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Abstract. LetAbe a local ring, and let I1; . . . ; Ir � Abe ideals ofpositiveheight. In this articlewe
compare the Cohen^Macaulay property of the multi-Rees algebra RAðI1; . . . ; IrÞ to that of the
usual Rees algebra RAðI1 � � � IrÞ of the product I1 � � � Ir. In particular, when the analytic spread
of I1 � � � Ir is small, this leads to necessary and suf¢cient conditions for the Cohen^Macaulayness
of RAðI1; . . . ; IrÞ.We apply our results to the theory of joint reductions and mixed multiplicities.
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1. Introduction

Let ðA;mÞ be a local ring, and let I1; . . . ; Ir � A be ideals of positive height. The
multi-Rees algebra RAðI1; . . . ; IrÞ ¼ A½I1t1; . . . ; Irtr� � A½t1; . . . ; tr� where t1; . . . ; tr
are variables. Multi-Rees algebras arise in successive blowing-up, which is a fun-
damental process in birational geometry. The purpose of this work is to investigate
their Cohen^Macaulay property. In particular, we want to link the Cohen^
Macaulayness of RAðI1; . . . ; IrÞ to the theory of joint reductions developed by
D. Rees. We recall here from [15] that given q 2Nr, a set fai;j 2 Ii j i ¼ 1; . . . ; r;
j ¼ 1; . . . ; qig is called a joint reduction of I1; . . . ; Ir of type q if
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for all n1; . . . ; nr � 0. In the case r ¼ 1, this coincides with the notion of reduction of
an ideal which was introduced by D. Rees and D. G. Northcott in [23] and has played
a central role in the study of usual Rees algebras.

In investigating the Cohen^Macaulay property of multi-Rees algebras one of the
main dif¢culties arises from the lack of interplay between the Rees algebra and
the form ring which has proved itself very useful in the case of the Rees algebra
of a single ideal. Our method is to compare the properties of a multi-Rees algebra
to those of the corresponding diagonal subring A½I1 � � � Irt1 � � � tr�, which is the Rees
algebra RAðI1 � � � IrÞ of the product ideal I1 � � � Ir. It is already known by [12,
Corollary 2.10] that the Cohen^Macaulayness of RAðI1; . . . ; IrÞ implies that of
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RAðI1 � � � IrÞ. The converse does not hold in general. We are therefore trying to ¢nd
out the additional conditions which would make RAðI1; . . . ; IrÞ Cohen^Macaulay
in this situation.

Our starting point is Theorem 3.1 where the Cohen^Macaulay property of an
r-graded ring is characterized in terms of sheaf cohomology. In the case r ¼ 1 this
was done by J. Lipman in [20, Theorem 4.1]. The case r ¼ 2 is [12, Theorem 2.5].
We then focus on the multi-Rees algebra RAðI1; . . . ; IrÞ. Theorem 3.1 now enables
us to utilize the fact that the corresponding multiprojective scheme is isomorphic
to the usual blow-up of SpecA along the product I1 � � � Ir. Our main tool is
Lemma 4.2, which is a multigraded variant of the Castelnuovo^Mumford lemma
([22, p. 99]). In fact, we observe in Lemma 4.2 that a similar statement also holds
for sheaf cohomology with supports.

Recall that the analytic spread ‘ðI1 � � � IrÞ ¼ dþ 1 where d is the dimension of the
closed ¢ber of the blow-up. The vanishing of sheaf cohomology above d makes
the situation especially easy to manage when the analytic spread is small. In the
case I1; . . . ; Ir � A are ideals of positive grade with ‘ðI1 � � � IrÞ ¼ 2 it comes out
in Theorem 4.1 that RAðI1; . . . ; IrÞ is Cohen^Macaulay if and only if RAðI1 � � � IrÞ
is Cohen^Macaulay and the condition ðIj1 � � � IjkÞ : Ijl ¼ Ij1 � � � Ijl�1Ijlþ1 � � � Ijk holds
for all 1W j1 < � � � < jkW r and 1W lW k. When A is Cohen^Macaulay and
I; J � A are ideals of positive height, we are able to treat the case ‘ðIJÞ ¼ 3, too
(see Theorem 4.2). In particular, we prove in Theorem 4.3 that if A is excellent
of equicharacteristic zero, then RAðI; JÞ has rational singularities if and only if
RAðIÞ, RAðJÞ and RAðIJÞ have rational singularities. If the analytic spread is higher,
then the situation becomes more subtle. However, when A is Cohen^Macaulay
and I; J � A are m-primary ideals such that the reduction number rðIJÞW 1, we
prove in Theorem 4.4 that RAðI; JÞ is Cohen^Macaulay if and only if IJ : J ¼ I
and IJ : I ¼ J.

Let fai;j 2 Ii j i ¼ 1; . . . ; r; j ¼ 1; . . . ; qig be a joint reduction of I1; . . . ; Ir of type q
where q 2Nr with jqj ¼ ‘ðI1 � � � IrÞ. It now turns out in Corollary 5.1 that if
RAðI1; . . . ; IrÞ is Cohen^Macaulay, then the formula (y) already holds for all
n1 X q1; . . . ; nrX qr. When r ¼ 1, this reduces to the well-known result of Johnston
and Katz in [14] saying that if I � A is an ideal of positive height and analytic spread
‘, then the Cohen^Macaulayness of the Rees algebra RAðIÞ implies that I ‘ ¼ JI‘�1

for every ‘-generated reduction J � I . Finally, we give in Theorem 6.1 a formula
for mixed multiplicities which generalizes the one proved by J. Lipman in [19,
Corollary 3.7] (see also [28, Corollary 3.3]).

2. Preliminaries

In this section we ¢x some notation and recall some basic facts about multigraded
rings. First, we always assume that all rings and schemes are Noetherian. We also
assume all schemes and morphisms to be separated. The norm of a multi-index
n 2 Zr is jnj ¼ n1 þ . . .þ nr. If n; n0 2 Zr and nj < n0j for j ¼ 1; . . . ; r, we write
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n < n0. Let 1j ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ ðj ¼ 1; . . . ; rÞ be the canonical base elements of
Zr. Moreover, we set 1 ¼ ð1; . . . ; 1Þ.

Let S ¼
L

n2Nr Sn be a standard r-graded ring de¢ned over the ring A ¼ S0. By the
word ‘standard’ we mean that S is ¢nitely generated over A by elements in degrees
11; . . . ; 1r. The diagonal subring of S is the graded ring SD ¼

L
n2N Sn;...;n. The

irrelevant ideal of S is Sþ ¼
L
n1;...;nr>0 Sn. The r-projective scheme ProjS associated

to S is de¢ned analogously to the usual graded case by using r-homogeneous prime
ideals P � S which do not contain Sþ. Set Z ¼ ProjS. Recall from [12, Lemma 1.2])
the formula

dimZ ¼ maxfdimS=P j P 2Min S \ ProjSg � r:

In particular, when Sþ has positive height, this gives dimZ ¼ dimS � r.
The theory of multiprojective schemes is similar to the theory of projective

schemes, which can be found in [6]. In fact, every multiprojective scheme is
projective: if ZD ¼ ProjSD, then the inclusion SD�!S induces an isomorphism
f :Z�!ZD. When n 2 Zr, the invertible quasi-coherent sheaf corresponding to
SðnÞ is denoted by OZðnÞ. Note that in the isomorphism f :Z�!ZD

f �ðOZDðnÞÞ ¼ OZðn; . . . ; nÞ for all n 2 Z. As usual we have OZðmþ nÞ ¼
OZðmÞ � OZðnÞ for all m; n 2 Zr.

