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Abstract

For an indifference graph G, we define a symmetric function of increasing spanning forests of G. We prove that

this symmetric function satisfies certain linear relations, which are also satisfied by the chromatic quasisymmetric

function and unicellular LLT polynomials. As a consequence, we give a combinatorial interpretation of the coef-

ficients of the LLT polynomial in the elementary basis (up to a factor of a power of (@ − 1)), strengthening the

description given in [4].
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1. Introduction

In 1730, Stirling introduced what are now called (signless) Stirling numbers of the first kind. These

numbers B(=, :) may be defined via the following equality:

C (C − 1) · · · (C − = + 1) =
∑

:

(−1)=−: B(=, :)C: . (1)

One way to interpret this elementary identity is to notice that the left-hand side is the chromatic

polynomial of the complete graph  = on = vertices, so the numbers B(=, :) are the coefficients of the

chromatic polynomial in the basis C: . A combinatorial interpretation for the B(=, :) is the number of

increasing forests with : components and vertex set [=] = {1, . . . , =} (see [7]). An increasing tree ) is

a tree with totally ordered vertex set such that the vertices along any path starting on the minimal vertex

go in increasing order (see Figure 1). An increasing forest is a forest with totally ordered vertex set such

that its components are increasing trees.
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Figure 1. An increasing tree (left) and a non-increasing tree (right) with a non-increasing path high-

lighted.

With these definitions, we see that the coefficient of C: in the chromatic polynomial of  = counts (up

to a sign) the number of increasing spanning forests of  = with : components.

This interpretation actually holds for a larger class of graphs, namely, graphs that have a perfect

elimination ordering. A perfect elimination ordering is an ordering E1, E2, . . . , E= of the vertex set of �

such that, for each vertex E 9 , the set {E8; 8 < 9 , {E8 , E 9 } ∈ � (�)} induces a clique of�. In this paper, we

will assume that� has vertex set [=] and that the usual ordering of [=] is a perfect elimination ordering.

Then [14, Theorem 26] states that the coefficient of C: in j� (C) counts (up to a sign (−1): ) the number

of increasing spanning forests of � with exactly : components.

The chromatic polynomial of a graph admits a symmetric function generalization introduced by

Stanley in [21]. Given a graph �, it is defined as

csf(�) ≔
∑

^

G^ ,

where the sum runs through all proper colorings of the vertices ^ : + (�) → N and G^ ≔
∏

E ∈+ (�) G^ (E) .

A coloring ^ is proper if ^(E) ≠ ^(E′) whenever E and E′ are adjacent. We have that csf(�) lies in Λ,

the algebra of symmetric functions.

The algebra Λ has three important sets of generators called the elementary, power sum, and complete

symmetric functions

4= (G) =
∑

81<82<...<8=

G81G82 · · · G8= , ?= (G) =
∑

8

G=8 , ℎ= (G) =
∑

81≤82≤...≤8=

G81G82 · · · G8= ,

where G denotes the collection of variables (G1, G2, . . .).

Every element inΛ can be written as a polynomial in one of the generators above. Moreover, for every

partition _ = (_1, . . . , _ℓ (_) ), we define 4_(G) ≔
∏

4_8 (G), ?_ (G) ≔
∏

?_8 (G) and ℎ_ (G) ≔
∏

ℎ_8 (G).

Each of the sets {4_(G)}, {?_(G)} and {ℎ_ (G)} is a homogeneous basis for Λ.

If we set G1 = G2 = . . . = G< = 1 and G<+1 = G<+2 = . . . = 0, then csf(�) (1, . . . , 1, 0, . . .) is precisely

the number of ways to color � with < colors, which is simply j� (<). Moreover, via this substitution

we have that

4= (1, . . . , 1, 0, . . .) =

(

<

=

)

, ℎ= (1, . . . , 1, 0, . . .) =

(

< + = − 1

=

)

,

and ?= (1, . . . , 1, 0, . . .) = <. We can actually make < into an indeterminate C. If we define the special-

ization map n : Λ → Q[C] as the homomorphism of algebras given by n (?=) = C for every = = 1, 2, . . . ,

then we have that n (4=) = C (C − 1) · · · (C − = + 1)/=!, n (ℎ=) = C (C + 1) · · · (C + =− 1)/=!, and, as expected,

n (csf (�)) = j� (C). We refer to [17, Example 1, page 26] for more details about the specialization map.

Via the specialization map, we have n (?_) = C
ℓ (_) for every partition _. So, the analogue of writing

j� in the basis C: is to express csf(�) in the basis ?_ with _ ⊢ =. For instance, if � is the graph in

Figure 2, we have that

csf(�) = ?1,1,1,1 − 4?2,1,1 + ?2,2 + 4?3,1 − 2?4.
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Figure 2. A graph� with a perfect elimination ordering and chromatic polynomial C4−4C3+5C2−2C, its

2 increasing spanning forests with 1 component and its 5 increasing spanning forests with 2 components.

1 2 3 4 5 6 7 8 9

Figure 3. The increasing forest associated with the permutation f = (16248) (3795).

The attentive reader may notice that the five increasing spanning forests of � with two components are

nicely divided into two groups: there are four forests with components of either 3 vertices or 1 vertex,

and one forest with components having 2 vertices. With that in mind, we define the partition _(�) of a

forest � as the partition induced by the number of vertices of the components of �.

Going back to the complete graph, the chromatic symmetric function is =!4= (G). In that case, we

have the well-known Newton identity

=!4= =
∑

_⊢=

(−1)=−ℓ (_)0_?_ (G) (2)

where 0_ is the number of permutations in = elements with cycle partition _. The number 0_ also counts

increasing forests with vertex set [=] and partition _. Indeed, we can construct a bijection between

permutations with size = and increasing forests with vertex set [=] as follows (see [22, Example 1.3.15]).

For each cycle g = ( 91, 92, . . . , 9: ), with 91 ≤ 9; for every ; ∈ [:], we construct an increasing tree )g
with vertex set { 91, . . . , 9: }, where 98 is connected to the rightmost element 9; of g that precedes 98 and

that is less than 98 . If f is a permutation in (=, write f in cyclic notation f = g1 . . . g: and define the

forest �f as )g1
∪ )g2

∪ . . . ∪ )g: . It follows from the construction that if f has cycle partition _, then

_(�f) = _ as well. See Figure 3 for an example.
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Actually, if � is a graph with a perfect elimination ordering, then

csf(�) =
∑

�

(−1)=−ℓ (_(� )) ?_(� ) (G), (3)

where the sum runs through all increasing spanning forests of �.1

The Stirling numbers of the first kind admit a @-deformation B@ (=, :) introduced by Gould [13],

defined through the identity

C (C − [1]@) (C − [2]@) · · · (C − [= − 1]@) =
∑

:

(−1)=−: B@ (=, :)C
: ,

where [ 9]@ = (@ 9 − 1)/(@ − 1). Since B(=, :) enumerates increasing forests, we could ask what statistic

on increasing forests gives B@ (=, :). In another direction, we could ask what is a @-analogue of Equation

(2). Of course, we would first have to modify either 4= (G) or ?_ (G).

