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Abstract. Let Abealocalring,andlet/y, ..., I, C Abeidealsofpositive height. In this article we
compare the Cohen—Macaulay property of the multi-Rees algebra R4([1, ..., I,) to that of the
usual Rees algebra R4(I; - - - I,,) of the product [; - - - I,. In particular, when the analytic spread
of I - - - I, is small, this leads to necessary and sufficient conditions for the Cohen—Macaulayness
of Ry(I1, ..., I,).We apply our results to the theory of joint reductions and mixed multiplicities.
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1. Introduction

Let (4, m) be a local ring, and let I, ..., 1. C A be ideals of positive height. The
multi-Rees algebra Ry([y, ..., 1) = A[Lty, ..., I,t,] C Alt1,...,t,] where f1,...,¢,
are variables. Multi-Rees algebras arise in successive blowing-up, which is a fun-
damental process in birational geometry. The purpose of this work is to investigate
their Cohen—Macaulay property. In particular, we want to link the Cohen-
Macaulayness of Ry(Ii,..., 1) to the theory of joint reductions developed by
D. Rees. We recall here from [15] that given q € N', a set {a;; € ;i |i=1,...,r;
j=1,...,q;} is called a joint reduction of I, ..., I, of type q if

,
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i=1
for allny, ..., n, > 0.Inthe case r = 1, this coincides with the notion of reduction of

an ideal which was introduced by D. Rees and D. G. Northcott in [23] and has played
a central role in the study of usual Rees algebras.

In investigating the Cohen—Macaulay property of multi-Rees algebras one of the
main difficulties arises from the lack of interplay between the Rees algebra and
the form ring which has proved itself very useful in the case of the Rees algebra
of a single ideal. Our method is to compare the properties of a multi-Rees algebra
to those of the corresponding diagonal subring A[[; - - - I,t; - - - t,], which is the Rees
algebra Ry(I;---1,) of the product ideal [ ---I.. It is already known by [12,
Corollary 2.10] that the Cohen—Macaulayness of R,([i,...,I;) implies that of
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R4(Iy ---I,). The converse does not hold in general. We are therefore trying to find
out the additional conditions which would make R,4(/y, ..., I,) Cohen—-Macaulay
in this situation.

Our starting point is Theorem 3.1 where the Cohen—Macaulay property of an
r-graded ring is characterized in terms of sheaf cohomology. In the case r = 1 this
was done by J. Lipman in [20, Theorem 4.1]. The case r = 2 is [12, Theorem 2.5].
We then focus on the multi-Rees algebra Ry(1, ..., I,). Theorem 3.1 now enables
us to utilize the fact that the corresponding multiprojective scheme is isomorphic
to the usual blow-up of Specd along the product [;---I.. Our main tool is
Lemma 4.2, which is a multigraded variant of the Castelnuovo—-Mumford lemma
([22, p. 99]). In fact, we observe in Lemma 4.2 that a similar statement also holds
for sheaf cohomology with supports.

Recall that the analytic spread £(/; - - - I,) = d + 1 where ¢ is the dimension of the
closed fiber of the blow-up. The vanishing of sheaf cohomology above 6 makes
the situation especially easy to manage when the analytic spread is small. In the
case I1,...,I, C A are ideals of positive grade with £(Z;---1,) =2 it comes out
in Theorem 4.1 that Ry(Iy, ..., 1) is Cohen—-Macaulay if and only if Ry(I;---1,)
is Cohen—Macaulay and the condition (f; ---1;): [, =1 ---I; I, ---I; holds
for all 1 <jj <---<jr<r and 1</<k. When 4 is Cohen—-Macaulay and
I,J C A are ideals of positive height, we are able to treat the case £(1J) = 3, too
(see Theorem 4.2). In particular, we prove in Theorem 4.3 that if 4 is excellent
of equicharacteristic zero, then R,(/,J) has rational singularities if and only if
R4(I), R4(J) and R,4(1J) have rational singularities. If the analytic spread is higher,
then the situation becomes more subtle. However, when A is Cohen—Macaulay
and I,J C A are m-primary ideals such that the reduction number r(1J) < 1, we
prove in Theorem 4.4 that Ry(I,J) is Cohen—Macaulay if and only if IJ : J =1
and 1IJ: I =J.

Let{a;;el;1i=1,...,r;j=1,...,q) be ajoint reduction of 11, ..., I, of type q
where q € N" with |q| = €(f;---1,). It now turns out in Corollary 5.1 that if
Ry(Ly,...,I) is Cohen—Macaulay, then the formula (7) already holds for all
ny =qi,...,n = q-. When r = 1, this reduces to the well-known result of Johnston
and Katz in [14] saying that if I C A4 is an ideal of positive height and analytic spread
¢, then the Cohen—Macaulayness of the Rees algebra R (1) implies that I¢ = JI*~!
for every ¢-generated reduction J C I. Finally, we give in Theorem 6.1 a formula
for mixed multiplicities which generalizes the one proved by J. Lipman in [19,
Corollary 3.7] (see also [28, Corollary 3.3]).

2. Preliminaries

In this section we fix some notation and recall some basic facts about multigraded
rings. First, we always assume that all rings and schemes are Noetherian. We also
assume all schemes and morphisms to be separated. The norm of a multi-index
neZ is ml=n+...4+n. If 0" €Z" and n; <mn; for j=1,...,r, we write
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n<n' Letl;=(0,...,0,1,0,...,0) (G =1,...,r) be the canonical base elements of
7. Moreover, we set 1 =(1,...,1).

Let S = B, S be a standard r-graded ring defined over the ring 4 = Sp. By the
word ‘standard’ we mean that S is finitely generated over 4 by elements in degrees
1y,...,1,. The diagonal subring of S is the graded ring S? = D, cr Sn...n. The
irrelevant ideal of Siis S* = @, , _ Sa. The r-projective scheme Proj S associated
to S is defined analogously to the usual graded case by using r-homogeneous prime
ideals P C S which do not contain S*. Set Z = Proj S. Recall from [12, Lemma 1.2])

the formula
dim Z = max{dim S/P | P € Min SN Proj S} —r.

In particular, when S* has positive height, this gives dim Z = dim S — r.

The theory of multiprojective schemes is similar to the theory of projective
schemes, which can be found in [6]. In fact, every multiprojective scheme is
projective: if Z* = ProjS2, then the inclusion S* — S induces an isomorphism
f:Z—>Z" When n e 7', the invertible quasi-coherent sheaf corresponding to
S(n) is denoted by Oz (m). Note that in the isomorphism f:Z— Z2
f5(Opm) = Ozmn,...,n) for all neZ. As usual we have Oz(m+n)=
Oz(m) ® Oz(n) for all m,n € 7.

We can look at the scheme Z also from another point of view. Letj € {1,...,r}.
Consider S as a usual graded ring by writing

S = @ ( @ Sml.m,mj,l,k,mj ,,,,, mr,l)-

k=20 meN!

Let Y denote the (r — 1)-projective scheme Proj Sy. For every k € IN, let S; be the
quasi-coherent Oy-module corresponding to the (r — 1)-graded Sp-module Sy. Then
S = @y = ¢ Sk 1s a quasi-coherent graded Oy-algebra so that we have an associated
projective scheme ProjS. It is easily checked that it is possible to identify ProjS
with Z. The corresponding canonical invertible sheaf on Z is Oz(1;). Moreover,
if g:Z — Y is the canonical projection, we have

g*(OY(m)) = OZ(ml, R mj—lv Ov mja R mr—l)

forme N'7!,

In the following we are mostly interested in the case S = Ry([y, ..., I,) where
I, ..., I, C A are ideals of positive height. Using [2, Exercise 4.4.12] it is easy to
see that dim Ry([y,...,I,) =dim 4 + r. Observe that by the above construction
Z =ProjR,(I,, ..., 1) can be identified with the blow-up of ¥ = Ry([i, ..., 11,
Iiy1, ..., 1) along the sheaf of ideals [;Oy (j=1,...,7).