We can look at the scheme Z also from another point of view. Let j 2 f1; . . . ; rg.
Consider S as a usual graded ring by writing

S ¼
M
kX 0

� M
m2Nr�1

Sm1;...;mj�1;k;mj ;...;mr�1

�
:

Let Y denote the ðr� 1Þ-projective scheme ProjS0. For every k 2N, let Sk be the
quasi-coherent OY -module corresponding to the ðr� 1Þ-graded S0-module Sk. Then
S ¼

L
kX 0 Sk is a quasi-coherent graded OY -algebra so that we have an associated

projective scheme Proj S. It is easily checked that it is possible to identify Proj S
with Z. The corresponding canonical invertible sheaf on Z is OZð1jÞ. Moreover,
if g:Z�!Y is the canonical projection, we have

g�ðOY ðmÞÞ ¼ OZðm1; . . . ;mj�1; 0;mj; . . . ;mr�1Þ

for m 2Nr�1.
In the following we are mostly interested in the case S ¼ RAðI1; . . . ; IrÞ where

I1; . . . ; Ir � A are ideals of positive height. Using [2, Exercise 4.4.12] it is easy to
see that dimRAðI1; . . . ; IrÞ ¼ dimAþ r. Observe that by the above construction
Z ¼ ProjRAðI1; . . . ; IrÞ can be identi¢ed with the blow-up of Y ¼ RAðI1; . . . ; Ij�1;
Ijþ1; . . . ; IrÞ along the sheaf of ideals IjOY ðj ¼ 1; . . . ; rÞ.

3. A Criterion for Cohen^Macaulayness

The main result of this section is Theorem 3.1 which characterizes the Cohen^
Macaulay property of a multigraded ring S in terms of the sheaf cohomology of
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the corresponding multiprojective scheme ProjS. We ¢rst deal with the sheaf
cohomology of the blow-up ProjRSðSþÞ. Our arguments will be based on the obser-
vation that ProjRSðSþÞ can be considered as a vector bundle over ProjS:

LEMMA 3.1. Let S be a standard r-graded ring. Set Z ¼ ProjS. Then

ProjRSðSþÞ ¼ VðOZð11Þ � � � � � OZð1rÞÞ:

Proof. Set T ¼ RSðSþÞ and W ¼ ProjT . Write T ¼ S½Sþt� where t is a variable.
Cover W with open af¢ne sets DþðstÞ ¼ SpecTðstÞ where s 2 S1. The elements of
TðstÞ are quotients f =ðstÞk where k 2N and f 2 Tk. As Tk ¼

L
nX 0 Sn1þk;...;nrþkt

k, this
implies that TðstÞ ¼

L
nX 0ðSðnÞÞðsÞ. But then

W ¼ Spec
M
nX 0

OZðnÞ ¼ SpecSymðOZð11Þ � � � � � OZð1rÞÞ:

Let S be a standard r-graded ring de¢ned over a local ring ðA;mÞ. Set Z ¼ ProjS.
We begin with some generalities about the sheaf cohomology of W ¼ ProjT
where T ¼ RSðSþÞ. In particular, we want to indicate that sheaf cohomology is
in fact r-graded. Observe ¢rst that T ¼

L
nX 0;kX 0 Sn1þk;...;nrþk can be considered

as a standard ðrþ 1Þ-graded ring. Note that the ring SD coincides with the subringL
kX 0 T0;k. Let M be any ðrþ 1Þ-graded T -module. By writing M ¼

L
k2ZM�;k

whereM�;k ¼
L

n2Zr Mn;k, we can considerM as a graded T -module. We then have
the associated sheaf eMM on W . Let p:W �!Z be the canonical morphism. One
checks that p�eMM ¼

L
n2Zr

gMn;�Mn;� where Mn;� is the graded SD-module
L
k2ZMn;k.

The module GðW ; eMMÞ ¼L
n2Zr GðZ; gMn;�Mn;�Þ has a natural structure of an r-graded

S-module. We then see that GðW ;e��Þ de¢nes a functor from the category of
ðrþ 1Þ-graded T -modules to the category of r-graded S-modules. Let A � S be a
homogeneous ideal. Set F ¼W �S S=A. Let 0�!M�! I� be an ðrþ 1Þ-graded
injective resolution. Take jX 0. Let Tþ denote the usual irrelevant ideal of T .
Now look at the Sancho de Salas sequence ([20, p. 150], see also [12, Theorem 1.4])

� � � �!HiAðI
j
�;0Þ �!H

i
F ðW ;eI jI jÞ �! ½Hiþ1ðA;TþÞðI

jÞ�0�! � � � :

Noting that 0 ¼ HiAT ðI
jÞ ¼

L
k2ZH

i
AðI
j
�;kÞ, this shows that HiF ðW ;eI jI jÞ ¼ 0 when

i > 0. We thus have a GF ðW ;�Þ-acyclic resolution 0�! eMM�! eI�I� which we can
use to calculate the modules HiF ðW ; eMMÞ. Since GF ðW ;�Þ ¼ H0

AGðW ;�Þ, these
are indeed r-graded S-modules.

Take in particular A ¼ aS where a � A is an ideal. Set E ¼ Z �A A=a. The
morphism p being af¢ne, we obtain HiEðZ; p�eI jI jÞ ¼ HiF ðW ;eI jI jÞ ¼ 0 for all jX 0 when
i > 0. This implies that 0�!p�eMM�!p�eI�I� is a GEðZ;�Þ-acyclic resolution of
p�eMM in the category of graded OZ-modules. By means of this resolution one
now veri¢es that as a graded S-module HiF ðW ; eMMÞ ¼L

n2Zr H
i
EðZ; fMnMnÞ for all iX 0.

Our main interest concerns the sheaf cohomology with supports in F ¼
W �S S=M where M denotes the homogeneous maximal ideal of S. In calculating
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the modules HiF ðW ;OW Þ our strategy is to determine ¢rst the local cohomology
sheaves HiGðOW Þ with supports in G ¼W �S S=S� where S� ¼

L
n 6¼0 Sn (for basic

facts about local cohomology sheaves we refer to [5, ‰1.]).

LEMMA 3.2. Let S be a standard r-graded ring. Set T ¼ RSðSþÞ and W ¼ ProjT.
Also set G ¼W �S S=S� where S� ¼

L
n 6¼0 Sn. Then HiGðOW Þ ¼

�
HiS�T ðT Þ

�e :

Moreover, if Z ¼ ProjS and p:W �!Z is the canonical morphism, we have

p�ðHiGðOW ÞÞ ¼
0 if i 6¼ r;L

n<0OZðnÞ if i ¼ r

	
as graded OZ-modules.
Proof. For any af¢ne open setDþðf Þ �W where f 2 T is a homogeneous element,

we have by de¢nition

HiGðOW ÞjDþðf Þ ¼
�
HiS�Tðf Þ ðTðf Þ

�e ¼
��
HiS�T ðT Þ

�
ðf Þ

�e :

This proves the ¢rst claim. In order to prove the second one, we cover Z with open
af¢ne sets U ¼ SpecSðs1���srÞ where sj 2 S1j ðj ¼ 1; . . . ; rÞ. By the construction given
in the proof of Lemma 3.1 p�1ðUÞ ¼ SpecTðs1���srtÞ. Set B ¼ Sðs1���srÞ and tj ¼ sj=1 2
Tðs1���srtÞ ðj ¼ 1; . . . ; rÞ. We observe that Tðs1���srtÞ ¼ B½t1; . . . ; tr� is a polynomial ring.
We also get G \ p�1ðUÞ ¼ V ðt1; . . . ; trÞ. Therefore

HiGðOW Þjp�1ðUÞ ¼ H
i
ðt1;...;trÞðB½t1; . . . ; tr�Þ

e
:

The claim is then a consequence of [7, Proposition 2.1.12] according to which

Hiðt1;...;trÞðB½t1; . . . ; tr�Þ ¼
0 if i 6¼ r,L

n<0 Bt
n1
1 � � � t

nr
r if i ¼ r.