To simplify matters and avoid unnecessary signs, we will apply the usual involution l to Equation

(2). Recall that l : Λ → Λ is defined by l(4= (G)) ≔ ℎ= (G) and satisfies l(?= (G)) = (−1)=−1?= (G).

Then equation (2) becomes an additional Newton identity:

=!ℎ= (G) =
∑

_⊢=

0_?_ (G). (4)

Another relation involving the power sum and complete symmetric functions is the recursion

=ℎ= (G) =

=
∑

8=1

ℎ=−8 (G)?8 (G).

With this in mind, we define the symmetric functions d= (G; @) in Λ@ ≔ Λ[@] by the recursion

[=]@ℎ= (G) =

=
∑

8=1

ℎ=−8 (G)d8 (G; @).

For instance, we have that

d1(G; @) = ℎ1 (G),

d2(G; @) = (@ + 1)ℎ2 (G) − ℎ1,1 (G),

d3(G; @) = (@2 + @ + 1)ℎ3 (G) − (@ + 2)ℎ2,1 (G) + ℎ1,1,1 (G).

We note that d= (G; @) interpolates between the power sum and the elementary symmetric function, in

the sense that d= (G; 1) = ?= (G) and d= (G; 0) = (−1)=−14= (G). The reader familiar with symmetric

functions will quickly realize that d= (G; @) is actually a modification of the Hall-Littlewood polynomial

%= (G; @), namely d= (G; @) = @
=−1%= (G; @

−1). Defining d_ (G; @) ≔
∏

d_8 (G; @), for example

d3,2 (G; @) = (@3 + 2@2 + 2@ + 1)ℎ3,2 (G) − (@2 + @ + 1)ℎ3,1,1 (G)

− (@2 + 3@ + 2)ℎ2,2,1 (G) + (2@ + 3)ℎ2,1,1,1,1 (G) − ℎ1,1,1,1,1 (G),

we get a @-analogue of Equation (4),

=!@ℎ= (G) =
∑

_⊢=

0_ (@)d_ (G; @),

1The authors could not find this precise statement in the literature, but it readily follows from [21, Corollary 2.7] and [14].
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Figure 4. A Hessenberg function ℎ and its associated indifference graph.

where =!@ ≔
∏=
9=1 [ 9]@ and 0_ (@) is a polynomial with non-negative integer coefficients. Moreover,

we have that B@ (=, :) =
∑

0_ (@), where the sum runs through all partitions _ of = with length ℓ(_) = :

(see Proposition 2.1 and Corollary 3.7).

Since B(=, :) and 0_ enumerate increasing forests, it is natural to ask if there is a statistic on increasing

forests that gives B@ (=, :) and 0_ (@), and more generally if there is a @-analogue of Equation (3).

One of the main goals of this paper is to answer this question. We first notice that the left-hand side of

Equation (3) already has a @-analogue introduced in [20], called the chromatic quasisymmetric function

of�. For a graph� with set of vertices [=], the chromatic quasisymmetric function csf@ (�) is defined as

csf@ (�) ≔
∑

^

@asc� (:)G^ ,

where the sum runs through all proper colorings of � and

asc� (^) ≔ |{(8, 9); 8 < 9 , ^(8) < ^( 9); {8, 9} ∈ � (�)}|

is the number of ascents of the coloring ^.

For the right-hand side of Equation (3), d_ (G; @) will play the part of ?_ (G), so it remains to find a

statistic wt� (�) for every increasing spanning forest � of � such that

l(csf@ (�)) =
∑

�

@wt� (� ) d_(� ) (G; @).

One complication is that csf@ (�) is not usually symmetric, in which case there is no chance for the

equality above to hold. To avoid this, we will restrict our attention in the rest of this paper to a class of

graphs for which csf@ (�) is known to be symmetric, namely indifference graphs.

A graph is called an indifference graph if its vertex set is [=] ≔ {1, 2, . . . , =} for some natural =

and such that if {8, 9} is an edge with 8 < 9 , then {8, :} and {:, 9} are also edges for every : such that

8 < : < 9 . In particular, on every indifference graph, the usual ordering of [=] is a perfect elimination

ordering.

Indifference graphs are naturally associated with Hessenberg functions. A Hessenberg function is a

non-decreasing function m : [=] → [=] such that m(8) ≥ 8 for every 8 ∈ [=]. The graph �m induced by

m is the graph with vertex set [=] and edge set {(8, 9); 8 < 9 ≤ m(8)}. Every indifference graph arises

in this way.

For a permutation f ∈ (=, we say that f ≤ m if f(8) ≤ m(8) for every 8 ∈ [=], and we denote by

(=,m the set of all permutations f ∈ (= such that f ≤ m. One easy observation is that f ≤ m if and

only if �f is a increasing spanning forest of �m. Equation (3) then becomes

l(csf(�)) =
∑

f≤m

?_(f) (G).

This was known ante litteram in the work of Stanley and Stembridge [23]. We mention this as it is easier

to define the statistic wt� (�) in terms of the associated permutation.
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A �-inversion of f is a pair (8, 9) with 8 < 9 , f(8) > f( 9), and {f( 9), f(8)} ∈ � (�). Also, we

let f2 be the permutation obtained by removing the parentheses in the cyclic notation of f. Then we

define wt� (f) to be the number of �-inversions of f2 .

Definition 1.1. Let m : [=] → [=] be a Hessenberg function with associated indifference graph �. For

each partition _ ⊢ =, we define

2_ (m, @) = 2_ (�, @) ≔
∑

f≤m
_(f)=_

@wt� (f) .

We have the following theorem.

Theorem 1.2. If � is an indifference graph, then

l(csf@ (�)) =
∑

f≤m

@wt� (f) d_(f) (G; @) =
∑

_⊢=

2_ (�, @)d_(G; @). (5)

Increasing forests also play a role in another symmetric function related to colorings of �. If � is an

indifference graph, the unicellular LLT polynomial associated with � is defined as

LLT(�) ≔
∑

^

@asc� (^)G^ ,

where the sum runs through all (not necessarily proper) colorings of �.2

Since csf@ and the unicellular LLT polynomial are closely related by a plethystic transformation (see

[8]), we also get

Theorem 1.3. If � is an indifference graph, then

LLT(�) =
∑

f≤m

(@ − 1)=−ℓ (_(f))@wt� (f)4_(f) (G). (6)

In particular, we have that

LLT(�) =
∑

_⊢=

(@ − 1)=−ℓ (_)2_ (�, @)4_(G). (7)

As a direct corollary, we obtain

Corollary 1.4. When � is an indifference graph, we have that LLT(�; @ + 1) is 4-positive.

