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Abstract. Let A bea finite-dimensional algebra over a field k. The derived Picard group DPici(A4)
is the group of triangle auto-equivalences of D’(mod4) induced by two-sided tilting complexes.
We study the group DPic,(A) when A is hereditary and k is algebraically closed. We obtain general
results on the structure of DPicy(A4), as well as explicit calculations for many cases, including all
finite and tame representation types. Our method is to construct a representation of
DPici(A4) on a certain infinite quiver I'™™. This representation is faithful when the quiver A of
Ais atree, and then DPicy(4) is discrete. Otherwise a connected linear algebraic group can occur
as a factor of DPicy(A4). When 4 is hereditary, DPic;(A4) coincides with the full group of k-linear
triangle auto-equivalences of D®(modA). Hence, we can calculate the group of such
auto-equivalences for any triangulated category D equivalent to D°(modA). These include the
derived categories of piecewise hereditary algebras, and of certain noncommutative spaces intro-
duced by Kontsevich and Rosenberg.
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0 Introduction and Statement of Results

Let k be a field and 4 an associative unital k-algebra. We write Mod4 for the cat-
egory of left A-modules, and D°(Mod4) for the bounded derived category. Let
A° be the opposite algebra and A% = 4 ®; A° the enveloping algebra, so that
ModA° is the category of k-central 4-A-bimodules.

A two-sided tilting complex a complex T € D’(ModA°®) for which there exists
another complex 7V € D®(ModA°®) satisfying T ®L T = T ®Y TV = A. This notion
is due to Rickard [Rd]. The derived Picard group of A (relative to k) is

{two-sided tilting complexes T € D°(ModA°)}

DPici(A4): =
ick(4) isomorphism

*The second author was partially supported by the US-Israel Binational Science
Foundation.
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with identity element A, product (7i, T3)i— T} ®IA7 T> and inverse Ti— TV:=
RHom,(T, 4A). See [Ye] for more details.

Since every invertible bimodule is a two-sided tilting complex, DPic;(A) contains
the (noncommutative) Picard group Pici(A) as a subgroup. It also contains a central
subgroup (o) = 7, where ¢ is the class of the two-sided tilting complex A[1]. In [Ye]
we showed that when A4 is either local or commutative one has DPici(A4) =
Picy(A4) x (o). This was discovered independently by Rouquier and Zimmermann
[Zi], [RZ]. On the other hand, in the smallest example of a k-algebra A4 that is neither
commutative nor local, namely the 2 x 2 upper triangular matrix algebra, this
equality fails. These observations suggest that the group structure of DPici(A4)
should carry some information about the geometry of the noncommutative ring A.

This prediction is further motivated by another result in [Ye], which says that
DPici(A) classifies the dualizing complexes over 4. The geometric significance of
dualizing complexes is well known (cf. [RD] and [YZ]).

From a broader perspective, DPici(A) is related to the geometry of noncom-
mutative schemes on the one hand, and to mirror symmetry and deformations
of (commutative) smooth projective varieties on the other hand. See [BO], [Ko],
[KR] and [Or].

A good starting point for the study of the group DPici(A4) is to consider finite
dimensional k-algebras. The geometric object associated to a finite-dimensional
k-algebra A is its quiver A, as defined by Gabriel (cf. [GR] or [ARS]). It is worthwhile
to note that from the point of view of noncommutative localization theory (cf. [MR]
Section 4.3) A is the link graph of 4. More on this in Remark 1.2.

Some calculations of the groups DPici(A) for finite-dimensional algebras have
already been done. Let us mention the work of Rouquier and Zimmermann [RZ]
on Brauer tree algebras, and the work of Lenzing and Meltzer [LM] on canonical
algebras.

In this paper we present a systematic study the group DPici(A4) when A4 is a finite
dimensional hereditary algebra over an algebraically closed field k. We obtain gen-
eral results on the structure of DPici(A4), as well as explicit calculations. These results
carry over to piecewise hereditary algebras, as well as to certain noncommutative
schemes. The rest of the Introduction is devoted to stating our main results.

The group Auti(A4) = Autagr(A4) of k-algebra automorphisms is a linear algebraic
group over k, via the inclusion into Autyogr(A4) = GL(A). This induces a structure of
linear algebraic group on the quotient Outy(A4) of outer automorphisms. We denote
by Out,(z(A) the identity component of Outy(A).

Recall that 4 is a basic k-algebra if A/r =k x --- x k, where t is the Jacobson
radical. For a basic algebra one has Out;(A4) = Pici(A4). A hereditary basic algebra
A is isomorphic to the path algebra kA of its quiver. An algebra A is indecomposable
iff the quiver A is connected.

For Morita equivalent k-algebras 4 and B one has DPici(A) =2 DPici(B), and the
quivers of A and B are isomorphic. According to a result of Brauer (see [Po]
Section 2) one has Out{(4) = Out)(B). If 4 =[]~ 4; then DPicy(4) =~ G x [["

i=1
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DPici(A4;), where G C S, is a permutation group (cf. [Ye] Lemma 2.6). Also
A(4) = []A(4)) and Out,(i(A) o ]_[Out,(i(A,-). Since the main result Theorem 0.1 is
stated in terms of A and Outz(A), we allow ourselves to assume throughout that
A is a basic indecomposable algebra.

Given a quiver Q we denote by Q, its vertex set. For a pair of vertices x, y € Q, we
write d(x, y) for the arrow-multiplicity, i.e. the number of arrows o:x — y. Let
Aut(Q,) be the permutation group of Q,, and let Aut(Q,; d) be the subgroup of
arrow-multiplicity preserving permutations, namely

Aut(Qy; d) = {m € Aut(Qp) | d(n(x), n(y)) = d(x, y) for all x, y € Qy}.

Write Aut(Q) for the automorphism group of the quiver Q. Then Aut(Q,; d) is the
image of the canonical homomorphism Aut(Q) — Aut(Q,). The surjection
Aut(Q)— Aut(Q,; d) is split, and it is bijective iff Q has no multiple arrows.

Of particular importance to us is a certain countable quiver I'"™. This is a full
subquiver of the Auslander-Reiten quiver I'(D’(mod4)) of D’(modA4) as defined
by Happel [Ha]. Here modA is the category of finitely generated 4-modules. If
A has finite representation type (i.e. A is a Dynkin quiver) then I'™ = ZA, where
7A is the quiver introduced by Riedtmann [Rn]. Otherwise I'"™ 2 7, x ZA. See Defi-
nitions 2.2 and 2.3 for the definition of the quivers I''"" and ZA, and see Figures 3 and
4 for illustrations. The group DPici(A) acts on Fgr by arrow-multiplicity preserving
permutations, giving rise to a group homomorphism ¢: DPici(4) — Aut(I'™; d).

Define the bimodule 4*: = Homg(4, k). Then 4* is a two-sided tilting complex, the
functor M i— A* ®; M = RHoma(M, A*) is the Serre functor of D°(modA) in the
sense of [BK], and M i— A*[—1] ®Y M is the translation functor in the sense of [Ha]
Section 1.4. We write T € DPici(A4) for the element represented by A*[—1]. Then
7 is the translation of the quiver I'™". Let us denote by Aut(T'l"; @) the subgroup
of Aut(I''™; d) consisting of permutations that commute with = and o.

Here is the main result of the paper.

THEOREM 0.1. Let A be an indecomposable basic hereditary finite dimensional
algebra over an algebraically closed field k, with quiver A.

(1) There is an exact sequence of groups
1 — Out)(4) — DPici(4) > Aut(Ti™; &)™ — 1.

This sequence splits.
(2) If A has finite representation type then there is an isomorphism of groups

DPici(A4) = Aut(ZA)™.
(3) If A has infinite representation type then there is an isomorphism of groups

DPici(A4) = (Aut((ZA)y; d)'™ x Out)(4)) x Z.
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The factor Z of DPici(A4) in part 3 is generated by o. If A has no multiple arrows
then so does ZA, and hence Aut((ZA),; d) = Aut(ZA). The proof of Theorem
0.1 is in Section 3 where it is stated again as Theorem 3.8.