3. A Criterion for Cohen—Macaulayness

The main result of this section is Theorem 3.1 which characterizes the Cohen—
Macaulay property of a multigraded ring S in terms of the sheaf cohomology of
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the corresponding multiprojective scheme ProjS. We first deal with the sheaf
cohomology of the blow-up Proj Rg(S™). Our arguments will be based on the obser-
vation that Proj Rg(S™) can be considered as a vector bundle over ProjS:

LEMMA 3.1. Let S be a standard r-graded ring. Set Z = ProjS. Then
Proj Rs(S*) = V(Oz(1) & - -- & Oz(1,)).

Proof. Set T = Rg(S™) and W = Proj T. Write T = S[S*¢] where ¢ is a variable.
Cover W with open affine sets D, (st) = SpecT () where s € S;. The elements of

implies that T(s) = @, - ¢(S)),. But then

W = Spec ) Oz(n) = Spec Sym(Oz(1) & - -- ® O(1,)).

n=>0

Let S be a standard r-graded ring defined over a local ring (4, m). Set Z = Proj S.
We begin with some generalities about the sheaf cohomology of W =ProjT
where T = Rg(S™). In particular, we want to indicate that sheaf cohomology is
as a standard (r 4+ 1)-graded ring. Note that the ring S* coincides with the subring
P~ Tox- Let M be any (r + 1)-graded T-module. By writing M = @, M.«
where M,.. = @,z Mn:k, We can consider M as a graded T-module. We then have
the associated sheaf M on W. Let n: W —> Z be the canonical morphism. One
checks that 7, M = Drcsr M., where M,,, is the graded S*-module Drcr Muik.
The module T'(W, ]\Nl) =P, T'(Z, ]\Z;.) has a natural structure of an r-graded
S-module. We then see that I'(W,=) defines a functor from the category of
(r 4+ 1)-graded T-modules to the category of r-graded S-modules. Let A C S be a
homogeneous ideal. Set F = W xg S/A. Let 0— M —> I* be an (r + 1)-graded
injective resolution. Take j > 0. Let T+ denote the usual irrelevant ideal of 7.
Now look at the Sancho de Salas sequence ([20, p. 150], see also [12, Theorem 1.4])

- —> Hy(I.0) — Hp(W, D) —> [Hig po (F)]g —> -+

Noting that 0 = Hi(F) = @y, Hy(L,), this shows that HL(W, I)=0 when
i > 0. We thus have a I'r(W, —)-acyclic resolution 0 —> M —> I* which we can
use to calculate the modules HL(W, M). Since T'p(W,—) = HQO[F( W, —), these
are indeed r-graded S-modules.

Take in particular % = aS where a C 4 is an ideal. Set E=Z x4 A/a. The
morphism 7 being affine, we obtain Hi(Z, n, /) = HL.(W, I/) = 0 for all j > 0 when
i > 0. This implies that 0 — M — . is a I'g(Z, —)-acyclic resolution of
m.M in the category of graded Oz-modules. By means of this resolution one
now verifies that as a graded S-module HiL(W, M) = B H(Z, M,) for alli > 0.

Our main interest concerns the sheaf cohomology with supports in F =
W xs S/M where M denotes the homogeneous maximal ideal of S. In calculating
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the modules HL(W, Oy ) our strategy is to determine first the local cohomology
sheaves HE(OW) with supports in G = W x5 S/S* where $* = EB#O Sy (for basic
facts about local cohomology sheaves we refer to [5, §1.]).

LEMMA 3.2. Let S be a standard r-graded ring. Set T = Rg(St) and W = Proj T.
Also set G=W xsS/S* where S* =D, Sn. Then H’é(OW) = (Hg*T(T)) .
Moreover, if Z =ProjS and n: W — Z is the canonical morphism, we have

,- 0 if i,
TC*(HG(OW)) = { @nd) Oz(n) lf i=r

as graded Oz-modules.
Proof. For any affine open set D,.(f) C W where f € T is a homogeneous element,
we have by definition

Ho(Ow)p, gy = (Hbor, (Te) ™ = (Hsr(D),) -

This proves the first claim. In order to prove the second one, we cover Z with open
affine sets U = SpecS,..5,) where s5; € S1, (j = 1,...,7). By the construction given
in the proof of Lemma 3.1 n~1(U) = SpecT(s,...,n- Set B = S,....,) and t; =s;/1 €
Tisp G=1,...,1r). We observe that T(,..,, = B[t1, ..., ] is a polynomial ring.
We also get GN ' (U) = V(t, ...,t,). Therefore

HOw)yvvy = Hi,, ., (Bltr, ... 1)) .

The claim is then a consequence of [7, Proposition 2.1.12] according to which

; _|o ifiz#r,
Hy, Bl 4]) = {@n<0 BO - ifi=r.

PROPOSITION 3.1. Let S be a standard r-graded ring defined over a local ring
(A4, m). Set Z=ProjS and W =ProjRs(S"). Also set E=Z x4 A/m and
F =W xg S/M where M is the homogeneous maximal ideal of S. Then as a graded
S-module H-(W, Ow) = @,_o Hs"(Z, Oz(n)) for all i = 0.

Proof. Set G =W x5 S/S* where S* =P, oS We consider the functor
I'r(W,=) from the category of (r+ 1)-graded Rgs(S™)-modules to the category
of r-graded S-modules. Since M=me S*, it equals to the composite
vy (W, HOG(:)). It follows that there is a spectral sequence

Yt =HY, (W, HE(Ow)) = HH(W, O).
On the other hand, by the remarks we have made earlier

as graded S-modules. It now follows from Lemma 3.2 that the above spectral
sequence degenerates to give the claim.
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It is important to observe that certain homogeneous components of the local
cohomology of Rg(S™) always vanish.

LEMMA 3.3. Let S be a standard r-graded ring defined over a local ring. Set
T = Rs(S™). Let M denote the homogeneous maximal ideal of T. Considering T
as an (r + 1)-graded ring, we have [Héz(T)]n;k =0foralliz0andn <0, k= 0.

Proof. Let Q denote the irrelevant ideal of 7" when T is considered as an
(r 4+ 1)-graded ring. We have the exact sequences

0—Q—T—T/0—0 and 0—T"—T—T/T" —0.

The corresponding long exact sequences of cohomology give the exact sequences
Hy (T Q) — Hy(Q) — H{(T) — Hy(T/Q)

and
Hy (T/T") — Hy(T) — Hy(T) — Hy(T/T™).

Note that [HH(T/Q)yr =0 if n;#0 for all j=1,...,r. We also have
is an obvious isomorphism Q —> T*(—1; 1) which maps an element in T, to
the corresponding element of Ty_1.4+1. For any k£ > 0 and n < 0, we thus obtain
the isomorphisms

[Hét(T)]n:k = [HEIR(Q)]nk = [H;E(T+)]n71;k+l = [H&(T)]nfl;kJrl'

Since [H5(T)],.x = 0 for k >> 0, the claim follows.

In the sequel we shall frequently utilize the interplay between the vanishing of local
cohomology, sheaf cohomology and sheaf cohomology with supports. The following
proposition ([13, Lemma 1.1] which is a version of [20, Lemma 4.2]) is therefore
crucial for our arguments.

PROPOSITION 3.2. Let R be a standard graded ring defined over a local ring (A, m).
Set X =ProjRand E = X x4 A/m. Let M be the homogeneous maximal ideal of R.
Let M be a graded R-module. Let n € 7,. Then the following conditions are equivalent:

(1) [Hy(M)], =0 forall i >0;

(2)  The canonical homomorphism H. (M) — H(X, M(n)) is an isomorphism for all
i=0;

(3) The canonical homomorphism M, — TI'(X, M (n)) is an isomorphism and
Hi(X,M(n)) =0 fori>0;

@) [HL(M)], =0 forall i >0.
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Let S be an N'-graded ring defined over a local ring, and let 9 be the homo-
geneous maximal ideal of S. Define for all j =1, ..., r the a-invariants

d(S) = sup{k € Z | [H™5(S)], # 0 for some n € Z" with n; = k}.