The 4-positivity of the vertical strip LLT polynomials, after the shift @ → @ +1, was first conjectured

in [2] and [10], following [6] where several symmetric functions were conjectured to be 4-positive after

this shift. This conjecture has been recently proved in [9, Corollary 5.7] and [4, Corollary 2.10]. The

latter paper also proves the explicit combinatorial description conjectured in [2]. This description also

follows from Theorem 1.3 (see Proposition 4.1).

We note that Theorem 1.3 is a slight strengthening (in the unicellular case) of this conjecture, in

the sense that we isolate the explicit contribution of the (@ − 1) factors. Moreover, with a more careful

examination of Theorem 1.3, we can actually extend Corollary 1.4 to vertical strip LLT polynomials

(see Proposition 4.2).

The main idea to prove these results is to use the fact that csf@ and LLT are completely determined

by certain linear relations and their values at the complete graphs, as proved in [1]. Consequently, it is

enough to prove that the right-hand sides of Equations (5) and (6) also satisfy these relations.

2These polynomials can actually be defined in a more general setting; see [16].
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2. Preliminaries

2.1. Symmetric functions

Let Λ be the algebra of symmetric functions, and Λ@ ≔ Λ[@]. As usual, we let [ 9]@ = (@ 9 − 1)/(@ − 1)

and 9!@ =
∏ 9

8=1
[8]@ . We denote by 4_ (G), ℎ_ (G), B_(G), and ?_ (G) the elementary, complete, Schur, and

power sum symmetric functions. Also, we let %_ (G; @) ∈ Λ@ be the Hall-Littlewood polynomial (see

[17, Chapter 3]). For our purposes, the relevant identity is

%= (G; @) =

=−1
∑

A=0

(−@)A B=−A ,1A (G) (8)

(see [17, page 214]). Then we define d= (G; @) ≔ @=−1%= (G; @
−1); alternatively, we could define d= ≔

(−1)=−1l(%= (G; @)). As usual, we set d_ (G; @) ≔
∏

d_8 (G; @). Notice that d_ (G; @) is, in general, not

the same as @ |_ |−ℓ (_)%_ (G; @
−1). We have that d_ (G; @) interpolates between the power sum, d_ (G; 1) =

?_ (G), and the elementary symmetric functions, d_ (G; 0) = (−1)=−ℓ (_)4_ (G).

Before stating a proposition that relates d= (G; @) with the complete homogeneous symmetric functions

ℎ= (G), we make a few definitions. A domino is a connected horizontal strip, and a domino tabloid of

shape _ and type ` is a filling of the Young diagram of _ with dominoes of length `8 , where dominoes of

the same length are indistinguishable. The @-weight of a domino tabloid is the product
∏

[;8]@ , where ;8
is the length of the leftmost domino in the 8-th row of the Young diagram of _. We denote by F_` (@) the

sum of the @-weights of all domino tabloids of shape _ and type `. Also, as usual, we define I_ ≔
=!
0_

,

where 0_ is the number of permutations with cycle partition _.

Proposition 2.1. We have the following equalities:

1.

[=]@ℎ= (G) =

=
∑

9=1

ℎ=− 9 (G)d 9 (G; @)

2.

=!@ℎ= (G) =

d1(G; @) d2(G; @) d3(G; @) · · · d=−1 (G; @) d= (G; @)

−1 d1(G; @) d2(G; @) · · · d=−2 (G; @) d=−1 (G; @)

0 −[2]@ d1(G; @) · · · d=−3 (G; @) d=−2 (G; @)

0 0 −[3]@ · · · d=−4 (G; @) d=−3 (G; @)
...

...
...

. . .
...

...

0 0 0 · · · −[= − 1]@ d1 (G; @)

3.

d= (G; @) =

ℎ1 (G) [2]@ℎ2 (G) [3]@ℎ3 (G) · · · [= − 1]@ℎ=−1 (G) [=]@ℎ= (G)

1 ℎ1 (G) ℎ2 (G) · · · ℎ=−2 (G) ℎ=−1 (G)

0 1 ℎ1 (G) · · · ℎ=−3 (G) ℎ=−2 (G)

0 0 1 · · · ℎ=−4 (G) ℎ=−3 (G)
...

...
...

. . .
...

...

0 0 0 · · · 1 ℎ1 (G)

4.

d= (G; @) =
∑

U |==

(−1)ℓ (U)−1 [U1]@ℎ_(U) (G)

5.

d_ (G; @) =
∑

`⊢=

(−1)ℓ (_)−ℓ (`)F_` (@)ℎ` (G)
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6.

d_ (G; @) =
ℎ_ [(@ − 1)G]

(@ − 1)ℓ (_)
.

7.

d= (G; @) =
∑

_⊢=

?_ (G)

I_
(@ − 1)ℓ (_)−1

ℓ (_)
∏

8=1

[_8]@ .

Proof. The first equality comes from Equation (8), the fact that ℎ= = B=, and the Pieri formula,

B=− 9 (G) · B 9−A ,1A (G) =

min(=− 9 , 9−A−1)
∑

0=0

B=−A−0,1+0,1A−1 (G) +

min(=− 9−1, 9−A−1)
∑

0=0

B=−A−0−1,1+0,1A (G).

Items (2), (3) are a consequence of item (1) and the expansion of the determinant. Items (4) and (5)

follow from item (1), just adapting a standard argument [17, page 109].

To prove item (6), we define @= (G; @) = (1− @)%= (G; @) as in [17, Page 209]. This means d= (G; @) =
@=

@−1
@= (G; @

−1). By [19, Theorem 4.13, items (b) and (c)], we have that d= (G; @) =
@A

@−1
ℎ= [(1 − @−1)G],

and hence d= (G; @) =
ℎ= [ (@−1)G ]

@−1
. Item (7) follows from [19, Theorem 4.13, item (d)]. �

2.2. The modular law

The chromatic symmetric function and the unicellular LLT polynomial satisfy a set of recurrences that

characterizes them. We denote by D the set of Hessenberg functions, which we identify with the set of

indifference graphs. We recall that D has a multiplication given by �1 ·�2 = �1 ∪�2, where �1 ∪�2

is the ordered union of �1 and �2.

Definition 2.2. We say that a function 5 : D → A satisfies the modular law if

(1 + @) 5 (m1) = @ 5 (m0) + 5 (m2) (9)

whenever one of the following conditions holds:

1. There exists 8 ∈ [= − 1] such that m1(8 − 1) < m1 (8) < m1 (8 + 1) and m1(m1 (8)) = m1 (m1(8) + 1)

or m1 (8) = =. Moreover, m0 and m2 satisfy m: ( 9) ≔ m1( 9) for every 9 ≠ 8 and : = 0, 2, while

m: (8) = m1 (8) − 1 + : .