Recall that a finite-dimensional k-algebra Bis called piecewise hereditary of type A
if D°(modB) ~ D®(modA4) where 4 = kA for some finite quiver A without oriented
cycles. By [Rd] Corollary 3.5 one knows that DPici(B) = DPici(4). The next
corollary follows.

COROLLARY 0.2. Suppose B is a piecewise hereditary k-algebra of type A. Then
DPici(B) is described by Theorem 0.1 with A = kA.

In Section 4 we work out explicit descriptions of the groups Pici(A4) and DPicy(A)
for the Dynkin and affine quivers, as well as for some wild quivers with multiple
arrows. As an example we present below the explicit description of DPici(A) for
a Dynkin quiver of type 4, (which corresponds to upper triangular n x n matrices).
The corollary is extracted from Theorem 4.1.

COROLLARY 0.3. Suppose A is a Dynkin quiver of type A, and A = kA. Then
DPici(A4) is an abelian group generated by t and &, with one relation t"*' = ¢72.

The relation ! = 62 was already discovered by E. Kreines (cf. [Ye] Appendix).
This relation has been known also to Kontsevich, and in his terminology D°(modA)
is ‘fractionally Calabi-Yau of dimension (n — 1)/(n 4+ 1)’ (see [Ko]; note that the
Serre functor is ta).

Suppose D is a k-linear triangulated category that’s equivalent to a small category.
Denote by Out;’(D) the group of k-linear triangle auto-equivalences of D modulo
functorial isomorphisms. For a finite-dimensional algebra 4 one has DPici(4) C
Out}f(Db(modA)), with equality when A is hereditary (cf. Corollary 1.9).

In [KR] Kontsevich and Rosenberg introduce the noncommutative projective
space NP}, n > 1. They state that Db(CohNPZ) is equivalent to D®(modk€,.,),
where Q,; is the quiver in Figure 6, and CohNP} is the category of coherent
sheaves. By Beilinson’s results in [Be], there is an equivalence Db(CohP}{) A
D°(modk€,). Combining Theorem 4.3 and Corollary 1.9 we get the next corollary.

COROLLARY 0.4. Let X be either NP]. (n>1) or P} (n=1). Then

Out}’(D°(CohX)) = 7 x (Z x PGL,11(k)).

In Section 5 we look at a tree A with n vertices. Every orientation w of A gives a
quiver A,. The equivalences between the various categories D°(modkA,) form
the derived Picard groupoid DPic(A). The subgroupoid generated by the two-sided
tilting complexes of [APR] is called the reflection groupoid Ref(A). We show that
there is a surjection Ref(A) — W(A), where W(A) c GL,(7Z) is the Weyl group
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as in [BGP]. We also prove that for any orientation w, Ref(A)(w, w) = (t,) where
T, € DPici(A,,) is the translation.

1. Conventions and Preliminary Results

In this section we fix notations and conventions to be used throughout the paper.
This is needed since there are conflicting conventions in the literature regarding
quivers and path algebras. We also prove two preliminary results.

Throughout the paper k denotes a fixed algebraically closed field. Our notation for
a quiver is Q = (Q,, 0,); O, is the set of vertices, and Q; is the set of arrows. For
x,y € Oy, d(x,y) denotes the number of arrows x — y.

In this section the letter A denotes a k-linear category that’s equivalent to a small
full subcategory of itself (this assumption avoids some set theoretical problems).
Let us write Auti(A) for the class of k-linear auto-equivalences of A. Then the set

Auti(A)
functorial isomorphism

Outr(A) = (1.1)
is a group.

Suppose A is a k-linear additive Krull-Schmidt category (i.e. dimyHoma(M, N)
< oo and all idempotents split). We define the quiver I'(A) of A as follows:
Ih(A) is the set of isomorphism classes of indecomposable objects of A. For two
vertices X,y there are d(x,y) arrows o:x — y, where we choose representatives
M,ex, M,ecy, Irr(M,, M,)=rad(M,, M,)/rad*(M,, M,) is the space of
irreducible morphisms and d(x, y): = dimyIrr(M,, M,). See [RI] Section 2.2 for full
details.

If A is a k-linear category (possibly without direct sums) we can embed it in the
additive category A x NN, where a morphism (x, m) — (y, n) is an n X m matrix with
entries in A(x, y) = Homa(x, y). Of course, if A is additive then A~ A x N. If
A x N is Krull-Schmidt then we shall write T'(A) for the quiver I'(A x ).

Let O be a quiver. Assume that for every vertex x € @, the number of arrows
starting or ending at x is finite, and for every two vertices x, y € Q, there is only
a finite number of oriented paths from x to y. Let k(Q) be the path category, whose
set of objects is @, the morphisms are generated by the identities and the arrows,
and the only relations arise from incomposability of paths. Observe that this differs
from the definition in [RI], where the path category corresponds to A{(Q) x N in
our notation. The morphism spaces of k(Q) are Z-graded, where the arrows have
degree 1. If I C k(Q) is any ideal contained in rad,%,(Q) =@,.,k(0),, and
k(Q,I):=k(Q)/I is the quotient category, then the additive category k(Q, I)x
N is Krull-Schmidt, and the quiver of k(Q, I is I'(k(Q, I)) = Q.

Let 4 be a finite-dimensional k-algebra. In representation theory there are three
equivalent ways to define the quiver A = A(A) of 4. The set Ay enumerates either
a complete set of primitive orthogonal idempotents {e\},cs,, as in [ARS]
Section II1.1; or it enumerates the simple A-modules {Sy}ca,, as in [RI] Section 2.1;
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or it enumerates the indecomposable projective 4-modules {P,},c,,, as in [RI] Sec-
tion 2.4. The arrow multiplicity is in all cases

d(x,y) = dimkex(r/rz)ey = dimkExtL(Sy, Sy) = dimglrrpreja(Py, P)).

Here v is the Jacobson radical and proj4 is the category of finitely generated pro-
jective modules, which is Krull-Schmidt. Observe that the third definition is just
A(A4) = I'(projA).

Remark 1.2. The set Ay also enumerates the prime spectrum of A, SpecAd =
{Px}rea,- One can show that /1% o @x,yer(px Np,)/psp, as A-A-bimodules. This
implies that d(x, y) > 0 iff there is a second layer link p,~»p, (cf. [MR] Section
4.3.7). Thus if we ignore multiple arrows, the quiver A is precisely the link graph
of A.

Recall that a translation t is an injective function from a subset of @y, called the set
of non-projective vertices, to Q,, such that d(t(y), x) = d(x, y). Q is a stable trans-
lation quiver if it comes with a translation 7 such that all vertices are non-projective.
A polarization 1 is an injective function defined on the set of arrows f: x — y ending
in nonprojective vertices, with u(f): 7(y) — x. Cf. [R1] Section 2.2.

NOTATION 1.3. Suppose the quiver @ has a translation T and a polarization pu.

Given a nonprojective vertex y € Q, let xj,...,x, be some labeling, without
repetition, of the set of vertices {x | there is an arrow x — y}. Correspondingly,
label the arrows B;;:x; -y and o;;:1(y) = x;, where i=1,....m; j=1,...,d;

d; = d(x;, ), and o;; = u(B; ;). The mesh ending at y is the subquiver with vertices
{z(»), xi, y} and arrows {o;;, f; ;}.

If Q has no multiple arrows then d; = 1 and the picture of the mesh ending at y is
shown in Figure 1.

The mesh relation at y is defined to be

m

DY Bijoy € Homyg (x(0), ). (1.4)

i=1 j=1

It is a homogeneous morphism of degree 2.