	
PROPOSITION 3.1. Let S be a standard r-graded ring de¢ned over a local ring
ðA;mÞ. Set Z ¼ ProjS and W ¼ ProjRSðSþÞ. Also set E ¼ Z �A A=m and
F ¼W �S S=M where M is the homogeneous maximal ideal of S. Then as a graded
S-module HiF ðW ;OW Þ ¼

L
n<0H

i�r
E ðZ;OZðnÞÞ for all iX 0.

Proof. Set G ¼W �S S=S� where S� ¼
L

n6¼0 Sn. We consider the functor
GF ðW ;e��Þ from the category of ðrþ 1Þ-graded RSðSþÞ-modules to the category
of r-graded S-modules. Since M ¼ m� S�, it equals to the composite
Gp�1ðEÞðW ;H0

Gðe��ÞÞ. It follows that there is a spectral sequence

Ep;q2 ¼ Hpp�1ðEÞðW ;HqGðOW ÞÞ ) H
pþq
F ðW ;OW Þ:

On the other hand, by the remarks we have made earlier

Hpp�1ðEÞðW ;HqGðOW ÞÞ ¼ H
p
EðZ; p�ðH

q
GðOW ÞÞÞ

as graded S-modules. It now follows from Lemma 3.2 that the above spectral
sequence degenerates to give the claim.
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It is important to observe that certain homogeneous components of the local
cohomology of RSðSþÞ always vanish.

LEMMA 3.3. Let S be a standard r-graded ring de¢ned over a local ring. Set
T ¼ RSðSþÞ. Let N denote the homogeneous maximal ideal of T. Considering T
as an ðrþ 1Þ-graded ring, we have ½HiNðT Þ�n;k ¼ 0 for all iX 0 and n < 0, kX 0.
Proof. Let Q denote the irrelevant ideal of T when T is considered as an

ðrþ 1Þ-graded ring. We have the exact sequences

0�!Q�!T �!T=Q�! 0 and 0�!Tþ �!T�!T=Tþ �! 0:

The corresponding long exact sequences of cohomology give the exact sequences

Hi�1N ðT=QÞ �!HiNðQÞ �!H
i
NðT Þ �!H

i
NðT=QÞ

and

Hi�1N ðT=TþÞ�!HiNðT
þÞ�!HiNðT Þ�!H

i
NðT=T

þÞ:

Note that ½HiNðT=QÞ�n;k ¼ 0 if nj 6¼ 0 for all j ¼ 1; . . . ; r. We also have
½HiNðT=T

þÞ�n;k ¼ 0 if k 6¼ 0. As T ¼
L

nX 0;kX 0 Sn1þk;...;nrþk, we observe that there
is an obvious isomorphism Q�!Tþð�1; 1Þ which maps an element in Tn;k to
the corresponding element of Tn�1;kþ1. For any kX 0 and n < 0, we thus obtain
the isomorphisms

½HiNðT Þ�n;k ¼ ½HiNðQÞ�n;k ¼ ½HiNðT
þÞ�n�1;kþ1 ¼ ½HiNðT Þ�n�1;kþ1:

Since ½HiNðT Þ�n;k ¼ 0 for k� 0, the claim follows.
In the sequel we shall frequently utilize the interplay between the vanishing of local

cohomology, sheaf cohomology and sheaf cohomology with supports. The following
proposition ([13, Lemma 1.1] which is a version of [20, Lemma 4.2]) is therefore
crucial for our arguments.

PROPOSITION 3.2. Let R be a standard graded ring de¢ned over a local ring ðA;mÞ.
Set X ¼ ProjR and E ¼ X �A A=m. LetM be the homogeneous maximal ideal of R.
LetM be a graded R-module. Let n 2 Z. Then the following conditions are equivalent:

(1) ½HiMðMÞ�n ¼ 0 for all iX 0;
(2) The canonical homomorphism HimðMnÞ �!H

i
EðX ; eMMðnÞÞ is an isomorphism for all

iX 0;
(3) The canonical homomorphism Mn�!GðX ; eMMðnÞÞ is an isomorphism and

HiðX ; eMMðnÞÞ ¼ 0 for i > 0;
(4) ½HiSþðMÞ�n ¼ 0 for all iX 0.
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Let S be an Nr-graded ring de¢ned over a local ring, and let M be the homo-
geneous maximal ideal of S. De¢ne for all j ¼ 1; . . . ; r the a-invariants

ajðSÞ ¼ supfk 2 Z j ½HdimS
M ðSÞ�n 6¼ 0 for some n 2 Zr with nj ¼ kg.

Moreover, we set aðSÞ ¼ ða1ðSÞ; . . . ; arðSÞÞ:
We are now ready to prove the following theorem:

THEOREM 3.1. Let S be a standard r-graded ring de¢ned over a local ring ðA;mÞ
such that Sþ has positive height. Set Z ¼ ProjS and E ¼ Z �A A=m. Then S is
Cohen^Macaulay with aðSÞ < 0 if and only if the following conditions are satis¢ed

(1) GðZ;OZðnÞÞ ¼ Sn for all nX 0;
(2) HiðZ;OZðnÞÞ ¼ 0 for all i > 0 and nX 0;
(3) HiEðZ;OZðnÞÞ ¼ 0 for all i < dimZ and n < 0.

If this is the case, then also SD is Cohen^Macaulay with aðSDÞ < 0.
Proof. Set T ¼ RSðSþÞ andW ¼ ProjT . Let N denote the homogeneous maximal

ideal of T . Also set F ¼W � S=M whereM is the homogeneous maximal ideal of S.
One now checks that the Sancho de Salas sequence

� � � �! ½HiNðT Þ�0�!H
i
MðSÞ �!H

i
F ðW ;OW Þ �! � � �

is r-graded (cf. [20, p. 150] or [12, the proof of Theorem 1.4]). We saw in Lemma 3.3
that ½HiNðT Þ�n;0 ¼ 0 for n < 0. Using Proposition 3.1, it therefore follows that there
is an isomorphism ½HiMðSÞ�n ¼ H

i�r
E ðZ;OZðnÞÞ. Noting that dimS ¼ dimZ þ r,

we thus see that ½HiMðSÞ�n ¼ 0 for i < dimS and n < 0 if and only if (3) holds.
On the other hand, the Sancho de Salas sequence also implies that

½HiNðT Þ�0 ¼
M

some njX 0

½HiMðSÞ�n:

Therefore ½HiMðSÞ�n ¼ 0 for all iX 0 and n 2 Zr such that njX 0 for some j if and only
if ½HiNðT Þ�0 ¼ 0 for all iX 0. But according to Proposition 3.2 this is equivalent to
having GðW ;OW ÞM ¼ SM and HiðW ;OW ÞM ¼ 0 for i > 0. Because GðW ;OW Þ

and HiðW ;OW Þ are r-graded S-modules, this is the same as GðW ;OW Þ ¼ S
and HiðW ;OW Þ ¼ 0 for i > 0. Since GðW ;OW Þ ¼

L
nX 0 GðZ;OZðnÞÞ and

HiðW ;OW Þ ¼
L

nX 0H
iðZ;OZðnÞÞ, the proof is now complete.