2. There exists 8 ∈ [= − 1] such that m1 (8 + 1) = m1 (8) + 1 and m−1
1
(8) = ∅. Moreover, m0 and m2

satisfy m: ( 9) ≔ m1( 9) for every 9 ≠ 8, 8 + 1 and : = 0, 2, while m0(8) = m0(8 + 1) = m1 (8) and

m2 (8) = m2(8 + 1) = m1 (8 + 1).

We have the following Theorems (see [1, Theorem 1.2]).

Theorem 2.3. The chromatic quasisymmetric function is the unique multiplicative function csf@ : D →

Λ@ satisfying the modular law such that csf@ ( =) = =!@4= (G).

Theorem 2.4. The unicellular LLT polynomial is the unique multiplicative function LLT: D → Λ@

satisfying the modular law such that

LLT( =) =

=
∑

8=1

LLT( =−8) ((@ − 1)8−148 (G))

=−1
∏

9==−8+1

[ 9]@ .

https://doi.org/10.1017/fms.2021.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.33


Forum of Mathematics, Sigma 9

The recurrence for the complete graphs in Theorem 2.4 can be found in [3, Proposition 5.18]. The

theorems above are equivalent via the plethystic relation (see [8])

LLT(�) [(@ − 1)G]

(@ − 1)=
= csf@ (�).

We can make this plethystic equality more explicit using Proposition 2.1. Writing

!!) (�) =
∑

!!)_ (�; @)4_ (G),

then

l(csf@ (�)) = (@ − 1)−=l(LLT(�) [(@ − 1)G])

= (@ − 1)−=
∑

LLT_ (�; @)l(4_ [(@ − 1)G])

= (@ − 1)−=
∑

LLT_ (�; @)ℎ_ [(@ − 1)G] (10)

= (@ − 1)−=
∑

LLT_ (�; @) (@ − 1)ℓ (_) d_(G; @) (11)

=

∑

LLT_ (�; @) (@ − 1)ℓ (_)−=d_(G; @),

where equality (10) follows from [17, Example 1.(a), page 136] and equality (11) follows from Propo-

sition 2.1 item (6). This proves that Theorems 1.2 and 1.3 are equivalent.

2.3. Permutations and increasing forests

We begin by recalling the forget cycles transformation f → f2 , which simply consists of writing f in

cycle notation and forgetting the parentheses. This means each cycle must begin with its least element,

and the cycles must be ordered according to their least element. For example,

f = 617892543, f = (162) (3759) (48), f2 = 162375948.

Denote by _(f) the cycle partition of f.

For a permutation f ∈ (= and Hessenberg function m : [=] → [=], we define the number of m-

inversions of f as

invm(f) ≔ |{(8, 9); 8 < 9 ≤ m(8), f−1(8) > f−1( 9)}|.

We define the m-weight of a permutationf as wtm(f) ≔ invm(f2). We notice that wtm(f) = wt�m
(f).

Recall f ≤ m if f(8) ≤ m(8) for every 8 ∈ [=], and (=,m denotes the set {f ∈ (=;f ≤ m}.

Remark 2.5. We note that a :-cycle g = ( 91, 92, . . . , 9: ), with least element 91, is in (=,m if and only if

9;+1 ≤ m( 9;) for every 9 ∈ [:−1]. Moreover, a permutationf is in (=,m if and only if all of its cycles are

in (=,m as well. Moreover, we have that the cycle g ∈ (=,m on { 91, . . . , 9: } is determined by the numbers

invm (g, 9;) = |{; ′ ∈ [:]; ; ′ > ;, 9;′ < 9; ≤ m( 9 ′; )}|,

for every ; ∈ [:] (see [11] or [3, Section 9.5]).

Now we define the weight of an increasing spanning forest of an indifference graph �. Before doing

that, we note that given a function 6 : [=] → [=] ∪ {0} such that 6( 9) < 9 , we have that the graph � with

vertex set + (�) = [=] and edge set � (�) = {{6( 9), 9}; 6( 9) ≠ 0} is an increasing forest. All increasing

forests with vertex set [=] can be obtained in this way. Given an increasing tree ) , an edge {D, E} with

D < E has a length given by |{F ∈ + ()); D < F < E}|, and we define the weight wt()) of ) as the sum

of the lengths of each edge.
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1 2 34 56 78 9

Figure 5. Computing the weight and set of inversions of the increasing forest in Figure 3.

Let � = )1 ∪)2 ∪ . . . ∪): be an increasing spanning forest of a graph �. By convention, we assume

that root()1) < root()2) < . . . < root(): ). We say that a set {E, F} of vertices is an inversion of � if

E < F and there exists 8 < 9 such that E ∈ )9 and F ∈ )8 . Moreover, if {E, F} is an edge of �, we say

that {E, F} is a�-inversion of � and define inv� (�) as the number of�-inversions of �. The�-weight

of � is given by

wt� (�) ≔ inv� (�) +
∑

1≤ 9≤:

wt()9 ).

When � is the graph induced by a Hessenberg function m, we write wtm(�) for wt� (�). For a forest

�, we say that the partition of � is the partition given by |+ ()8) | and denote it by _(�). For a graph �,

we denote by F(�) the set of increasing spanning forests of �.

For example, considering the increasing forest in Figure 3, we have that wt()1) = 3, wt()2) = 1 and

the set of inversions of � is (see Figure 5)

{{3, 4}, {3, 6}, {3, 8}, {5, 6}, {5, 8}, {7, 8}}.

The bijection between (=,m andF(�m) given in the introduction preserves partitions, but not weights.

This is solved by the proposition below.

Proposition 2.6. Given a Hessenberg function m : [=] → [=], there exists a bijecion (=,m → F(�m)

that preserves both weight and partition.

Proof. For each cycle g = ( 91, . . . , 9: ) in (=,m, the idea is to construct a tree )g with vertex set

{ 91, . . . , 9: } such that wt()) = invm (g2). We already know it is sufficient to define a function

6 : { 92, . . . , 9: } → { 91, . . . , 9: } satisfying 6( 9;) < 9; for every ; ∈ {2, . . . , :}. In order to have

wt()g) = invm(g2), we define 6 as the unique function satisfying

|{; ′ ∈ [:], 6( 9;) < 9;′ < 9;}| = |{; ′ ∈ [:]; ; ′ > ;, 9;′ < 9; ≤ m( 9 ′; )}|

for every ; ∈ {2, . . . , :}.

To see that )g is indeed a subgraph of �m, it is sufficient to check that m(6( 9;)) ≥ 9; for every

; ∈ {2, . . . , :}. Assume for contradiction that there exists ; ∈ {2, . . . , :} such that m(6( 9;)) < 9; , so in

particular we have the following inclusions:

{; ′ ∈ [:]; 6( 9;) < 9;′ < 9;}

∪

{; ′ ∈ [:]; 9;′ < 9; ≤ m( 9;′)}

∪

{; ′ ∈ [:]; ; ′ > ;, 9;′ < 9; ≤ m( 9 ′
;
)}.

