ¢;, and ]_’hok are the Laplace transforms in time of the functions
¢, and fh(}{ Moreover, substituting (C1) into (3.6) and computing the Laplace transform in time
yields

Du(Xn, A, Vi) = Ml/fh(xh, At+b+cvy- Vxh)fh%c(xh’ AyVi) s
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with ¥, being the Laplace transform of the function ;. The latter equation gives

2 DPr(Xns &y Vi)
TG A, v) =V = .
llfh(xh, A+b+ CVp - Vxh)

Substituting such an expression for f_h(;c into (C3) ones sees that (C2) can be written as:

P hy 1, V1) = Blp) (X, 1, V1)

with the integral operator B being defined according to (3.17).
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