Canad. Math. Bull. Vol. 41 (2), 1998 pp. 214-224

ON A PROBLEM OF RUBEL
CONCERNING THE SET OF FUNCTIONS SATISFYING
ALL THE ALGEBRAIC DIFFERENTIAL EQUATIONS
SATISFIED BY A GIVEN FUNCTION

JOHN SHACKELL

ABSTRACT. For two functions f and g, define g < f to mean that g satisfies every
algebraic differential equation over the constants satisfied by f. The order < was
introduced in one of a set of problems on algebraic differential equations given by the
late Lee Rubel. Here we characterise the set of g such that g < f, when f isagiven
Liouvillian function.

1. Introduction. Onetiny part of the legacy to Mathematics of the late Lee Rubel
is the following problem, which appears as part of Problem 22in[2].

For two functions g and f, we define g <« f to mean that g satisfies every

algebraic differential equation (over C) which f satisfies. Discussthe order

<& in particular, do this for the case when f is an exponential polynomial,

e A€M
In order to discussthe order < when more general functions areinvolved, it is necessary
to say something about the domains of definition of the functions to be considered. It
is generally too restrictive to require g to have the same domain of definition asf. On
the other hand, one would at least want a non-empty open subset of C on which both
functionsare defined. In fact for the functionswe shall be considering, we shall generally
be able to take that subset to be dense. We shall also want to use a topology on various
sets of functions. Since the functions concerned will be Liouvillian, most natural choices
of topology are likely to give the same answers. We shall use uniform convergence of
the functions and their derivatives on compact subsets.

Although a description of the order < is of interest for its own sake, there are also
applicationsto asymptotics. If one searchesfor a series solution to anon-linear ordinary
differential equation in terms of base functions {e,(x).n = 1,2, ...}, where g, denote
the n-times iterated exponential function, one would like to bound the possible n that
might occur. Suppose we have a solution of the form f(x) + (en(x))_Jg(x) wheref isa
polynomial in ey(x), ..., en—1(X), ] > 0 and g gives the tail of the series. If we do not

havef(x) + (en(x)) - g(X) < f thereisadifferential polynomial P which vanishesat f but
not at f (x) + (en(x)) “9(x). Then P(f(x) + (aq(x))_Jg(x)) tends to zero approximately asa
fixed negative power of e,(X). If nistoo large compared with the order of the differential

Received by the editors June 20, 1996.
AMS subject classification: 34A34, 12HO05.
(©Canadian Mathematical Society 1998.

214

https://doi.org/10.4153/CMB-1998-031-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-031-0

FUNCTIONS SATISFYING ALGEBRAIC DIFFERENTIAL EQUATIONS 215

equation, one can prove that this is impossible. Under suitable conditions, one can also
prove that f (x) + (aq(x))_Jg(x) < f isimpossible, thereby bounding possible values of
n. This has been done within the context of nested expansionsin [3].

We begin Section 2 with a purely elementary consideration of the special case in
which f is an exponential polynomial. Here we are able to give a completely explicit
characterisation of the set of g for which g <« f. Then we re-frame our results in
terminology which is closer to differential algebra. This leads into Section 3, where we
consider the case when f is an arbitrary Liouvillian function. Here we characterise the
set of g for which g <« f as the closure of a set of explicitly given transformations of f.
Our argument in this section has some similarities with that of Section 5 of [3].

A major part of the work for this paper was done while the author was visiting the
University of Limoges during the summer of 1995. The author would like to thank that
University and its Mathematics staff for their splendid hospitality during this period.
Special thanks are due to Dominique Duval for having arranged the invitation, and also
for some useful comments during an informal seminar on the problem treated here.

2. Exponential polynomials. The first thing to be said is that if f = Y, aeM*
and g < f, theng = S Ak’ for some Ay,.... A, € C. Thisis becausef satisfies
the linear differential equation L(y) = {IIp-,(d/dx — A}y = 0. Here we have used
the notation L(y) to indicate that L is a polynomial in y and its derivatives, where y
is an indeterminate. However in many cases, it is not sufficient that g be of the form
e A

We supposethat the \jsare al different and that no g; is zero. Wewrite Q[ Ay, . . ., An]
for the Q-linear space generated by Aq, ..., An, and let d be its dimension. Now d is
also equal to the degree of transcendenceof C(e', . .., ) over C, and hencef cannot
satisfy an algebraic differential equation of order less than d.