The last statement is proved by utilizing the isomorphism ProjSD ffi Z and noting
that OZDðnÞ then corresponds to OZðn; . . . ; nÞ for all n 2 Z.
Remark 3.1. LetA be a local ring, and let I1; . . . ; Ir � A be ideals of positive height.

Recall from [9, Lemma 2.1] that aðRAðI1; . . . ; IrÞÞ ¼ �1. We can therefore apply
Theorem 3.1 in the case S ¼ RAðI1; . . . ; IrÞ. In particular, the Cohen^Macaulayness
of RAðI1; . . . ; IrÞ implies that of RAðI1 � � � IrÞ. This recovers [12, Corollary 2.10].
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Let S be a standard r-graded ring. Let j 2 f1; . . . ; rg. Let S0 denote the ðr� 1Þ-
graded subring

L
m2Nr�1 Sm1;...;mj�1;0;mj ;...;mr�1 . For every k 2N, we then get an

ðr� 1Þ-graded S0-module Sk ¼
L

m2Nr�1 Sm1;...;mj�1;k;mj ;...;mr�1 .
The Cohen^Macaulay property of S does not in general imply that of S0. We will

return to this question later in Theorem 4.5 when S is a multi-Rees algebra (for
a counterexample in this case, see, e.g., [8, Example 3.11]). We mention here only
the following general fact:

PROPOSITION 3.3. Set Z ¼ ProjS and Y ¼ ProjS0. For every k 2N, let Sk denote
the OY -module associated to Sk. Suppose that

(1) GðZ;OZðnÞÞ ¼ Sn for all nX 0;
(2) HiðZ;OZðnÞÞ ¼ 0 for all i > 0 and nX 0.

Then

(a) GðY ;SkðmÞÞ ¼ Sm1;...;mj�1;k;mj ;...;mr�1 for all k 2N, mX 0;
(b) HiðY ;SkðmÞÞ ¼ 0 for all i > 0 and k 2N, mX 0.
In particular, this means that
(a0) GðY ;OY ðmÞÞ ¼ Sm1;...;mj�1;0;mj ;...;mr�1 for all k 2N, mX 0;
(b0) HiðY ;OY ðmÞÞ ¼ 0 for all i > 0 and mX 0.

Proof. The claim is an immediate consequence of Lemma 3.4 below.

LEMMA 3.4. Use the preceding notation. Let n 2Nr. Suppose that there exists an
NX 0 such that GðZ;OZðn0ÞÞ ¼ Sn0 and HiðZ;OZðn0ÞÞ ¼ 0 for all i > 0 when
n0j ¼ nj and n

0
1; . . . ; ; n

0
j�1; n

0
jþ1; . . . ; n

0
rXN. Then

HiðZ;OZðnÞÞ ¼ HiðY ;Snj ðn1; . . . ; ; nj�1; njþ1; . . . ; nrÞÞ

for all iX 0.
Proof. Let g:Z�!Y denote the canonical projection. The claim will follow from

the Leray spectral sequence

Ep;q2 ¼ HpðY ;Rqg�ðOZðnÞÞÞ ) HpþqðZ;OZðnÞÞ

as soon as we show that

g�ðOZðnÞÞ ¼ Snj ðn1; . . . ; nj�1; njþ1; . . . ; nrÞÞ

and Rqg�ðOZðnÞÞ ¼ 0 for all q > 0. For the ¢rst statement, it is enough to prove that

GðY ; ðg�ðOZðnÞÞÞðmÞÞ ¼ GðY ; ðSnj ðn1; . . . ; nj�1; njþ1; . . . ; nrÞÞðmÞÞ

for all m 2Nr�1 with m� 0. Indeed, using the assumption and the r-graded version
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of the theorem of Serre (see [16, Lemma 4.2]), we obtain for m� 0

GðY ;g�ðOZðnÞÞ � OY ðmÞÞ
¼ GðZ;OZðnÞ � g�ðOY ðmÞÞÞ
¼ GðZ;OZðnÞ � OZðm1; . . . ;mj�1; 0;mj; . . . ;mr�1ÞÞ

¼ GðZ;OZðn1 þm1; . . . ; nj�1 þmj�1; nj; njþ1 þmj; . . . ; nr þmr�1ÞÞ

¼ Sn1þm1;...;nj�1þmj�1;nj ;njþ1þmj ;...;nrþmr�1

¼ GðY ; ðSnj ðn1; . . . ; nj�1; njþ1; . . . ; nrÞÞðmÞÞ:

The second statement is a consequence of [12, Lemma 2.1].

4. Cohen^Macaulayness and Small Analytic Spread

Let A be a local ring, and let I1; . . . ; Ir � A be ideals of positive height. We saw in
Remark 3.1 that the Cohen^Macaulayness of S ¼ RAðI1; . . . ; IrÞ implies that of
SD ¼ RAðI1 � � � IrÞ. The converse implication does not hold in general (see [2, Example
2.11]). Our purpose is to ¢nd out what additional conditions are needed for the
Cohen^Macaulay property of RAðI1; . . . ; IrÞ in this situation. Set Z ¼ ProjS and
ZD ¼ ProjSD. In light of Theorem 3.1, one key point is to understand how the
vanishing of the cohomology modules HiðZD;OZD ðnÞÞ ¼ HiðZ;OZðn; . . . ; nÞÞ
ðn 2NÞ affects the vanishing of the modules HiðZ;OZðnÞÞ ðn 2NrÞ. Our main
Lemma 4.2 is an r-graded variant of the Castelnuovo^Mumford lemma. It is a based
on the following.

LEMMA 4.1. Let Y be a scheme, and let L be an invertible sheaf on Y generated by
¢nitely many global sections. Let F be a coherent sheaf on Y. Let m 2 Z and
p 2N. Then the following holds:

(a) If HiðY ;F � L
m�i
Þ ¼ 0 for all i > p, then HiðY ;F � L

n�i
Þ ¼ 0 for all i > p and

nXm. Moreover, if p ¼ 0 and s1; . . . ; s‘ 2 GðY ;LÞ generate L, then the induced
homomorphism GðY ;F � L

n
Þ
�‘
�!GðY ;F � L

nþ1
Þ is surjective for nXm.

(b) Let E � Y be a closed subset. If HiEðY ;F � L
m�i
Þ ¼ 0 for all i < p, then

HiEðY ;F � L
n�i
Þ ¼ 0 for all i < p and nWm.