Moreover, we set a(S) = (a'(S), ..., d'(S)).
We are now ready to prove the following theorem:

THEOREM 3.1. Let S be a standard r-graded ring defined over a local ring (A, m)
such that ST has positive height. Set Z =ProjS and E=7Z x4 A/m. Then S is
Cohen—Macaulay with a(S) < 0 if and only if the following conditions are satisfied

(1) T(Z,Oym) =S, for all n > 0;
(2) H(Z,Ozm))=0 foralli>0andn=0;
(3) HL(Z,0z(n)) =0 forall i <dimZ and n < 0.

If this is the case, then also S* is Cohen—Macaulay with a(S*) < 0.

Proof. Set T = Rs(S*) and W = Proj T. Let M denote the homogeneous maximal
ideal of 7. Also set F = W x S/t where 9t is the homogeneous maximal ideal of S.
One now checks that the Sancho de Salas sequence

oo — [HI(T)]y —> Hy(S) — Hi(W, Op) —> -

is r-graded (cf. [20, p. 150] or [12, the proof of Theorem 1.4]). We saw in Lemma 3.3
that [Hfja(T)]n;o = 0 for n < 0. Using Proposition 3.1, it therefore follows that there
is an isomorphism [Hi(S)], = H5"(Z, Oz(n)). Noting that dimS =dimZ +r,
we thus see that [Hi(S)], =0 for i <dimS and n <0 if and only if (3) holds.
On the other hand, the Sancho de Salas sequence also implies that

[Hy(D)o= P [HyS)h

some n; >0

Therefore [Hy,(S)], = 0foralli > 0and n € Z" such that n; > 0 for some; if and only
if [H5(T)]y = 0 for all i > 0. But according to Proposition 3.2 this is equivalent to
having T(W, Op)gy = Sm and H'(W,Ow)g =0 for i > 0. Because T'(W,Oy)
and H'(W,Oy) are r-graded S-modules, this is the same as T'(W,Op) =S
and H'(W,Op)=0 for i>0. Since I'(W,Op)=@B,s,I(Z 0z(n) and
H(W,0w) =, ,H(Z, 0z(n)), the proof is now complete.

The last statement is proved by utilizing the isomorphism Proj S* = Z and noting
that O_a(n) then corresponds to Oz(n, ..., n) for all n € 7.

Remark 3.1. Let Abealocal ring, and let [y, ..., I, C A beideals of positive height.
Recall from [9, Lemma 2.1] that a(R4(], ..., 1)) = —1. We can therefore apply
Theorem 3.1 in the case S = R (11, ..., I,). In particular, the Cohen—-Macaulayness
of Ry(I,...,I,) implies that of Ry({; ---1,). This recovers [12, Corollary 2.10].
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Let S be a standard r-graded ring. Let j € {1,...,r}. Let Sy denote the (»r — 1)-
graded subring @, -1 S,y .0.m...om,_,- For every ke N, we then get an
(r — 1)-graded Sy-module S; = @meN}l Sty veeeyy Kty -

The Cohen—Macaulay property of S does not in general imply that of Sy. We will
return to this question later in Theorem 4.5 when S is a multi-Rees algebra (for
a counterexample in this case, see, e.g., [8, Example 3.11]). We mention here only
the following general fact:

PROPOSITION 3.3. Set Z = Proj S and Y = Proj Sy. Foreveryk € N, let Sy denote
the Oy-module associated to Sy. Suppose that

() T(Z,0zMm)) =S8, foralln>=0;
2) H(Z,Ozm))=0 foralli >0 andn > 0.

Then

(@ T(Y,Sk(m)) = Sp, ...y kemy....m,, Tor all k. € N, m > 0;
(b) H(Y,Siy(m))=0foralli>0and ke N, m>0.

In particular, this means that

@) I(Y,Oy(m)) = S, _.m_,.0m....m,, for all k€ N, m > 0;
(b)) H(Y,Oy(m)) =0 for all i >0 and m > 0.

Proof. The claim is an immediate consequence of Lemma 3.4 below.
LEMMA 3.4. Use the preceding notation. Let n € N'. Suppose that there exists an

N >0 such that T(Z,Oz()) =Sy and H(Z,Oz(')) =0 for all i >0 when

n}:nj andn/l,...,,n_;_l,n;ﬂ,...,n;. > N. Then

H(Z, 070) = H(Y. Sy (np. ... nj-p mj, ... my)
for all i = 0.
Proof. Let g: Z —> Y denote the canonical projection. The claim will follow from
the Leray spectral sequence
EYY = HI(Y, Rig.(Oz(m)) = H'™(Z, Oz(n))
as soon as we show that
2(O7W) = S, (1, ..., w1, o 1y)
and R7g,.(Oz(n)) = 0 for all ¢ > 0. For the first statement, it is enough to prove that

I'(Y, (g(Ozm))(m)) = I(Y, (Sy,(n1, . .., #j—1, Njs1, - . ., 1y))(m))

for allm € N'~! with m >> 0. Indeed, using the assumption and the r-graded version

https://doi.org/10.1023/A:1014335520269 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014335520269

COHEN-MACAULAY MULTI-REES ALGEBRAS 327

of the theorem of Serre (see [16, Lemma 4.2]), we obtain for m > 0

I'(Y,g2.(Oz(n)) ® Oy(m))
=TI'(Z, Oz(n) ® g"(Oy(m)))
=I1(Z,0z(m) @ Oz(m, ..., mj_1,0,m;, ..., me_1))
=1(Z,0z(m +my, ... ,nj_1 +mj_1, nj, 001 +my, ..., 0 +m_1))

- S111+m| ,,,,, i1 +mj_1,n;,Rj 1 +m, ... ny+m,_1
=Y, (Sy(n1, . ..,ni—1, njgr, oo mp))(m)).

The second statement is a consequence of [12, Lemma 2.1].

4. Cohen—Macaulayness and Small Analytic Spread

Let 4 be a local ring, and let 7}, ..., I, C A be ideals of positive height. We saw in
Remark 3.1 that the Cohen—Macaulayness of S = Ry([i,..., 1) implies that of
SA = Ry(I) - - - I). The converse implication does not hold in general (see [2, Example
2.11]). Our purpose is to find out what additional conditions are needed for the
Cohen—Macaulay property of R4({i,...,I,) in this situation. Set Z = Proj S and
Z% = ProjS2. In light of Theorem 3.1, one key point is to understand how the
vanishing of the cohomology modules H(Z*, O,u(n)) = H(Z,Oz(n, ..., n))
(n € N) affects the vanishing of the modules H'(Z, Oz(m)) (n € N'). Our main
Lemma 4.2 is an r-graded variant of the Castelnuovo—Mumford lemma. It is a based
on the following.

LEMMA 4.1. Let Y be a scheme, and let L be an invertible sheaf on Y generated by
finitely many global sections. Let F be a coherent sheaf on Y. Let m € 7 and
p € N. Then the following holds:

(@ IFH(Y,FQL"™)=0foralli>p, then H(Y, F @ L") =0 for all i > p and
n = m. Moreover, if p=0and sy, ...,s, € I(Y, L) generate L, then the induced
homomorphism T(Y, F @ L")® — T(Y, F @ L") is surjective for n = m

(b) Let ECY be a closed subset. If HL(Y,F ® LY =0 for all i<p, then
HL(Y,FRL"™) =0 foralli<pandn<m.