DEFINITION 1.5. Let I, be the mesh ideal in the category k(Q), i.e. the two-sided
ideal generated by the mesh relations (1.4) where y runs over all nonprojective
vertices. The quotient category

K(Q, Im): = k(Q)/Im

is called the mesh category.

Observe that in [Rn], [RI] and [Ha] the notation for k(Q, I,) is k(Q).

Now let A be a finite quiver without oriented cycles and 4 = kA the path algebra.
Our convention for the multiplication in A4 is as follows. If x = yand y —/}) z are
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Figure 1. The mesh ending at the vertex y when d; = 1.

pathsin A, and if x 5 zis the concatenated path, then y = aff in A. We note that the
composition rule in the path category k(A) is opposite to that in A, so that
@x,y Homk<A> (x, y) = A°.

For every x € Ag let e, € A be the corresponding idempotent, and let P, = Ae, be
the indecomposable projective 4-module. So {P,},ca, is a set of representatives
of the isomorphism classes of indecomposable projective A-modules. Define
P Cc modA4 to be the full subcategory on the objects {Py},cp,. Then P x N~
projA and A = I'(P) = I'(projA). N

There is an equivalence of categories k(A) — P that sends x— P, and an arrow
o:x — y goes to the right multiplication P, = Ae, 5 P, = 4e,. We will identify
P and k(A) in this way.

Recall that the automorphism group Aut,(A) is a linear algebraic group. Let H be
the closed subgroup

H:={F € Auty(A) | F(ey) = e, for all x € Ap}.

LEMMA 1.6. H is connected.
Proof. For each pair x, y € Ag the k-vector space P(x, y): = Homp(x, y) = e, Ae, is
graded. Let P(x, y); be the homogeneous component of degree i, and

Y:= l_[ (Autk(P(x, 1) x Homy (P(x, »);, P(x, ) = 2))

xX.yeho

This is a connected algebraic variety. Since A is generated as k-algebra by the
idempotents and the arrows, and the only relations in 4 are the monomial relations
arising from incomposability of paths, it follows that any element F’ € Y extends
uniquely to a k-algebra automorphism F of A that fixes the idempotents. Conversely
any automorphism F € H restricts to an element F’ of Y. This bijection ¥ — H isan
isomorphism of varieties. Hence H is connected. O

The next result is partially proved in [GS] Theorem 4.8 (they assume k has charac-
teristic 0).
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PROPOSITION 1.7. Let A be a basic hereditary finite dimensional algebra over an
algebraically closed field k, with quiver A.

(1) There is a split exact sequence of groups
1 — Out)(4) — Pici(4) — Aut(A¢; d) — 1.

(2) The group Outg(A) is trivial when A is a tree.

Proof. (1) Since A is basic we have Outy(A4) = Pici(A). By Morita theory we have
Pici(4) = Outp(ModA). Any auto-equivalence of the category P extends to an
auto-equivalence of ModA (using projective resolutions), and this induces an
isomorphism of groups Out,(P) > Outi(ModA).

The class of auto-equivalences Aut,(P) is actually a group here. In fact Auti(P)
can be identified with the subgroup of Auti(A4) consisting of automorphisms that
permute the set of idempotents {e,} C A4.

Define a homomorphism of groups ¢: Outi(4) — Aut(Ag; d) by q(F)(x) =y if
FP, = P,. Thus we get a commutative diagram

H —— Auti(P) —— Autp(4)
S/ g
Outy(P) —— Out(d) —— Aut(Ag; d).

For an element F € Aut;(P) we have F|, , = ¢f(F) and, hence, Ker(q) = f(H) =
g(H). According to Lemma 1.6, H is connected. Because g is a morphism of varieties
we see that Ker(g) is connected. But the index of Ker(g) is finite, so we get
Ker(g) = Out{(A).

In order to split ¢ we choose any splitting of Aut(A) — Aut(Ag; d) and compose it
with the homomorphism Aut(A) — Aut,(P).

(2) When A is a tree the group H is a torus: H = ], s, Auti(P(x, y);). In fact H
consists entirely of inner automorphisms that are conjugations by elements of
the form ) /e, with A, € k*. Thus g(H) = 1. O

The next theorem seems to be known to some experts, but we could not locate any
reference in the literature. Since it is needed in the paper we have included a short
proof. For a left coherent ring 4 (e.g. a hereditary ring) we denote by modA4
the category of coherent 4-modules. In the theorem k could be any field.

THEOREM 1.8. Suppose A is a hereditary k-algebra. Then any k-linear triangle
auto-equivalence of D®(modA) is standard.

Proof. Let F be a k-linear triangle auto-equivalence of D®(modA). By [Rd]
Corollary 3.5 there exits a two-sided tilting complex T with 7 = FA4 in
D°(modA). Replacing F with (T ®L —)F we may assume that FA4 = 4. Hence
F(modA) C modA4, and F| 44 1s an equivalence. Classical Morita theory says that
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Flmoda = (P ®,4 —) for some invertible bimodule P. So replacing F by (P¥Y ® 4 —)F
we can assume that there is an isomorphism ¢0:F|modA 2 1mod4-

Now for every object M € D°(mod4) we can choose an isomorphism
M = P, M[—i] with M; € modA4 (cf. [Ha] Lemma 1.5.2). Define ¢,,: FM S M
to be the composition

HZ

FM = @(FM,)[—;

According to the proof of [BO] Proposition A.3, for any morphism a«: M — N one
has ¢y F(a) = oy, so ¢p: F — Ipbmoda) is an isomorphism of functors. O

COROLLARY 1.9. Suppose A is a hereditary k-algebra. Then
DPicy(4) = Out}! '(D®(mod4A)).

Proof. The group homomorphism DPicy(4) — Out}! '(D®(modA)) is injective, say
by [Ye] Proposition 2.2, and it is surjective by the theorem. O

2. An Equivalence of Categories

In this section we prove the technical result Theorem 2.6. It holds for any finite
dimensional hereditary k-algebra A. In the special case of finite representation type,
Theorem 2.6 is just [Ha] Proposition 1.5.6. Our result is the derived category counter-
part of [R1] Lemma 2.3.3. For notation see Section 1 above.

We use a few facts about Auslander—Reiten triangles in D°(modA). These facts are
well known to experts in representation theory, but for the benefit of other readers we
have collected them in Theorems 2.1 and 2.4.

Let D be a k-linear triangulated category, which is Krull-Schmidt (as additive
category). As in any Krull-Schmidt category, sink and source morphisms can be
defined in D; cf. [R]] Section 2.2. In [Ha] Section 1.4, Happel defines Auslander—
Reiten triangles in D, generalizing the Auslander—Re1ten (or almost split) sequences
in an abelian Krull-Schmidt category. A triangle MEmLMm - M'[1] in D is
an Auslander—Reiten triangle if g is a source morphism, or equivalently if f is a
sink morphism. As before, we denote by M, € D an indecomposable object in
the isomorphism class x € I'(D).

Now let A be a finite quiver without oriented cycles, and A = kA the path algebra.
For M € modk let M*:= Homy(M,k). Define auto-equivalences ¢ and t of
D°(modA) by ¢M:= M[1] and tM:= RHom (M, A)*[—1] = A*[—1] L M.

THEOREM 2.1 (Happel, Ringel). Let A = kA. Then the following hold.

(1) As an additive k-linear category, D®(modA) is a Krull-Schmidt category.
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(2) The quiver I': = I[(D°(modA)) is a stable translation quiver, and the translation t
satisfies M) = TM,.

(3) The Auslander— Reiten triangles in D’(modA) (up to isomorphism) correspond
bijectively to the meshes in I'. In the notation 1.3 with Q =T these triangles are

@) PN A i)
Mr(y)—/> @@Mx; —/) M d Mr(y)[l]
i=1 j=1

(4)  Amorphism (g;;): M) > D, @ T | My, is a source morphism zﬁ’forallz {g,j}
is a basis of Irtpo o4 4 (M), M) leerseamorphzsm (i)' D @/ |\ My, —
M, is a sink morphism iff for all i, {f; }_l is basis of Irrys (modA)(MYI M,).