Let g be of the form Y], Ace™*, and suppose first that d = n. Then we have a
linear differential equation of order d satisfied by f, namely L{y) = 0. If f satisfies
another algebraic differential equation of order n, say P(y) = 0, then L must divide P.
For otherwise the resultant, resm (P, L), would be a non-zero differential polynomial of
order less than n annulled by f. Hence g satisfies every differential equation of order
n satisfied by f. Let m > n and suppose inductively that g satisfies every differential
equation of order msatisfied by f. Let Q(y) = 0 be adifferential equation of order m+ 1
satisfied by f. On differentiating m—n+1 timesthe equation L{f) = 0, we obtain alinear
expression for f(™3 in terms of f.....f™M say f(MY = X(f,..., fM); note that g also
satisfies this equation. On substituting X(y, . . . , ™) for y(™D in Q(y) = 0, we get an
equation of order m satisfied by f, and therefore by g. When we replace X(g. . . . . gm)
whereit occursin thislast equation by g™?, we seethat also Q(g) = 0. Thusg satisfies
every equation of order m+ 1 which is satisfied by f, and by induction this holds for
al m. Hence when d = n, we have that g < f if and only if g = >0, Ace™* with
A ..., A, € C. It may be noted that we have in effect used the order on differential
polynomials givenin [1].
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Now we consider the case when d < n. By rearranging as necessary, we may suppose

that A1, ..., A\q arelinearly independent, and that Ag.1, . . . , An are Q-linear combinations
of \1,...,A\g. Thenfori=d+1,..., nwe have

d .
@) Ai = Z CE)\J

withcl, ..., € Q. On differentiating the equation
n
f=> aeh
k=1

n— 1 times, we obtain n linear equations for a;e*, . . ., ane**. The determinant of the
systemisIli<j(Aj — A;), which is non-zero. Hence we may obtain linear expressions for
each ae’* intermsof f, ..., f(" 9 say

2 ae™ = R(f..... f-D), k=1.....n
On combining these with (1) and taking suitable powersto remove roots, we obtain, for
=1,..., n—d,
by d A d ) 1
© aylla " =Ry, IR = §(F.....1").
1= 1=

whereeachb; € N, each 7% isaninteger equal to C!b,—, and § isarational function over C.
If g < f then the equations (3) must also be satisfied by g. However if g = S0, A
with all the As non-zero, then applying to g the same process of elimination that was
applied to f yields

A =R(g.....d" V).

On substituting into (3), we obtain

d d
@ a1la " = Al TTA™

forj =1,...,n—d. Sothe A must satisfy these equationsin order that g < f. It iseasy
to see that this holds even when some of the Acs are zero provided that negative powers
of Acs are removed from (4) by cross multiplication. In fact these conditions are also

sufficient.

THEOREM 1. Let f = Y0 aeM. Supposethat M. .... Mg are linearly independent

over Q@ and that Ag+q, ..., An satisfy (1) with ¢, ..., ¢ € Q. Theng < f if and only

if g = >0, A, with A, ..., An satisfying the relations obtained from (4) by cross
multiplying to remove negative powers.
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PROOF OF THEOREM 1. We have aready established the necessity of the conditions,
so supposethat g = Y, Ace™*, with Ay, ... . A, al non-zero and satisfying (4). From
(1), we have

d n d )
f=3 e+ 3 allEn.
k=1 i=d+1  j=1
On differentiating this equation d times with respect to x, we obtain equations

d n d *d d ) A
® =Y ane > (allg s+ Tlaen) ).
= i=

i=d+1 =1
for 4 = 0,...,d. We can then use the following theorem of elimination theory to
successively eliminate Wy = a;e, ... . W, = age’™ between these equations; see [4].