The proof of (a) is similar to that of [11, Lemma 2.6] and [21, Lemma 5.1]. There-
fore we prove here only (b). Let us use descending induction on n. If n = m, then
there is nothing to prove. Suppose n < m. Since L is generated by global sections,
there is for some ¢ >0 an epimorphism O?Z —> £ which further gives an
epimorphism o: (L)% — Oy. The Koszul cocomplex F ® K*(¢") corresponding
to the dual morphism ¢v: Oy —> £® is then exact. Note that

[
j

.7-"®Kj(av):.7-'®/\jﬁ®e:.7:®(£/)®() G=0,...,0.
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By tensoring F ® K*(¢") with £"~" we obtain an exact sequence
0—Ly— - —L—Liyy— - — L —0

where

£ =rFee20) G=o...0.
This sequence gives raise to exact sequences
0 —K1—L—K —0 (=1,...,£-1)

where Ko = F @ £/ and K,_; = F ® £""**. By the induction hypothesis we now
have H,’;j( Y, F® L") = 0 for all j > 0. By looking at the corresponding long
exact sequences of cohomology, we obtain for everyj =0, ..., £ — 2 an epimorphism
Hfg_j_l(Y, Kiv1) — Hé_j(Y, ;). But using the induction hypothesis again, we get
Hi7“Y (Y, K1) = 0. Therefore Hy’(Y,K;)=0 for all j=0,...,¢—1. In par-
ticular, Hi(Y, F ® £"") = 0 as wanted.

LEMMA 4.2. Let S be a standard graded ring defined over the ring A = Sy. Let a C A
be an ideal. Set Z = ProjS and E = Z x 4 A/a. Let M be an r-graded S-module. Set
F=M. LetmeZ andp e \.

(a) Suppose that H(Z, F(m; —i,...,m, —1)) =0 for all i > p. Then

H(Z,F(n;—i,....,n,—i) =0

for all i > p and n = m. Moreover, if p=0 and s1,...,50 € I'(Z, Oz(1;)) generate
0z(;), then the induced homomorphism

[(Z, Fm)® — T(Z, Fn + 1))

is surjective form = (my — 1, ...,mj_1 — L, mj,mip —1,...,m. —Dandj=1,...,r
(b) Suppose that H.(Z, F(my — i, ...,m, —i)) =0 for all i < p. Then

HZ(Z,f(nI —4,...,n—10)=0

foralli<pandn <m

Proof. Let us prove the first statement of (a) by descending induction on i. Every-
thing being clear for large i, suppose H/(Z,F(ny —j,...,n,—j) =0 for j>i
and n > m. Let us show by induction on £k =0, ..., r that

H(Z, F(ny —i,....,m —i,mpyy — i, ..., m, —i)) =0

whenn; = m;forj=1,... k. Since H(Z, F(my —i,...,m, —i)) =0, thecase k =0
is clear. Let k > 0. By the original induction hypothesis we know that

Hj(Z,]-"(nl — 0, gy — i, My — jy Mgy — 0, ..., m — 1)) = 0.
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for j > i. As this now also holds for j = i, the first statement of Lemma 4.1(a) gives
H(Z, Fny —i,... .0y —i,mg —i,myyy — i, ..., m,—i)) =0

for all ny = my as wanted. In particular, given j € {1, ..., r}, we have
H(Z, F(ny,....ni_1,mj —i,njy,...,n,)) =0

forall i > 0 and n; = my, — 1 (k # j). By the second statement of Lemma 4.1(a) this
implies the remaining statement of (a). The proof of (b) is done by induction on
i. As it is analogous to the proof of (a), we omit it.

that the Castelnuovo—Mumford regularity of F2 is by definition the smallest integer
m € 7 such that

H(ZA FAm—i)=H(Z, Fm—i,....m—i)=0

for all i > 0.

We now return to consider the case where S is a multi-Rees algebra. We would like
to find an integer m € Z such thatm = (m, ..., m) € Z" in Lemma 4.2 is optimal for
our purposes. Therefore, we are next going to investigate the vanishing of the sheaf
cohomology of the projective scheme associated to a Cohen—Macaulay Rees algebra
of a single ideal.

Let (4, m) be a local ring, and let / C A be an ideal of positive height. Set
X =ProjR4(I). As the closed fiber of the canonical projection X —> SpecA4 has
dimension £(/)—1, it is well known from [7, Corollaire (4.2.2)] that
H(X, F) =0 for every coherent sheaf F on X if i > ¢. When the ideal has small
analytic spread, we thus see that most of the sheaf cohomology vanishes. The
following lemma shows that the same also holds for sheaf cohomology with supports
in the closed fiber.

LEMMA 4.3. Let (4, m) be a local ring of dimension d, and let [ C A be an ideal of
positive height. Set X = ProjR4(I) and E = X x4 A/m. Let L be an invertible sheaf
on X. If X is Cohen—Macaulay, then Hi(X, £) = 0 for all i < d — ¢(I).

Proof. We may assume that 4 is complete. By the local-global duality of Lipman
([18, p. 188]) we then have

Hy(X, £) = Homy(H*'(X, oy ® L), E4(K)).
Using [7, Corollaire (4.2.2)] we get H* (X, wy ® L7') =0 for i <d — £(I) so that
Hi(X, L) =0 for i <d—£(I) as wanted.

LEMMA 4.4. Let (A, m) be a local ring of dimension d, and let I C A be an ideal of
positive height. Set X = ProjR4(I) and E =X x4 A/m. Also set £ =£(I) and
a=a(G4(I)) where G4(I) denotes the form ring Ry (I)/IR4(I). If R4(I) is
Cohen—Macaulay, then
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(@) H(X,0x(t—1-i)=0forali>O0;
(b) HL(X,Ox(d — € — i) =0 forall i <d.

Suppose, moreover that A is Cohen—Macaulay. Then

@) H(X,Ox(t+a—1i)=0foralli>0;
() HYX,Ox(d—€+1—10)=0foralli<d.

Proof. If Ry(I) is Cohen—Macaulay, then H' (X, Ox(n)) =0 foralli > 0andn > 0
by the case r=1 of Theorem 3.1. This clearly implies (a). We also obtain
HL(X,Ox(n)) =0 for all i < d and n < 0. Together with Lemma 4.3 this implies
(b). To prove (a’) recall first that if 4 and R4(I) are Cohen—Macaulay, then so
is G4(I) (see, e.g., [27, Theorem 5.1.23]). Let M denote the homogeneous maximal
ideal of R,4(I). We now see that [Hi(G)], =0 for all i>0 and n > a. Set
Y = Proj G4(I). By Proposition 3.2 we obtain H'(Y, Oy(n)) =0 for all i > 0 and
n > a. Using the long exact sequences of cohomology corresponding to the exact
sequences

0 — Ox(n+1)— Ox(n) — j«(Oy(n)) — 0

where j: Y — X is the inclusion, this gives H'(X, Ox(n)) =0 foralli > 0 and n > a.
This implies (a’). Finally, to prove (b’), we need to show that if 4 is Cohen-
Macaulay, then HL(X, Ox) = 0 for i < d. But this follows from the Sancho de Salas
sequence

- — H, (4) — H(X, Ox) — [Hy (Ra(D)])y —> -

n

(see [20, p. 150]).
We still need two lemmas about the global section modules.

