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D-finite multivariate series with arithmetic
restrictions on their coefficients
Jason Bell and Daniel Smertnig
Abstract. A multivariate, formal power series over a field K is a Bézivin series if all of its coefficients
can be expressed as a sum of at most r elements from a finitely generated subgroup G ≤ K∗; it is a
Pólya series if one can take r = 1. We give explicit structural descriptions of D-finite Bézivin series
and D-finite Pólya series over fields of characteristic 0, thus extending classical results of Pólya and
Bézivin to the multivariate setting.

1 Introduction

A fundamental result in the theory of linear recurrences due to Pólya [Pó21] asserts
that if { f (n)} is a sequence satisfying a linear recurrence and taking all of its values in
the set G ∪ {0} for some finitely generated multiplicative subgroup G of Q∗, then the
generating series of f (n) is a finite sum of series of the form gx i/(1 − g′xn)with g , g′ ∈
G and i , n natural numbers along with a finite set of monomials with coefficients in G;
moreover, these series can be chosen to have disjoint supports. In particular, Pólya’s
theorem gives a complete characterization of sequences { f (n)} ⊆ Q∗ that have the
property that both { f (n)} and {1/ f (n)} satisfy a nontrivial linear recurrence.

Pólya’s result was later extended to number fields by Benzaghou [Ben70] and
then by Bézivin [Bé87] to all fields (even those of positive characteristic). A non-
commutative multivariate version was recently proved by the authors [BS21]; the
noncommutative variant can be interpreted as structural description of unambiguous
weighted finite automata over a field.

The generating function of a sequence satisfying a linear recurrence is the power
series in some variable x of a rational function about x = 0. When one adopts this
point of view, it is natural to ask whether such results can be extended to D-finite (or
differentiably finite) power series. We recall that if K is a field of characteristic zero,
then a univariate power series F(x) = ∑ f (n)xn ∈ K[[x]] is D-finite if F(x) satisfies
a nontrivial homogeneous linear differential equation with polynomial coefficients:

n
∑
i=0

p i(x)F(i)(x) = 0,

with p0(x), . . . , pn(x) ∈ K[x].
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1746 J. Bell and D. Smertnig

Univariate D-finite series were introduced by Stanley [Sta80], and the class of
D-finite power series is closed under many operations, such as taking K-linear
combinations, products, sections, diagonals, Hadamard products, and derivatives, and
it contains a multitude of classical generating functions arising from enumerative
combinatorics [Sta99, Chapter 6]. In particular, algebraic series and their diagonals
are D-finite, and a power series F is D-finite if and only if its sequence of coefficients
satisfies certain recursions with polynomial coefficients [Lip89, Theorem 3.7].

Bézivin gave a sweeping extension of Pólya’s result, showing that a univariate D-
finite Bézivin series over a field K of characteristic 0 with the property that there is a
fixed r ≥ 1 and a fixed finitely generated subgroup G of K∗ such that every coefficient
of F(x) can be written as a sum of at most r elements of G is in fact a rational power
series and has only simple poles [Bé86].

A natural, and thus far unexplored, direction in which to extend the results of Pólya
and Bézivin is to consider multivariate analogues. A multivariate variant of D-finite
series was given by Lipshitz [Lip89]. Here, one has a field K of characteristic zero and
declares that a formal multivariate series

F = ∑
n∈Nd

f (n)xn ∈ K�x� = K�x1 , . . . , xd�

is D-finite if all the partial derivatives (∂/∂x1)e1 ⋅⋅⋅(∂/∂xd)ed F for e1, . . . , ed ≥ 0
are contained in a finite-dimensional vector space over the rational function field
K(x). Equivalently, for each i ∈ [1, d], the series F satisfies a linear partial differential
equation of the form

Pi ,n ⋅ (∂/∂x i)n F + Pi ,n−1 ⋅ (∂/∂x i)n−1F + ⋅⋅⋅ + Pi ,1 ⋅ (∂/∂x i)F + Pi ,0 ⋅ F = 0,

with polynomials Pi ,0, Pi ,1, . . . , Pi ,n ∈ K[x], at least one of which is nonzero.
In fact, many interesting classical Diophantine questions can be expressed in terms

of questions about coefficients of multivariate rational power series and multivariate
D-finite series. To give one example, Catalan’s conjecture (now a theorem due to
Mihăilescu [Mih04]) states that the only solutions to the equation 3n = 2m + 1 are
given by (n, m) = (1, 1) and (2, 3). This is equivalent to the statement that the bivariate
rational power series

1/((1 − 3x1)(1 − x2)) − 1/((1 − x1)(1 − 2x2)) − 1/((1 − x1)(1 − x2))

has nonzero coefficients except for the coefficients of x2
1 x3

2 and x1x2. On the other
hand, it is typically much more difficult to obtain results about multivariate rational
functions and multivariate D-finite series for several reasons. In the case of univariate
rational series, the coefficients have a nice closed form and there is a strong structural
description of the set of zero coefficients due to Skolem, Mahler, and Lech (see
[EvdPSW03, Chapter 2.1]). Similarly, for D-finite series, there are many strong results
concerning the asymptotics of their coefficients (see [FS09], in particular Chapters
VII.9 and VIII.7) and one can often make use of these results when considering prob-
lems in the univariate case. Straightforward attempts at extending these approaches to
higher dimensions typically fail or become too unwieldy. For this reason, new ideas
are often important in obtaining multivariate extensions.
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Arithmetic restrictions on D-finite series 1747

It is therefore of considerable interest to understand multivariate D-finite series,
although doing so often presents additional technical difficulties. In this paper, we
consider structural results for multivariate series that are implied by the additional
restrictions on the coefficients of a D-finite series that were imposed by Bézivin and
Pólya in the univariate case. For a field K of characteristic zero and a multiplicative
subgroup G ≤ K∗, we set G0 ∶= G ∪ {0} and write

rG0 ∶= { g1 + ⋅⋅⋅ + gr ∶ g1 , . . . , gr ∈ G0 }

for the r-fold sumset of G0.
In view of Bézivin’s and Pólya’s results, we give the following definitions.

Definition 1.1 A power series F = ∑n∈Nd f (n)xn ∈ K�x� is:
• a Bézivin series if there exists a finitely generated subgroup G ≤ K∗ and r ∈ N such

that f (n) ∈ rG0 for all n ∈ Nd ;
• a Pólya series if there exists a finitely generated subgroup G ≤ K∗ such that f (n) ∈

G0 for all n ∈ Nd .

The terminology of Pólya series is standard; we have chosen to name Bézivin series
based on Bézivin’s results characterizing this type of series in the univariate case [Bé86,
Bé87].

In this paper, we completely characterize multivariate D-finite Bézivin and Pólya
series. As an immediate consequence, we obtain a characterization of D-finite series
whose Hadamard (sub)inverse is also D-finite. The proofs make repeated use of unit
equations and results from the theory of semilinear sets.

To state our main result, we recall the notion of semilinear subsets of Nd . A subset
S ⊆ Nd is simple linear if it is of the form S = a0 + a1N + ⋅⋅⋅ + asN with (Z-)linearly
independent a1, . . . , as ∈ Nd . The terminology comes from the theory of semilinear
sets (see Section 2.1). The following is our main result.

Theorem 1.2 Let K be a field of characteristic zero, let d ≥ 0, and let

F = ∑
n∈Nd

f (n)xn ∈ K�x� = K�x1 , . . . , xd�

be a Bézivin series, with all coefficients of F contained in rG0 for some finitely generated
subgroup G ≤ K∗ and r ∈ N. Then the following statements are equivalent.
(a) F is D-finite.
(b) F is rational.
(c) F is a (finite) sum of skew-geometric series with coefficients in G, that is, rational

functions of the form
g0u0

(1 − g1u1)⋅⋅⋅(1 − g l u l)
,

where u0, u1, . . . , u l are monomials in x1, . . . , xd such that u1, . . . , u l are
algebraically independent, and g0, g1, . . . , g l ∈ G.

(d) As in (c), but in addition, the sum may be taken in such a way that for any two
summands, the support is either identical or disjoint. Moreover, every n ∈ Nd is
contained in the support of at most r summands.
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(e) There exists a partition of Nd into finitely many simple linear sets so that on each
such set S = a0 + a1N + ⋅⋅⋅ + asN with a1, . . . , as linearly independent,

f (a0 +m1a1 + ⋅⋅⋅ +ms as) =
l
∑
i=1

g i ,0 gm1
i ,1 ⋅⋅⋅g

ms
i ,s for (m1 , . . . , ms) ∈ Ns ,

where 0 ≤ l ≤ r and g i , j ∈ G for i ∈ [1, l] and j ∈ [0, s].
The description of D-finite Pólya series, that is, the case r = 1 of the previous

theorem, deserves separate mention, although it follows readily from the more general
result on Bézivin series. Following terminology from formal language theory, a sum of
power series F1, . . . , Fn is unambiguous if the support of Fi is disjoint from the support
of F j for i ≠ j (see Definition 3.16).
Theorem 1.3 Let K be a field of characteristic zero, let d ≥ 0, and let

F = ∑
n∈Nd

f (n)xn ∈ K�x� = K�x1 , . . . , xd�

be a Pólya series with coefficients contained in G0 for some finitely generated subgroup
G ≤ K∗. Then the following statements are equivalent.
(a) F is D-finite.
(b) F is rational.
(c) F is a (finite) unambiguous sum of skew-geometric series with coefficients in G.
(d) The support of F can be partitioned into finitely many simple linear sets so that on

each such set S = a0 + a1N + ⋅⋅⋅ + asN with a1, . . . , as linearly independent,

f (a0 +m1a1 + ⋅⋅⋅ +ms as) = g0 gm1
1 ⋅⋅⋅gms

s for (m1 , . . . , ms) ∈ Ns ,

with g j ∈ G for j ∈ [0, s].
For a power series F = ∑n∈Nd f (n)xn ∈ K�x�, let

F† = ∑
n∈Nd

f (n)†xn ,

where f (n)† = f (n)−1 if f (n) is nonzero and f (n)† is zero otherwise. The series F†

is the Hadamard subinverse of F.
We call a power series finitary if its coefficients are contained in a finitely generated

Z-subalgebra of K. The set of finitary power series is trivially closed under K-linear
combinations, products, sections, diagonals, Hadamard products, and derivatives.
Therefore, the set of finitary D-finite series is closed under the same operations. Alge-
braic series as well as their diagonals and sections are finitary D-finite (see Lemma 7.1).
Corollary 1.4 Let F ∈ K�x� be finitary D-finite. Then F† is finitary if and only if F
satisfies the equivalent conditions of Theorem 1.3 for some finitely generated subgroup
G ≤ K∗. In particular, if F and F† are both finitary D-finite, then they are in fact
unambiguous sums of skew-geometric series.

1.1 Notation

Throughout the paper, we fix a field K of characteristic 0. When considering a Bézivin
series F ∈ K�x�, we will always tacitly assume that G ≤ K∗ denotes a finitely generated
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subgroup, and r ≥ 1 denotes a positive integer, such that every coefficient of F is
contained in rG0.

2 Preliminaries

For a, b ∈ Z, let [a, b] ∶= { x ∈ Z ∶ a ≤ x ≤ b }. Let N = {0, 1, 2, . . .} and N≥k = { x ∈ N ∶
x ≥ k } for k ∈ N.

2.1 Semilinear sets

We summarize a few results from the theory of semilinear sets, and refer to [Sak09,
Chapter II.7.3] and [DIV12] for more details.

Definition 2.1 Let d ≥ 1. A subset A ⊆ Nd is:
• linear if there exist a, b1, . . . , b l ∈ Nd such that A = a + b1N + ⋅⋅⋅ + b lN;
• semilinear if A is a finite union of linear sets;
• simple linear if there exist a, b1, . . . , b l ∈ Nd such that A = a + b1N + ⋅⋅⋅ + b lN and

b1, . . . , b l are linearly independent over Z.

Whenever we consider a representation of a simple linear set of the form a + b1N +
⋅⋅⋅ + b lN, we shall tacitly assume that the vectors b1, . . . , b l are taken to be linearly
independent.