The proof of (a) is similar to that of [11, Lemma 2.6] and [21, Lemma 5.1]. There-
fore we prove here only (b). Let us use descending induction on n. If n ¼ m, then
there is nothing to prove. Suppose n < m. Since L is generated by global sections,
there is for some ‘ > 0 an epimorphism O

�‘
Y �!L which further gives an

epimorphism s: ðL�1Þ�‘�!OY . The Koszul cocomplex F � K�ðs_Þ corresponding
to the dual morphism s_:OY �!L

�‘ is then exact. Note that

F � Kjðs_Þ ¼ F � ^jL
�‘
¼ F � ðL

j
Þ
� ‘
j

� �
ðj ¼ 0; . . . ; ‘Þ:
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By tensoring F � K�ðs_Þ with Ln�i we obtain an exact sequence

0�!L0�! � � � �!Lj �!Ljþ1�! � � � �!L‘�! 0

where

Lj ¼ F � ðL
n�iþj

Þ
� ‘
j

� �
ðj ¼ 0; . . . ; ‘Þ:

This sequence gives raise to exact sequences

0�!Kj�1�!Lj �!Kj �! 0 ðj ¼ 1; . . . ; ‘� 1Þ

where K0 ¼ F � L
n�i and K‘�1 ¼ F � L

n�iþ‘. By the induction hypothesis we now
have Hi�jE ðY ;F � L

nþ1�iþj
Þ ¼ 0 for all jX 0. By looking at the corresponding long

exact sequences of cohomology, we obtain for every j ¼ 0; . . . ; ‘� 2 an epimorphism
Hi�j�1E ðY ;Kjþ1Þ �!H

i�j
E ðY ;KjÞ. But using the induction hypothesis again, we get

Hi�‘þ1E ðY ;K‘�1Þ ¼ 0. Therefore Hi�jE ðY ;KjÞ ¼ 0 for all j ¼ 0; . . . ; ‘� 1. In par-
ticular, HiEðY ;F � L

n�i
Þ ¼ 0 as wanted.

LEMMA 4.2. Let S be a standard graded ring de¢ned over the ring A ¼ S0. Let a � A
be an ideal. Set Z ¼ ProjS and E ¼ Z �A A=a. Let M be an r-graded S-module. Set
F ¼ eMM. Let m 2 Zr and p 2N.

(a) Suppose that HiðZ;Fðm1 � i; . . . ;mr � iÞÞ ¼ 0 for all i > p. Then

HiðZ;Fðn1 � i; . . . ; nr � iÞÞ ¼ 0

for all i > p and nXm. Moreover, if p ¼ 0 and s1; . . . ; s‘ 2 GðZ;OZð1jÞÞ generate
OZð1jÞ, then the induced homomorphism

GðZ;FðnÞÞ�‘�!GðZ;Fðnþ 1jÞÞ

is surjective for nX ðm1 � 1; . . . ;mj�1 � 1;mj;mjþ1 � 1; . . . ;mr � 1Þ and j ¼ 1; . . . ; r.
(b) Suppose that HiEðZ;Fðm1 � i; . . . ;mr � iÞÞ ¼ 0 for all i < p. Then

HiEðZ;Fðn1 � i; . . . ; nr � iÞÞ ¼ 0

for all i < p and nWm.
Proof. Let us prove the ¢rst statement of (a) by descending induction on i. Every-

thing being clear for large i, suppose HjðZ;Fðn1 � j; . . . ; nr � jÞÞ ¼ 0 for j > i
and nXm. Let us show by induction on k ¼ 0; . . . ; r that

HiðZ;Fðn1 � i; . . . ; nk � i;mkþ1 � i; . . . ;mr � iÞÞ ¼ 0

when njXmj for j ¼ 1; . . . ; k. Since HiðZ;Fðm1 � i; . . . ;mr � iÞÞ ¼ 0, the case k ¼ 0
is clear. Let k > 0. By the original induction hypothesis we know that

HjðZ;Fðn1 � i; . . . ; nk�1 � i;mk � j;mkþ1 � i; . . . ;mr � iÞÞ ¼ 0:
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for j > i. As this now also holds for j ¼ i, the ¢rst statement of Lemma 4.1(a) gives

HiðZ;Fðn1 � i; . . . ; nk�1 � i; nk � i;mkþ1 � i; . . . ;mr � iÞÞ ¼ 0

for all nkXmk as wanted. In particular, given j 2 f1; . . . ; rg, we have

HiðZ;Fðn1; . . . ; nj�1;mj � i; njþ1; . . . ; nrÞÞ ¼ 0

for all i > 0 and nkXmk � 1 ðk 6¼ jÞ. By the second statement of Lemma 4.1(a) this
implies the remaining statement of (a). The proof of (b) is done by induction on
i. As it is analogous to the proof of (a), we omit it.
Remark 4.1. Set ZD ¼ ProjSD and FD ¼ gMDMD where MD ¼

L
n2ZMn;...;n. Recall

that the Castelnuovo^Mumford regularity of FD is by de¢nition the smallest integer
m 2 Z such that

HiðZD;FDðm� iÞÞ ¼ HiðZ;Fðm� i; . . . ;m� iÞÞ ¼ 0

for all i > 0.
We now return to consider the case where S is a multi-Rees algebra. We would like

to ¢nd an integer m 2 Z such that m ¼ ðm; . . . ;mÞ 2 Zr in Lemma 4.2 is optimal for
our purposes. Therefore, we are next going to investigate the vanishing of the sheaf
cohomology of the projective scheme associated to a Cohen^Macaulay Rees algebra
of a single ideal.

Let ðA;mÞ be a local ring, and let I � A be an ideal of positive height. Set
X ¼ ProjRAðIÞ. As the closed ¢ber of the canonical projection X �! SpecA has
dimension ‘ðIÞ � 1, it is well known from [7, Corollaire (4.2.2)] that
HiðX ;FÞ ¼ 0 for every coherent sheaf F on X if iX ‘. When the ideal has small
analytic spread, we thus see that most of the sheaf cohomology vanishes. The
following lemma shows that the same also holds for sheaf cohomology with supports
in the closed ¢ber.

LEMMA 4.3. Let ðA;mÞ be a local ring of dimension d, and let I � A be an ideal of
positive height. Set X ¼ ProjRAðIÞ and E ¼ X �A A=m. Let L be an invertible sheaf
on X. If X is Cohen^Macaulay, then HiEðX ;LÞ ¼ 0 for all iW d � ‘ðIÞ.
Proof.We may assume that A is complete. By the local^global duality of Lipman

([18, p. 188]) we then have

HiEðX ;LÞ ¼ HomAðHd�iðX ;oX � L�1Þ;EAðkÞÞ:

Using [7, Corollaire (4.2.2)] we get Hd�iðX ;oX � L�1Þ ¼ 0 for iW d � ‘ðIÞ so that
HiEðX ;LÞ ¼ 0 for iW d � ‘ðIÞ as wanted.

LEMMA 4.4. Let ðA;mÞ be a local ring of dimension d, and let I � A be an ideal of
positive height. Set X ¼ ProjRAðIÞ and E ¼ X �A A=m. Also set ‘ ¼ ‘ðIÞ and
a ¼ aðGAðIÞÞ where GAðIÞ denotes the form ring RAðIÞ=IRAðIÞ. If RAðIÞ is
Cohen^Macaulay, then

COHEN^MACAULAY MULTI-REES ALGEBRAS 329

https://doi.org/10.1023/A:1014335520269 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014335520269


(a) HiðX ;OX ð‘� 1� iÞÞ ¼ 0 for all i > 0;
(b) HiEðX ;OX ðd � ‘� iÞÞ ¼ 0 for all i < d.

Suppose, moreover that A is Cohen^Macaulay. Then

(a0) HiðX ;OX ð‘þ a� iÞÞ ¼ 0 for all i > 0;
(b0) HiEðX ;OX ðd � ‘þ 1� iÞÞ ¼ 0 for all i < d.