LEMMA 4.5. Let A be a local ring, and let I, . .., I, C A be ideals of positive grade.
Set Z = ProjR4(Iy, ..., I,). Then

I'(Z, Oz(n —m)) = Hom,(I{" - - - I, T(Z, Oz(m)))
for all n,m > 0. Moreover,
['(Z,0z(n—m)) =T(Z, Om)) :rz.0, I"---I™)

foralln>=m = 0.
Proof. Observe first that

I'(Z, Oz(n —m)) = Homz(Oz, Oz(n — m))
= Homy(Oz(m), Oz(n))
= Homz(llml cee I:n"OZ, OZ(“))

Because If/l ---Ir"’/‘l"(Z, Ozm)) C I'(Z, Oz(m)(n')) for all n’ > 0, it is easily checked
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that
HO]’l’lz(I;”l s I,’,ﬂrOZ, Oz(n)) = HOI’IIA(Ifnl s 1;”', F(Z, (’)(n)))

This proves the first claim. Let us then prove the second claim by showing that the
canonical homomorphism

N(Z, O0m)) irz.0, (" - 1) — Hom (" - - - I, T(Z, Oz(m)))

is an isomorphism. It is clearly injective, because every regular element of A4 is also
I'(Z, Oz)-regular. To prove the surjectivity, take

u € Homy(I{" --- I, T(Z, Oz(n))).
Choose a regular element a € 4 such that al{" --- I € I" --- I'". Since
Hom,(I{" --- I /I}" - - - I, T(Z, Oz(n))) = 0,
there is a monomorphism
Homy(I{" --- I, T'(Z, Oz(n))) — Homy(I}" - - - II", T(Z, Oz(n))).
Because
Hom, (" --- ", I(Z, Oz(m))) = T(Z, O2),

we can find an element s € I'(Z, Oz) such that u(x) = sx for all x e I{"---I'". In
particular, u(ay) = say for all y € I;"---I". But then u(y) = sy, which proves
the claim.

LEMMA 4.6. Let A be alocalring. Let I, ..., I, C A beideals of positive grade such
that
m my . __qm m ym—1ym m

(Ijl.-.l.jk)'l-/]_ljl-..lf/—llj/ Iil+l...ljk
foralll <ji <---<jr<randl1 <1<k SetZ=ProjRy(,...,1I). Suppose that
H(Z,0,m)=0 for all i>0 and n>=m—i,....m—i). If T(Z,0z) = A and
I(Z,0z(m,...,m)=1"---I", then T(Z,Ozm)=1I"---I" for all n=>
m-—1,...,m—1).

Proof. Using Lemma 4.2(a), we see that I'(Z, Oz(n)) = 1" --- I’ if n > m. Let us
show that the same holds for all n > (m —1,...,m —1). It suffices to consider
the case m< (m,...,m). Suppose, for simplicity, that n; =...=n, =m and
ng+1 = -+ =n, = m — 1. The assumption now implies that

Ay Iy Iy - 1) = [i”...[lT]IZ’z_—ll N (i

¥

By Lemma 4.5 we then get

[(Z,0zm) =T(Z,0z(m, ...,m)) : (g1 - L) = I - - LIt 1L

r
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We are now ready to prove the first main result of this section, which concerns the
Cohen—Macaulay property of a multi-Rees algebra in the case the product of the
ideals has analytic spread at most two.

THEOREM 4.1. Let A be a local ring. Let I, ..., I, C A be ideals of positive grade
with £ ---1,) <2. Then Ry(,,...,I,) is Cohen—Macaulay if and only if
Ry ---1,) is Cohen-Macaulay and the condition (I ---1,): 1, =
LI I, - I holds forall 1 <ji <--- <jr<rand 1 <[l <k

Proof. Using Theorem 3.1 and Lemma 4.5, we easily see that the conditions of the
theorem are necessary.

Let us prove that they are also sufficient. Set Z = ProjR,([y,...,I,) and
E =27 x,4A4/m. Since Z = Proj Ry(I; ---I,), Lemmas 4.2(a) and 4.4(a) imply that
H(Z,O,m)=0 for all i>0 and n>0. Because I'(Z,0;)=A4 and
<z o,1,....,1))=1,---1,, it follows from Lemma 4.6 that I'(Z, Oz(n)) =
If"---1 for all m>0. Using Lemmas 4.2(b) and 4.4(b), we get
H(Z,0z(m)) =0 for all i <dimA4 and n < 0. The claim is now a consequence
of Theorem 3.1.

J. Verma showed in [29, Theorem 3.4] that in a two-dimensional regular local ring
integrally closed ideals primary to the maximal ideal always have Cohen—Macaulay
multi-Rees algebras. In the following Corollary 4.1 we are going to generalize this
to equimultiple ideals of height two in a local ring of arbitrary dimension. However,
we first need two lemmas.

LEMMA 4.7. Let A be alocal ring, and let I,J C A be ideals of positive height. Then
max{¢(1), £(J)} < ().

Proof. Tt is enough to show that ¢(I) <¢(lJ). Set X =ProjR,(I) and
Z =ProjR4(1J). Also set E=X x4 A4A/m and F =Z x4 A/m where m denotes
the maximal ideal of A. We have £(/) =dimE+1 and ¢(J)=dimF + 1. If
f:Z — X is the canonical projection, then clearly F = f~!(E) so that there is a
proper surjection F —> E. Therefore dim £ < dim F (see, e.g., [16, Lemma 3.2]).

In lack of a suitable reference we state the following doubtlessly well-known
corollary of a result of Lipman and Teissier ([21, Corollary 5.4]).

LEMMA 4.8. Let A be a Cohen—Macaulay local ring which satisfies the condition
(Ry), and let I C A be an integrally closed equimultiple ideal of height h such that
A/I is unmixed. Then I* = JI for any reduction J C I.

Proof. We may assume that J is a minimal reduction of /. Then J is generated by a
regular sequence of length 4. Hence, J/J? = (A/J)" so that J/JI = J/J? ® A/I =
(A4 /I)h. The exact sequence

0—> J/JI —> A)JT —> A)J — 0

then implies that Ass A/JI C Min A/I. 1t is therefore enough to check the equality
I? = JI at minimal primes of /. But then one can use [21, Corollary 5.4].
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COROLLARY 4.1. Let A be a Cohen—Macaulay local ring which satisfies the con-
dition (Ry). Let I, ..., I, C A be integrally closed equimultiple ideals of height two.
Suppose that also I ---1, is equimultiple of height two. Then Ry(i,...,1I,) is
Cohen—Macaulay if and only if A/, -1, is Cohen—Macaulay.

Proof If R4(1, ..., I,)is Cohen—Macaulay, then sois R4(/; - - - I,) by Theorem 3.1.
According to [10, Proposition 45.5] this implies that 4/1; - - - I, is Cohen—Macaulay.

Conversely, suppose that 4/1 - - - I, is Cohen—-Macaulay. By Lemma 4.8 and [27,
Proposition 5.1.12] R4([;---1,) is Cohen—Macaulay. We want to apply
Theorem 4.1. By the ‘determinant trick’ it suffices to show that the ideal
LI, I, ---I, is integrally closed for 1<ji <---<jir<r and 1</<k.
Because £(L;, -+ I, 1., ---1;) <2 by Lemma 4.7, we necessarily have
LIy -+ I 1, ---1;) = 2. The above claim then follows from [28, Theorem 4.1].

EXAMPLE 4.1. In general the Cohen—Macaulayness of R,(1J) does not imply that
of Ry(I,J) even if Ry(I,J) is normal.

Let k be a field of characteristic zero. Take 4 = k[x, y, z] .., and Iy = pA4 where
p C k[x,y,z] is the prime ideal defining the monomial curve x =¢'!, y =4
z = 1. It has been proven in [11, Example 3.6] that R4(Iy) does not have rational
singularities although it is normal and Cohen—Macaulay. It is possible to find an
ideal Jy C A that Y =ProjRy(Jy) is regular and that I,Oy is invertible.
Then Proj R,(ly, Jo) =2 Proj R4(IpJo) = Y is normal. For p,¢> 0, we have
(Y, I0JlOy) = I[J{ by the bigraded version of the theorem of Serre (see [16,
Lemma 4.2]). On the other hand, I'(Y, I} J{Oy) = m for all p,q >0 (see [21,
p. 100]). Hence, I7J¢ = I'J{ for p,q>> 0. We also know that J¢ = J7 for ¢ > 0.
Take I = I}Y and J = J)' where N > 0. Then R4(1,J) is normal (cp. [17, p. 126]).
Moreover, it still holds that R4(/) does not have rational singularities (use,
e.g., [11, Proposition 2.1]). Now R,(/, J) is not Cohen—Macaulay. To see this, con-
sider the blow-up Z = Proj R, (JR4([)). By looking at the affine open sets which
cover Z, one easily checks that Z = V(IOy). In particular, Z is regular. The
Cohen—Macaulayness of R,(I,J) would then by [20, Theorem 4.1] imply that
R4(I) has rational singularities. Finally, since A4 has rational singularities,
using [20, Theorem 4.1] again, we may choose N > 0 in such a way that R,(1J)
is Cohen—Macaulay.