We make some observations on the uniqueness of the presentation of a linear setA.
SupposeA = a + b1N + ⋅⋅⋅ + b lNwith a, b1, . . . , b l as above. The element a is uniquely
determined byA, as it is the minimum ofA in the coordinatewise partial order onNd .
Therefore, also the associated monoid A − a ⊆ Nd is uniquely determined by A. The
set {b1 , . . . , b l}must contain every atom of A − a, that is, every element that cannot
be written as a sum of two nonzero elements of A − a. If l is taken minimal, then
{b1 , . . . , b l} is equal to the set of atoms ofA − a, and is therefore unique. In particular,
if A is simple linear and b1, . . . , b l are linearly independent, then the representation
is unique (up to order of b1, . . . , b l ).

If A and A′ are two linear sets with the same associated monoid, then there exist
a, a′, b1, . . . , b l ∈ Nd with A = a + b1N + ⋅⋅⋅ + b lN and A′ = a′ + b1N + ⋅⋅⋅ + b lN. By
choosing l minimal, the choice of b1, . . . , b l is again unique (up to order).

The semilinear subsets of Nd are precisely the sets definable in the Presburger
arithmetic of N, by a theorem of Ginsburg and Spanier [GS66]. We shall make use
of the following fundamental (but nontrivial) facts.

Proposition 2.2 The semilinear subsets of Nd form a Boolean algebra under set-
theoretic intersection and union. In particular, finite unions and finite intersections of
semilinear sets, as well as complements of semilinear sets, are again semilinear.

Proof By [Sak09, Proposition II.7.15], a subset of Nd is semilinear if and only if it is
rational. By [Sak09, Theorem II.7.3], the rational subsets ofNd form a Boolean algebra.

∎
One can show that every semilinear set is a finite union of simple linear sets. A

stronger and much deeper result, which has been shown by Eilenberg and Schützen-
berger [ES69] and independently by Ito [Ito69], is the following.
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Proposition 2.3 Every semilinear set is a finite disjoint union of simple linear sets.

Proof For the proof of Ito, see [Ito69, Theorem 2]. Alternatively, one may apply the
more general [ES69, Unambiguity Theorem] of Eilenberg and Schützenberger to the
monoid Nd . This second proof is also contained in the book of Sakarovitch, and one
obtains the claim as follows: let S ⊆ Nd be semilinear. Then S is a rational subset of Nd

(see [Sak09, Proposition II.7.5] and the discussion preceding it). By [Sak09, Theorem
II.7.4] or [ES69, Unambiguity Theorem], every rational subset of Nd is unambiguous.
Again by [Sak09, Proposition II.7.15], every unambiguous rational subset of Nd is a
finite disjoint union of simple linear sets. ∎

2.2 Unit equations

Unit equations play a central role in our proofs. We recall the fundamental finiteness
result. For number fields, it was proved independently by Evertse [Eve84] and van
der Poorten and Schlickewei [vdPS82]; the extension to arbitrary fields appears in
[vdPS91]. We refer to [EG15, Chapter 6] or [BG06, Theorem 7.4.1] for more details.

Let G be a finitely generated subgroup of the multiplicative subgroup K∗ of the field
K. It is important here that char K = 0. Let m ≥ 1. A solution (x1 , . . . , xm) ∈ Km to an
equation of the form

X1 + ⋅⋅⋅ + Xm = 0(2.1)

is nondegenerate if∑i∈I x i ≠ 0 for every ∅ ⊊ I ⊊ [1, m]. In particular, if m ≥ 2, then all
x i of a nondegenerate solution are nonzero.

Proposition 2.4 (Evertse; van der Poorten and Schlickewei) There exist only finitely
many projective points (x1 ∶ ⋅⋅⋅ ∶ xm) with coordinates x1, . . . , xm ∈ G such that
(x1 , . . . , xm) is a nondegenerate solution to the unit equation (2.1).

It is easily seen that there can be infinitely many degenerate solutions (even
when considered as projective points), but one can recursively apply the theorem to
subequations. In particular, we will commonly use an argument of the following type.

Let Ω be some index set, and let g1, . . . , gm ∶Ω → G0 be maps such that

g1(ω) + ⋅⋅⋅ + gm(ω) = 0 for ω ∈ Ω.

For every partition P = {I1 , . . . , It} of the set [1, m], let ΩP ⊆ Ω consist of all ω such
that for all j ∈ [1, t], the tuple (g i(ω))i∈I j is a nondegenerate solution of the unit
equation∑i∈I j

X i = 0. Since every solution of a unit equation can be partitioned into
nondegenerate solutions in at least one way, we obtain Ω = ⋃P ΩP, where the union
runs over all partitions of [1, m].

Since there are only finitely many partitions of [1, m], one can often deal with each
ΩP separately, or reduce to one ΩP having some desirable property by an application
of the pigeonhole principle. For example, if Ω is infinite, then at least one ΩP is infinite.
Similarly, if Ω = Nd , then not all ΩP can be contained in semilinear sets of rank at most
d − 1, because Nd cannot be covered by finitely many semilinear sets of rank ≤ d − 1.
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2.3 Hahn series

We recall that an abelian group G is totally ordered as a group if G is equipped with
a total order ≤ with the property that a + c ≤ b + c whenever a, b, c ∈ G are such that
a ≤ b. For the group H = Qd , we will give H a total ordering that is compatible with
the group structure by first picking positive linearly independent real numbers ε1,. . . ,
εd and then declaring that (a1 , . . . , ad) ≤ (b1 , . . . , bd) if and only if

d
∑
i=1

a i ε i ≤
d
∑
i=1

b i ε i .

Lemma 2.5 The following hold for the above order:
• Nd is a well-ordered subset of Qd .
• If (a1 , . . . , ad) < (b1 , . . . , bd) and if (c1 , . . . , cd) ∈ Qd , then there is some N > 0 such

that n(b1 , . . . , bd) > n(a1 , . . . , ad) + (c1 , . . . , cd) whenever n ≥ N.

Proof Let S be a nonempty subset ofNd . Pick (a1 , . . . , ad) ∈ S, and let u ∶= ∑d
i=1 a i ε i .

Then, if (b1 , . . . , bd) ∈ S is less than (a1 , . . . , ad), we must have b i ≤ u/ε i for i ∈ [1, d].
Thus, there are only finitely many elements in S that are less than u and so S has a
smallest element. Next, if (a1 , . . . , ad) < (b1 , . . . , bd), then θ ∶= ∑d

i=1(b i − a i)ε i > 0.
Then nθ > ∑d

i=1 c i ε i for all n sufficiently large. ∎

The second property is equivalent to Qd with the given order being archimedean.
If G is a totally ordered abelian group, we can define the ring of Hahn power series

K((xG)) ∶=
⎧⎪⎪⎨⎪⎪⎩
∑
g∈G

ag x g ∶ ag ∈ K for g ∈ G , {g∶ ag ≠ 0} is well ordered
⎫⎪⎪⎬⎪⎪⎭

.

Then K((xG)), together with the obvious operations, is a ring. For

F = ∑
g∈G

ag x g ∈ K((xG)),

one defines supp(F) ∶= { x g ∶ g ∈ G , ag ≠ 0} to be the support of F. We define [x g]F ∶=
ag . Then there is a valuation v∶K((xG)) → G ∪ {∞}, defined as follows: one sets
v(F) = g where x g is the minimal monomial in the support of F if F ≠ 0, and
v(0) = ∞.

For F1 = ∑g∈G ag x g and F2 = ∑g∈G bg x g ∈ K((xG)), the Hadamard product is
defined as

F1 ⊙ F2 = ∑
g∈G

ag bg x g .

If K is algebraically closed and G is divisible, then K((xG)) is an algebraically
closed field. In particular, if we use the order given above for H = Qd , we see that
if K is algebraically closed, then K((xH)) is algebraically closed. After making the
identification x i ∶= x e i , where e i = (0, . . . , 1, . . . , 0) and where there is a 1 in the ith
coordinate and zeros in all other coordinates, we have that the formal power series
ring K�x1 , . . . , xd� is a subalgebra of K((xH)).
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We will find it convenient to write x(a1 , . . . ,ad) = xa1
1 ⋅⋅⋅x

ad
d and write K((xQ

1 , . . . , xQ

d ))
for K((xH)). In the other direction, we will find it convenient to abbreviate the
power series ring as K�x� = K�x1 , . . . , xd�. These conventions are consistent with
usual multi-index notation, and so for a = (a1 , . . . , ad) and b = (b1 , . . . , bd) ∈ Qd ,
we write a + b = (a1 + b1 , . . . , ad + bd) and ab = (a1b1 , . . . , ad bd). If a ∈ Zd and λ =
(λ1 , . . . , λd) with λ i ∈ K((xH)), we also write λa = ∏d

i=1 λa i
i , although we will usually

only use this for λ i ∈ K∗ or λ i a monomial.
The set of [rational] Bézivin series is not closed under products or differentiation.

However, it is closed under Hadamard products and it forms a K[x]-submodule of
K�x�, as the following easy lemma shows.

Lemma 2.6 Let F ∈ K�x� be a Bézivin series with coefficients in rG0. If P ∈ K[x] is a
polynomial with s terms in its support, then there exists a set B ⊆ K of cardinality rs such
that

[xn]FP ∈ BG0 = ∑
b∈B

bG0 for n ∈ Nd .

In particular, the series PF is a Bézivin series with coefficients in rsG′0 for a suitable
finitely generated subgroup G′ ≤ K∗.

We will need to understand the factorization of polynomials of the form 1 − cx e

with e ∈ Nd .

Lemma 2.7 Let K be algebraically closed, and let e = (e1 , . . . , ed) ∈ Zd/{0}. In the
factorial domain K[x±1] = K[x±1

1 , . . . , x±1
d ], the Laurent polynomial

Q = 1 − cx e with c ∈ K∗

factors into irreducibles as

Q =
t
∏
j=1
(1 − ζ jbx e/t),

where t = gcd(e1 , . . . , ed), ζ ∈ K∗ is a primitive t-th root of unity, and bt = c. In
particular, the Laurent polynomial Q is irreducible if and only if gcd(e1 , . . . , ed) = 1.

Proof The proof follows an argument of Ostrowski [Ost76, Theorem IX]. Since
(e1/t, . . . , ed/t) is a unimodular row, there exists a matrix A = (a i , j)i , j∈[1,d] ∈ GLd(Z)
whose first row is (e1/t, . . . , ed/t). This matrix A induces a ring automorphism φ of
the Laurent polynomial ring K[x±1] with φ(x i) = ∏d

j=1 xa i , j
j . Then φ−1(Q) = 1 − cx t

1 .
Since K[x±1

1 ] is divisor-closed in K[x±1], the problem reduces to that of factoring the
univariate Laurent polynomial 1 − cx t

1 in K[x±1
1 ]. Since K[x±1

1 ] is obtained from the
factorial domain K[x1] by inverting the prime element x1, and clearly x1 is not a factor
of 1 − cx t

1 in K[x1], it suffices to consider the factorization of 1 − cx t
1 in K[x1]. However,

here the result is clear. ∎

3 Rational series with polynomial–exponential coefficients

In this section, we consider rational series whose denominator is a product of elements
of the form 1 − cu with c ∈ K∗ and u ∈ K[x] a nonconstant monomial. This will come
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in handy in the later sections, as it will turn out that rational Bézivin series are always
of such a form. For the class of rational series under investigation here, it is possible to
give a fairly explicit structural description of their coefficient sequences, namely they
are piecewise polynomial–exponential on simple linear subsets of Nd .

Definition 3.1 Let f ∶Nd → K be a sequence.
• The sequence f is piecewise polynomial–exponential on simple linear subsets of Nd

if there exists a partition of Nd into simple linear sets S1, . . . , Sm so that for each
i ∈ [1, m], there exist k i ∈ N, polynomials A i ,1, . . . , A i ,k i ∈ K[x], and α i ,1, . . . , α i ,k i ∈
(K∗)d such that

f (n) =
k i

∑
j=1

A i , j(n)αn
i , j for n ∈ Si .

• The sequence f is piecewise polynomial on simple linear subsets of Nd if one can
moreover take α i , j = (1, . . . , 1) for all i ∈ [1, m] and j ∈ [1, k i].

• The sequence f is piecewise exponential on simple linear subsets of Nd if one can take
the polynomials A i , j to be constant for all i ∈ [1, m] and j ∈ [1, k i].
Note that in the piecewise exponential case, sums of exponentials (k i > 1) are

allowed. There is no restriction on the ranks of the simple linear sets; the rank of Si
may be smaller than d, and also need not be the same for S1, . . . , Sm . Each of these
three types of representation is trivially preserved under refinements of the partition.
In particular, representations of the above types are not unique. It is not hard to see
that every series F ∈ K�x�, whose coefficient sequence is polynomial–exponential on
simple subsets of Nd , is rational (see Corollary 3.12). We give an easy example to
illustrate the definition.