Proof. (1) This is implicit in [Ha] Sections 1.4 and 1.5. In particular [Ha] Lemma
1.5.2 shows that for any indecomposable object M € D°(modA) the ring
Endpbmed.) (M) is local.

(2) See [Ha] Corollary 1.4.9.

(3) According to [Ha] Theorem 1.4.6 and Lemma 1.4.8, for each y € I'y there exists
such an Auslander-Reiten triangle. By [Ha] Proposition 1.4.3 these are all the
Auslander—Reiten triangles, up to isomorphism.

(4) Since source and sink morphism depend only on the structure of k-linear addi-
tive category on D®(modA) (cf. [Ha] Section 1.4.5) we may use [R1] Lemma 2.2.3. ]

The Auslander—Reiten quiver I'(D®’(modA)) contains the quiver A, as the full
subquiver with vertices corresponding to the indecomposable projective 4-modules,
under the inclusion modA4 c D®(modA).

DEFINITION 2.2. We call a connected component of [(D°(modA)) irregular if it is
isomorphic to the connected component containing A, and we denote by I'™ the
disjoint union of all irregular components of [(D®(modA)).

The name ‘irregular’ is inspired by [ARS] Section VIII.4, where regular com-
ponents of T'(modA) are discussed. The quiver I'"™ will be of special interest to
us. It’s structure is explained in Theorem 2.4 below. But first we need to recall
the following definition due to Riedtmann [Rn],

DEFINITION 2.3. From the quiver A one can construct another quiver, denoted by
ZA. The v)ertex set of ZAis 7 f< A§), and for every arrow x —— yin A there are arrows
(n,x) —— (n,y) and (n,y) —— (n+ 1, x) in ZA.

The function t(n, x) = (n — 1, x) makes ZA into a stable translation quiver.
Observe that 7 is an automorphism of the quiver ZA, not just of the vertex set
(ZA)y. ZA is equipped with a polarization p, given by u(n+ 1, ) = (n, «*) and
u(n, o*) = (n, ). See Figures 3 and 4 in Section 4 for examples. We identify A with
the subquiver {0} x A C ZA.
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Next let us define a quiver Z x (ZA): = ||, ZA; the connected components are
{m} x (ZA), m € Z. Define an automorphism ¢ of Z x (ZA) by the action
a(m) = m+ 1 on the first factor. There is a translation t and a polarization u of
7, x (ZA) that extend those of ZA = {0} x (ZA) and commute with o.

The auto-equivalences ¢ and 1 of D®’(modA) induce commuting permutations of
Iy, which we also denote by ¢ and t respectively.

THEOREM 2.4 (Happel). (1) If A has finite representation type then there is a unique
isomorphism of quivers p: ZA = T whichis the identity on A and commutes with t on
vertices. Furthermore T'™ = T'(D®(modA)).

(2) If A has infinite representation type then there exists an isomorphism of quivers
0: 7, x (ZA) = T'which is the identity on A and commutes with T and ¢ on vertices.
If A is a tree then the isomorphism p is unique.

Proof. This is essentially [Ha] Proposition 1.5.5 and Corollary 1.5.6. OJ

Fix once and for all for every vertex xe T 2)“' an indecomposable object
M, € D’(modA) which represents x, and such that M, = P, for x € Ag. Define
B c D°(modA) to be the full subcategory with objects {M, | x € (ZA),}.

The additive category B x IN is also Krull-Schmidt, so for M, M, € B the two
k-modules Irrg (M, M) and Irr oo mod.) (M, My) could conceivably differ (cf. [R]]
Section 2.2). But this is not the case as we see in the lemma below.

LEMMA 2.5. Suppose I C 7 is a segment (ie. 1 ={i€Z |a<i<b} with
a,b € ZU{+o0}). Let B(I) C D°(modA) be the full subcategory on the objects
My, xelxAyC F(Db(modA))O. Then for any M, M, € B(I) one has

Irrgxn(Me, My) 2= 1T pp g4y (M, My).

Proof. Consider a sink morphism in D’(modA4) ending in M.y, (n,y) € (ZA)y. By
Theorem 2.1(3) and Theorem 2.4, it is of the form (f;))': P}, @;'[;1 M—; x) = M,y
with ¢; € {0, 1} (cf. Notation 1.3). From the definition of a sink morphism we see that
this is also a sink morphism in the category B x IN.

According to [RI] Lemma 2.2.3 (dual form), both k-modules Irrgy~(Mu—s x)
M,y) and Irrponoq4(Mu-e,x) Mn,y) have the morphisms fii, ..., fiq as basis.
And there are no irreducible morphisms N — M, , for indecomposable objects
N not isomorphic to one of the M,_, ), in either category. Thus the lemma is
proved for B(I) = B.

Letx,y e Agand /,n € Z.If Hom(M x), M) # 0 then necessarily / < n. This is
clear for / = 0, since Mg ) is a projective module, and an easy calculation shows that
for n <0,

H(M(,,) = HO(A[-1]1 QY - -- @ A [-1]1 ®Y M) = 0.

In general we can translate by /.
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Now take an arbitrary segment /. The paragraph above implies that for n,/ € 1
and i >0, rad’B(,)XN(M(,,x), M(n,y)) = rad’BxN(M(/,x), M(n,y)). Hence II‘I'B(I)XN(M(/’X),
M(n,y)) = IrerN(M(l,x)» M(n,y))- ]

Henceforth we shall simply write Irr(M,, M,) when x,y € (ZA),. The lemma
implies that the quiver of the category B(J) is the full subquiver IA C ZA.

Note that for 7 = {0} we get B(I) = P. Since P is canonically equivalent to k(A),
there is a full faithful k-linear functor Gy:k(A) — B such that Gox = M, = P,

for every vertex x € Ag, and {Go(ocj)};g’y) is a basis of Irr(M,, M,) for every pair
of vertices x, y, where ay, ..., 4, are the arrows a;:x — y.

THEOREM 2.6. Let A be a finite quiver without oriented cycles, A = kA its path
algebra, k(ZA,I.,) the mesh category (Definitions 2.3 and 1.5) and B C
D°(modA) the full subcategory on the objects {M.}cezn), Then there is a k-linear
functor

G:k(ZA, I,) — B

such that

(i) Gx = M, for each vertex x € (ZA),.
(i) Glgay = Go.
(ii1) G is full and faithful.

Moreover, the functor G is unique up to isomorphism.
In other words, there is a unique equivalence G extending Gy.

Proof. Let QT C ZA be the full subquiver with vertex set {(n, y) | n > 0}. Given a
vertex (n, y) in QF, denote by p(n, y) the number of its predecessors, i.e. the number
of vertices (m, x) such that there is a path (m,x) — --- — (n,y) in @". For any
p =0 let @ be the full subquiver with vertex set {(n,y) | n >0, p(n,y) <p}. Oy
is a translation quiver with polarization, and k(Q;, I,) C kK{ZA, I,) is a full sub-
category.

By recursion on p, we will define a functor G- k(Q;, I,) — B satisfying conditions
(i), (i) and

iv) Let x,y be a pair of vertices and let oy, . . ., oy be the arrows o;: x — y. Then
(iv) y p (%) g y
{G(aj)}fi)i’y) is a basis of Trr(My, M,).

Take p = 0. It suffices to define G(x) for an arrow « in Q;. These arrows fall into
three cases, according to their end vertex (n, y):

(@) p(n,y) < p, in which case any arrow o ending in (n, y) is in Q;il, and G(a) is
already defined.
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(b) p(n,y)=p and n=0. Any arrow o ending in (n,y) is in A, so we define
G(o): = Go(o). By Lemma 2.5 condition (iv) holds.