We now move to the analytic spread three case. Then an additional cohomological
condition comes in. For simplicity, we assume r = 2.

THEOREM 4.2. Let (A, m) be a Cohen—Macaulay local ring of dimension d, and let
1,J C Abeideals of positive height such that ¢(1J) = 3. Let Mt and N denote the homo-
geneous maximal ideals of R4(I) and R4(J) respectively. Then Ry(I,J) is Cohen—
Macaulay if and only if the following conditions are satisfied

() R4(1J) is Cohen—Macaulay;
Q Pr:I=17and I’J*:J=1%J;
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(3) [Hiy(JRA(I))]y =0 and [H{(IR4(J))]y =0 forall i < d + 1.

Proof. If R4(1, J) is Cohen—Macaulay, then Theorem 3.1 implies that also R4(1J)
is Cohen—Macaulay. So (1) holds. Moreover, using Lemma 4.5 we get (2). Finally,
to prove (3), we first verify that always

[HE TRy =0 and  [HEH (IR = 0.

Let us show, for example, that [H;YI(JRA(I))]O = 0. Indeed, there is for some N > 0
an exact sequence

0— K — (R4(1)® — JR4(I)— 0

of graded R4(I)-modules. As [H\j‘;;rl(RA(l))]O = 0 (see[4, Part I, 6.3]), the correspond-
ing long exact sequence of cohomology yields [H;’;;rl(JRA(I))]O =0 as wanted. Set
X =ProjR4(I) and Y = Proj R4(J). It now follows from Proposition 3.2 that
condition (3) is equivalent to having I'(X,JOyx)=J, I'(Y,IOy)=1 and
H(X,JOyx) =0, H(Y,IOy) =0 for all i > 0. Condition (3) is thus a consequence
of Theorem 3.1 and Proposition 3.3.

Suppose then that the conditions (1)—(3) hold. Set £ = Z x 4 A/m. It is now clear
from Lemma 4.2(b) and Lemma 4.4(b) that HL(Z, Oz(p,q)) =0 for all i <d
and p,q < — 1. Using Lemmas 4.2(a) and 4.4(a), we get H/(Z, Oz(p, q)) = 0 for
all i>0 and p,gq>2-—i Since Ry(J) is Cohen—Macaulay, we have
I'(Z, Oz(n,n)) = I1"J" for all n > 0. By 2) it then follows from Lemma 4.6 that
I'Z,0z(p,q)=1?J7 for all p,gq=1. By Lemma 3.4 the -conditions
I'(X,JOyx)=J and I'(Y,I0y) = I mean that I'(Z,JOz)=J and I'(Z,10,) = 1.
By Lemma 4.5 this is the same as IJ :J =1 and IJ : I = J. Therefore, as soon
as we know that H'(Z, Oz(p, q)) = 0 for all p,q >0 Lemma 4.6 will tell us that
[(Z, O4(p, q)) = 1J? for all p,q=0. As H*(Z, 040,0)) =0, it follows from
Lemma 4.1(a) that if H'Y(Z, 0z(1,0))=0 and H'(Z,040,1)) =0, then
HY(Z,04(p,0) =0 and HYZ,04(0,9))=0 for all p,g>1. But using
Lemma 3.4 again, we have H'(Z, 040, 1)) = H'(X,JOy) and H'(Z, O4(1,0)) =
H'(Y,I0y). This completes the proof.

EXAMPLE 4.2. Let k be a field. Let 4 = k[x, y, z](x,y,_,) where Xx, y, z are variables.
Take I = (x?,y,z)4 and J =m, where m = (x, y, z) is the maximal ideal of A.
We now have I2J? : I = IJ? and I*J? : J = I*J. Moreover, one checks that the ideal
L=(*+y>+22,xy,xz4+yz) is a minimal reduction of IJ = (x3,)? 2%, xy,
xz,yz) with (IJ)* = L(IJ). Therefore R4(1J) is Cohen-Macaulay (see, e.g., [27,
Corollary 5.1.13]). Let U,V and W be variables. Then R,(I)/JR4(I)=
k[U, V, W]. The long exact sequence of cohomology corresponding to the exact
sequence

0— JR4(I) — R4(I)— R4(I)/JR4(I)— O
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now gives [Hi,(JR4(I))]y = 0 for all i < 4. On the other hand,
R (J)=AlU,V, W)/ (xV —yU,xW —zU,yW —zV)

so that Ry(J)/IR4(J) = k[x][U, V, W]/(x*, xV, xW). Using the long exact sequences
of cohomology corresponding to the exact sequences

0— (x, V, W) = kIx|[U, V, W] — R(J)/IR4(J) —> 0
and
0—(x, V, W)— k[x][U, V, W]— kU] — 0,

one easily verifies that [H{(R4(J)/IR4(J))]y =0 for all i>0. Hence, also
[H5(IR4(J))]o = 0 for all i > 0. It thus follows from Theorem 4.2 that Ry(I, J) is
Cohen—Macaulay. However, one checks that [Hé(IRA(J))]n #0 for all n < 0. It
follows that neither /R4(J) nor even /Oy is Cohen—Macaulay.

We now want to investigate rational singularities of R4(/, J) in this context. For
basic facts about rational singularities, we refer to [1]. The following lemma is a
multigraded variant of a theorem of Flenner ([3, Satz 3.1]).

LEMMA 4.9. Let S be a normal r-graded ring defined over an excellent local ring of
equicharacteristic zero. Set Z = Proj S. Then S has rational singularities if and only
if Z has rational singularities and H'(Z, Oz(n)) =0 for all i > 0 and n > 0.

Proof. Suppose first that S has rational singularities. Cover Z with open affine
sets  Dy(sy---5,) = SpecSs,..;,) where s;€ 8y, (j=1,...,r). Because S; . =

Se-sylti, i ., 4, ,7'] where 11, ..., 1, are variables, it is easy to see that if
Sy,..s, has rational singularities, then so has Si,..;). Therefore Z has rational
singularities.

From now on we can thus assume that Z has rational singularities. Set
W = Proj Rs(ST). Let f:W —>SpecS be the canonical projection. Let
g W' — W be a desingularization. Then fg: W’ — SpecS is a desingularization
of SpecS. By Lemma 3.1 we know that W = V(Oz(1,)® --- ® Oz(1,)). Since Z
has rational singularities, then so does W. Hence, R'g,Oy» = 0 for all i > 0. Because
W is normal, we also have g,0y» = Oy. An easy application of the Leray spectral
sequence now shows that R/(fg),Op = R'f,Oy for all i>0. Therefore
R(fg),Ow =0 for all i > 0 if and only if H'(W,Oy) =0 for all i > 0. Because
H(W,0w) =@, ¢H(Z, Oz(n)), we thus see that S has rational singularities if
and only if H/(Z, Oz(n)) = 0 for all i > 0 and n > 0. The claim has so been proven.