Example 3.2 Consider the sequence f ∶N2 → Q defined by
∞

∑
m ,n=0

f (m, n)xm yn = 1
1 − 2x y

+ 1
1 − 3x y

+ y
(1 − 3x y)2(1 − 5y) +

x
(1 − x y)(1 − x)

=
∞

∑
k=0
(2k + 3k)xk yk +

∞

∑
k , l=0
(k + 1)3k5l xk yk+l+1 +

∞

∑
k , l=0

xk+l+1 y l .

Then

f (m, n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2m + 3m , if m = n,
1
5 (m + 1)( 3

5 )
m5n , if m < n,

1, if m > n.

Since
{ (n, n) ∈ N2 ∶ n ∈ N} = (1, 1)N,
{ (m, n) ∈ N2 ∶ m < n } = (0, 1) + (1, 1)N + (0, 1)N, and
{ (m, n) ∈ N2 ∶ m > n } = (1, 0) + (1, 1)N + (1, 0)N

are simple linear sets, the sequence f is piecewise polynomial–exponential on simple
linear subsets of N2. However, f is neither piecewise polynomial nor piecewise
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exponential on simple linear subsets of N2. The coefficient sequence of 1
1−2x y +

1
1−3x y

is piecewise exponential on simple linear subsets of N2, and the coefficient sequence
of x
(1−x y)(1−x) is piecewise polynomial on simple linear subsets of N2.

The following basic properties hold.
Lemma 3.3 LetPE,P,E ⊆ K�x� denote, respectively, the power series whose coefficient
sequences are piecewise polynomial–exponential [polynomial, exponential] on simple
linear subsets of Nd .
(1) Each of PE, P, and E is a K[x]-submodule of K�x� and is closed under Hadamard

products.
(2) The sets PE and P are also closed under products and partial derivatives. In

particular, PE and P form subalgebras of K�x�.
Proof (1) Let F and G be series that are [polynomial–exponential, polynomial,
exponential] on simple linear subsets. It is clear that for every monomial u and every
scalar λ ∈ K, also λuF is of the same form. Thus, it suffices to show that the same
is true for F +G. If S and T ⊆ Nd are simple linear subsets, then the intersection
S ∩ T is semilinear. By Proposition 2.3, the intersection S ∩ T can be represented as
a finite disjoint union of simple linear sets. Thus, in representations of the coefficient
sequences of F and G as in Definition 3.1, we may assume that the simple linear sets
coincide for the two series, by passing to a common refinement. Then the claim about
F +G is immediate.

(2) This can again be computed on each simple linear set. Alternatively, it will follow
from Theorem 3.10 and Corollary 3.13. ∎

The set E is not closed under products or derivatives, since (1 − x)−1 ∈ E, but
(1 − x)−e ∈ K�x� for e ≥ 2 is polynomial–exponential but not exponential on simple
linear subsets of N. We recall some easy facts about the algebraic independence of
monomials.
Lemma 3.4 Let e1, . . . , en ∈ Nd , let c1, . . . , cn ∈ K∗, and let m1, . . . , mn ∈ N≥1. The
following statements are equivalent.
(a) The vectors e1, . . . , en are linearly independent over Z.
(b) The monomials x e 1 , . . . , x en generate a free abelian subgroup of the unit group of

K[x±1].
(c) The monomials x e 1 , . . . , x en are algebraically independent over K.
(d) The polynomials

(1 − c1x e 1)m1 , . . . , (1 − cn x en)mn

are algebraically independent over K.
Proof (a)⇔ (b) Clear.

(a)⇔ (c) Consider the family (x e 1 c1+⋅⋅⋅+en cn)c1 , . . . ,cn∈N of monomials. The mono-
mials in this family are pairwise distinct, and hence linearly independent over K, if
and only if e1, . . . , en are linearly independent. However, the linear independence of
(x e 1 c1+⋅⋅⋅+en cn)c1 , . . . ,cn∈N is equivalent to the algebraic independence of x e 1 , . . . , x en .

(c)⇔ (d) If 0 ≠ P ∈ K[y1 , . . . , yn], then P vanishes on (1 − c1x e 1 , . . . , 1 − cn x en) if
and only if P(1 − c1 y1 , . . . , 1 − cn yn) vanishes on (x e 1 , . . . , x en). Hence, x e 1 , . . . , x en
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are algebraically independent if and only if the polynomials 1 − c1x e 1 , . . . , 1 − cn x en

are algebraically independent.
Now, for any choice of polynomials f1, . . . , fn , the field K( f1 , . . . , fn) is an algebraic

extension of K( f m1
1 , . . . , f mn

n ), and therefore the two fields have the same transcen-
dence degree over K. Thus, 1 − c1x e 1 , . . . , 1 − cn x en is algebraically independent if and
only if (1 − c1x e 1)m1 , . . . , (1 − cn x en)mn is algebraically independent. ∎

Looking once more at Definition 3.1, in a sequence with piecewise polynomial-
exponential coefficients on simple linear sets, for each simple linear set Si , we
have f (n) = ∑k i

j=1 A i , j(n)αn
i , j for n ∈ Si . We can represent Si as Si = a + b1N +

⋅⋅⋅ + bsN with suitable a, b1, . . . , bs ∈ Nd , where b1, . . . , bs are linearly indepen-
dent. On Si , we can therefore also consider representations of the form f (n) =
∑l

j=1 B i , j(m)βm
i , j where m = (m1 , . . . , ms) with n = a +m1b1 + ⋅⋅⋅ +msbs , and B i ,1,

. . . , B i , l ∈ K[y1 , . . . , ys], β i ,1, . . . , β i , l ∈ (K∗)s . One easily sees how the two notions
relate.

Lemma 3.5 Let F = ∑n∈Nd f (n)xn ∈ K�x�, and let S = a + b1N + ⋅⋅⋅ + bsN be simple
linear. Consider the following statements.

(a) There exist polynomials A1, . . . , A l ∈ K[x] and α1, . . . , α l ∈ (K∗)d such that

f (n) =
l
∑
j=1

A j(n)αn
j for n ∈ S.

(b) There exist polynomials B1, . . . , B l ∈ K[y1 , . . . , ys] and β1, . . . , β l ∈ (K∗)s such
that

f (a + b1m1 + ⋅⋅⋅ + bs ms) =
l
∑
j=1

B j(m)βm
j for m = (m1 , . . . , ms) ∈ Ns .

Then (a)⇒ (b). If K is algebraically closed, then also (b)⇒ (a).

Proof (a)⇒ (b). By straightforward substitution.
(b)⇒ (a). Let n = (n1 , . . . , nd) ∈ S. Since b1, . . . , bs are linearly independent,

there exist unique m1, . . . , ms ∈ Nd with n = a + b1m1 + ⋅⋅⋅ + bs ms . Solving this linear
system over Q, there exists N ∈ N≥1 and, for every i ∈ [1, s] and j ∈ [1, d] integers p i ,
q i , j such that

m i = p i/N +
d
∑
j=1

n jq i , j/N

for all n = (n1 , . . . , nd) ∈ S and m = (m1 , . . . , ms) ∈ Ns with n = a + b1m1 + ⋅⋅⋅ +
bs ms .

Let ν ∈ [1, l]. Suppose βν = (βν ,1 , . . . , βν ,s) and pick γν , i ∈ K∗ with γN
ν , i = βν , i for

i ∈ [1, s]. Set αν = (αν ,1 , . . . αν ,d) with

αν , j ∶=
s
∏
i=1

γq i , j
ν , i for j ∈ [1, d]
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and

Aν(x1 , . . . , xd) ∶= Bν
⎛
⎝

p1/N +
d
∑
j=1

x jq1, j/N , . . . , ps/N +
d
∑
j=1

x jqs , j/N
⎞
⎠

s
∏
i=1

γp i
ν , i .

If n = a + b1m1 + ⋅⋅⋅ + bs ms , then

Aν(n)αn
ν = Bν(m)

s
∏
i=1

γp i
ν , i

d
∏
j=1

αn j
ν , j = Bν(m)

s
∏
i=1

γp i
ν , i ⋅

d
∏
j=1

s
∏
i=1

γq i , j n j
ν , i

= Bν(m)
s
∏
i=1
(γp i

ν , i

d
∏
j=1

γq i , j n j
ν , i ) = Bν(m)

s
∏
i=1

γm i N
ν , i

= Bν(m)
s
∏
i=1

βm i
ν , i = Bν(m)βm

ν . ∎

The algebraic closure of K was only used to guarantee the existence of Nth roots
of the βν , i in the proof of (b)⇒ (a). Hence, the condition can clearly be weakened
to the existence of suitable roots. For instance, if K = R and all βν , j are positive, the
implication (b)⇒ (a) holds. However, the condition cannot be entirely removed, as
the following example shows.

Example 3.6 Let

F = 1
1 − 2x2 =

∞

∑
n=0

2n x2n ∈ Q�x�.

Then f (1 + 2m) = 0 and f (2m) = 2m for all m ∈ N. On 2N, we thus have a represen-
tation of the form (b).

However, suppose that for all n ∈ 2N, there is a representation
√

2
n = ∑l

i=1 A i(n)αn
i

with polynomials A1, . . . , A l ∈ Q[x] and pairwise distinct α1, . . . , α l ∈ Q. Then
2m = ∑l

i=1 A i(2m)α2m
i for all m ∈ N. Since such a representation by an exponential

polynomial is unique (see, e.g., [BR11, Corollary 6.2.2]), we must have α2
i = 2, and

hence without restriction l = 2 and α1 =
√

2, α2 = −
√

2. Therefore, α i /∈ Q. Of course,
over Q(

√
2), one has f (n) = 1

2
√

2
n + 1

2 (−
√

2)n for all n ∈ N.

In a representation as in (a) of Lemma 3.5, it is easily seen that the polynomials
are not uniquely determined: for instance, to represent the coefficient sequence f of

1
1−x y on S = (1, 1)N as f (n, n) = A(n, n), we can take any polynomial A ∈ 1 + (x −
y)K[x , y]. However, we now show that the situation is better in a representation as
in (b). The proof is essentially the same as the standard one in the univariate case (see,
e.g., [BR11, Chapter 6.2]).

Proposition 3.7 Let F = ∑n∈Nd f (n)xn ∈ K�x�, and let S = a + b1N + ⋅⋅⋅ + bsN be a
simple linear set. Let B1, . . . , B l ∈ K[y1 , . . . , ys]/{0} and β1, . . . , β l ∈ (K∗)s where the
vectors β j are pairwise distinct such that

f (a + b1m1 + ⋅⋅⋅ + bs ms) =
l
∑
j=1

B j(m)βm
j for m = (m1 , . . . , ms) ∈ Ns .
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Then the polynomials B j and the coefficient vectors β j are uniquely determined (up to
order).

Proof It suffices to consider S = Nd . Let Λ ⊆ K∗ be a finite set and e ∈ N. Let Ae ⊆
K�x� be the K-vector space of rational series spanned by rational functions of the form

1
(1 − λ1x1)k1 ⋅⋅⋅(1 − λd xd)kd

with λ1, . . . , λd ∈ Λ and k1, . . . , kd ∈ [1, e]. Then dim Ae = ∣Λ∣d ed .
Now, in the group algebra K[x][⟨Λ⟩d], let Ve be the K-vector space consisting of

elements of the form
l
∑
j=1

C j(x)γ j ,

with γ j ∈ Λd and polynomials C j ∈ K[x] with degx i
(C j) ≤ e − 1 for all i ∈ [1, d] and

j ∈ [1, l]. Then dim Ve ≤ ∣Λd ∣ ed .
For i ∈ [1, d] let λ i ∈ Λ and k i ∈ [1, e]. Since

d
∏
i=1
(1 − λ i x i)−k i =

∞

∑
n1 , . . . ,nd=0

(k1 + n1 − 1
n1

)⋅⋅⋅(kd + nd − 1
nd

)λn1
1 ⋅⋅⋅λ

nd
d xn1

1 ⋅⋅⋅x
nd
d ,

the vector space Ve maps surjectively onto Ae . Since dim Ve ≤ dim Ae , this is a
bijection. This implies the claim. ∎

We also record the following consequence.