Since {; ′ ∈ [:], 6( 9;) < 9;′ < 9;} and {; ′ ∈ [:]; ; ′ > ;, 9;′ < 9; ≤ m( 9 ′
;
)} have the same cardinality,

we must have equalities in the equation above. However, since g ∈ (=,m, we have that there must exist

; ′ < ; such that 9;′ < 9; ≤ m( 9;′), which means the last inclusion is proper: a contradiction.

Let q : (=,m → F(�m) be the function defined by q(f) = )g1
∪ )g2

∪ . . . ∪ )g: , where g1, . . . , g:
are the cycles of f. The function q is injective by Remark 2.5, and hence bijective because both sets

have the same cardinality
∏=
8=1 (m(8) − 8 + 1), and preserves weight and partition by construction. �
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1 2 3 4 5

Figure 6. The increasing tree induced by the cycle (13542) ∈ (5,m, where m = (3, 3, 5, 5, 5).

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Figure 7. All the increasing spanning forests of �m for m = (2, 3, 4, 4).

We denote the increasing forest associated with f via this construction by �f,m. For example, if

m = (3, 3, 5, 5, 5) and f = (13542), then �f,m is depicted in Figure 6.

3. The symmetric function of increasing forests

In this section, we define a symmetric function IF: D → Λ@ that enumerates increasing spanning

forests of indifference graphs. First, we choose generators H= (G; @) ∈ Λ@ homogeneous of degree =

and let H_ (G; @) =
∏

H_8 (G; @). These generators will be either H= (G; @) = d= (G; @) or H= (G; @) =

(@ − 1)=−14= (G) in the next section.

Definition 3.1. Let m be a Hessenberg function and �m its associated graph. We define the following

symmetric function (recall definition 1.1):

IF(m) = IFH (m) ≔
∑

f≤m

@wtm (f) H_(f) (G; @)

=

∑

� ∈F (�m)

@wtm (� ) H_(� ) (G; @)

=

∑

_⊢=

2_ (m; @)H_ (G; @).

Example 3.2. As an example, if m = (2, 3, 4, 4), we have 8 increasing spanning forests (depicted in

Figure 7) of �m, all of which have weight 1. We get

IF(m) = H1,1,1,1 (G; @) + 3H2,1,1 (G; @) + H2,2 (G; @) + 2H3,1 (G; @) + H4 (G; @).

More generally, if m = (2, 3, . . . , =− 1, =, =) is the Hessenberg function associated with the path graph,

we have that the weight of any increasing spanning forest of �m is 1.

On the other hand, if m = (2, 4, 4, 4), we have that�m has 12 increasing spanning forests, 4 of which

have partition (3, 1) and are depicted in Figure 8. We get

IF(m) = H1,1,1,1 (G; @) + (@ + 3)H2,1,1 (G; @) + H2,2 (G; @) + (2@ + 2)H3,1 (G; @) + (@ + 1)H4 (G; @).

When m = (3, 4, 4, 5, 5) there are 8 increasing spanning forests of �m with partition (4, 1), as

depicted in Figure 9. We have
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1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Figure 8. The graph associated with m = (2, 4, 4, 4) and the increasing spanning forests of �m with

partition (3, 1).

1 2 3 4 5 1 2 3 4 5
f = (1234) (5)

1 2 3 4 5
f = (1243) (5)

1 2 3 4 5
f = (1324) (5)

1 2 3 4 5
f = (1342) (5)

1 2 3 4 5
f = (1245) (3)

1 2 3 4 5
f = (1345) (2)

1 2 3 4 5
f = (1) (2345)

1 2 3 4 5
f = (1) (2453)

Figure 9. The graph associated with m = (3, 4, 4, 5, 5) and the 8 increasing spanning forests of �m

with partition (4, 1), with their respective permutations.

IF(m) = H1,1,1,1,1 (G; @) + (2@ + 4)H2,1,1,1 (G; @) + (2@ + 3)H2,2,1 (G; @)

+ (@2 + 4@ + 3)H3,1,1 (G; @) + (2@ + 2)H3,2 (G; @)

+ (2@2 + 4@ + 2)H4,1 (G; @) + (@2 + 2@ + 1)H5 (G; @).

The rest of this section is devoted to proving that IF is multiplicative and satisfies the modular law,

and to finding a recurrence for the values IF( =) at complete graphs.

Proposition 3.3. The function IF is multiplicative.

Proof. Let � = �1 ∪ �2 be the ordered disjoint union of �1 and �2. Clearly, every increasing

spanning forest � of � is a union �1 ∪ �2, where �8 is an increasing spanning forest of �8 for 8 = 1, 2.

Conversely, every such union �1 ∪ �2 is an increasing spanning forest of �. Moreover, we have that

wt� (�) = wt�1
(�1) + wt�2

(�2) and H_(� ) = H_(�1) H_(�2) , hence

IF(�) =
∑

� ∈F (�)

@wt� (� ) H_(� ) (G; @)

=

∑

�1∈F (�1)

∑

�2∈F (�2)

@wt�1
(�1)+wt�2

(�2) H_(�1) (G; @)H_(�2) (G; @)

=

(

∑

�1∈F (�1)

@wt�1
(�1) H_(�1) (G; @)

) (

∑

�2∈F (�2)

@wt�2
(�2) H_(�2) (G; @)

)

= IF(�1) IF(�2).

This finishes the proof. �
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Table 1. The contributions of 8, 9 , 9 + 1 to the weights of

f and f′ when f ≤ m0..

wtm1
(f) wtm0

(f) wtm2
(f) wtm2

(f′)

8, 9, 9 + 1 0 0 0

8, 9 + 1, 9 1 1 1

9, 8, 9 + 1 1 0 2

9, 9 + 1, 8 1 0 2

9 + 1, 8, 9 1 1 1

9 + 1, 8, 9 2 1 3

Table 2. The contributions of 8, 9 , 9 + 1 to the weights

of f and f′ when f � m0..

wtm1
(f) wtm2

(f) wtm2
(f′)

8, 9, 9 + 1 0 0 1

9 + 1, 8, 9 2 3 2

Table 3. The contributions of 8, 8 + 1, 9 to the weights of

f and f′ when f ≤ m0..

wtm1
(f) wtm0

(f) wtm2
(f) wtm2

(f′)

8, 8 + 1, 9 0 0 0

8, 9, 8 + 1 1 0 2

8 + 1, 8, 9 1 1 1

8 + 1, 9, 8 1 1 1

9, 8, 8 + 1 1 0 2

9, 8 + 1, 8 2 1 3

Proposition 3.4. The function IF satisfies the modular law.