THEOREM 4.3. Let A be an excellent local ring of equicharacteristic zero. Let
1,J C A be ideals of positive height such that £(IJ) = 3. Then R4(I,J) has rational
singularities if and only if R4(I), R4(J) and R4(1J) have rational singularities. When
A is essentially of finite type over a field of characteristic zero, this implies in par-
ticular that Ry(1,J) is Cohen—Macaulay.
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Proof. Suppose first that R,(I), R4(J) and R4(1J) have rational singularities. Set
X =ProjR4(I), Y =ProjR4(J) and Z = ProjR,(I,J). Because Z == ProjR,(1J)
has rational singularities, it is by Lemma 4.9 enough to show that R4(Z, J) is normal
and that H(Z, O4(p, ¢)) = 0 for alli > 0 and p, ¢ > 0. Consider first the latter claim.
Since R4(1J) has rational singularities, we have H'(Z, Oz(n, n)) = 0 for all i > 0 and
n > 0. By Lemma 4.2(a) we then get H(Z, O(p, q)) = Oforalli > Oandp, ¢ > 2 —i.
It remains to prove that H'(Z, O4(p, 0)) = 0 and H'(Z, ©(0, q)) = 0 forall p, g > 0.
But because R4(/) and R4(J) have rational singularities, this again follows from
Lemma 4.9 by an easy Leray spectral sequence argument. We still need to show
that R4(1, J) is normal. Note first that 4 is normal. Because Z is normal, we know
by [21, p. 100] that I'(Z, I?J10z) = IrJ4 for all p, ¢ > 0. This means in particular
that I'(Z,10,)=1,1(Z,JOz) =J and I'(Z, IJOz) = 1J. Lemma 4.2(a) then yields
[(Z,1"J90z) = I"J? for all p,g=>0. So I?’J9=1rJ9 for all p,q>0. Hence,
R4(1,J) 1s normal (cf. [17, p. 126]).

Conversely, if Ry(I,J) has rational singularities, then so have R,(I) and R4(J)
(use e.g. [11, Proposition 2.3]). By utilizing again the isomorphism Proj R4(1J) =
Z, it is also clear from Lemma 4.9 that R4(1J) must have rational singularities.

Let 4 be a ring and let a C A4 be an ideal. Recall that the reduction number of a
with respect to a reduction b C a is the least integer r such that o’*! =ba". It is
denoted by ry(a). The reduction number of a is then defined as

r(a) = min{ry(a) | b C a is a reduction of a}.

The next theorem deals with the Cohen—Macaulay property of a multi-Rees algebra
when the product of the ideals has a small reduction number. In this case we need
not to assume anything about the analytic spread.

THEOREM 4.4. Let (A, m) be a Cohen—Macaulay local ring of positive dimension,
and let 1,J C A be m-primary ideals such that r(IJ) < 1. Then Ry(I,J) is
Cohen—Macaulay if and only if IJ : I =J and 1J : J = I.

Proof. Since r(IJ) <1, we know that R,(IJ) is Cohen—Macaulay (see [27,
Corollary 5.13]). By [26, Proposition 3.2] we obtain a(G4(1J)) < —d + 1 where
d = dim A. Lemmas 4.2(a) and 4.4(a’) therefore imply that H'(Z, Oz(p, q)) =0
for all i >0 and p,g>1—i. Let us now show that H.(Z, Oz(p, q)) =0 for all
i<d and p,q < —1. We use induction on i. Note first that by Lemmas 4.2(b)
and 4.4(b') we have HL(Z, Oz(p,q)) =0 for all i < d and p,q <1 —i. Fori<2,
there is thus nothing to prove. Let i > 2. Set U = SpecA \ {m}and V = f~!(U) where
f:Z — SpecA is the canonical projection. We then have the exact sequence

o HTYWV, 0p) — HAZ, O2(p, ) — H'(Z, O2(p, @) — -

Here H='(V, Oy) = H='(U, Oy) = H! (4). By the Cohen-Macaulayness of 4, this
implies that H.(Z, Oz(p, q)) =0fori < dand 1 —i < p, ¢ < — 1. Then suppose, for
example, that 1 —i < ¢ < — 1, but p < 1 —i. By the case j < 2 and the induction
hypothesis we now have Hi—(Z, Oz(1—j,9)) =0 for all j <i. We just saw that
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also HL(Z,0z(1—1i,q))=0. It thus follows from Lemma 4.2(b) that
H(Z,0z(p,q))=0also forallp<1—iand 1 —i < ¢ < — 1. It remains to show
that I'(Z, Oz(p, q)) = 1?J9 for all p,g=0if and only if IJ: I =J and IJ :J = 1.
But this is now a consequence of Lemmas 4.5 and 4.6.

Finally, we want to investigate the effect of the Cohen—Macaulayness of a
multi-Rees algebra on the depths of the corresponding single Rees algebras.

THEOREM 4.5. Let (A, m) be a Cohen—Macaulay local ring of dimension d, and let
I C A be an ideal of positive height satisfying for some k € N the conditions
A/I"=2d+1—k—n Wm=1,...,d—k). Suppose that there exist ideals
L, ..., I, C Aof positive height such that Ry(I, I, . .., I.) is Cohen—Macaulay. Then
R4 (I) = d+ 3 — k. In particular, we always have depth R4(I) = 3. When d = 2, this
means that Ry(I) is Cohen—Macaulay.

Proof. Set R = R4(I), and let M denote the homogeneous maximal ideal of R.
Also set X =ProjR and E = X x4 A/m. Using Proposition 3.3 it follows from
Theorem 3.1 that I'(X, Ox(n)) = I and H/(X, Ox(n)) =0 for all i > 0 and n > 0.
By Proposition 3.2 this gives [Hj(R)], = 0 for all i >0 and n > 0. We also obtain
HL(X,Ox(n)) = HL (I") for all n>0. Because 4 is Cohen-Macaulay, we have
Hi(I")y= Hi7'(4/I") for all n>0. It therefore follows that HL(X,Ox(d+
1—k—1i))=0 for all i<d+1—-—k By Lemma 4.2(b) this implies that
HL(X,Ox(m))=0foralli <d+1—kandn < 0. By the Sancho de Salas sequence
([20, p. 150]) we then obtain [H{(R)], = 0 foralln < 0and i < d + 2 — k. This proves
the claim.

5. An Application to Joint Reductions

We begin by recalling from [15, p. 218] the definition of a joint reduction of a stan-
dard graded ring S=@, v Sn. Let qe N. A set {z;;€S8,|i=1,....r;
j=1,...,¢} is called a joint reduction of S of type q if

Sll = Z(Zi,ls ) Zi,q,v)Snfll- (T)
i=1

for all n >> 0. Suppose that Sy is local with the maximal ideal m. If the residue field of
Sy is infinite, then joint reductions always exist for |q| > dim S*/mS2. Finally, when

Ii,..., 1. C A areideals, one says thataset {a;; e [; | i=1,...,r5j=1,...,q}isa
joint reduction of i, ..., I, of type q if the set {a;;t; |i=1,...,r5j=1,...,q} is
a joint reduction of R (1, ..., 1) = A[Lt, ..., I,t;] of type q.

The main result of this section is Theorem 5.1, which says that in the
Cohen—Macaulay case the formula (1) already holds for all n > q. Its proof is based
on the following lemma.

LEMMA 5.1. Let S be a standard r-graded ring. Set Z =ProjS. Let {z;; €
Sili=1,...,rnj=1,...,q} beajoint reduction of S of typeq. Letn € N'". Suppose
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that H(Z,Om —p)) =0 for all 0 < i < |q| and 0 < p < q with |p| =i+ 1. Then the
elements z;; define a surjective homomorphism

[(Z, Oz(n — 1,)® — T(Z, Oz(n)).