Corollary 3.8 Let u0, u1, . . . , us ∈ K[x] be monomials with u ∶= (u1 , . . . , us) alge-
braically independent, and let C ⊆ K∗ be a finite set. For α = (α1 , . . . , αs) ∈ Cs and
e = (e1 , . . . , es) ∈ N≥1, let

Qα ,e ∶= (1 − α1u1)e1 ⋅⋅⋅(1 − αsus)es ∈ K[u].

Then, for F ∈ K�x�, the following statements are equivalent.
(1) For each α ∈ Cs and e = (e1 , . . . , es) ∈ Ns

≥1, there exist λα ,e ∈ K, all but finitely many
of which are zero, such that

F = u0 ∑
α∈C s

∑
e∈Ns

≥1

λα ,e

Qα ,e
.

(2) For each α ∈ Cs , there exists a polynomial Aα ∈ K[u] such that

F = u0 ∑
n∈Ns

∑
α∈C s

Aα(n)αnun .

Moreover, the polynomials Aα are uniquely determined by F. If α ∈ Cs and

m i =max{ e i ∶ e = (e1 , . . . , e i , . . . , es) ∈ Ns with λα ,e ≠ 0}

(taking m i = −∞ if the set is empty), then degu i
(Aα) = m i − 1. In particular, Aα is

constant if and only if λα ,e = 0 whenever e i > 1 for some i ∈ [1, s].
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For the next step, we use a multivariate partial fraction decomposition. The result
is due to Lĕınartas [Lĕı78], an easy to read exposition of the (short) proof in English
is given by Raichev in [Rai12].
Proposition 3.9 (Lĕınartas’s decomposition) Let F = P/Q ∈ K(x) with P, Q ∈ K[x]
and Q ≠ 0, and let Q = Q e1

1 ⋅⋅⋅Q
e t
t with Q1, . . . , Qt ∈ K[x] irreducible and pairwise

nonassociated and e1, . . . , et ≥ 1. Then

F = ∑
b=(b1 , . . . ,b t)∈S

Pb

Qb1
1 ⋅⋅⋅Q

b t
t

,

for a finite set S ⊆ Nd and polynomials Pb ∈ K[x], and for every b = (b1 , . . . , bt) ∈ S, the
polynomials {Q i ∶ b i > 0} appearing in the denominator are algebraically independent
and have a common root in K.

Unlike the univariate case, in this representation, unfortunately the exponents b i
can exceed e i (see Example 3.11).

We can now characterize power series whose coefficient sequences are polynomial-
exponential on simple linear subsets of Nd .
Theorem 3.10 Let K be algebraically closed. The following statements are equivalent for
a power series F = ∑n∈Nd f (n)xn ∈ K�x�.
(a) One has

F = P
(1 − c1u1)⋅⋅⋅(1 − c l u l)

with c1, . . . , c l ∈ K∗, with nonconstant monomials u1, . . . , u l ∈ K[x], and
P ∈ K[x].

(b) The sequence f is piecewise polynomial–exponential on simple linear subsets of Nd .
Proof (a)⇒ (b) Lemma 2.7 allows us to assume that the polynomials 1 − c i u i for i ∈
[1, l] are all irreducible. Gathering associated polynomials, and resetting the notation,
we may write

F = P
(1 − c1u1)e1 ⋅⋅⋅(1 − c l u l)e l

,

with irreducible polynomials 1 − c i u i that are pairwise coprime and e1, . . . , e l ≥ 1.
By Proposition 3.9, we may now express

F = ∑
I⊆[1, l]

PI

QI
,

with PI ∈ K[x] and QI = ∏i∈I(1 − c i u i)bI , i where bI , i ≥ 1 for all I ⊆ [1, l] and i ∈ I, and
the different irreducible factors of QI are algebraically independent. By Lemma 3.4, the
monomials {u i ∶ i ∈ I } are algebraically independent for I ⊆ [1, l]. We can therefore
apply Corollary 3.8 followed by (b)⇒ (a) of Lemma 3.5, to deduce that every 1/QI is
piecewise polynomial–exponential on simple linear subsets of Nd . By (1) of Lemma
3.3, the same is true for F.

(b)⇒(a) By assumption, there exists a partition of Nd into simple linear sets such
that on each simple linear set S, the coefficients of F can be represented as in (a) of
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Lemma 3.5. Applying (a)⇒ (b) of Lemma 3.5, followed by Corollary 3.8, we see that
F is a K-linear combination of rational functions of the form

u0

(1 − c1u1)⋅⋅⋅(1 − csus)
with c1, . . . , cs ∈ K∗ and monomials u0, u1, . . . , us ∈ K[x]. ∎

Example 3.11 The exponents in the multivariate partial fraction decomposition can
increase. For instance,

F = 1
(1 − x)(1 − y)(1 − x y) =

x
(1 − x)(1 − x y)2 +

1
(1 − y)(1 − x y)2 .

So, despite the fact that the denominator of F has no repeated factors, the coefficient
polynomials in a polynomial–exponential decomposition may be nonconstant. In the
example, we get [xn yn]F = (n + 1) for n ∈ N.

The following is a corollary of the trivial direction of Theorem 3.10 (and hence could
have been observed before).

Corollary 3.12 If the coefficient sequence of F ∈ K�x� is piecewise polynomial-
exponential on simple linear subsets of Nd , then F is rational.

Looking at the proof of Theorem 3.10 again, we see that the special case in which
every constant in the denominator is a root of unity corresponds to the coefficient
sequence being piecewise polynomial on simple linear subsets of Nd . Hence, we
recover the following (well-known) result.

Corollary 3.13 Let K be algebraically closed. The following statements are equivalent
for a power series F = ∑n∈Nd f (n)xn ∈ K�x�.
(a) One has

F = P
(1 − ω1u1)⋅⋅⋅(1 − ω l u l)

with ω1, . . . , ω l ∈ K∗ roots of unity and with nonconstant monomials u1, . . . , u l ∈
K[x], and P ∈ K[x].

(b) The sequence f is piecewise polynomial on simple linear subsets of Nd .

Remark 3.14 Generating series of the form
1

(1 − u1)⋅⋅⋅(1 − u l)
with monomials u1, . . . , u l play a role in several areas of mathematics. They count the
number of solutions to a Diophantine linear system over the natural numbers [DM88],
and appear in combinatorics [Sta12, Chapter 4.6], representation theory [Hec82], and
commutative algebra (as Hilbert series) [MS05, Sta96].

The coefficient sequences of such series are called vector partition functions. After
some earlier work by Blakley [Bla64] and Dahmen and Micchelli [DM88], Sturmfels
[Stu95] gave a description of their structure in terms of the chamber complex of the
matrix whose columns are the exponents of the monomials u1, . . . , u l .
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From a structural point of view, the set Nd is partitioned into finitely many
polyhedral cones with apex at the origin, and on each such cone the vector partition
function f is given by a multivariate quasi-polynomial (however, the results in
[Stu95] are much more specific than this description). This type of decomposition is
equivalent to f being polynomial on simple linear subsets of Nd —a good overview of
the connection with the theory of semilinear sets is given by D’Alessandro, Intrigila,
and Varricchio [DIV12],1 and the specific result can be found in [DIV12, Proposition
2 and Corollary 1].

Proofs of this decomposition (e.g., in [Stu95]) typically involve results on counting
lattice points in polytopes. While we only derived the structural form of the decom-
position here, we only needed purely algebraic methods. Neither the generalization to
the polynomial-exponential case nor the use of purely algebraic methods appears to
be entirely new: positive real coefficients where also permitted, for instance, by Brion
and Vergne [BV97]. A purely algebraic derivation of the polynomial case is given by
Fields in [Fie00, Fie02], which we have discovered through O’Neill [O’N17, Theorem
2.10]. The result on the partial fraction decomposition is not used by Fields, but
similar reductions are used for the denominators. The partial fraction decomposition
in connection with multivariate rational generating series is used by Mishna in
[Mis20, Chapter 92]. However, no structural decomposition result is derived there.

Since we could not locate a reference that derives the structural result for the
polynomial–exponential case over an arbitrary field, we have chosen to include a
proof, although we assume that this is at least “essentially known.”

3.1 The exponential case

We now look at the other extremal case, where the coefficients are piecewise exponen-
tial on simple linear subsets of Nd .

Definition 3.15 Let F ∈ K�x�.
(1) The series F is skew-geometric if there exist c0 ∈ K, c1, . . . , c l ∈ K∗ and monomials

u0, u1, . . . , u l such that u1, . . . , u l are algebraically independent and

F = c0u0

(1 − c1u1)⋅⋅⋅(1 − c l u l)
.

(2) The series F is geometric if moreover {u1 , . . . , u l} ⊆ {x1 , . . . , xd}.
For a skew-geometric series F as above, the exponents of the monomials in the

support of F form a simple linear set. The coefficient of u0ue1
1 ⋅⋅⋅u

e l
l in F is c0ce1

1 ⋅⋅⋅c
e l
l .

Every skew-geometric series is rational by definition. Moreover, its coefficient series
is exponential on simple linear subsets of Nd .

Definition 3.16 Let F1, . . . Fn ∈ K�x�.
(1) The sum F1 + ⋅⋅⋅ + Fn is unambiguous if the sets supp(F1), . . . , supp(Fn) are

pairwise disjoint.

1The definition of a simple linear set in the paper contains a typo; only b1 , . . . , bn are supposed to
be linearly independent.
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(2) The sum F1 + ⋅⋅⋅ + Fn is trivially ambiguous if for all i, j ∈ [1, n],
supp(Fi) ∩ supp(F j) = ∅ or supp(Fi) = supp(F j).

Example 3.17 For a set S ⊆ Nd , let

1S ∶= ∑
n∈S

xn ∈ K�x�.

If S = a + b1N + ⋅⋅⋅b lN is a simple linear set, then

1S =
x a

(1 − xb1)⋅⋅⋅(1 − xb l )
is skew-geometric. If S is semilinear, then it is a finite disjoint union of simple linear
sets, and therefore 1S is an unambiguous sum of skew-geometric series.

Lemma 3.18 (1) If F ∈ K�x� is skew-geometric, and S ⊆ Nd is a simple linear set with
{ xn ∶ n ∈ S} ⊆ supp(F), then F ⊙ 1S is skew-geometric.

(2) If a series F ∈ K�x� has a coefficient sequence that is piecewise exponential on simple
linear subsets of Nd , then F is a sum of skew-geometric series. If K is algebraically
closed, the converse holds.

(3) Every sum of skew-geometric series can be expressed as a trivially ambiguous sum
of skew-geometric series.

Proof (1) Suppose

F = c0x a

(1 − c1xb1)⋅⋅⋅(1 − c l xb l ) ,

with (b1 , . . . , b l) ∈ Nd linearly independent, a ∈ Nd , and c0, c1, . . . , c l ∈ K∗ (if c0 = 0
there is nothing to show). Let S0 = a + b1N + ⋅⋅⋅ + b lN and suppose S = p + q1N + ⋅⋅⋅ +
qsN with S ⊆ S0.

Let p = a + μ1b1 + ⋅⋅⋅ + μ l b l with μ1, . . . , μ l ∈ N. Since p + q i ∈ S0 for all i ∈ [1, s],
we have q i = t i ,1b1 + ⋅⋅⋅ + t i , l b l with t i , j ∈ Z. Since also p + nq i ∈ S0 for all n ∈ N, we
must have t i , j ≥ 0 for all i ∈ [1, s] and j ∈ [1, l]. Now, if n = p +m1q1 + ⋅⋅⋅ +ms qs ∈ S,
then

[xn]F = c0
l
∏
j=1

cμ j+∑
s
i=1 m i t i , j

j = c0
l
∏
j=1

cμ j
j ⋅

s
∏
i=1

⎛
⎝

l
∏
j=1

c t i , j
j
⎞
⎠

m i

,

and so

F ⊙ 1S =
d0x p

(1 − d1xq1)⋅⋅⋅(1 − ds xqs) ,

for suitable d0, d1, . . . , ds ∈ K∗. (The crucial observation in this straightforward proof
was q i ∈ b1N + ⋅⋅⋅ + b lN.)

(2) Suppose F has a coefficient sequence that is piecewise exponential on simple
linear subsets. We apply the direction (a)⇒ (b) of Lemma 3.5, and observe that since
the polynomials A j are constant, so are the B j . Then it is immediate that F is a sum
of skew-geometric series. For the converse direction, we analogously use (b)⇒ (a) of
Lemma 3.5.
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(3) The semilinear sets form a Boolean algebra, and every semilinear set is a finite
disjoint union of simple linear sets. Given any sum of skew-geometric series, we can
use (1) to refine their support in such a way that the sum can be represented as a
trivially ambiguous one. ∎

4 Rationality of D-finite Bézivin series

In this section, we prove the following theorem.