THEOREM 2. LetPy, ..., Pn be polynomialsin a single variable of given degreewith
indeter minate coefficients. Thenthereexistsa system, Ry, . .. , R of integral polynomials
in these coefficients with the property that if those coefficients are assigned values from
afield, K, the conditionsR; = 0, . ... R = 0 are necessary and sufficient in order that

either the equationsP; = 0,.... Py = 0 have a solution in a suitable extension field or

that the formal leading coefficients of all the polynomials P, ... ., Pn vanish.
We obtain differential polynomialsRy. ..., R over € suchthat R(f.f’. ..., fdy =0,

forj=1....,r.If wereplacef by gin (5), the corresponding Rs of Theorem 2 will be
R(9.¢.....d9), forj=1,....r. However the equations

() = 3~y " (o] d Tw
g% =2 AWk + Z{aHaj (@t -1l J}
j 1=

k=1 i=d+1 =1

R(.9..... g9 =0forj =1,....r. Now g, like f, cannot annul two differential
polynomials of order d unlessthey have acommon factor, since otherwise their resultant
with respect to y@ would be a (non-zero) differential polynomial of order d — 1 annulled
by g, and this is impossible since g has transcendence degree d over C. So we have
R = Qg forj=1,....r, whereg € N*, the differential polynomial Q is irreducible
of order d and is annulled by g, and Ej(g) is non-zero for each j. Since the Rjs are
independent of the particular values of Aq, ..., An, we see that Q is independent of the
particular g chosen. Thus Q is the unique non-zero irreducible polynomial of order d
annulled by f, and the sasmeistrueif f isreplaced by g.

An immediate consequenceis that neither 9 Q/ay@(f) nor 9 Q/ay@(g) can be zero.
Alsoif P is any differential polynomial of degree d annulled by f, then Q must divide
P, and hence P(g) = 0 aso. Now by differentiating r times the equation Q(f) = 0
and eliminating f(@_ . f@* =1 we get a rational expression for f(@) in terms of

..., @ which has a non-vanishing denominator. Clearly the same relations hold with

f replaced by g, and again the denominator does not vanish. Thusif P, is a differential
polynomial of order d+r with Py (f) = 0, we may substitutefor (@9, .. ., f(@1) to obtain

foru=0,..., d, also have a solution for W4, ..., Wy, namely W = Ake*kx/ak. Hence
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adifferential equation of order d satisfied by f. This must then be satisfied by g, and by
reversing the substitutions, we see that g also satisfies P;(g) = 0. Henceg < f, in the
case when the equations (4) hold and the Acs are al non-zero.

The case when one or more of the Acs is zero may be handled by multiplying (4)
through to eliminate any negative powers and allowing the appropriate Acs to tend to
zero. We have therefore proved Theorem 1.

Here is another way of looking at the situation. We have a tower of function rings

(6) C=TocTic---cTh

with Ty = T_q[e] fork =1..... n; the function f belongs to T,. We write Tk for the
quotient field of theintegral domain T,. Thenthe extensions T : T\_1 aretranscendental
fork=1,..., d and algebraicfor k =d + 1. ..., n, and the minimal polynomialsfor the
latter are

d )
) (&™) — ]:Tl(e“)w"kfd-

Consider atransformation, T(Cy. .. .. C,) of T, givenby e — Ce’* fork=1.....n.
Provided the Cy are non-zero, such a transformation preserves the differential structure
of the tower (6). As above, let f = >0, ae’* and g = >, Ace™*, and suppose that
g=T(Cy,..., C)(f). Thenfork=1...., n,

(8) Ay = Cyay.

The transformed minimal polynomialsare, fork=d+1,..., n,
d
(Cee™)> — [[(Cie™y s,
i=1

and these will be the same as (7), modulo a multiplying constant for each polynomial, if
and only if

d
9) C =[] C*.

i=1
Onsubstituting from (8) into (9), we obtainonceagain (4). So thesearethe conditionsthat
the minimal polynomials should be the same. However the latter are also the conditions
for the transformation T(Cy, . . . , C,) to be adifferential isomorphism, and this turns out
to be the key to the more general case as treated in the next section. If some of the Cys
are zero, then as before, the equations (9) and (4) need to be multiplied through to clear
negative powers before inserting the values of the Cs and Ays.