(¢) p(n,y)=pandn = 1. In this case (n, y) is a nonprojective vertex in ;, and we
consider the mesh ending at (#,y). The vertices with arrows to (n,y) are
(n—¢,x;), where i=1,...,m; x; € Ag and ¢ =0, 1 (cf. Notation 1.3). Since
p(n—1,y) < p(n — &, x;) < p the arrows o, ; are all in the quiver Q;_ , and, hence,
G(o;) are defined.

According to condition (iv), Lemma 2.5 and Theorem 2.1(4) it follows that there
exists an Auslander—Reiten triangle

Gy PN i)'
M1y —— B P Mus.x) —— My > Miu-1p[1] 2.7)
i=1 j=1

in D®’(mod4). Define
G(ﬁi,j): =fij: Mp—s.x) = M y)-

Note that the mesh relation ) _ f; ;0 in k(Q;) issentby G to ) G(B; )G(ei;) = 0,
so we indeed have a functor G: k(Q, I,) — B. Also, by Theorem 2.1(4), for any i
the set {G(ﬁ[_j)}_;];1 is a basis of Irr(M g, x), Mn,y))-

Thus we obtain a functor G:k(Q%, I,) — B.

By symmetry we construct a functor G:k(Q~,I,) — B for negative vertices
(i.e. n<0), extending Gy. Putting the two together we obtain a functor
G:k{ZA, I,) — B satisfying conditions (i), (ii) and (iv).

Let us prove G is fully faithful. For any n € 7 there is a full subquiver
Z > ,A CZA, on the vertex set {(i,x)|i=n}. Correspondingly there are full
subcategories k(Z > ,A, I,) C k{(ZA, I,) and B(Z > ,) C B. It suffices to prove that
G k{Z s A, I,) — B(Z > ,) is fully faithful. By Lemma 2.5 the quiver of B(Z - ,)
is Z > ,A, which is pre-projective. So we can use the last two paragraphs in the proof
of [RI] Lemma 2.3.3 almost verbatim.

Finally we shall prove that G is unique up to isomorphism. Suppose
G': k(ZA, I,) — B is another k-linear functor satisfying conditions (i)—(iii). We will
show there is an isomorphism ¢: G > @ that is the identity on k(A).

By recursion on p we shall exhibit an isomorphism ¢: G|k<Q;,1m) = G’|k<Q;,,m>. It
suffices to consider case (c) above, so let (n, y) be such a vertex. Then, because
G'(#1)) = Pusy . G(@i) P 1,5)» We have

Y G B G) = G (Z B iJO"”") P-1,) = 0-
77 77

Applying Hom(—, M, ) to the triangle (2.7) we obtain a morphism a € End(M(, ;)
such that G'(B; )¢ ,—., ) = aG(p; ;). Because G’ is faithful we see that a # 0, and since
End(M,)) = kit follows that a is invertible. Set ¢, ,): = a € Aut(M(,,y)). This yields
the desired isomorphism ¢: Glor 1) — G/|k<Q;,lm>-
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By symmetry the isomorphism ¢ extends to Q. O
The uniqueness of G gives the next corollary.

COROLLARY 2.8. Let F be a k-linear auto-equivalence of k(ZA, I,) fixing all
objects, and such that Fliay = 1xa). Then F = 13 za 1,)-

Remark 2.9. Beware that if 4 has infinite representation type then k(I'™, I,,) is not
equivalent to the full subcategory of D’(mod4) on the objects {Mx}xergr. This is
because there are nonzero morphisms from the projective modules (vertices in
the component ZA) to the injective modules (vertices in {1} x ZA).

3. The Representation of DPici(A4) on the Quiver I'"

This section contains the proof of the main result of the paper, Theorem 0.1 (restated
here as Theorem 3.8). It is deduced from the more technical Theorem 3.7.
Throughout k is an algebraically closed field, A is a connected finite quiver without
oriented cycles, and 4 = kA is the path algebra. We use the notation of previous
sections.

Recall that 4* = Homg(4, k) is a tilting complex. We shall denote by t the class of
A*[—1]in DPici(A), and by o the class of 4A[1]. We identify an element 7" € DPicy(A4)
and the induced auto-equivalence F = T ®L; — of D°(modA).

LEMMA 3.1. t and o are in the center of DPicy(A).

Proof. The fact that o is in the center of DPici(A) is trivial. As for t, this follows
immediately from [Rd] Proposition 5.2 (or by [BO] Proposition 1.3, since
A* ®Y — is the Serre functor of D®(mod4)). O

In Definition 2.2 we introduced the quiver I''". Recall that for a vertex x e T'I",
M, € D®’(modA) is the representative indecomposable object.

LEMMA 3.2. There is a group homomorphism
¢: DPici(4) — Aut(Lii™; )™
such that q(F)(x) =y iff FM = M,.
Proof. Given an auto-equivalence F of D°(modA), the formula ¢(F)(x) = y iff
FM, >~ M, defines a permutation g(F) of I'o(D°(modA)) that preserves arrow-
multiplicities. Hence it restricts to a permutation of I'y". By Lemma 3.1, ¢(F) com-

mutes with 7 and o. O

The group Outg(A) was defined to be the identity component of Outg(A).
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LEMMA 3.3. Ker(q) = Out((A4).

Proof. Let T € DPicy(4). By Theorem 2.4 we know that Tl = Ui jez 7' (Ao).
Hence by Lemma 3.1, T € Ker(g) iff T acts trivially on the set Ay. In particular,
we see that Ker(q) C Picig(4). Now use Proposition 1.7. O

LEMMA 3.4. Suppose A has finite representation type. Then o is in the center of the
group Aut(I'™)™,

Proof. According to [Rn] Section 2, the group Aut(ZA)"™ is abelian in all cases
except Dy. But a direct calculation in this case (cf. Theorem 4.1) gives ¢ = t=>. []

Before we can talk about the mesh category k(I'™, I,) of the quiver I'™, we have to
fix a polarization u on it. If the quiver A has no multiple arrows then so does I'"™" (by
Theorem 2.4), and hence there is a unique polarization on it. If A isn’t a tree let us
choose an isomorphism p: Z x (ZA) S I' as in that theorem. This determines a
polarization p on I'"™. We also get a lifting of the permutation ¢ to an auto-
equivalence of A(I'™, I,).

LEMMA 3.5. There are group homomorphisms
P Outy (k(T'™, I,)) — Aut(Ty"; @)™

and
r At ) — Outr(k(I'™, 1))

satisfying p(F)(x) = Fx for an auto-equivalence F and a vertex x,; pr = 1, and both p
and r commute with a.

Proof. Since I'" = T(k(I'™, I,,)) we get a permutation p(F) € Aut(l“{)”; d). Let’s
prove that p(F) commutes with 7 in Aut(I'\™). Consider a vertex y € Tyy". In the
Notation 1.3, there are vertices x; and irreducible morphisms {F (O‘i,j)}jil and
{F(/ii’j)}]f.l;1 that form bases of Irry pin ; (F1p, Fx;) and Irry e, \(FX;, Fy) respect-
ively. Since we have

D F(BiF (o)) =0 € rady e, (F1y, Fy)/rady pis ; (Fry, Fy)

this must be a multiple of a mesh relation. Hence Fty = tFy.

Finally to define r we have to split Aut(I'"™) — Aut(l"gr; d) consistently with p. It
suffices to order the set of arrows {o:x — y} for every pair of vertices x, y € l"iorr
consistently with . We only have to worry about this when A has infinite represen-
tation type. For any x, y € A9 choose some ordering of the set {«: x — y}. Using
u and ¢ this ordering can be transported to all of Z x (ZA). By the isomorphism
p of Theorem 2.4 the ordering is copied to I'™. O

https://doi.org/10.1023/A:1012579131516 Published online by Cambridge University Press


https://doi.org/10.1023/A:1012579131516

356 JUN-ICHI MIYACHI AND AMNON YEKUTIELI

LEMMA 3.6. There exists a group homomorphism
7: DPici(4) — Outp(k(I'™, Iy))

such that pg = q.