Theorem 4.1 If F ∈ K�x� is D-finite and Bézivin, then F is rational.

To do so, we first recall the notion of a P-recursive sequence, introduced by Lipshitz
[Lip89], and prove a lemma that encapsulates, and extends to a multivariate setting,
the crucial part of Bézivin’s argument. This lemma and its consequences will prove
useful on several occasions.

Let f ∶Nd → K be a d-dimensional sequence. A k-section of f is a sequence (of
dimension < d) obtained by fixing some of the coordinates of f at values ≤ k, where
k ∈ N. Formally, a k-section is a sequence g∶NJ → K with J ⊊ [1, d] and c i ∈ [0, k − 1]
for every i ∈ [1, d]/J such that

g((n j) j∈J) = f (n1 , . . . , nd) with n i = c i for i ∈ [1, d]/J .

Definition 4.2 A sequence f ∶Nd → K is P-recursive of size k ≥ 0 if the following two
conditions are satisfied.
(i) For every j ∈ [1, d] and every a ∈ [0, k]d , there exist polynomials Q j,a ∈ K[y]

such that

∑
a∈[0,k]d

Q j,a(n j) f (n − a) = 0 for all n = (n1 , . . . , nd) ∈ Nd
≥k ,(4.1)

and for every j ∈ [1, d], there exists at least one a ∈ [0, k]d with Q j,a ≠ 0.
(ii) If d > 1, then all k-sections of f (n) are P-recursive.
The sequence f is P-recursive if it is P-recursive of size k for some k ≥ 0.

We remark that the sum in the recursion runs over a d-dimensional hypercube, but
the coefficient polynomials are univariate.

By a theorem of Lipshitz, a power series is D-finite if and only if its sequence of
coefficients is P-recursive [Lip89, Theorem 3.7]. While this is not completely obvious,
it is possible to use these recursions and finitely many initial values to compute
arbitrary values of f [Lip89, Section 3.10]. In particular, if f is P-recursive, then there
exists a finitely generated subfield K0 ⊆ K such that f (n) ∈ K0 for all n ∈ Nd .

Every section of a P-recursive sequence, that is, a subsequence obtained by fixing
some of the arguments, is again P-recursive [Lip89, Theorem 3.8(iv)].

We need the following easy observation.

Lemma 4.3 Let f ∶Nd → K be P-recursive of size k, let j ∈ [1, d], and let Q j,a ∈ K[y]
be polynomials, not all zero, such that

∑
a∈[0,k]d

Q j,a(n j) f (n − a) = 0 for all n = (n1 , . . . , nd) ∈ Nd
≥k .
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Furthermore, let c ∈ N be sufficiently large so that Q j,a(c′) ≠ 0 whenever c′ ≥ c and
Q j,a ≠ 0. If there exist l1, . . . , ld ≥ c such that f (n) vanishes on

d
⋃
i=1

Ni−1
≥c × [l i , l i + k − 1] ×Nd−i

≥c ,

then f (n) vanishes on N≥l1 × ⋅⋅⋅ ×N≥ld .

Proof Fix a well-order on Nd for which (Nd ,+) is an ordered semigroup (for
instance, a lexicographical order). We proceed by contradiction and assume that
m = (m1 , . . . , md) ∈ N≥l1 × ⋅⋅⋅ ×N≥ld is minimal with f (m) ≠ 0. Then m i ≥ l i + k for
all i ∈ [1, d]. Let b ∈ [0, k]d be the minimum, with respect to the well-order, with
Q j,b ≠ 0. Taking n = m + b, we see that equation (4.1) allows us to express f (m) as a
linear combination of certain f (m′) with m′ < m and m′ ∈ N≥l1 × ⋅⋅⋅ ×N≥ld , showing
f (m) = 0, a contradiction. ∎

The following proof is a straightforward, if somewhat technical, adaption of
Bézivin’s argument [Bé86] to cover multidimensional sequences. The restriction to
a finitely generated field ensures the applicability of the following lemma.

Lemma 4.4 If K is a finitely generated as a field, then
√

G ∶= { x ∈ K∗ ∶ xn ∈ G for some n ≥ 1}
is a finitely generated group.

Proof By assumption, G is a finitely generated group. Therefore, there exists a finitely
generated Z-subalgebra A ⊆ K containing G. By a theorem of Nagata, the integral
closure A of A is a finitely generated A-module (see [Mat80, Theorem 31.H in Chapter
12]). Therefore, A is a finitely generated Z-algebra as well. A theorem of Roquette (see
[Lan83, Corollary 7.5 of Chapter 2]) implies that the group of units (A)× is finitely
generated. Since

√
G ⊆ (A)×, the claim follows. ∎

A subgroup G ≤ K∗ is root-closed (in K∗) if
√

G = G. Note that always
√

G ⊊ K∗.
We can even find l ∈ (N≥1/

√
G) ⊆ K∗, say, by choosing for l a suitable prime number.

Lemma 4.5 Suppose that the field K is finitely generated. Let G ≤ K∗ be a finitely
generated subgroup and G0 ∶= G ∪ {0}.

Let Ω be a set, let n ≥ 0, and let f1, . . . , fn ∶Ω → G0 and π∶Ω → K be maps such that
there exist polynomials Q1, . . . , Qn ∈ K[y] with

n
∑
j=1

Q j(π(ω)) f j(ω) = 0 for all ω ∈ Ω.

Then, for all finite subsets B ⊆ K, there exists a finitely generated root-closed group G′ ⊇
G, such that the following holds: for all l ∈ K∗/G′, there exists e0 ∈ N such that

n
∑
j=1

Q j(0) f j(ω) = 0(4.2)

for all ω ∈ Ω with π(ω) ∈ C, where

C = { l e + b ∶ e ∈ N≥e0 and b ∈ B } ⊆ K .
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Proof Let G′ be a finitely generated group containing G and all coefficients of the
polynomials Q j(y + b) where b ∈ B. We may moreover assume

√
G′ = G′. Enlarging

G if necessary, we even assume G′ = G =
√

G for notational simplicity.
If l ∈ K∗/G, then in particular l is not a root of unity, and thus for every b ∈ K, the

set { l e + b ∶ e ∈ N} is infinite. Moreover, if l and b are fixed, then the exponent e is
uniquely determined by l e + b.

We proceed by induction on ∣B∣. For B = ∅, there is nothing to show because then
C = ∅. So fix b ∈ B such that B = B′ ⊎ {b} with ∣B′∣ < ∣B∣. Applying the induction
hypothesis, there exists e′0 ∈ N such that (4.2) holds for all ω ∈ Ω with π(ω) ∈ C′,
where

C′ ∶= { l e + b′ ∶ e ∈ N≥e′0 , b′ ∈ B′ }.

Let
Ωb ∶= {ω ∈ Ω ∶ π(ω) = l e + b with e ∈ N}.

For ω ∈ Ωb with π(ω) = l e + b, define ε(ω) ∶= e. For j ∈ [1, n], let

Q j(y + b) =
m
∑
s=0

q j,s ys with q j,s ∈ K .

Then

0 =
n
∑
j=1

Q j(π(ω)) f j(ω) =
n
∑
j=1

m
∑
s=0

q j,s l ε(ω)s f j(ω)

may be considered as a solution to the unit equation X1 + ⋅⋅⋅ + Xn(m+1) = 0 over the
group ⟨G , l⟩. Let I = [1, n] × [0, m]. For every partition P = {I1 , . . . , Ip} of I, let ΩP ⊆
Ωb be the set satisfying: for all ν ∈ [1, p],
• ∑( j,s)∈Iν

q j,s l ε(ω)s f j(ω) = 0, and
• ∑( j,s)∈I q j,s l ε(ω)s f j(ω) ≠ 0 for all ∅ ≠ I ⊊ Iν .
Since the sets ΩP, with P ranging over all partitions, cover Ωb , it is sufficient to
establish the claim of the lemma for each ΩP separately. So fixP. If ε(ΩP) is finite, the
claim is trivially true by choosing e0 ≥ e′0 sufficiently large. We may therefore assume
that ε(ΩP) is infinite.

The crucial step lies in showing that in the subsum indexed by Iν , all the monomials
that occur must be equal. Thus, explicitly, we show: if ( j1 , s1), ( j2 , s2) ∈ Iν for some
ν ∈ [1, p], then s1 = s2. Clearly, we only have to consider the case where ∣Iν ∣ ≥ 2. Then
q j1 ,s1 l ε(ω)s1 f j1(ω) ≠ 0 and q j2 ,s2 l ε(ω)s2 f j2(ω) ≠ 0 for all ω ∈ ΩP. By construction,

∑
( j,s)∈Iν

q j,s l ε(ω)s f j(ω) = 0

is a nondegenerate solution to the unit equation X1 + ⋅⋅⋅ + X∣Iν ∣ = 0 over ⟨G , l⟩. Thus,
there is a finite set Y with

l ε(ω)(s1−s2) q j1 ,s1 q
−1
j2 ,s2

f j1(ω) f j2(ω)−1

67777777777777777777777777777777777777777777777777777777777777777777777778777777777777777777777777777777777777777777777777777777777777777777777779
∈G

∈ Y .

for all ω ∈ ΩP. Then l ε(ω)(s1−s2) ∈ ⋃y∈Y yG for all ω ∈ ΩP.
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Since ε(ω) takes infinitely many values, there exist y ∈ Y and ω, ω′ ∈ ΩP with
ε(ω) ≠ ε(ω′), and

l ε(ω)(s1−s2), l ε(ω′)(s1−s2) ∈ yG .

But then, l(ε(ω)−ε(ω′))(s1−s2) ∈ G. By choice of l, this implies s1 = s2.
Taking the union over all Iν containing a fixed s ∈ [0, m] in the second coordinate,

we conclude

l ε(ω)s
n
∑
j=1

q j,s f j(ω) = 0,

and therefore∑n
j=1 q j,s f j(ω) = 0 for all s ∈ [0, m]. But then,

0 =
n
∑
j=1

m
∑
s=0

q j,s ys f j(ω) =
n
∑
j=1

Q j(y + b) f j(ω)

for all ω ∈ ΩP. Substituting y = −b into this polynomial, we obtain
n
∑
j=1

Q j(0) f j(ω) = 0 for all ω ∈ ΩP . ∎

Remark 4.6 Since K has characteristic 0, the group K∗ is never finitely generated. In
particular, one can always find l as required in the previous theorem.

As a first easy consequence, we obtain the following.

Lemma 4.7 Let P ∈ K[y] be a polynomial, and suppose there exists r ∈ N such that
P(n) ∈ rG0 for all sufficiently large n ∈ N. Then P is constant.

Proof Working in a subfield, we may assume that K is a finitely generated field. Let
P = ∑t

i=0 c i y i with t ∈ N and c0, . . . , ct ∈ K. Fix n0 ∈ N such that P(n) ∈ rG0 for n ≥
n0, and let g1, . . . , gr ∶N→ G0 be such that

P(n) − g1(n) − ⋅⋅⋅ − gr(n) = 0 for n ≥ n0 .

We will apply a simple special case of Lemma 4.5 to this equation. To do so, we choose
Ω = N with π∶N→ K given by π(n) = n, Q1 = P, f1 = 1, and f j = g j−1, Q j = −1 for j ∈
[2, r + 1]. For the set B, we choose B = {0}. By Lemma 4.5, there exists l ∈ N≥1/

√
G

and e0 ∈ N such that, for all e ≥ e0,
P(0) = g1(l e) + ⋅⋅⋅ + gr(l e).

This implies P(0) = P(l e) for e ≥ e0. Since a nonconstant polynomial can take a fixed
value at most deg(P) − 1 times, it follows that P is constant. ∎

This immediately applies to series with polynomial–exponential coefficients as
follows.

Lemma 4.8 Let Q1, . . . Q l ∈ K[x], let λ1, . . . , λ l ∈ (K∗)d be pairwise distinct, and let

F = ∑
n∈Nd

(
l
∑
j=1

Q j(n)λn
j )xn .