Proof. Let m1, m0, m2, and 8 as in Condition 1, and let 9 ≔ m1 (8). Let f ≤ m1 be a permutation, and

denote by f′ = ( 9 , 9 + 1)f( 9 , 9 + 1) the conjugation of f with the transposition ( 9 , 9 + 1). In particular,

f′2 = ( 9 , 9 +1)f2 and f′ have the same cycle partition as f. Moreover, since m1, m0, m2, and 8 satisfy

Condition 1, we have that wtm2
(f′) = wtm2

(f) ± 1 depending on the relative position of 9 , 9 + 1 in f2 .

If f ≤ m0, then

(1 + @)@wtm1
(f)

= @ · @wtm0
(f) + @wtm2

(g) ,

where g is chosen to be either f or f′ depending on the relative position of 8, 9 , 9 + 1 in f2 , as shown

in Table 1.

If f � m0, then f(8) = 9 , which means 8 and 9 are adjacent in f2 . Then

(1 + @)@wtm1
(f)

= @wtm2
(f) + @wtm2

(f′) ,

as seen in Table 2. This proves that (1 + @) IF(m1) = @ IF(m0) + IF(m2).

Let m1, m0, m2, and 8 as in Condition 2, and let 9 ≔ m1 (8 + 1). Let f ≤ m1 be a permutation, and

denote by f′ = (8, 8 + 1)f(8, 8 + 1). In particular f′2 = (8, 8 + 1)f2 and f′ and f have the same cycle

partition. If f ≤ m0, then

(1 + @)@wtm1
(f)

= @ · @wtm0
(f) + @wtm2

(g)

where g is chosen to be either f or f′ depending on the relative position of 8, 8 + 1, 9 in f2 , as shown

in Table 3.
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Table 4. The contributions of 8, 8 + 1, 9 to the weights

of f and f′ when f � m0..

wtm1
(f) wtm2

(f) wtm2
(f′)

8, 8 + 1, 9 0 0 1

8 + 1, 9, 8 1 2 1

If f � m0, then f(8 + 1) = 9 , which means 8 + 1 and 9 are adjacent in f2 . Then

(1 + @)@wtm1
(f)

= @wtm2
(f) + @wtm2

(f′) ,

as seen in Table 4. This proves that (1 + @) IF(m1) = @ IF(m0) + IF(m2) and finishes the proof. �

Proposition 3.5. We have the following recursion for the complete graph.

IF( =) =

=
∑

8=1

IF( =−8)H8 (G; @)

=−1
∏

9==−8+1

[ 9]@ , IF( 0) = 1.

Proof. We have that

IF( =) =
∑

� ∈F ( =)

@wt = (� ) H_(� ) (G; @).

We split this sum by the number of vertices of the tree )1 with root 1. If )1 has size 8 and other vertices

;1, . . . , ;8−1, then the contribution of this tree to the weight of each forest containing )1 is

wt()1) +

8−1
∑

9=1

(; 9 − 9 − 1) ( 9 − 1).

Hence
∑

� ∈� ( =) ,)1⊂�

@wt = (� ) H_(� ) (G; @) = @
wt()1)+

∑8−1
9=1 (; 9− 9−1) ( 9−1)

H8 (G; @) IF( =−8).

Varying )1, we have that the sum
∑

1<;1<;2<...<;8−1≤=
@
∑

(; 9− 9−1) ( 9−1) is given by the @-binomial

coefficient
(=−1
8−1

)

@
(see [18]), while the sum of the weights of all increasing trees with vertex set [8] is

(8 − 1)!@ . Then

∑

� ∈� ( =) , |)1 |=8

@wt = (� ) H_(� ) (G; @) = (8 − 1)!@

(

= − 1

8 − 1

)

@

IF( =−8)H8 (G; @)

and the result follows. �

For a subset � = {81, . . . , 8: } ⊂ [= − 1], we define _(�) as the conjugate of the partition associated

with the composition (81, 82 − 81, . . . , 8: − 8:−1, = − 8: ).

Proposition 3.6. We have that

IF( =) =
∑

� ⊂[=−1]

H_(� ) (G; @)
∏

9∈�

[ 9]@ .
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Proof. We will proceed by induction on =. The base case = = 0 is trivial. For � ⊂ [= − 1], define �1 and

�2 as �1 = � ∩ [= − 8 − 1], �2 = {= − 8 + 1, . . . , = − 1} and � = �1 ∪ �2. Then H_(� ) = H_�1 H8 and

∑

� ⊂[=−1]

H_(� ) (G; @)
∏

9∈�

[ 9]@ =

=
∑

8=1

∑

�1⊂[=−8−1]

H_(�1) (G; @)H8 (G; @)
∏

9∈�1

[ 9]@

=−1
∏

9==−8+1

[ 9]@

=

=
∑

8=1

IF( =−8)H8 (G; @)

=−8
∏

9==−8+1

[ 9]@ (12)

= IF( =), (13)

where equality in (12) follows by the induction hypothesis and equality in (13) follows by

Proposition 3.5. �

We can now relate the coefficients of IF( =) with the @-Stirling numbers of the first kind B@ (=, :).

Recall the definition of 2_ ( =, @) in Definition 1.1 and that the weight wt = (f) is precisely the number

of inversions of f2 , the permutation obtained by removing the parentheses in the cyclic notation of f.

Corollary 3.7. We have that
∑

_⊢=,ℓ (_)=:

2_ ( =, @) = B@ (=, :).

In other words, the following equality holds:

∑

f∈(=

@wt = (f) Cℓ (_(f)) =
∑

0≤:≤=

B@ (=, :)C
: .

Proof. This follows immediately by noticing that both sides are equal to

∑

� ⊂[=−1]

|� |==−:

∏

9∈�

[ 9]@ .

�

Finally, we compute the sum of the coefficients 2_ (m, @) for a given m ∈ D.

Proposition 3.8. For m ∈ D, we have that

∑

f≤m

@wtm (f)
=

=
∏

9=1

(1 + [m( 9) − 9]@). (14)

Proof. Both sides of the equation are multiplicative and satisfy the modular law. By [1, Theorem 1.2], it

is enough to prove the proposition for the complete graph. Let := be the Hessenberg function associated

with  =: that is, := (8) = = for every 8 ∈ [=]. By Proposition 3.6, we have that

∑

f≤:=

@wtm (f)
=

∑

� ⊂[=−8 ]

∏

9∈�

[ 9]@ =

=−1
∏

9=1

(1 + [ 9]@) =

=
∏

9=1

(1 + [:= ( 9) − 9]@),

which completes the proof. �

Remark 3.9. The left-hand side of Equation (14) specializes, via @ = 1, to the number of acyclic

orientations of the graph �m. In fact, the analogous equation for acyclic orientation reads (see [3,
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Corollary 9.3])

∑

\ ∈�$ (�m)

@ascm (\)
=

=
∏

8=1

[m(8) − 8 + 1]@ ,

where �m is the indifference graph associated, �$ (�m) is the set of acyclic orientations of �m and

ascm (\) is the number of ascending edges of \ (oriented edges 8 → 9 with 8 < 9).