Proof. If RAðIÞ is Cohen^Macaulay, then HiðX ;OX ðnÞÞ ¼ 0 for all i > 0 and nX 0
by the case r ¼ 1 of Theorem 3.1. This clearly implies (a). We also obtain
HiEðX ;OX ðnÞÞ ¼ 0 for all i < d and n < 0. Together with Lemma 4.3 this implies
(b). To prove (a0) recall ¢rst that if A and RAðIÞ are Cohen^Macaulay, then so
is GAðIÞ (see, e.g., [27, Theorem 5.1.23]). Let M denote the homogeneous maximal
ideal of RAðIÞ. We now see that ½HiMðGÞ�n ¼ 0 for all iX 0 and n > a. Set
Y ¼ ProjGAðIÞ. By Proposition 3.2 we obtain HiðY ;OY ðnÞÞ ¼ 0 for all i > 0 and
n > a. Using the long exact sequences of cohomology corresponding to the exact
sequences

O�!OX ðnþ 1Þ �!OX ðnÞ �! j�ðOY ðnÞÞ �! 0

where j:Y �!X is the inclusion, this gives HiðX ;OX ðnÞÞ ¼ 0 for all i > 0 and n > a.
This implies (a0). Finally, to prove (b0), we need to show that if A is Cohen^
Macaulay, then HiEðX ;OX Þ ¼ 0 for i < d. But this follows from the Sancho de Salas
sequence

� � � �!HimðAÞ �!H
i
EðX ;OX Þ �! ½Hiþ1M ðRAðIÞÞ�0�! � � �

(see [20, p. 150]).
We still need two lemmas about the global section modules.

LEMMA 4.5. Let A be a local ring, and let I1; . . . ; Ir � A be ideals of positive grade.
Set Z ¼ ProjRAðI1; . . . ; IrÞ. Then

GðZ;OZðn�mÞÞ ¼ HomAðI
m1
1 � � � Imrr ;GðZ;OZðnÞÞÞ

for all n;mX 0. Moreover,

GðZ;OZðn�mÞÞ ¼ GðZ;OðnÞÞ :GðZ;OZÞ ðI
m1
1 � � � Imrr Þ

for all nXmX 0.
Proof. Observe ¢rst that

GðZ;OZðn�mÞÞ ¼ HomZðOZ;OZðn�mÞÞ
¼ HomZðOZðmÞ;OZðnÞÞ
¼ HomZðI

m1
1 � � � Imrr OZ;OZðnÞÞ:

Because I
n01
1 � � � In

0
r
r GðZ;OZðnÞÞ � GðZ;OZðnÞðn0ÞÞ for all n0X 0, it is easily checked
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that

HomZðI
m1
1 � � � Imrr OZ;OZðnÞÞ ¼ HomAðI

m1
1 � � � Imrr ;GðZ;OðnÞÞÞ:

This proves the ¢rst claim. Let us then prove the second claim by showing that the
canonical homomorphism

GðZ;OðnÞÞ :GðZ;OZÞ ðI
m1
1 � � � Imrr Þ �!HomAðI

m1
1 � � � Imrr ;GðZ;OZðnÞÞÞ

is an isomorphism. It is clearly injective, because every regular element of A is also
GðZ;OZÞ-regular. To prove the surjectivity, take

u 2 HomAðI
m1
1 � � � Imrr ;GðZ;OZðnÞÞÞ:

Choose a regular element a 2 A such that aIm1
1 � � � Imrr 2 In11 � � � Inrr . Since

HomAðI
m1
1 � � � Imrr =In11 � � � Inrr ;GðZ;OZðnÞÞÞ ¼ 0;

there is a monomorphism

HomAðI
m1
1 � � � Imrr ;GðZ;OZðnÞÞÞ �!HomAðI

n1
1 � � � Inrr ;GðZ;OZðnÞÞÞ:

Because

HomAðI
n1
1 � � � Inrr ;GðZ;OZðnÞÞÞ ¼ GðZ;OZÞ;

we can ¢nd an element s 2 GðZ;OZÞ such that uðxÞ ¼ sx for all x 2 In11 � � � Inrr . In
particular, uðayÞ ¼ say for all y 2 Im1

1 � � � Imrr . But then uðyÞ ¼ sy, which proves
the claim.

LEMMA 4.6. Let A be a local ring. Let I1; . . . ; Ir � A be ideals of positive grade such
that

ðImj1 � � � I
m
jk Þ : Ijl ¼ I

m
j1 � � � I

m
jl�1I

m�1
jl Imjlþ1 � � � I

m
jk

for all 1W j1 < � � � < jkW r and 1W lW k. Set Z ¼ ProjRAðI1; . . . ; IrÞ. Suppose that
HiðZ;OZðnÞÞ ¼ 0 for all i > 0 and nX ðm� i; . . . ;m� iÞ. If GðZ;OZÞ ¼ A and
GðZ;OZðm; . . . ;mÞÞ ¼ Im1 � � � I

m
r , then GðZ;OZðnÞÞ ¼ In11 � � � Inrr for all nX

ðm� 1; . . . ;m� 1Þ.
Proof. Using Lemma 4.2(a), we see that GðZ;OZðnÞÞ ¼ In11 � � � Inrr if nXm. Let us

show that the same holds for all nX ðm� 1; . . . ;m� 1Þ. It suf¢ces to consider
the case nW ðm; . . . ;mÞ. Suppose, for simplicity, that n1 ¼ . . . ¼ nk ¼ m and
nkþ1 ¼ � � � ¼ nr ¼ m� 1. The assumption now implies that

ðIm1 � � � I
m
r Þ : ðIkþ1 � � � IrÞ ¼ I

m
1 � � � I

m
k I
m�1
kþ1 � � � I

m�1
r :

By Lemma 4.5 we then get

GðZ;OZðnÞÞ ¼ GðZ;OZðm; . . . ;mÞÞ : ðIkþ1 � � � IrÞ ¼ Im1 � � � I
m
k I
m�1
kþ1 � � � I

m�1
r :
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We are now ready to prove the ¢rst main result of this section, which concerns the
Cohen^Macaulay property of a multi-Rees algebra in the case the product of the
ideals has analytic spread at most two.

THEOREM 4.1. Let A be a local ring. Let I1; . . . ; Ir � A be ideals of positive grade
with ‘ðI1 � � � IrÞW 2. Then RAðI1; . . . ; IrÞ is Cohen^Macaulay if and only if
RAðI1 � � � IrÞ is Cohen^Macaulay and the condition ðIj1 � � � IjkÞ : Ijl ¼
Ij1 � � � Ijl�1Ijlþ1 � � � Ijk holds for all 1W j1 < � � � < jkW r and 1W lW k.
Proof.Using Theorem 3.1 and Lemma 4.5, we easily see that the conditions of the

theorem are necessary.
Let us prove that they are also suf¢cient. Set Z ¼ ProjRAðI1; . . . ; IrÞ and

E ¼ Z �A A=m. Since Z ffi ProjRAðI1 � � � IrÞ, Lemmas 4.2(a) and 4.4(a) imply that
HiðZ;OZðnÞÞ ¼ 0 for all i > 0 and nX 0. Because GðZ;OZÞ ¼ A and
GðZ;OZð1; . . . ; 1ÞÞ ¼ I1 � � � Ir, it follows from Lemma 4.6 that GðZ;OZðnÞÞ ¼
In11 � � � Inrr for all nX 0. Using Lemmas 4.2(b) and 4.4(b), we get
HiEðZ;OZðnÞÞ ¼ 0 for all i < dimA and n < 0. The claim is now a consequence
of Theorem 3.1.