Proof. Choose an equivalence G: k(ZA, I,) — B as in Theorem 2.6. If A has infi-
nite representation type then the isomorphism p we have chosen (as in Theorem
2.4) tells us how to extend G to an equivalence G: k(I'™, I,) — 1,7 Bl/] that com-
mutes with ¢ (cf. Remark 2.9).

Let F be a triangle auto-equivalence of D’(modA). Then F induces a permutation
7w = q(F) of the set Fgr that commutes with . For every vertex x € l"iorr choose an
isomorphism ¢ .: FM, = My in D®(modA). Given an arrow a: x — y in I'™, define
the morphism gy j(F)(2): m(x) — n(y) by the condition that the diagram

FG(x)
FM, —5  FM,

N o

Gy, (F)(@)
My ———— Mxy
commutes. Then g4 j(F) € Autp (& (T I)).

If {¢} is another choice of isomorphisms ¢': FM, — My then {¢'$ '} is an
isomorphism of functors gy )(F) — g¢,(F), so the map g:DPick(4) —
Outy(k(I'", I,)) is independent of these choices.

It is easy to check that g respects composition of equivalences. OJ

THEOREM 3.7. Let A be an indecomposable basic hereditary finite-dimensional
k-algebra with quiver A. Then the homomorphism q of Lemma 3.6 induces an
isomorphism of groups

DPici(A) = Outy(k(I''™, I,,))'
N Outy(k(ZA, I,)) if A has finite representation type,
| Outy(K(ZA, Iv)) x (6) otherwise.

Proof. The proof has three parts.
(1) We show that the homomorphism

g: DPici(A4) — Outp(k(I'™, I,))

of Lemma 3.6 is injective. Let T be a two-sided tilting complex such that g(7’) =
1, pim 7y~ Then the permutation ¢(T') fixes the vertices of A C I'"". Using the fact
that A= @, _,, My we see that T = 4 in D’(modA). Replacing T with H°T we
may assume 7 is a single bimodule. According to [Ye] Proposition 2.2, we see that
T is actually an invertible bimodule. Since k(A) — k(ZA, I,)) is full we get
q(T)lgay = 1x(a). Hence, by Morita theory, we have T' > A as bimodules.
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(2) Assume A has finite representation type, so that I''™ = ZA. We prove that
q: DPici(A4) — Outy(k(ZA, 1))

is surjective.

Consider a k-linear auto-equivalence F of k(ZA,I,). Let n:=p(F) e
Aut((ZA),; d)™ =~ Aut(ZA)™ as in the proof of Lemma 3.6. According to Lemma
3.4, = commutes with ¢. Define

M: = P My, € D°(modA).

XEAQ

Then for any x,y € Ay and integers n,i the equivalence G:k(ZA, I,) — B of
Theorem 2.6 produces isomorphisms

Home(modA)(Mn(o,x), M, i)
=~ Homyza 1,)((0, X), ¢'(n, y))
=~ Homyza 1,)((0, x), a'n ' (n, y))
= Hompo o4 (M 0,x)s Mz-1ap)li])-

Therefore

Home(modA)(M, MIi])

i~ @ Hompp 04,4/ (M0.2), Mo, pi])
x,y€Ag

N { A° ifi=0,

|0 otherwise.

Also for any (n, y) there is some integer i and x € Ay such that

Hompp 04,4 (Mr(0,5, Mnyli]) # 0.

Since any object N € D’(mod4) is a direct sum of indecomposables M.y, this
implies that RHom (M, N) # 0 if N #0. By [Ye] Theorem 1.8 and the proof of
‘(i) = (i)’ of [Ye] Theorem 1.6 there exists a two-sided tilting complex 7" with
T=M in D(ModA4) (cf. [Rd] Section 3). Replacing F with ¢(T")F, where
TV:= RHomy(T, A), we can assume that p(F) is trivial.

Now that p(F) is trivial, F restricts to an auto-equivalence of k(A), and by
Proposition 1.7 we have F|i) = 1xa). Then Corollary 2.8 tells us F = 174, 1,,)-

(3) Assume A has infinite representation type. Then the quiver isomorphism p of
Theorem 2.4 induces a group isomorphism

Outy(k(T'™, Inn))'” =2 Outr(k(ZA, L)) x {0,
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and (o) = 7Z. We prove that
q: DPici(A) — Outp(k(ZA, 1)) x 7

is surjective.

Take an auto-equivalence F of k(ZA, I,), and write m: = p(F) € Aut((ZA),; d)".
After replacing F with ¥F for suitable j e Z, we can assume that 7(0,x) e
Z > oA for all x € Ag. Because Z - oA is the preprojective component of I'(modA)
(cf. [RI]), we get

M:= @Mn((),x) € modA.

xer

As in part 2 above, End 4(M) = A°. Since M is a complete slice, [HR] Theorem 7.2

says that M is a tilting module. So M is a two-sided tilting complex over 4. Replacing

F by g(M")F we can assume p(F) is trivial. Let P be an invertible bimodule such that

q(P)lk(ay = Fliay- Replacing F with g(PY)F we get F|; ) = 1x(a). Then by Corollary

2.8 we get F = 1iza 1) O
The next theorem is Theorem 0.1 in the Introduction.

THEOREM 3.8. Let A be an indecomposable basic hereditary finite-dimensional
algebra over an algebraically closed field k, with quiver A.

(1) There is an exact sequence of groups
1 — Out)(4) — DPici(4) > Aut(Ti™; d) — 1.

This sequence splits.
(2) If A has finite representation type then there is an isomorphism of groups

DPici(4) = Aut(ZA).
(3) If A has infinite representation type then there is an isomorphism of groups

DPici(4) = (Aut((ZA)y; d)'” x Out)(4)) x Z.

Proof. (1) By Theorem 3.7 and Lemma 3.5 the homomorphism ¢ is surjective.
Lemma 3.3 identifies Ker(g).
(2) If A4 has finite representation type then A is a tree, so Outg(A) = 1 by Proposition
1.7. By Theorem 2.4 and Lemma 3.4 we get

Aut(T; )9 = Aut(I'™) ™7 =~ Aut(ZA)"™.
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(3) If A has infinite representation type then
Aut(T; @)™ =~ Aut((ZA)y; ) x (o)

by Theorem 2.4. We know that ¢ is in the center of DPici(A4). O
We end the section with the following problem.

PROBLEM 3.9. The Auslander—Reiten quiver I'(D®(modA)) is defined for any finite
dimensional k-algebra A of finite global dimension. Can the action of DPici(A4) on
I'(D°(modA)) be used to determine the structure of DPici(4) for any such A?

4. Explicit Calculations

In this section we calculate the group structure of DPici(A4) for the path algebra
A = kA for several types of quivers. Throughout S,, denotes the permutation group
of {1,...,m}.

Suppose A is a tree. Given an orientation @ of the edge set A;, denote by A, the
resulting quiver, and by A4,:=kA,. If @ and ' are two orientations of A then
D°(mod4,,) ~ Db(modAm/). This equivalence will be discussed in the next section.
For now we just note that the groups DPici(A4,,) = DPicy(4,y), so we are allowed
to choose any orientation of A when computing these groups. This observation
is relevant to Theorems 4.1 and 4.2 below.

THEOREM 4.1. Let A be a Dynkin quiver as shown in Figure 2, and let A: = kA be the
path algebra. Then Pici(4) = Aut(A) and DPici(A4) = Aut(ZA)™. The groups Aut(A)
and Aut(ZA)'" are described in Table I.

Proof. The isomorphisms are by Theorem 0.1 and Proposition 1.7. The data in the
third column of Table I was calculated in [Rn] Section 4, except for the shift ¢ which
did not appear in that paper. So we have to do a few calculations involving ¢. Below
are the calculations for types 4, and Dy; the rest are similar and are left to the reader
as an exercise.