If F is a Bézivin series, then Q1, . . . , Q l are constant.
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Proof By Corollary 3.8, we have F = P/Q with Q = (1 − α1 y1)⋅⋅⋅(1 − αs ys) where
α1, . . . , αd ∈ K∗ and y1, . . . , ys ∈ {x1 , . . . , xd} (repetition is allowed). We proceed
by contradiction. Suppose that one of the polynomials Q j is not constant. Then a
factor in Q occurs with multiplicity e ≥ 2, again by Corollary 3.8. Multiplying F by
some polynomial, the Bézivin property is preserved, and hence we may assume F =
P/(1 − αx1)2 where P is not divisible by 1 − αx1 (reindexing the variables if necessary).

Through successive polynomial division, write P = B2(1 − αx1)2 + B1(1 − αx1) +
B0 with B2 ∈ K[x] and B1, B0 ∈ K[x2 , . . . , xd]. Since (1 − αx1) does not divide P, we
have B0 ≠ 0. Then

P
Q
= B2 +

B1

(1 − αx1)
+ B0

(1 − αx1)2 = B2 +
∞

∑
n=0

B1αn xn
1 + (n + 1)B0αn xn

1 .

Let u ∈ K[x2 , . . . , xd] be a monomial in the support of B0. For all sufficiently large n,

α−n[xn
1 u]P = (n + 1)[u]B0 + [u]B1 .

Let A ∶= (y + 1)[u]B0 + [u]B1 ∈ K[y]. By choice of u, the polynomial A has degree 1.
However, enlarging G to ensure α ∈ G, there exists r ≥ 0 such that A(n) ∈ rG0 for all
sufficiently large n. This contradicts Lemma 4.7. ∎

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.1 We may assume that K is finitely generated. Let F =
∑n∈Nd f (n)xn be a D-finite power series all of whose coefficients are in rG0 for
some r ≥ 0 and a finitely generated subgroup G ≤ K∗. Since the sequence f ∶Nd → K
is P-recursive, there exist Q j,a as in equation (4.1). For every j ∈ [1, d], there exists
a ∈ [0, k]d with Q j,a(0) ≠ 0. Let

H ∶= ∑
a1 , . . . ,ad∈[0,k]d

Q1,a1(0)⋅⋅⋅Qd ,ad (0)xa1+⋅⋅⋅+ad F .

Then H = PF with a nonzero polynomial P, and it suffices to show that H is rational.
Since H is D-finite as well, the sequence of coefficients of H, denoted by h, is P-
recursive of some size k′; without restriction, k′ ≥ k.

For each j ∈ [1, d], we will now apply Lemma 4.5 in the following way. We choose
Ω = Nd and π∶Nd → N ⊆ K to be the projection on the jth coordinate. We set B =
[0, k′d] and consider the equation

0 = ∑
a∈[0,k]d

Q j,a(n j) f (n − a) = ∑
a∈[0,k]d

Q j,a(π(n)) fa(n),

where fa ∶Nd → rG0 is defined by fa(n) = f (n − a). By assumption on f, this equation
holds for n ∈ Nd

≥k′ . Enlarging G = G′ if necessary, Lemma 4.5 (after expanding fa(n⃗) =
ga ,1(n⃗) + ⋅⋅⋅ + ga ,r(n⃗), analogously to the proof of Lemma 4.7) implies that, for any
choice of l ∈ N≥1/G, there exists e0 ∈ N such that

∑
a∈[0,k]d

Q j,a(0) f (n − a) = ∑
a∈[0,k]d

Q j,a(0) fa(n) = 0 for

n ∈ N j−1
≥k′ × (l

e0+N + B) ×Nd− j
≥k′ .
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Further enlarging G = G′ if necessary, we may assume that the same finitely
generated group G works for all j ∈ [1, d]. Then we can also take the same l ∈ N≥1/G for
all j ∈ [1, d], and finally, taking e0 large enough, we can also assume the same e0 works
for all j ∈ [1, d]. As a further convenience, we may enlarge e0 to ensure l e0 ≥ k′d.

For j ∈ [1, d], define C j ∶= l e0+N + [k′(d − 1), k′d]. Then, for all j ∈ [1, d] and n ∈
N

j−1
≥k′d × C j ×Nd− j

≥k′d ,

h(n) ∶= ∑
a1 , . . . ,ad∈[0,k]d

(
d
∏
i=1

Q i ,a i (0)) f (n − a1 − ⋅ ⋅ ⋅ − ad)

= ∑
a1 , . . . , â j , . . . ,ad∈[0,k]d

(
d
∏
i=1
i≠ j

Q i ,a i (0)) ∑
a j∈[0,k]d

Q j,a j(0) f ((n −
d
∑
i=1
i≠ j

a i) − a j) = 0.

Because h is P-recursive of size k′, Lemma 4.3 implies that h vanishes on Nd
≥m with

m = l e0 + k′(d − 1).
For a subset ∅ ≠ I ⊆ [1, d] and a tuple ( j i)i∈I ∈ [0, m]I , let

uI ,( j i)i∈I ∶= ∏
i∈I

x j i
i ∏

i∈[1,d]/I
xm+1

i .

We may write

H = ∑
∅≠I⊆[1,d]

∑
( j i)i∈I

j i∈[0,m]

uI ,( j i)i∈I HI ,( j i)i∈I((xμ)μ∈[1,d]/I),

with suitable power series HI ,( j i)i∈I in d − ∣I∣ variables. Note that in each summand of
the form

uI ,( j i)i∈I HI ,( j i)i∈I((xμ)μ∈[1,d]/I),

the exponents of x i , for i ∈ I, are fixed at some j i ∈ [0, m], whereas the exponents
of x i are greater than m for i ∈ [1, d]/I. It follows that these summands have pair-
wise disjoint support, and hence the HI ,( j i)i∈I have their coefficients in rG0. These
coefficient sequences being shifted sections of h, moreover the HI ,( j i)i∈I , are D-finite.
Because I ≠ ∅, and by induction on d, we may assume that the HI ,( j i)i∈I are rational,
and therefore so is H. ∎

5 The denominator of rational Bézivin series

Having shown that D-finite Bézivin series are rational, we now show that the denom-
inator takes a particularly simple form. In this section, we work with the Hahn series
ring K((xH)) and its additive valuation v∶K((xH)) → H ∪ {∞} (see Section 2.3). At
first, the group H will be an arbitrary totally ordered abelian group, but we restrict to
H = Qd after Proposition 5.2.

We make use of the following easy fact.
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Lemma 5.1 The polynomials

{(x
l
) = x(x − 1)⋅⋅⋅(x − l + 1)

l !
∶ l ≥ 0}

form a basis of the polynomial ring K[x].

The following is a crucial reduction step, used later in describing the denominators
of rational Bézivin series.

Proposition 5.2 Let H be a totally ordered abelian group, and let L = K((xH)) be its
Hahn power series ring. Let s ≥ 1, and, for i ∈ [1, s], let α i , β i ∈ L∗ with the α i pairwise
distinct. For n ≥ 0, let

Fn =
s
∑
i=1

β i αn
i ∈ L.

If there exist a finitely generated subgroup G ≤ K∗ and r ≥ 0 such that for all n ≥ 0 every
coefficient of Fn is an element of rG0, then there exists an i ∈ [1, s] such that the support
of α i is a monomial, that is,

α i = c i xh i with c i ∈ K∗ and h i ∈ H.

Proof Let m =min{v(α1), . . . , v(αs)} and m′ =min{v(β1), . . . , v(βs)}. We may
without restriction replace Fn by x−m′−nm Fn , and may thus assume m = m′ = 0. After
reindexing,

0 = v(α1) = ⋅⋅⋅ = v(αk) < v(αk+1) ≤ ⋅⋅⋅ ≤ v(αs) for some k ∈ [1, s].

For i ∈ [1, k], we have α i = c i + θ i with c i ∈ K∗ and θ i ∈ L where v(θ i) > 0. We
proceed with a proof by contradiction, and may therefore assume θ i ≠ 0 for all i ∈
[1, k].

Reindexing the α1, . . . , αk again if necessary, we may partition

[1, k] = [k1 , k2 − 1] ⊎ [k2 , k3 − 1] ⊎ ⋅⋅⋅ ⊎ [kp , kp+1 − 1],

with 1 = k1 < k2 < ⋅⋅⋅ < kp < kp+1 = k + 1, such that c i = c j if and only if i, j ∈ [kν , kν+1 −
1] for some ν.

Let

Tn ∶=
k
∑
i=1

β i(αn
i − cn

i ) =
p

∑
ν=1

⎡⎢⎢⎢⎢⎣

kν+1−1
∑
j=kν

β jαn
j −
⎛
⎝

kν+1−1
∑
j=kν

β j
⎞
⎠

cn
kν

⎤⎥⎥⎥⎥⎦
.

Then v(Tn) > 0 for all n, because the constant terms cancel.
Step 1. There exists m ∈ H with m > 0 such that v(Tn) ≤ m for infinitely many n ≥ 0.
Let

An =
⎛
⎜⎜
⎝

αn
1 ⋅⋅⋅ αn

k cn
k1

⋅⋅⋅ cn
kp

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
αn+k−1+p

1 ⋅⋅⋅ αn+k−1+p
k cn+k−1+p

k1
⋅⋅⋅ cn+k−1+p

kp

⎞
⎟⎟
⎠

.
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Extracting scalars, these are Vandermonde matrices with

det(An) = αn
1 ⋅⋅⋅αn

k cn
k1
⋅⋅⋅cn

kp ∏
1≤i< j≤k

(α j − α i) ∏
1≤i< j≤p

(ck j − ck i ) ∏
1≤i≤k
1≤ j≤p

(ck j − α i).

By construction, det(An) ≠ 0. Since v(α i) = 0 for i ∈ [1, k], moreover v(det(An)) is
in fact independent of n. Let m1 ∶= v(det(An)) and w = (w1 , . . . , wk+p)T with

w i =
⎧⎪⎪⎨⎪⎪⎩

β i , if 1 ≤ i ≤ k,
−∑kν+1−1

j=kν
β j , if i = k + ν with 1 ≤ ν ≤ p.

Since β1 ≠ 0, we have w1 ≠ 0. Let m2 ∶= v(w1). The ith entry of Anw is Tn+i−1.
Hence, using the subscript 1 to denote the first coordinate of a vector,

det(An)w1 = ( adj(An)Anw)1 = ( adj(An)(Tn , . . . , Tn+k+p−1)T)1 =
k+p−1

∑
j=0

γ jTn+ j

for some γ j with v(γ j) ≥ 0. Since v(det(An)w1) = m1 +m2, we must have
v(Tn+δ(n)) ≤ m1 +m2 for some δ(n) ∈ [0, k + p − 1].

Step 2. There exist N0 ≥ 0 such that for all n ≥ N0,

v(Tn −
k
∑
i=1

N0

∑
l=1
(n

l
)β i cn−l

i θ l
i) > m.

Substituting α i = c i + θ i into the definition of Tn and expanding, for 0 ≤ N0 ≤ n,

Tn =
k
∑
i=1

N0

∑
l=1
(n

l
)β i cn−l

i θ l
i +

k
∑
i=1

n
∑

l=N0+1
(n

l
)β i cn−l

i θ l
i .

There exists N0 such that v(β i θ l
i) = lv(θ i) + v(β i) > m for all l ≥ N0, and choosing

such N0 establishes the claim of Step 2.
Enlarging N0 if necessary, we may also assume v(αN0

i ) > m for i ∈ [k + 1, s] by
Lemma 2.5. Let

Pn ∶=
k
∑
i=1

N0

∑
l=1
(n

l
)β i cn−l

i θ l
i .

Fix h ∈ H with 0 < h ≤ m such that [xh]Pn ≠ 0 for some n ≥ N0. The—crucial—
existence of such an h is guaranteed by Steps 1 and 2. Substituting Hahn series
expressions for β i and θ i , we can express [xh]Pn as

[xh]Pn = ∑
i∈I

ph , i(n)cn
i ,

where I ⊆ [1, k] is such that the c i are pairwise distinct, and ph , i ∈ K[x] are polynomi-
als. Since l is always at least 1 in the expression for Pn , the polynomials ph , i are either
zero or nonconstant as a consequence of Lemma 5.1. By choice of h, there must be at
least one i with ph , i ≠ 0.
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For n ≥ N0,

[xh]Pn = [xh]Tn = [xh]Fn −
k
∑
i=1
[xh]β i cn

i − [xh]
s
∑

i=k+1
β i αn

i

6777777777777777777777777777777777778777777777777777777777777777777777779
=0

.