3. Liouvillian functions. Consider atower of functionringsC=Toc T, C--- C
Th, asin (6), where T, = T,_4[z] for k = 1.....,n, and now z, satisfies one of the
following three conditions:

i. z isalgebraic over Ty_; with minimal polynomial my;

ii. z = exp(Wi_1) withwi_; € Ty_1.
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i, 2= [ W1 Withwi_y € Ty
We assume that the path of integration is arranged so that (iii) makes sense, and that a
determination of the constant of integration is standardised in some way. An element of
afield Ty iscalled aLiouvillian function. Clearly any elementary functionis Liouvillian.
Also any Liouvillian function is analytic on C except perhaps at a countable number of
singularities.

Wewishto useinductiononk =0,. ... nto defineaset, Gy, of transformations, each
taking Ty to somering of Liouvillian functions. We shall use the following notation. For
any differential polynomial, P, over Ty and any p € Gy, wewrite 5(P) for the differential
polynomial obtained by applying p to all the coefficients of P.

Wetake Gy to consist of theidentity map, I, on C. Supposethat Gy_; hasaready been
defined. We begin with the case when z is algebraic over T_1. Let p be any element of
Gy_1. For sany root of 5(my), we define T;(p. S) to be the homomorphism on T, which
reducesto p on T,_; and takes z, to s. We then define

(10) Gk = {Ti(p,9) : p € Gx_1 and sisaroot of p(my)}.

The case when z is transcendental over Tk_l is similar. Suppose that z, = W1,
where wy_1 € Tk_l. Let W1 = &x-1/1k—1 Where &1 and 1,1 belong to Ty_; and
have no common factor. For any K € € and any p € Gy_; such that p(nx-1) # 0, we
define Tii(p, K) be the homomorphism on Ty which reducesto p on Ty_; and takes z, to
K+ [ p(Wk_1). Then we set

(11) Gk = {Tii(p.K) : K € C. p € Gx_1 and p(1jk—1) # O}.

Finally supposethat z istranscendental over Tk_l and z, = exp(wy_1) withw,_; € Tk_l;
let W1 = &k—1/1k—1 as before. Then for K € € and p € Gy_1 with p(ix_1) # 0, we
define Tjii(p. K) to be the homomorphism on Ty which reducesto p on T,_; and takes z
to K exp p(w_1). We put

(12) Gk = {Tiii(p,K) : K € C, p € Gx_1 and p(1jx-1) 7 O}.

Note that K can be zero. It would be possible to exclude this case and make Gy the
differential Galois group of asuitably chosen field of functions. However it seems more
natural hereto allow the case K = 0. We extend the maps p € Gy to part of T, by setting
p(hy/h2) = p(ha) / p(hz) provided p(hy) 7 0.

The following is a consequence of the constructions above, and is analogous to
Proposition 2in[3].

PrOPOSITION 1. Let f be a Liouvillian function, defined by a tower (6) with f € To.
For eachk=0,.... n, thereis a set Gy with the following properties:

(1) Eachp € Gy isadifferential homomorphismfrom Ty into a ring of Liouvillian
functions.

https://doi.org/10.4153/CMB-1998-031-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-031-0

220 JOHN SHACKELL

(2) Suppose that z is algebraic over Ty_; and let ¢ € Gy_;. Then if v belongs to
the Galois group of the polynomial (my) (with variable z), thereexistsa p € Gy which
agreeswith o on Ty_; and maps z to v (o(z)).

(3) Now supposethat z is transcendental over Tk,l. Let 0 € Gy_; and supposethat
o(nk—1) # 0. If zc = Swy_1 (respectively expw_1) and K € C, there exists a p € Gy
which agreeswith o on T,_; and maps z to K + f o(w_1) (respectively K exp o(W_1)).

Our main result is the following.

THEOREM 3. Let (6) and G, beasabove, andletf € Tn. Supposethat f = f; /f, where
f, and f, belong to T,, and have no common factor. Then g < f if and only if there exists
an open dense subset, W, of C such that g belongsto the closure of the set

7(f) =ser {p(f) : p € Gn and p(f2) # O}
in the topology of uniform, C >, convergence on compact subsets of W.

We shall write cl(V) for the closure of a subset V C W in the above topology. The
reason why we need to take the closure in Theorem 3 is to accommodate the possibility
of p mapping both f; and f, to zero but nonetheless (f; / f,) being definable asa limit.