4. Relation with the chromatic quasisymmetric function and LLT polynomials

In this section, we prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. We begin by noticing that the right-hand side of Equation 5 is precisely IFd (m).

Since both sides csf@ and IF are multiplicative and satisfy the modular law (by Theorem 2.3, Proposition

3.3 and Proposition 3.4), it is sufficient to prove the equality in the case of complete graphs. By

Proposition 3.6, we have that

IFd ( =) =

d1 (G; @) d2(G; @) d3(G; @) · · · d=−1 (G; @) d= (G; @)

−1 d1(G; @) d2(G; @) · · · d=−2 (G; @) d=−1 (G; @)

0 −[2]@ d1(G; @) · · · d=−3 (G; @) d=−2 (G; @)

0 0 −[3]@ · · · d=−4 (G; @) d=−3 (G; @)
...

...
...

. . .
...

...

0 0 0 · · · −[= − 1]@ d1 (G; @)

,

which by Proposition 2.1 means IFd ( =) = =!@ℎ= (G; @) = l(csf@ ( =)). �

Proof of Theorem 1.3. If we take H= (G; @) = (@ − 1)=−14= (G), then the right-hand side of Equation (6)

is precisely IFH (�). By Theorem 2.4, Proposition 3.3, Proposition 3.4, and Proposition 3.5, we have

that both LLT and IFH are multiplicative, satisfy the modular law, and have the same recurrence for

complete graphs. This means LLT = IFH , and the result follows. �

We now relate increasing spanning forests of an indifference graph � to orientations of �, following

[2] and [4]. We say that an oriented edge −→DE of � is oriented to the right if D < E and oriented to the left

otherwise. Given an orientation > of �, we remove all edges that are oriented to the right and consider

the function lrv> : [=] → [=] (called the lowest reaching vertex), where lrv(E) is the minimum D that

is reachable from E. Consider the partition _(>) of > as the partition induced by | lrv−1 (8) | for 8 ∈ [=].

Moreover, to each orientation >, we define the weight wt(>) as the number of edges oriented to the left.

To give a precise meaning to this relation, we construct a function

6 : O(�m) → F(�m)

in the following way. Let > ∈ O(�m) be an orientation. Remove all edges that are oriented to the right

and all edges −→EF that are oriented to the left such that lrv> (E) < lrv> (F) (this means no path from E to

its lowest-reaching vertex goes through the edge −→EF). Now, for each vertex E, choose (if it exists) the

edge with source E and with greatest length. Define the forest 6(>) as the forest induced by the chosen

edges. Clearly we have that _(>) = _(6(>)).

We will now give another proof of [4, Corollary 2.10] for indifference graphs.

Proposition 4.1. For each � ∈ F(�m), the following equality holds:

∑

>∈6−1 (� )

@wt(>)
= @ (=−ℓ (_(� ))) (@ + 1)wtm (� ) .
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1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 10. From an orientation to an increasing tree. At top right, we remove all edges oriented to

the right. At bottom left, we remove all edges oriented to the left that do not reach the lowest-reaching

vertex. At bottom right, we choose the edges with greatest length.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

Figure 11. An indifference graph �, an increasing forest � of � and the orientations > ∈ 6−1(�).

In particular, if � is an indifference graph, then

LLT(�, @ + 1) =
∑

>∈O(�)

@wt(>)4_(>) (G).

Proof. Let us prove the first statement. For > ∈ 6−1(�), each edge in � must be oriented to the left (in

Figure 11, these are the edges in red), which contributes with @=−ℓ (_(� )) to the weight of >. Each edge

that connects two components of � and that is not an inversion must be oriented to the right (in Figure

11, these are the edges {1, 3}, {1, 4}, {2, 3}, and {2, 4}). These edges do not contribute to the weight.

Each edge that connects two components of � and that is an inversion can be oriented either way (in

Figure 11, these are the edges {3, 5}, {4, 5} and {4, 6}). These edges contribute with (@ + 1)inv(� ) to the

sum of the weights. The edges {D, E}, with D < E, that are not in � but connect the same component )

in � either have to be oriented right, if {D′, E} ∈ ) for some D < D′ < E (in Figure 11, this is the edge

{5, 7}) or can be oriented either way (in Figure 11, this is the edge {2, 5}). These edges contribute with

(@ + 1)wt() ) to the sum of the weights.

By Theorem 1.3, we have that

LLT(�m; @ + 1) =
∑

� ∈� (�m)

@=−ℓ (_(� )) (@ + 1)wtm (� )4_(� ) (G),

from which the second statement follows. �

We finish this section with a few comments about the vertical strip LLT polynomials. We refer the

reader to [16] for the original definition and to [3] for the definition given here.

Given a Hessenberg function m : [=] → [=], we say that a set ( ⊂ {= − 1} is a decoration on m

if m(8) > max{m(8 − 1), 8} (recall that we set m(0) = 0) for every 8 ∈ (. We define LLT(m, ()
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and IFH (m, () by the following recursive formulas. If ( = ∅, then LLT(m, () = LLT(m) and

IFH (m, () = IFH (m); otherwise, for every 8 ∈ (, we have

LLT(m, () ≔
LLT(m, (′) − LLT(m′, (′)

@ − 1

IFH (m, () ≔ IFH (m, (
′) − IFH (m

′, (′),

where (′ = ( \ {8} and

m′( 9) =

{

m( 9) if 9 ≠ 8

m(8) − 1 if 9 = 8.

In particular, if H= (G; @) = (@ − 1)=−14= (G) then, by Theorem 1.3, we have that LLT(m, () =

IFH (m, ()/(@ − 1) |( | . As in Definition 3.1 we write

IFH (m, () =
∑

_⊢=

2_ (m, (; @)H_ (G; @).

Proposition 4.2. We have that 2_ (m, (; @ + 1) ∈ N[@]. In particular, LLT(m, (; @ + 1) is 4-positive.

Proof. For each subset (′ ⊂ (, define m(′ as

m(′ ( 9) =

{

m( 9) if 9 ∉ (′

m( 9) − 1 if 9 ∈ (′.