J. Verma showed in [29, Theorem 3.4] that in a two-dimensional regular local ring
integrally closed ideals primary to the maximal ideal always have Cohen^Macaulay
multi-Rees algebras. In the following Corollary 4.1 we are going to generalize this
to equimultiple ideals of height two in a local ring of arbitrary dimension. However,
we ¢rst need two lemmas.

LEMMA 4.7. Let A be a local ring, and let I ; J � A be ideals of positive height. Then
maxf‘ðIÞ; ‘ðJÞgW ‘ðIJÞ.
Proof. It is enough to show that ‘ðIÞW ‘ðIJÞ. Set X ¼ ProjRAðIÞ and

Z ¼ ProjRAðIJÞ. Also set E ¼ X �A A=m and F ¼ Z �A A=m where m denotes
the maximal ideal of A. We have ‘ðIÞ ¼ dimE þ 1 and ‘ðIJÞ ¼ dimF þ 1. If
f :Z�!X is the canonical projection, then clearly F ¼ f �1ðEÞ so that there is a
proper surjection F �!E. Therefore dimEW dimF (see, e.g., [16, Lemma 3.2]).

In lack of a suitable reference we state the following doubtlessly well-known
corollary of a result of Lipman and Teissier ([21, Corollary 5.4]).

LEMMA 4.8. Let A be a Cohen^Macaulay local ring which satis¢es the condition
ðRhÞ, and let I � A be an integrally closed equimultiple ideal of height h such that
A=I is unmixed. Then I2 ¼ JI for any reduction J � I.
Proof.Wemay assume that J is a minimal reduction of I . Then J is generated by a

regular sequence of length h. Hence, J=J2 ffi ðA=JÞh so that J=JI ¼ J=J2 � A=I ffi
ðA=IÞh. The exact sequence

0�! J=JI �!A=JI �!A=J �! 0

then implies that Ass A=JI �Min A=I . It is therefore enough to check the equality
I2 ¼ JI at minimal primes of I . But then one can use [21, Corollary 5.4].
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COROLLARY 4.1. Let A be a Cohen^Macaulay local ring which satis¢es the con-
dition ðR2Þ. Let I1; . . . ; Ir � A be integrally closed equimultiple ideals of height two.
Suppose that also I1 � � � Ir is equimultiple of height two. Then RAðI1; . . . ; IrÞ is
Cohen^Macaulay if and only if A=I1 � � � Ir is Cohen^Macaulay.
Proof. IfRAðI1; . . . ; IrÞ is Cohen^Macaulay, then so isRAðI1 � � � IrÞ by Theorem 3.1.

According to [10, Proposition 45.5] this implies that A=I1 � � � Ir is Cohen^Macaulay.
Conversely, suppose that A=I1 � � � Ir is Cohen^Macaulay. By Lemma 4.8 and [27,

Proposition 5.1.12] RAðI1 � � � IrÞ is Cohen^Macaulay. We want to apply
Theorem 4.1. By the ‘determinant trick’ it suf¢ces to show that the ideal
Ij1 � � � Ijl�1Ijlþ1 � � � Ijk is integrally closed for 1W j1 < � � � < jkW r and 1W lW k.
Because ‘ðIj1 � � � Ijl�1Ijlþ1 � � � IjkÞW 2 by Lemma 4.7, we necessarily have
‘ðIj1 � � � Ijl�1Ijlþ1 � � � IjkÞ ¼ 2. The above claim then follows from [28, Theorem 4.1].

EXAMPLE 4.1. In general the Cohen^Macaulayness of RAðIJÞ does not imply that
of RAðI ; JÞ even if RAðI; JÞ is normal.

Let k be a ¢eld of characteristic zero. Take A ¼ k½x; y; z�ðx;y;zÞ and I0 ¼ pA where
p � k½x; y; z� is the prime ideal de¢ning the monomial curve x ¼ t11, y ¼ t14,
z ¼ t15. It has been proven in [11, Example 3.6] that RAðI0Þ does not have rational
singularities although it is normal and Cohen^Macaulay. It is possible to ¢nd an
ideal J0 � A that Y ¼ ProjRAðJ0Þ is regular and that I0OY is invertible.
Then ProjRAðI0; J0Þ ffi ProjRAðI0J0Þ ffi Y is normal. For p; q� 0, we have
GðY ; Ip0J

q
0OY Þ ¼ I

p
0J
q
0 by the bigraded version of the theorem of Serre (see [16,

Lemma 4.2]). On the other hand, GðY ; Ip0J
q
0OY Þ ¼ I

p
0J
q
0 for all p; qX 0 (see [21,

p. 100]). Hence, Ip0J
q
0 ¼ I

p
0J
q
0 for p; q� 0. We also know that Jq0 ¼ J

q
0 for q� 0.

Take I ¼ IN0 and J ¼ JN0 where N � 0. Then RAðI ; JÞ is normal (cp. [17, p. 126]).
Moreover, it still holds that RAðIÞ does not have rational singularities (use,
e.g., [11, Proposition 2.1]). Now RAðI; JÞ is not Cohen^Macaulay. To see this, con-
sider the blow-up Z ¼ ProjRRAðIÞðJRAðIÞÞ. By looking at the af¢ne open sets which
cover Z, one easily checks that Z ¼ VðIOY Þ. In particular, Z is regular. The
Cohen^Macaulayness of RAðI; JÞ would then by [20, Theorem 4.1] imply that
RAðIÞ has rational singularities. Finally, since A has rational singularities,
using [20, Theorem 4.1] again, we may choose N � 0 in such a way that RAðIJÞ
is Cohen^Macaulay.

We now move to the analytic spread three case. Then an additional cohomological
condition comes in. For simplicity, we assume r ¼ 2.

THEOREM 4.2. Let ðA;mÞ be a Cohen^Macaulay local ring of dimension d, and let
I; J � Abe ideals of positive height such that ‘ðIJÞ ¼ 3. LetM andN denote the homo-
geneous maximal ideals of RAðIÞ and RAðJÞ respectively. Then RAðI; JÞ is Cohen^
Macaulay if and only if the following conditions are satis¢ed

(1) RAðIJÞ is Cohen^Macaulay;
(2) I2J2 : I ¼ IJ2 and I2J2 : J ¼ I2J;
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(3) ½HiMðJRAðIÞÞ�0 ¼ 0 and ½HiNðIRAðJÞÞ�0 ¼ 0 for all i < d þ 1.

Proof. If RAðI; JÞ is Cohen^Macaulay, then Theorem 3.1 implies that also RAðIJÞ
is Cohen^Macaulay. So (1) holds. Moreover, using Lemma 4.5 we get (2). Finally,
to prove (3), we ¢rst verify that always

½Hdþ1M ðJRAðIÞÞ�0 ¼ 0 and ½Hdþ1N ðIRAðJÞÞ�0 ¼ 0:

Let us show, for example, that ½Hdþ1
M

ðJRAðIÞÞ�0 ¼ 0. Indeed, there is for some N > 0
an exact sequence

0�!K �!ðRAðIÞÞ
�N
�! JRAðIÞ �! 0

of gradedRAðIÞ-modules. As ½Hdþ1
M

ðRAðIÞÞ�0 ¼ 0 (see [4, Part I, 6.3]), the correspond-
ing long exact sequence of cohomology yields ½Hdþ1

M
ðJRAðIÞÞ�0 ¼ 0 as wanted. Set

X ¼ ProjRAðIÞ and Y ¼ ProjRAðJÞ. It now follows from Proposition 3.2 that
condition (3) is equivalent to having GðX ; JOX Þ ¼ J, GðY ; IOY Þ ¼ I and
HiðX ; JOX Þ ¼ 0, HiðY ; IOY Þ ¼ 0 for all i > 0. Condition (3) is thus a consequence
of Theorem 3.1 and Proposition 3.3.