ExAMPLE. Letf = (exp(e") — 1)e ™ Thenf’ = exp(e’) — exp(e’)e ™ + &%, and s
f'— 1= (exp(e) — 1)(1 — ™) = (& — D).

Thusf satisfies

ff—1y -1
() ==
and this simplifiesto
(13) ff7" —f2 —ff' +f +f —f2=0.
Here
(f) _ {Kz exp(KleX) -1
= Ky
but the set 7(f) is not closed, as can be seen on taking K> = 1 and letting K; tend to zero.
We have

:Kl,KQECandKl;ZO R

exp(K1e) — 1
T K
and of course the function 1 does indeed satisfy (13). Theorem 3 shows that it also
satisfies every other algebraic differential equation satisfied by f.
We now turn our attention to the proof of Theorem 3. In one direction, thisis given
by the following proposition.

1,

PROPOSITION 2. Let f and 7(f) be asabove. Theng < f for every g € cl(7(f)).
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PROOF OF PROPOSITION 2. Let P(y) = P(y.y',....y™)) be adifferential polynomial
suchthat P(f) = 0. Let p be an element of G, suchthat p(f;) # 0. Since p isadifferential
homomorphism on T,, we have

P(p(f)) = p(P(f)) = 0.

Now let g € cl(7(f)). Then there exists a sequence { pi(f)} such that for all i pi(fz) # O
and p;(f) — g. Then for any P as above,

P(g) = lim{P(pi(f))} = 0.

This completes the proof of Proposition 2.

The converse needs more work! Theideais asfollows. Let g be a function such that
g and f are both defined on some open subset of C, and suppose that g does not belong
tocl (T(f)). Starting from k = n, and working down to k = 0, we construct a differential
polynomial, Py, over T, with the following properties:

1. Pk<f> =0.
2. gdoesnot belong to the set
(14) Q(S) = ({h: 3p € Gi/A(PY(h) = 0and j(P) # 0}).

Notethat p(Px) # 0 meansthat p does not annihilate every coefficient of Py.

The initial case is simple enough. If f = f;/f, with f,f, € Tn-1[zn], we take P,
to be the differential polynomial of order zero, yf, — f;. We note that this means that
Q(S) =dl (T(f)). It is then a matter of handling the induction step in the various cases.

PrROPOSITION 3. Supposethat 1 < k < n and that z is algebraic over T_1. Let Py
be such that 7(f) € Q(Py) C cl(7(f)). Then there exists a differential polynomial Py_y
over Ty_1 with similar properties; i.e., 7(f) C Q(P_1) C cl(r(f)).

PROOF OF PROPOSITION 3. We regard Py as a polynomial in z with coefficientsin
Tw_1(y), and we replace z by an indeterminate z. Then we define

(15) Pi-1 = res,{P(y), m}.

We show that Py, hasthe required properties.
Firstly, P_1(f) = 0 because Py(f )(2) iszero at aroot of my, namely z = z. If g € 7(f)
then g = p(f) for some p € G, with p(fy) #Z 0. Since p isadifferential homomorphism,

Pr-1(p(f)) = p(Px-1(f)) = p(0) = 0.

Thus7(f) C Q(Px_1).

Now supposethat g € Q(S_1). Thenthere existsao € Gy_; suchthat 6(Px—1) # O
but 5(Px—1){g) = 0. Since ¢ is an algebra homomorphism and the resultant is given by
the Sylvester determinant,

5(Pi-1) = res,{5(Pi). 5(m)} = £ [T 5(PI(5))-
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where the ;s are the roots of (). So there exists aroot 3 such that 5(Px)(g)(3) = 0.
However, by Proposition 1(2), there isthen ap € Gy which agreeswith ¢ on T,_; and
takes 7 to 3. But then 5(Pi(z))(g) = 5(P)(8)(g) = 0, and it follows that g € Q(Py).
Henceg € cl(r(f)) and we have established Proposition 3.