Tuble I The group Aut(ZA)™ for a Dynkin quiver. The orientation of A is shown in Figure 2. In types D,, and
Es, 0 is the element of order 2 in Aut(A).

Type Aut(A) Aut(ZA)™ Relation

A, n even 1 (t,0) =7 ot = g2

Ay, n odd 1 (t,0) 27 x (Z]27) ol = g2

Dy S3 Aut(A) x (1) = 83 x Z 3 =g!

D,,n>=5 S, Aut(A) x (1) =2 S, x Z 1 =06, n odd
1 = ¢=! 5 even

Es S> Aut(A) x (1) 2 S, x Z 70 = fg~!

E; 1 ty=7 ¥ =¢!

Eg 1 (=7 5 =g
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Type A4,: Choose the orientation in Figure 2. The quiver ZA looks like Figure 3.
Therefore Aut(ZA)' = (r, ) where (0, 1) = (0, n) and 5(0,n) = (n — 1, 1).

Now by [Ha] Section 1.5.5 and [ARS] Sections VII.1 and VIILS5, the quiver
I'(modA) C ZA is the full subquiver on the vertices in the triangle
{(m, i) | m =0, m+ i< n}. The projective vertices are (0, i) and the injective vertices
are (n — i1, i), where i € {1, ..., n}. We see that ¢(0, i) = (i, n + 1 — i), and the quiver
F((modA)[l]) = a(F(modA)) is the full subquiver on the vertices in the triangle
{(m, i) | m <n, m+i>n+1}. Hence, n = 1o and Aut(ZA)"" = (t, 6). The relation
=0+ = 62 is easily verified.

Type Dy4: The quiver ZA is in Figure 4, and I'(modA) C ZA is a full subquiver.
From the shape of A we know that modA should have 4 indecomposable projective
modules, 3 having length 2 and one of them simple. From the shape of the opposite
quiver A° we also know that modA4 should have 4 indecomposable injective
modules, 3 of them simple and one of length 4. Counting dimensions using
Auslander—Reiten sequences we conclude that I'(modA) is the full subquiver on
the vertices {0, 1,2} x Ag. The projective vertices are {(0, 1), (0, 7)}, the injective
vertices are {(2,1),(2,7)}, and the simple vertices are {(0,1),(2,7)}, where
ief{2,3,4}.

Forie {1,2,3,4}let P;, S; and I;, be the projective, simple and injective modules
respectively, indexed such that P; — S;>—1I;, and with P; = M. So P1 =S
and I; = S; for i € {2, 3,4}. By the symmetry of the quiver it follows that there is
a nonzero morphism (0, i) — (2, i) in K(ZA) for i € {2, 3, 4}, and hence M ; = S;

The rule for connecting I'(modA) with I'(modA[1]) (see [Ha] Section 1.5.5) implies
that M(3_1) & M(oﬁl)[l] = P[1]. Therefore M(37l’) =~ Py[1] for i,i' € {2, 3,4}. Now for
each such i there is an Auslander—Reiten triangle My, — M3 — M3, —
M@ p[1]. When this triangle is turned it gives an exact sequence 0 — P; —
P; — S; — 0 and, hence, i/ = i. The conclusion is that o(m, i) = (m + 3, i) for all

(m, i) € (ZA),, so ¢ =173, O
2’[
A, e —e — e D, 11——);—)5 . —e
3e
4e 4e
Be s Br oo
4e

Eg I——-);—)g(—g(——g(———;(—-g

Figure 2. Orientations for the Dynkin graphs.
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(0 3)

NSNS NSNS
INSNSNSNS

(0 1) @, 1) (2 1)

Figure 3. The quiver ZA for A of type A3. The vertices in modA are labeled.

Figure 4. The quiver ZA for A of type D4. The vertices in modA are labeled.

THEOREM 4.2. Let A be a quiver of type D,, Ee, E; or Eg, with the orientation shown
in Figure 5. Then Pici(A4) = Aut(A) and

DPici(A) = 7 x Aut(ZA)"™.
The structure of the group Aut(ZA)" is given in Table II.
Proof. The isomorphisms follow from Theorem 0.1 and Proposition 1.7. The
structure of Aut(ZA)"™ is quite easy to check in all cases. In type D,, n > 5 odd,
the automorphism 5 € Aut(ZA)™ is

@(i,n+2-—j) if j=2,n,

n@i,j) = (i— #, n+2—j) otherwise . -

THEOREM 4.3. For any n =2 let Q, be the quiver shown in Figure 6, and let
A: = kQ, be the path algebra. Then Pici(A) = PGL, (k) and

DPici(A) = 7 x (7 x PGL,(k)).

In the semidirect product the action of a generator p € 7, on a matrix F € PGL, (k) is
pFp~t = (F '
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~ e
/.2 B
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o5
le ~ *2m ~ ge
T D2m E7
30— Z—) cee 4—o—H02m-—-1 ;(— 5(— 5(— z—)g-——)g—):
2;[ e2m+1
7T
le ~ e2m+1 ~ 6e
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S P eIm AN AR SRS S
20 e2m+2

Figure 5. Orientations for the affine tree graphs.

Proof. As in the proof of Lemma 1.6 and Proposition 1.7, the group of auto-
equivalences of the path category is Auty(k(Q,)) = Autg(k(ﬂn)) =~ GL,(k). Hence
Pici(A4) = Outy(k(,)) = PGL,(k).

Given F e Auti(k(€,)) let [a;;] € GL,(k) be its matrix w.r.t. to the basis {0},
and let [b;;]:= ([ai,_,-]_l)‘. Define an auto-equivalence Fe Aut,?(k(ZQn)) with
F(m, o) = > aij(m, o) and F(m, ) =Y ;bij(m, o), m € Z. Then F preserves all
mesh relations, and by a linear algebra argument we see that up to scalars at each
vertex, the only elements of Autg(k(ZQ,,)) are of the form F.

Let p € Aut(ZL,) be p(m, 1) = (m, 2) and p(m, 2) = (m + 1, 1), with the obvious
action on arrows to make it commute with the polarization u. Then
Outy(k(Z8,, I,)) is generated by PGL,(k) and p, so Outp(k(ZL,, I)) =
7 x PGL, (k). The formula for F above shows that pFp~! = (F~!) for F € PGL, (k).

Finally use Theorem 3.7. O

Remark 4.4. By [Be] and [BO] we see that for n =2 in the theorem above,
DPici(A) =2 7 x 7, x PGLy(k). The apparent discrepancy is explained by the fact

that 7 x PGLy(k) = 7 x PGL,(k) via (m, F)i— (m, H"F), where H =[<(1’ o )]

Table II. The groups Aut(ZA)™ for the affine tree quivers shown in Figure 5.

Type Aut(A) Aut(ZA) Relations
D, Ss Aut(A) x (1) = Sy x Z

D,,n>5 even Sy %83 Aut(A) x (1) 2 (S)xS) x Z

D,,n>5o0dd S2 Aut(A) x (n) = S? x Z ” =1
Eq S; Aut(A) x (1) = S5 x Z

E; S, Aut(A) x (1) = S, x Z

Eq 1 =7
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1 a1 2 a2 QAp-1 P
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ay a
e 8, l \
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— = q—1 q—2 1
Qn le : 2 qu o——e——— - ———e
: e ’ pte pre-l P+l
\ aﬂ

Figure 6. The quivers , and T, ,.

Forintegers p = g > 1let T, , be the quiver shown in Figure 6. Let A be a quiver with
underlying graph A,,. Then A can be brought to one of the quivers T P +q=n+1,
by a sequence of admissible reflections s at source vertices (see Section 6). Therefore
DPici(kA) = DPici(kT) 4).

THEOREM 4.5. Let A be the path algebra kT, .