P
On:

i=1
Proof. In any case the elements z;; induce an epimorphism

o: P 02(-1)* — 0.
i=1

=
Set F =@, Oz(—1,)%%. 1t follows that the corresponding Koszul complex
is exact. We now have
r q;
NF=P ®<Oz(—p,—1i)®<”f>).
Ipl=/ =1
Note that
’ ()

®(OZ(_pi1i) ")=0

i=1
if p; > ¢; for some i. By tensoring K,(F, o) with Oz(n) we obtain an exact sequence

0—> Lig—> -+ —> Lj—> Lj | —> -+ —> Lo —>0
where £; = NF ® Oz(n). This sequence gives raise to exact sequences

0—K—L;—Ki-1—0 G=1,...,1q/ =1

where ICp = Lo and K1 = L. The assumption now guarantees that we have
H=YZ,L;)=0 for all 1<j<]|q. So there is for every 1<j<|q/—1 a
monomorphism H/'~Y(Z, K;_1) — H/(Z, K;). As HY7(Z, K\q-1) = 0, this implies
that H'(Z, K;) = 0. But then the homomorphism I'(Z, F(n)) — I'(Z, O(n)) is an
epimorphism, which proves the claim.

THEOREM 5.1. Let S be a standard r-graded ring defined over a local ring such that
ST has positive height. If S is Cohen—Macaulay with a(S) < 0, then
Sp = Z(Zi,l’ ey Zi,q,»)Snfl,»

i=1

when n = q for all joint reductions {z;; € Sy, |i=1,...,rj=1,...,q9} of type q.
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Proof. Set Z = Proj S. Theorem 3.1 implies that H(Z, Oz(n — p)) = 0 forall i > 0
and n > p. Moreover, we have I'(Z, Oz(n)) = S, for all n > 0. The claim therefore
follows from Lemma 5.1.

As an immediate consequence of this we obtain

COROLLARY 5.1. Let Abealocalring, andlet I, . . ., I, be ideals of positive height.
Let{ajjel;|i=1,...,r;j=1,...,q} be ajoint reduction of I, . .., I, of type q. If
Ry, ..., 1)) is Cohen—Macaulay, then

,
m - 4 I (LI (LD Ll (LRI (1
eI =3 " agg I DT
i=1

foralln = q.

6. A Formula for Mixed Multiplicities

Let (4, m) be a local ring of dimension d, and let I, ..., I, be m-primary ideals.
Mixed multiplicities were introduced by Teissier in [25]. Recall first that the function
[4(A/I{" - --I') is a numerical polynomial of degree d for n>> 0. Let ij,..., i € N
with i; + - - - + i, = d. The mixed multiplicity of I, ..., I, of type (iy, ..., i,) which
is denoted by [11[’”, ..., 1I1], is then defined as the coefficient of n} ---n’/ij!---i!
in this polynomial.

It has been proven by J. Lipman ([19, Corollary 3.7]) (see also [28, Corollary 3.3])
that in a two-dimensional regular local ring (4, m) any two integrally closed
m-primary ideals 7, J C A satisfy the ‘the mixed multiplicity formula’

(1M, JW] = e(A4/17) — 6(A/T) — €(A)T).

A result of Verma ([29, Theorem 3.4]) says that in this case the multi-Rees algebra
R4(1,J) is Cohen—Macaulay. We are now going to show that under the latter
assumption an analogous formula holds in an arbitrary local ring.

THEOREM 6.1. Let (A, m) be a local ring of dimension d, and let Iy, ..., 1, be
m-primary ideals. If R4(Iy, ..., 1) is Cohen—Macaulay, then

i i d z l ir —np——n n
=3y (};) . <n,~>(_l)d L (AT ).
n,=0

n1=0

Proof. We first show that there is a numerical polynomial H € Q[#4, ..., t,] such
that H(n) = €4(A/I" ---I'") when n > 0. We proceed inductively by proving for
all j=0,...,r the existence of numerical polynomials H; € Q[ty, ..., ] such that
Hi(ni, ..., nj) = 4(A4/1"" ~~Ij"’) when ny,...,n; > 0. If j = 0, then there is nothing
to prove. Suppose j > 0. Set

Y =Proj Ry(l1, ... 1)/IR(I. ..., I).
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Recall that the Euler—Poincaré characteristic

1Y, 0ym) =Y (=1 L4«(H(Y,Oy(m))) (meZ)

i>0
is a numerical polynomial (see [16, Lemma 4.3]). This implies that also
}’l/‘fl

Zx(Y,Oy(nl,...,n,_l,k,O,...,O))
k=0

is a numerical polynomial. Consider the long exact sequence of cohomology cor-
responding to the exact sequence

0— O0zn+1;)) — Oz(n) — (j.Oy)(m) — 0

where Z =ProjRy([},...,I,) and j:Y— Z 1is the inclusion. The Cohen-
Macaulayness of Ru(Ij,...,I;) implies by Theorem 3.1 that I'(Z, Oz()) =
I/"---I" and H'(Z, Oz(n)) =0 for all i > 0 and n > 0. It follows that

(Y, Oy(l’l)) — Ilm I”’ /Im . In/ 11n/+11]r3_+11 . -I:’"

and H'(Y,Oy(n)) =0 for all i > 0 and n > 0. This means that

X(Y’ (’)y(n)) — lA(Ifl . In, /Inl . n/ 1In/+lljrzjr+ll . [’n,)

for all n > 0. Therefore

L(A/I - ")

nj—1
= LA/ I+ Y (Y, Oy(my, ... 1. k0, 0)
k=0
for all ny,...,n; = 0. We can thus take
Hj(ny, ..., n)
nj—1

(o) 4 Y (Y, Oy, omio1 kL0, 0)).
For H=H, we then have H(n)=1[4(A4/I"---I') for all n>0. Let
A; = H(n+1;) — H(n) be the jth difference function corresponding to H. According
to [24, Proposition 1.1] we then have [1{"], o AU = (Al AT H)(0) for all
i1 +---+i = d. Using [24, Proposition 1.2] it is easy to see that

(A - AT H)(0) = Z Z( )"'(lir)(—l)d"‘“'”fH(n).

n1—0
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Hence

i : Ul L2 i iy —y——n, n n
[[{1]’ o I,[']] — Z .. Z (nll) <nr>(_1)d i "[A(A/]ll s I,

ny=0 n,=0

Let (A4, m) be a regular local ring. Let I C A4 be an ideal. Recall that the order of 7,
denoted by ord(/), is the largest integer k such that 7 c m*. It has been proven
in [19, Corollary 3.2] that if 4 is two-dimensional and 7 is an m-primary integrally
closed ideal, then ord(Z) = w(I) — 1. In the following proposition we will show that
an analogous formula holds in any dimension if the bi-Rees algebra R(/, m) is
Cohen—Macaulay.

PROPOSITION 6.1. Let (A, m) be aregular local ring of dimensiond, and let I C A be
an m-primary ideal. If R4(m, I) is Cohen—Macaulay, then

& (d-2 d—k ok
ord([):Z( f )(—1) w1y —d + 1.
k=0

Proof. We first recall from [30, Lemma 1.1] that ord(Z) = [ml“~!1, /1], According
to Theorem 6.1 we now have

[m[dfll’ ][1]]
1

U

d—1

- (d k 1>(—1)d_k1A(A/mk) + (d « 1>(—1)"—1—"1,4(/1/m’€1>-

k= k=0

(=1

Clearly

d—1

> (0 et camy
k=0
Ok f(d -1\ (d+k—1
d—k
e ()

=2 o fd—1\[d+k
d—1—k
k:o(_l) <k+1>< k >

By considering the coefficient of /=2 in

a1
(1 t) (1 _ t)d+1 - (1 _ Z)2 ’

we obtain

2 d—1\[(d+k
d—1—k _
;(—1) (k+1)< . )_ d+1.
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Since

()= (0)

we observe that

Il
N
L oL
N
&
l\)

(=D F ).

d—1
(d . 1)(—1)d—‘—k1A<A/mk1)
k=0
d=1 05 -2
= (k - 1>(_1)‘“"1/,(/1/m’<1) + Z ( )(—l)dlklA(A /)
k=1 k=0
d-2 d 2 d
> (1) k1A<A/mk+11)+Z( B amt
k=0
= d 2 d—k k+1 k
- ( . )( D4R D) — LA D))
k=0
d-2
= (d P 2)( D1 (1T

>~

=0

We have thus proven the claim.
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