For the cases when z is a transcendental extension, we use what is essentially a
differential version of the above. So asto alow the two cases, of an exponential and an
integral extension, to be treated together, we let the differential equation satisfied by z
be

(16) Z = \(2).

with Ay a polynomial over Ty_;. Of course (16) is either Z = wy_; or Z = zw_,. We
introduce aderivation D* onthering of differential polynomialsover T,_1[Z], by defining

% A P Ty oP )
D*(P(@) = D(P) + Au(d)—— +j:ZOy(J 1>a_ym,

here I5(P) denotesthe differential polynomial obtained by differentiating the coefficients
of P (asapolynomial in z and the derivatives of y). Asafunction of x, D*(P)(z){y(X))
is just the derivative of P(z)(y(x)). We shall have need of the following lemma, which
is a slight adaption of Lemma 11 of [3] to the present set-up. The proof, asin [3], isa
straightforward application of the fact that ¢ is adifferential homomorphism.

LEMMA 1. Let Q € Ty 4[Z(y) and o € Gy. Then

5(DlQ@)) = 6k, (5(Q) (o).
where ©; , is defined analogously to D. i.e. for S€ a(Te_1[2(Y)),

+1) 9IS

009 = B9 + (@), + 5.

Thefollowing result is the analogue for transcendental extensions of Proposition 3.

PROPOSITION 4. Suppose that z is transcendental over 'Iek,l, and let Py be a differ-
ential polynomial such that 7(f) C Q(Py) C cl((f)). Then there exists a differential
polynomial, Py_3 over Ty_; suchthat 7(f) C Q(Pi_1) C cl(7(f)).

PROOF OF PROPOSITION 4. We need to make use of the following result, whichisa
slight modification of Proposition 6 of [3].

LEMMA 2. Under the conditions of Proposition 4, there exists a differential poly-
nomial Qy over Ty such that 7(f) C Q(Qc) C cl((f)) and p(Qi(h)) is a square-free
polynomial in z for every p € G¢_; and every h € 7(f).
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The proof of Proposition 6 in [3] is a dimension argument, and this needs only very
minor modification to take account of the dimension of 7(f).

We then take Py_1 = res;{ Qx. D*(Qx) }, where we replaced z, by an indeterminate, z.
In order to establish Proposition 4, it is a matter of showing that P,_; has the required
properties.

Firstly, Q«(f)(2) and D*(Q«(f)(2)) have a factor in common, namely z — z.. Hence
Pk_1(f) = 0 and it then follows that 7(f) C Q(Px_1) asin Proposition 3.

Now supposethat g € Q(Px_1). Thenthereisao € Gy_; such that 5(Px—1) # 0 but
7(Pk-1){g) = 0. Using Lemma 1, we get

e5{7(Qu(9)@). B (5(Qu(0)@) )} = 7(res:{ (Qul0)@). D* (A(0)@) }) = .
S0 5(Qk(9)(2)) and By, (&(Qk(g>(z))) have aroot, z = ¢ say, in common. Let

5(Q(9)@) = (z— ¢)H.

Then
Ok (7(Q(0)@)) = (FM@ — ¢')H + = $)Or,H.

Since 5(Qy) is square free, 5(A\k)(2) — ¢’ must vanish when z = ¢. In other words, ¢
satisfies the differential equation for o(z). This implies that thereisa p € Gy which
agrees with o on Gy_; and sends z to ¢. But then 5(Qy){g) = 0, and hence g € Q(Q).
Thusg € cl(r(f)), by theinduction hypothesis. So Q(P_1) C cl(r(f)) asrequired. This
completes the proof of Proposition 4.

CONCLUSION OF THE PROOF OF THEOREM 3.  Supposethatg ¢ cl (T(f)) .Aspreviously
indicated, we take S, = {foy — f1}. Then P(f) = O for every P € S, but g ¢ Q(S,). By
Propositions 3 and 4 we can find a set, S, of polynomials over C such that Po(f) = 0
for al Py € Sy but g ¢ Q(S). In particular, Po(g) is not zero for every Py € Sp, and so
thereis a Py with Po(f) = 0 but Po(g) # 0. Thus we cannot have g < f, and we have
therefore proved Theorem 3.

The same method can possibly be applied to more general situations. For example,
one might allow some of the z to be given by other first-order, first-degree differential
equations. However the eventual result may be of lessinterest in cases when an explicit
description of the relevant differential Galois groupsis not available.
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