Then

2_ (m, () =
∑

(′⊂(

(−1) |(
′ |2_ (m(′) =

∑

� ∈� (�m)

∑

(′⊂(

(−1) |(
′ |@

wtm(′ (� )

where we assume that @wtm(′ (� ) = 0 if � ∉ � (�m(′ ). However, for an increasing forest �, if there

exists 8 ∈ ( such that the edge (8,m(8)) is neither an edge of � nor an inversion of �, then @wtm(′ (�) =

@
wtm(′∪{8} (�) for every (′ ⊂ ( \ {8}. In particular, the sum

∑

(′⊂( (−1) |(
′ |@

wtm(′ (� ) is 0. On the other

hand, if the edge (8,m(8)) is either an edge of � or an inversion of � for every 8 ∈ (, then

∑

(′⊂(

(−1) |(
′ |@

wtm(′ (�) = @A (@ − 1): ,

where : = |(� | and A = wtm(� (�) for (� = {8 ∈ (; (8,m(8)) is a inversion of �}. This finishes the

proof. �

The combinatorial description of LLT(�, @+1) given in Proposition 4.1 has been recently generalized

to LLT-cumulants (see [15]).

Remark 4.3. It is not true in general that 2_ (m, (; @) ∈ N[@]. For example, for m = (4, 5, 5, 5, 5) and

( = {1, 2}, we have that

IF(m, () = @3H2,2,1 (G; @) + (@4 − @3)H3,1,1 (G; @) + (@4 + @3)H3,2 (G; @)

+ (@5 + @4 − @3)H4,1 (G; @) + (@5 + @4)H5(G; @).

5. Chromatic quasisymmetric functions and LLT polynomials in other bases

In this section, we relate Theorems 1.2 and 1.3 with the known formulas for the chromatic quasisymmetric

function and the LLT polynomials in other bases of Λ@ .
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We have already seen in Equation (3) how to compute the power-sum expansion of the chromatic

symmetric function of indifference graphs. For the chromatic quasisymmetric function and the LLT

polynomial, the power-sum expansions are computed in [5] and [3, Theorem 6.3], respectively. Both

use the same basic objects, which we now introduce (following [3]).

Given a permutation f ∈ (=, a partition _ ⊢ = and a Hessenberg function m : [=] → [=], we say that

f is (m, _)-admissible if the following holds. For every : ∈ {0, . . . , ℓ(_) − 1} and for every 8 such that

_1 + _2 + . . . + _: < 8 < _1 + _2 + . . . + _:+1,

we have that

◦ f(_1 + _2 + . . . + _: + 1) > f(8 + 1),

◦ f(8) > f(8 + 1) only if f(8) ≤ m(f(8 + 1)).

If Nm,_ is the set of (m, _)-admissible permutations, then

l(csf@ (m)) =
∑

_⊢=

?_ (G)

I_

ℓ (_)
∏

8=1

[_8]@

∑

f∈Nm,_

@ascm (f−1) , (15)

where ascm(f−1) is the number of pairs 1 ≤ 8 < 9 ≤ = such that 9 ≤ m(8) and f−1 (8) < f−1( 9). For

the LLT polynomials, we have that

l(LLT(m)) =
∑

_⊢=

?_ (G)

I_
(@ − 1)=−ℓ (_)

∑

f∈Nm,_

@ascm (f−1) .

To compute the power-sum expansion of the LLT polynomias using Theorem 1.3, we note that

l(4_ (G)) = ℎ_ (G) and (see [17, Equation (6.11)])

ℎ_ (G) =
∑

!`_
?` (G)

I`
,

where

!`_ = |
{

5 : [ℓ(`)] → Z>0;
∑

9∈ 5 −1 (8)

` 9 = _8
}

|.

Then the power-sum expansion is

l(LLT(m)) =
∑

`⊢=

?` (G)

I`

∑

� ∈F (�)

(@ − 1)=−_(� )@wtm (� )!`,_(� ) .

In particular, we have that Theorem 1.3 is equivalent to the following identity involving increasing

forests and admissible permutations:

∑

� ∈F (�m)

(@ − 1)ℓ (`)−ℓ (_(� ))@wtm (� )!`,_(� ) =
∑

f∈Nm,`

@ascm (f−1) . (16)

To compute the power-sum expansion of the chromatic symmetric function, we could apply Proposition

2.1 item (7). Alternatively, it is enough to substitute the equality in Equation (16) into Equation (15).

The Schur expansion of the chromatic quasisymmetric function is already computed in [20], gen-

eralizing the work in [12]. The Schur expansion of d_ (G; @) involves irreducible characters of Hecke

algebras (see [19]), similar to how the Schur expansion of ?= involves characters of the symmetric

group. We will not delve into this subject and leave it to the reader familiar with these topics to deduce

the induced equalities.
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The LLT polynomial is known to be Schur-positive, but no combinatorial proof is known at the time.

Equation (7), when expanded in the Schur basis, becomes

LLT(m) =
∑

`⊢=

B` (G)
(

∑

� ∈F (�)

(@ − 1)=−ℓ (_(� ))@wtm (� ) `′,_( 5 )
)

, (17)

where `_ is the Kostka coefficient and `′ is the partition conjugated to `. This formulation is equivalent

(in the unicellular case) to [2, Corollary 6.2] via Proposition 4.1.

Both Equations (16) and (17) have sums involving powers of (@ − 1) that turn out to be polynomials

in @ with positive coefficients. It is not clear to the authors how to give a direct proof of the equality in

Equation (16) nor that the sum in Equation (17) is a polynomial with positive coefficients.

One can also use Theorem 1.2 to write the expansion of csf@ (�) in the elementary basis. By

Proposition 2.1 item (5), we can express the 4-coefficients of csf@ (�) as a Q(@)-linear combination of

(2` (�; @))`⊢= (recall Definition 1.1) for any indifference graph �. Define csf_(�; @) via

csf@ (�) =
∑

_

csf_ (�; @)4_(G).

We have that

csf_(�; @) =
∑

`⊢=

(−1)ℓ (_)−ℓ (`)F`_ (@)2` (�; @),

where F`_ (@) is defined in Section 2.1. For example,

1. If _ = (=), then csf= (�; @) = [=]@2_ (�; @);

2. If _ = (0, 1), with 1 < 0, then csf_ (�; @) = [0]@ [1]@2_ (�; @) − ([0]@ + [1@])2= (�; @);

3. If _ = (0, 0), then csf_ (�; @) = [0]2
@2_ (�; @) − [0]@2= (�; @).

4. If _ has distinct parts _1 > _2 > . . . > _ℓ (_) then

F`_ (@) =
∑

�

∏

�∈�

∑

9∈�

[_ 9 ]@ ,

where the sum runs through all ordered set partitions � = (�1, . . . , �ℓ (`) ) of {1, . . . , ℓ(_)} such that
∑

9∈�:
_ 9 = `: for every : = 1, . . . , ℓ(`).

The Stanley-Stembridge conjecture states that csf_ (�; 1) is non-negative for every indifference graph

� and partition _. More generally, Shareshian-Wachs conjectured that csf_ (�; @) is a polynomial with

non-negative coefficients. Even in the cases of items (2) and (3) above, these conjectures remain open.
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