(1) If p=q =1 then Pici(4) = PGL,(k) and DPici(A) = 7, x (Z X PGLg(k)).
Q) Ifp>q=1 then Picy(4) = [ko ﬂ and DPicy(4) = 7. x (Z x [ko ’f])
(3) If p=q > 1 then Pici(A) = Sy x k* and DPicy(A) = 77 x (S» x k).
@) Ifp>q> 1 then Pick(4) = k* and DPici(4) = 7° x k*.

Proof. (1) This is because T = Q.

(2) Here the group of auto-equivalences of k(T ,) is, in the notation of the proof of
Proposition 1.7, Autx(k(T,,)) = (k*Y*! x k, and the group of isomorphisms is
(k*y'. Therefore Out(k(T,,)) is isomorphic to k* x k as varieties, and as matrix

group Outy(k(T, ,)) = |:k0 llc] The auto-equivalence associated to

a b c k< k
0 1 0 1
is ;1= o; and fy1— af; +bay, - - 0.
The quiver ZT, , has no multiple arrows. Let p be the symmetry

pm,i)=(m,i—1) for i>2, and p(m,1)=m-—1,p).

Then p generates Aut(ZT M)“), and we can use Theorem 0.1. The action of p on
Outr(k(T, ) is

£ =[5 7}

(3) Here Aut{(k(T,,)) = (k*)?, and the subgroup of isomorphisms is (k*)%~".

The symmetry 0 € Aut(T,,,) of order 2 acts on k* by 0a0™' =a~'.

Let p be the symmetry

pm \)=m—-1,p+¢q), pmi)=m,i—1) if2<i<p+1,
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and
pim,i)=m—1,i—1) if p+2<i<p+gq.

Then p and 6 commute, and they generate Aut(ZT p,q)“). The action of p on
Auty(k(T,,)) is trivial.
(4) Similar to case 3. O

5. The Reflection Groupoid of a Graph

In this section we interpret the reflection functors of [BGP] and the tilting modules of
[APR] in the setup of derived categories.

Let A be a tree with n vertices. Denote by Or(A) the set of orientations of the edge
set A;. For w € Or(A) let A, be the resulting quiver, and let 4, be the path algebra
kA,

Given two orientations w, @’ let

{two-sided tilting complexes T € D’(Mod(4., ®x A2}
isomorphism '

DPici(w, @): =

The derived Picard groupoid of A is the groupoid DPici(A) with object set Or(A) and
morphism sets DPicy(w, @’). Thus when @ = o’ we recover the derived Picard group
DPicy(4y).

For an orientation w and a vertex x let P,, € modA4, be the corresponding
indecomposable projective module. Denote by 1, the translation functor of
D°(mod4,,), i.e. the functor 7, = A%[-1]1®Y —.

Suppose x € (A,), is a source. Define s7 to be the orientation obtained from w by
reversing the arrows starting at x. Let

Ty,w: = ’C(—OIP)C,(/) @ (@ Py,(z)) G mOdA(H'

y#x

According to [APR] Section 3, T, is a tilting module, with End 4, (7 »,)" = A0 It

is called an APR tilting module. One has isomorphisms in mod4;,:
HomAw(Tx,(m Py,u)) = Py,s(.(u if Y # X,

-1
HomAw(T;c,w» T, Px,w) = Px,s;ur

(5.1)

Under the anti-equivalence between modA,, and the category of finite dimensional
representations of the quiver A,, the reflection functor of [BGP] is sent to
Homy, (7%, —): mod4, — mod4;_,.

DEFINITION 5.2. The reflection groupoid of A is the subgroupoid Ref(A) C

DPici(A) generated by the two-sided tilting complexes Ty, € D°(Mod(A4,®x
A7 ), as o runs over Or(A) and x runs over the sources in A,,.
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Given an orientation w the set {[Py, ]} ca, i a basis of the Grothendieck group
Ko(4,) = Ko(D®(modA4,,)). Let 7% be the free Abelian group with basis
{ex}xea,- Then [Py ,]— e, determines a canonical isomorphism Ko(Aw)—> 7M.
For a two-sided tilting complex 7" € DPici(w, o) let yo(T): Ko(4w) = Ko(A4w) be
L(D(M)):=[T ®];1w M]. Using the projective bases we get a functor (when we con-
sider a group as a groupoid with a single object)

%0: DPici(A) — Auty(Z*) =~ GL, (7).

Recall that for a vertex x € Ay one defines the reflection s, € Autz(ZA") by

Sxey!= —ex + § €y,

{x,y}eA;

sceyi=-e, if y#x.
The Weyl group of A is the subgroup W(A) C Autz(Z*’) generated by the reflections
Sy
PROPOSITION 5.3. Let x be a source in the quiver A,. Then
XO(TX’,(H) = Sx.
Proof. There is an Auslander—Reiten sequence

-1
0— Py — @ P,o— 1, Prow—0

(x—=>p)€(An);

in modA,,. Applying the functor 7y, ®; — = RHom,, (T, —) to this sequence,
and using formula (5.1), we get a triangle

»cw®A Proy — @ P}s c)_)Prsw_>( X0 wa)[l]
{x,y}eA;

in Db(modAS;_w). Hence

[ X0 ®A P ] = _[Px,x;w] + Z [Py,s;w] € KO(AX;w)-
{x,yted

On the other hand for y # x we have [T}, ®L 4, Pyv.o] = [Pys:0]- This proves that
20(TY ) = sx; but sy = 57!
An immediate consequence is: O

COROLLARY 5.4. yo(Ref(A)) = W(A).

An ordering (xy, ..., x,) of Ag is called source- admissible for an orientation w if x;
is a source in the quiver AS; g o for all 1 <i < n. Any orientation has sou-
rce-admissible orderings of the vertices.
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PROPOSITION 5.5. Let (xy, - .., Xy) be a source-admissible ordering of Ay for an
orientation o. Write w;:= s -5, o, Aii= Aq, and Ti:= Ty, ,_ . Then
Ty ®), - ®h T ®F Ty = 4;[-1]

n—1 @]

in D’ (ModA¢).

Proof. For an orientation o let T iff c I'(D®(modA4,,)) be the quiver of
Definition 2.2. As usual (l"iur)r)o denotes the set of vertices of Fi},r Let G(A) be the
groupoid with object set Or(A), and morphism sets Iso((T'),, (T'S)y) for
w,® € Or(A). The groupoid G(A) acts faithfully on the family of sets
X(A):= {(Fz,ﬂr)o}weor(m. According to Theorem 0.1 there is an injective map of
groupoids ¢: DPici(A)»—G(A).

Let us first assume A is a Dynkin graph. Then there is a canonical isomorphism of
sets X(A) = 7Z x Ag x Or(A). The action of ¢(t,) on X(A) is ¢(te)(i, x,w) =
(i—1,x, ). By formula (5.1), the action of ¢(7},) on X(A) is ¢(T,)©,y, ) =
0,y,s7w) if y #x, and ¢(T{ (1, x, w) = (0, x, s7w). Since q(r,,) commutes with
q(T) ) we have

(T &Y -+ &Y T, x,0)=(i— 1, x,0) = q(t,)i, x, ®)

n—1

for any x € Ag and i € Z.
If A is not Dynkin then X(A)=7Z x7Z x Ay x Or(A), q(1,)(, i, x, w) =
(j,i—1, x, w), etc., and the proof is the same after these modifications.

PROPOSITION 5.6. For any orientation o, Ref(A)(w, w) = (1,,).

Proof. We will only treat the Dynkin case; the general case is proved similarly with
modifications like in the previous proof.

Let T € Ref(A)(w, ). From the proof above we see that ¢(7)(0, x, w) = (i(x), x, w)
for some i(x) € Z. A quiver map 7w A, — ZA, with n(x) = (i(x), x) must have
i(x) =i for all x, since A is a tree. Therefore ¢(T) = q(t). O

Remark 5.7. The explicit calculations in Section 4 show that the shift ¢ = A[1] is
not in (t) C DPicy(A4) for most algebras 4. Thus Ref(A) ; DPici(A) for most graphs
A.
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