Enlarging G, we may assume c i , −[xh]β i ∈ G, and hence [xh]Pn ∈ (r + k)G0. Now,
the univariate case of Lemma 4.8 implies that the ph , i are constant, and by our
construction therefore ph , i = 0 for all i ∈ I. This is a contradiction to [xh]Pn ≠ 0 for
some n ≥ N0. ∎
Lemma 5.3 Let K be algebraically closed, and let

P = (1 − c1x a1)⋅⋅⋅(1 − cs x as) ∈ K((xQ
1 , . . . , xQ

d )),

with c i ∈ K∗ and a1, . . . , as ∈ Qd/{0}.
• If P ∈ K[x±1], then there exist b1, . . . , bt ∈ Zd/{0} and c′1, . . . , c′t ∈ K∗ such that

P = (1 − c′1xb1)⋅⋅⋅(1 − c′t xb t).

• If P ∈ K[x] with P(0) = 1, one can even take b1, . . . , bt ∈ Nd/{0}.
Proof Let a i = (a i ,1 , . . . , a i ,d) for i ∈ [1, s]. Let N ∈ N be such that Na i , j ∈ Z for all
i ∈ [1, s] and j ∈ [1, d]. Since

1 − cN
i xN a i = (1 − c i x a i )

N−1
∑
j=0

c j
i x ja i ,

there exists F ∈ K((xQ
1 , . . . , xQ

d )), having finite support, such that PF = Q with Q =
(1 − cN

1 xN a1)⋅⋅⋅(1 − cN
s xN as). Since P and Q are Laurent polynomials, the quotient F =

Q/P is a rational function in x. Therefore, Q/P has a Laurent series expansion at the
origin, which coincides with the Hahn series F. Thus, F is in fact a Laurent series in x.
Since F has finite support, it is even a Laurent polynomial. We conclude that P divides
Q in the Laurent polynomial ring K[x±1].

The Laurent polynomial ring is a factorial domain, arising from K[x] by inverting
the prime elements x1, . . . , xd . By Lemma 2.7, we know that all factors of Q in
K[x±1] are—up to units of K[x±1]—of the form 1 − c′xb with c′ ∈ K∗ and b ∈ Zd/{0}.
Therefore,

P = (1 − c′1xb1)⋅⋅⋅(1 − c′t xb t)

with b1, . . . , bt ∈ Zd/{0}, and this factorization is unique up to order and associativity
in K[x±1].

Suppose now that P is a polynomial and P(0) = 1. Then P = Q1⋅⋅⋅Qr with irre-
ducible polynomials Q i ∈ K[x]. Since P(0) = 1, we have Q1(0)⋅⋅⋅Qr(0) = 1. Replacing
each Q i by Q i/Q i(0), we can therefore assume Q i(0) = 1 for each i ∈ [1, r]. In
particular, no Q i is a monomial. Therefore, Q1, . . . , Qr remain prime elements in
the localization K[x±1]. Since K[x±1] is factorial, this implies r = t and that, after
reindexing the polynomials Q i if necessary, we may assume that Q i is associated with
1 − c′i xb i for each i ∈ [1, r]. Explicitly, this means Q i = q i x e i (1 − c′i xb i ) with e i ∈ Zd
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and q i ∈ K∗. Then Q i ∈ K[x] forces e i ∈ Nd , and so there are two possibilities: either
e i = 0 and q i = 1, in which case necessarily b i ∈ Nd , or q i c′i x e i+b i = 1. In either case,
Q i is of the desired form. ∎
Lemma 5.4 Let Q ∈ K[x1 , . . . , xd−1 , xd] be irreducible with degxd

(Q) ≥ 1, and let L ∶=
K((xQ

1 , . . . , xQ

d−1)). Let

Q = μ
s
∏
i=1
(1 − λ i xd)

with μ ∈ L∗ and λ1, . . . , λs ∈ L. If some λ i is a monomial in L, then all of them are.

Proof Let R ∶= K[x1 , . . . , xd−1] and L0 ∶= K(x1 , . . . , xd−1). Since Q is irreducible in
K[x1 , . . . , xd] and is not contained in R, it is also irreducible as a univariate polynomial
in R[xd]. By Gauss’s lemma, then Q is irreducible in L0[xd]. Since L is algebraically
closed, Q can be expressed as a product of linear factors as above.

Suppose now without restriction that λ−1
1 = ax e with a ∈ K∗ and e ∈ Qd−1. Let N ∈

Z≥1 with Ne ∈ Zd−1. Then λ−1
1 is a root of P = xN

d − aN x e N ∈ L0[xd]. However, P =
∏N−1

j=0 (xd − aζ jx e) in L[x], where ζ ∈ L∗ is a primitive Nth root of unity. Since all
roots of P are monomials, and Q divides P by irreducibility, all roots of Q ∈ L[xd] are
monomials. ∎
Theorem 5.5 Let K be algebraically closed, and let F ∈ K�x� be rational, with F = P/Q,
where P, Q ∈ K[x] are coprime polynomials and Q(0) = 1. If F is a Bézivin series, then
there exist s ≥ 0, nonconstant monomials u1, . . . , us ∈ K[x], and c1, . . . , cs ∈ K∗ such
that

Q = (1 − c1u1)⋅⋅⋅(1 − csus).
Proof We proceed by induction on d. If d = 0, then the claim holds trivially with
s = 0. Suppose d ≥ 1 and that the claim holds for d − 1.

Let Q = Q1⋅⋅⋅Qn where Q1, . . . , Qn ∈ K[x] are irreducible (n ≥ 0). For each j ∈
[1, n], the series P/Q j = FQ1⋅⋅⋅Q j−1Q j+1⋅⋅⋅Qn is also a rational Bézivin series. It
therefore suffices to show: if F = P/Q with an irreducible polynomial Q ∈ K[x], not
dividing P, and Q(0) = 1 and F is a Bézivin series, then Q is of the form 1 − cu with
c ∈ K∗ and a monomial u ∈ K[x].

By reindexing, we may assume that Q has degree at least one in the variable xd .
Then, since Q is irreducible and does not divide P, there are polynomials A and B in
K[x] such that C ∶= AP + BQ ∈ K[x1 , . . . , xd−1]/{0}. Since FA and B are both rational
Bézivin series, the same is true for C/Q = FA+ B. Now, since Q has degree at least one
in xd and since it has distinct roots as a polynomial in xd , we may use the fact that
L ∶= K((xQ

1 , . . . , xQ

d−1)) is algebraically closed to factor Q and write

C/Q = CQ−1
0 (1 − λ1xd)−1⋅⋅⋅(1 − λs xd)−1 ,

where Q0 ∈ K[x1 , . . . , xd−1] and λ1, . . . , λs ∈ L∗ are pairwise distinct. Using partial
fractions, we may write this as

C/Q = α +
s
∑
i=1

β i

1 − λ i xd
,
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where α, β i ∈ L and the β i are nonzero. Then, if we expand, we have that for n ≥ 1, the
coefficient of xn

d in C/Q is

Fn ∶=
s
∑
i=1

β i λn
i ∈ L.

Applying Proposition 5.2 to this family of Hahn series, one of the λ i is of the form
λ i = c i u i with c i ∈ K∗ and u i ∈ L a monomial, that is, of the form u i = x e i ,1

1 ⋅⋅⋅x
e i ,d−1
d−1

with e i , j ∈ Q. By Lemma 5.4, then all λ i are of the form λ i = c i u i with c i ∈ K∗ and
u i ∈ L a monomial.

Since CQ−1
0 = CQ−1(1 − c1u1xd)⋅⋅⋅(1 − csus xd), it follows that the rational series

CQ−1
0 is a Bézivin series. The induction hypothesis implies Q0 = (1 − cs+1us+1)⋅⋅⋅(1 −

ctut) with c j ∈ K∗ and monomials us+1, . . . , ut ∈ K[x1 , . . . , xd−1]. Replacing u i by
u i xd for i ∈ [1, s], we have

Q = (1 − c1u1)⋅⋅⋅(1 − ctut) ∈ K[x].

By Lemma 5.3, we can rewrite this product in such a way that the Hahn monomials
u j are monomials with nonnegative integer exponents, that is, monomials in the
polynomial ring K[x]. Then t = 1 by irreducibility of Q and the claim is shown. ∎

6 Structural decomposition of rational Bézivin series

Proposition 6.1 Let K be algebraically closed. Every rational Bézivin series over K is
expressible as a (trivially ambiguous) sum of skew-geometric rational series.

Proof By Theorems 3.10 and 5.5, the coefficient sequence of F is piecewise
polynomial-exponential on simple linear subsets of Nd . Let S = a + b1N + ⋅⋅⋅ + bsN

be such a simple linear set on which F is polynomial–exponential and set u i ∶= xb i for
i ∈ [1, s] and u = (u1 , . . . , us). By Lemma 3.5, there exist Q1, . . . , Q l ∈ K[y1 , . . . , ys]
and λ1, . . . , λs ∈ (K∗)s such that

F ⊙ 1S = x a ∑
m∈Ns

l
∑
j=1

Q j(m)λm
j um .

We consider H(u) ∶= x−a(F ⊙ 1S) as a power series in u. Clearly, H is a Bézivin series.
By Lemma 4.8, the series H(u) is a sum of geometric series in u, and thus F ⊙ 1S is
a sum of skew-geometric series in x. Since we can partition Nd into finitely many
disjoint such simple linear sets S, the series F is also a sum of skew-geometric series.

∎

Remark 6.2 Instead of using Theorem 3.10, the main reduction in the proof of the
previous theorem can also be derived from the fact that the coefficient sequence of a
generating series

1
(1 − v1)⋅⋅⋅(1 − v l)

with monomials v1, . . . , v l is piecewise polynomial on simple linear subsets of Nd .
Therefore, one may substitute results on vector partitions [Stu95] for Theorem 3.10.
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(In contrast to Theorem 3.10, here the coefficients in front of the monomials are all
equal to 1.)

We sketch the main part of the argument. Consider an expression of the form 1/Q
with

Q ∶= (1 − c1u1)⋅⋅⋅(1 − c l u l),

where c1, . . . , c l ∈ K∗ and u1, . . . , u l are nonconstant monomials. First, we may assume
that the monomials u1, . . . , u l have a common zero (α1 , . . . , αd) in the algebraic
closure K—otherwise, we may use Hilbert’s Nullstellensatz to reduce the expression
1/Q into a sum of expressions with fewer factors in the denominator. (This is actually
also the first step of the partial fraction decomposition [Rai12] used in the proof of
Theorem 3.10.)

Now, let v be a monomial. The coefficient of v in 1/Q is

∑
e1 , . . . ,e l≥0

ue1
1 ⋅⋅⋅uel

l =v

l
∏
j=1

ce j
j = ∑

e1 , . . . ,e l≥0
ue1

1 ⋅⋅⋅uel
l =v

l
∏
j=1

u j(α1 , . . . , αd)−e j

= ∑
e1 , . . . ,e l≥0

ue1
1 ⋅⋅⋅uel

l =v

v(α1 , . . . , αd)−1 = μ(v) v(α1 , . . . , αd)−1 .

Here, μ(v) ∈ N is the number of ways of writing v as a product of u1, . . . , u l . Thus,
1/Q decomposes as a Hadamard product

1/Q = 1
(1 − u1)⋅⋅⋅(1 − u l)

⊙ 1
(1 − α−1

1 x1)⋅⋅⋅(1 − α−1
d xd)

.

The coefficients of the left factor are therefore polynomial on simple linear subsets of
Nd , and one proceeds from there.

6.1 The constants can be taken in the group

Let α = (α1 , . . . , αs), β = (β1 , . . . , βs) ∈ (K∗)s with s ∈ N. We say that α and β are
relatively nontorsion if none of the quotients α i/β i for i ∈ [1, s] is a nontrivial root
of unity. Let u1, . . . , us ∈ K[x] be algebraically independent monomials. Consider an
expression of the form

P
(1 − α1u1)⋅⋅⋅(1 − αsus)

+ Q
(1 − β1u1)⋅⋅⋅(1 − βsus)

with polynomials P, Q ∈ K[x]. If, say, α1/β1 is a root of unity of order n, then we may
use the identity

(1 − αn
1 un

1 ) = (1 − α1u1)(
n−1
∑
j=0

α j
1 u j

1).

to replace 1 − α1u1 in the denominator by 1 − αn
1 un

1 and analogously for 1 − β1u1. We
may thus assume that in any representation, the coefficient vectors in the denominator
are relatively nontorsion (also for more than two summands). In regard to the
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coefficient sequence, and its description in terms of simple linear sets, this amounts
to a refinement

a + b1N + ⋅⋅⋅ + bsN = ⋃
j∈[0,n−1]d

(a + jb1) + nb1N + b2N⋅⋅⋅ + bsN.

Lemma 6.3 Let λ = (λ1 , . . . , λd) ∈ (K∗)d .

(1) If some λ i is not a root of unity, then { λn ∶ n ∈ Nd} ⊆ K∗ is infinite.
(2) For every c ∈ K∗, the set L ∶= { n ∈ Nd ∶ λn = c } is a semilinear set. If moreover
{ λn ∶ n ∈ Nd } is infinite, then L has rank at most d − 1.

Proof (1) Clear.
(2) We may assume L ≠ ∅. First, observe that U ∶= { n ∈ Zd ∶ λn = 1} is a subgroup

of Zd and therefore free abelian. If the set { λn ∶ n ∈ Nd } is infinite, then Zd/U must
be infinite, and therefore U has rank at most d − 1. Now, L0 ∶= U ∩Nd is a linear set.

By Dickson’s lemma (see [Sak09, Lemma II.7.1]), the set L has finitely many
minimal elements a1, . . . , ak with respect to the partial order on Nd , and it follows
that L = ⋃k

i=1 a i +L0. ∎

Proposition 6.4 Let F be a trivially ambiguous sum of skew-geometric series that is
Bézivin and, more specifically, has coefficients in rG0 for some r ≥ 0. Then F can be
written as an unambiguous sum of series of the form

FS =
l
∑
i=1

g i ,0u0

(1 − g i ,1u1)⋅⋅⋅(1 − g i ,sus)
,

where u0, u1, . . . , us ∈ K[x] are monomials with u1, . . . , us algebraically independent,
and where g i ,ν ∈ G for all i ∈ [1, l] and ν ∈ [1, s]. Moreover, one can take l ≤ r.

Proof We may partitionNd into simple linear sets so that on each such simple linear
set S,

F ⊙ 1S = FS =
l
∑
i=1

c i ,0u0

(1 − c i ,1u1)⋅⋅⋅(1 − c i ,sus)
,(6.1)

with c i ,ν ∈ K∗, with algebraically independent monomials u1 , . . . , us , and with an
arbitrary monomial u0. We first show that the coefficients in the denominators can
be taken in G. After that, we will deal with the numerators and show that we can also
achieve l ≤ r.

First, by combining summands with the same denominator, we may assume that
no denominator occurs twice in (6.1). Then the uniqueness statement of Corollary 3.8,
applied over the polynomial ring K[u1 , . . . , us], implies that the representation of FS

in this form is unique. In particular, each 1 − c i ,νuν indeed occurs as a factor of the
reduced denominator of FS, considered as a rational function in K(u1 , . . . , us).

To deal with the denominators, it suffices to show that for every i ∈ [1, l] and ν ∈
[1, s], there exists N ≥ 1 such that cN

i ,ν ∈ G. Then we can use the remarks preceding
this proposition to replace the denominators in such a way that the coefficients are in
G. By symmetry, it suffices to show this for i = ν = 1. Multiplying u−1

0 FS by a suitable
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polynomial in K[u1 , . . . , us] to clear all denominators other than 1 − c1,1u1 and setting
c ∶= c1,1, we obtain a rational series

H ∶= P(u1 , . . . , us)
1 − cu1

,

with 1 − cu1 not dividing P(u1 , . . . , us) ∈ K[u1 , . . . , us] (note that the elements 1 −
c i ,νuν are irreducible in K[u1 , . . . , us]). By Lemma 2.6, there is a finite set B such that
all coefficients of H are contained in BG0.

Working now in the polynomial ring K[u2 , . . . , us][u1], we can use polynomial
division to write

P = Q(1 − cu1) + R

with Q ∈ K[u1 , u2 , . . . , us] and 0 ≠ R ∈ K[u2 , . . . , us]. Fix any monomial v ∈ supp(R),
and let its coefficient in R be a. Then, for large n,

[vun
1 ]H = acn ∈ BG0 .

For b ∈ B, let gb ∶N→ G0 be such that

acn = ∑
b∈B

bgb(n) for large n.

Fix a subset B′ ⊆ B such that, for infinitely many n,

acn − ∑
b∈B′

bgb(n) = 0

yields a nondegenerate solution to the unit equation X0 +∑b∈B′ Xb = 0 over the group
G′ generated by G, B′, and −1. Let b ∈ B′. Then there exists a constant β ∈ K∗ such that

acn

bgb(n)
= β,

for infinitely many n. Let n1 < n2 be two such values. Then

acn1

bgb(n1)
= acn2

bgb(n2)

implies cn2−n1 ∈ G. This finishes the claim about the denominators.
Going back to the representation of FS in (6.1), and refining the set S if necessary,

we can therefore assume c i ,ν ∈ G for all i ∈ [1, l] and ν ∈ [1, s]. Using the same type of
reduction, we may assume that whenever i, j ∈ [1, l] and ν ∈ [1, s] are such that c i ,ν ≠
c j,ν , then c i ,ν/c j,ν is not a root of unity.

Now, we deal with the numerators c0,ν for ν ∈ [1, s] and simultaneously with the
number of summands. Let c i = (c i ,1 , . . . , c i ,s) for i ∈ [1, l], and u = (u1 , . . . , us). Then

[u0un]F =
l
∑
i=1

c i ,0cn
i = g1(n) + ⋅⋅⋅ + gr(n),

for some functions g1, . . . , gr ∶Nd → G0. Consider this as a unit equation over the
group generated by G, −1, and c i ,ν with i ∈ [1, l] and ν ∈ [0, s].
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Consider a partition P = {(I1 , J1), . . . , (It , Jt)} of the disjoint union [1, l] ⊎ [1, r],
that is, Iτ ⊆ [1, l], Jτ ⊆ [1, r], at least one of Iτ and Jτ is nonempty, and Iτ ∩ Iτ′ = ∅ =
Jτ ∩ Jτ′ for τ ≠ τ′. Let ΩP ⊆ Ns denote the set of all n ∈ Ns such that

∑
i∈Iτ

c i ,0cn
i − ∑

j∈Jτ

g j(n) = 0

yields a nondegenerate solution to the unit equation∑i∈Iτ
X i +∑ j∈Jτ

X j = 0. Then the
sets ΩP cover Ns as P ranges through all partitions.

We claim that there exists a partition P such that for all i ≠ j ∈ [1, l] the quotient
(c i/c j)n takes infinitely many values as n ranges through ΩP. Suppose β ∈ K∗. The set
of all n ∈ Ns such that (c i/c j)n = β is a semilinear set of rank at most s − 1 by Lemma
6.3. Hence, if (c i/c j)n takes finitely many values on ΩP, then ΩP is contained in a
semilinear set of rank at most s − 1. However, since the ΩP cover Ns , there must be at
least one P such that (c i/c j)n takes infinitely many values for n ∈ ΩP.

Now, fix such a partition P. Then necessarily ∣Iτ ∣ ≤ 1 for all τ ∈ [1, t] by the theorem
on unit equations. If Iτ = {i}, it follows that

c i ,0 = ∑
j∈Jτ

g j(n)/cn
i for n ∈ ΩP .

Thus, c i ,0 is a sum of at most ∣Jτ ∣ elements of G. Substituting into (6.1) and splitting
the sums accordingly (now we allow the same denominator to appear multiple times),
we achieve c i ,0 ∈ G and l ≤ ∣J1∣ + ⋅⋅⋅ + ∣Jt ∣ ≤ r in this representation. ∎

7 Proofs of main theorems

At this point, Theorems 1.2 and 1.3 can easily be proved as follows.

Proof of Theorem 1.2 (a)⇒ (b) By Theorem 4.1, every D-finite Bézivin series is
rational.

(b)⇒ (d) Let F ∈ K�x� be a rational Bézivin series. By Proposition 6.1, the series is
a trivially ambiguous sum of skew-geometric series. That the constants in the skew-
geometric summands can be taken in G, and that the sum can be taken in such a way
that no n ∈ Nd is contained in the support of more than r summands, follows from
Proposition 6.4.

(d)⇒ (c) Clear.
(c)⇒ (a) Trivial, because every rational series is D-finite.
(d)⇔ (e) This equivalence is immediate from the definition of a skew-geometric

series, Definition 3.15, together with Lemma 3.4. ∎
Proof of Theorem 1.3 We apply Theorem 1.2 with r = 1. Then (a)⇔ (b) of Theorem
1.3 follows from (a)⇔ (b) of Theorem 1.2. The implication (b)⇒ (c) of Theorem 1.3
follows from (b)⇒ (d) of Theorem 1.2, taking into account r = 1.

To obtain (c)⇒ (d) of Theorem 1.3, apply (d)⇒ (e) of Theorem 1.2, noting again
r = 1. This gives a partition of Nd into simple linear sets, so that on each such
set S = a0 + a1N + ⋅⋅⋅ + asN, one has f (a0 +m1a1 + ⋅⋅⋅ +ms as) = 0 or f (a0 +m1a1 +
⋅⋅⋅ +ms as) = g0 gm1

1 ⋅⋅⋅gms
s ≠ 0 with g0, g1, . . . , gs ∈ G. Taking only these simple linear

sets of the partition on which f does not vanish, we obtain a partition of the support
of F, as claimed.
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Finally, the implication (d)⇒ (a) of Theorem 1.3 follows from the implication (e)⇒
(a) of Theorem 1.2. ∎

Before proving Corollary 1.4, we show that algebraic series and their diagonals and
sections are finitary D-finite. Recall that the operator I1,2∶K�x�→ K�x� assigns to

F = ∑
n1 ,n2 , . . . ,nd∈N

f (n1 , n2 , n3 , . . . , nd)xn1
1 xn2

2 xn3
3 ⋅⋅⋅x

nd
d

its primitive diagonal

I1,2F = ∑
n1 ,n3 , . . .nd∈N

f (n1 , n1 , n3 , . . . , nd)xn1
1 xn3

3 ⋅⋅⋅x
nd
d .

For 1 ≤ i < j ≤ d, the primitive diagonal operators I i , j are defined analogously. A
diagonal of F is any composition of diagonal operators applied to F. For instance, the
complete diagonal of F is I1,2I2,3⋅⋅⋅Id−1,d F = ∑n∈N f (n, n, . . . , n)xn

1 . A series F ∈ K�x�
is algebraic if it is algebraic over the field K(x).
Lemma 7.1 If F ∈ K�x� is:
• algebraic, or
• a diagonal of an algebraic series, or
• a section of an algebraic series,
then F is finitary D-finite.

Proof Algebraic series are D-finite, and diagonals and sections of D-finite series are
D-finite [Lip89, Proposition 2.5 and Theorem 2.7]. Moreover, diagonals and sections
of finitary series are trivially finitary. It therefore suffices to show that algebraic series
are finitary.

Let F ∈ K�x� be algebraic. Replacing F by F − F(0), we may assume F(0) = 0. Since
F is algebraic, there exist p2, . . . , pm , q ∈ K[x] with q ≠ 0 such that F = p2

q F2 + ⋅⋅⋅ +
pm
q Fm . Setting G = F/q and multiplying the previous equation by 1/q, we obtain an

equation

G = p2G2 + p3qG3 + ⋅⋅⋅ + pm qm−2Gm .

Keeping in mind G(0) = 0, this yields a recursion for the coefficients of G. It follows
from this recursion that G is finitary. Since F = qG, also F is finitary. ∎
Lemma 7.2 If F ∈ K�x� is a finitary series and F† is also finitary, then F is a Pólya
series.

Proof Since F is finitary, there is a finitely generated Z-algebra A ⊆ K containing
all coefficients of K. Since F† is finitary as well, we may also assume that A contains
f (n)−1 whenever f (n) ≠ 0. Therefore, all nonzero coefficients of F are contained in
the unit group G of A. By a theorem of Roquette (see [Lan83, Corollary 7.5 of Chapter
2]), the group G is finitely generated. ∎
Proof of Corollary 1.4 Since F and F† are finitary, F is a Pólya series by Lemma 7.2.
Being also D-finite, F satisfies condition (a) of Theorem 1.3. Conversely, if F satisfies
condition (d) of Theorem 1.3, then clearly the same is true for F†. Thus, the series F†

is D-finite.
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The “in particular” statement of the corollary follows from Theorem 1.3 applied to
F, respectively, F†. ∎
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