Suppose then that the conditions (1)^(3) hold. Set E ¼ Z �A A=m. It is now clear
from Lemma 4.2(b) and Lemma 4.4(b0) that HiEðZ;OZðp; qÞÞ ¼ 0 for all i < d
and p; qW � 1. Using Lemmas 4.2(a) and 4.4(a), we get HiðZ;OZðp; qÞÞ ¼ 0 for
all i > 0 and p; qX 2� i. Since RAðIJÞ is Cohen^Macaulay, we have
GðZ;OZðn; nÞÞ ¼ InJn for all nX 0. By 2) it then follows from Lemma 4.6 that
GðZ;OZðp; qÞÞ ¼ IpJq for all p; qX 1. By Lemma 3.4 the conditions
GðX ; JOX Þ ¼ J and GðY ; IOY Þ ¼ I mean that GðZ; JOZÞ ¼ J and GðZ; IOZÞ ¼ I .
By Lemma 4.5 this is the same as IJ : J ¼ I and IJ : I ¼ J. Therefore, as soon
as we know that H1ðZ;OZðp; qÞÞ ¼ 0 for all p; qX 0 Lemma 4.6 will tell us that
GðZ;OZðp; qÞÞ ¼ IpJq for all p; qX 0. As H2ðZ;OZð0; 0ÞÞ ¼ 0, it follows from
Lemma 4.1(a) that if H1ðZ;OZð1; 0ÞÞ ¼ 0 and H1ðZ;OZð0; 1ÞÞ ¼ 0, then
H1ðZ;OZðp; 0ÞÞ ¼ 0 and H1ðZ;OZð0; qÞÞ ¼ 0 for all p; qX 1. But using
Lemma 3.4 again, we have H1ðZ;OZð0; 1ÞÞ ¼ H1ðX ; JOX Þ and H1ðZ;OZð1; 0ÞÞ ¼
H1ðY ; IOY Þ. This completes the proof.

EXAMPLE 4.2. Let k be a ¢eld. Let A ¼ k½x; y; z�ðx;y;zÞ where x; y; z are variables.
Take I ¼ ðx2; y; zÞA and J ¼ m, where m ¼ ðx; y; zÞ is the maximal ideal of A.
We now have I2J2 : I ¼ IJ2 and I2J2 : J ¼ I2J. Moreover, one checks that the ideal
L ¼ ðx3 þ y2 þ z2; xy; xzþ yzÞ is a minimal reduction of IJ ¼ ðx3; y2; z2; xy;
xz; yzÞ with ðIJÞ2 ¼ LðIJÞ. Therefore RAðIJÞ is Cohen^Macaulay (see, e.g., [27,
Corollary 5.1.13]). Let U ,V and W be variables. Then RAðIÞ=JRAðIÞ ¼
k½U;V ;W �. The long exact sequence of cohomology corresponding to the exact
sequence

0�! JRAðIÞ �!RAðIÞ �!RAðIÞ=JRAðIÞ �! 0
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now gives ½HiMðJRAðIÞÞ�0 ¼ 0 for all i < 4. On the other hand,

RAðJÞ ¼ A½U;V ;W �=ðxV � yU; xW � zU; yW � zV Þ

so thatRAðJÞ=IRAðJÞ ¼ k½x�½U;V ;W �=ðx2; xV ; xW Þ. Using the long exact sequences
of cohomology corresponding to the exact sequences

0�!ðx;V ;W Þ �!
x
k½x�½U;V ;W � �!RAðJÞ=IRAðJÞ �! 0

and

0�!ðx;V ;W Þ �! k½x�½U;V ;W � �! k½U � �! 0;

one easily veri¢es that ½HiNðRAðJÞ=IRAðJÞÞ�0 ¼ 0 for all iX 0. Hence, also
½HiNðIRAðJÞÞ�0 ¼ 0 for all iX 0. It thus follows from Theorem 4.2 that RAðI; JÞ is
Cohen^Macaulay. However, one checks that ½H2

NðIRAðJÞÞ�n 6¼ 0 for all n < 0. It
follows that neither IRAðJÞ nor even IOY is Cohen^Macaulay.

We now want to investigate rational singularities of RAðI; JÞ in this context. For
basic facts about rational singularities, we refer to [1]. The following lemma is a
multigraded variant of a theorem of Flenner ([3, Satz 3.1]).

LEMMA 4.9. Let S be a normal r-graded ring de¢ned over an excellent local ring of
equicharacteristic zero. Set Z ¼ ProjS. Then S has rational singularities if and only
if Z has rational singularities and HiðZ;OZðnÞÞ ¼ 0 for all i > 0 and nX 0.
Proof. Suppose ¢rst that S has rational singularities. Cover Z with open af¢ne

sets Dþðs1 � � � srÞ ¼ SpecSðs1���srÞ where sj 2 S1j ðj ¼ 1; . . . ; rÞ. Because Ss1���sr ¼
Sðs1���srÞ½t1; t1

�1; . . . ; tr; tr�1� where t1; . . . ; tr are variables, it is easy to see that if
Ss1���sr has rational singularities, then so has Sðs1���srÞ. Therefore Z has rational
singularities.

From now on we can thus assume that Z has rational singularities. Set
W ¼ ProjRSðSþÞ. Let f :W �!SpecS be the canonical projection. Let
g:W 0 �!W be a desingularization. Then fg:W 0 �!SpecS is a desingularization
of SpecS. By Lemma 3.1 we know that W ¼ VðOZð11Þ � � � � � OZð1rÞÞ: Since Z
has rational singularities, then so doesW . Hence, Rig�OW 0 ¼ 0 for all i > 0. Because
W is normal, we also have g�OW 0 ¼ OW . An easy application of the Leray spectral
sequence now shows that RiðfgÞ�OW 0 ¼ Rif�OW for all i > 0. Therefore
RiðfgÞ�OW 0 ¼ 0 for all i > 0 if and only if HiðW ;OW Þ ¼ 0 for all i > 0. Because
HiðW ;OW Þ ¼

L
nX 0H

iðZ;OZðnÞÞ, we thus see that S has rational singularities if
and only if HiðZ;OZðnÞÞ ¼ 0 for all i > 0 and nX 0. The claim has so been proven.

THEOREM 4.3. Let A be an excellent local ring of equicharacteristic zero. Let
I; J � A be ideals of positive height such that ‘ðIJÞ ¼ 3. Then RAðI; JÞ has rational
singularities if and only if RAðIÞ, RAðJÞ and RAðIJÞ have rational singularities. When
A is essentially of ¢nite type over a ¢eld of characteristic zero, this implies in par-
ticular that RAðI ; JÞ is Cohen^Macaulay.
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Proof. Suppose ¢rst that RAðIÞ, RAðJÞ and RAðIJÞ have rational singularities. Set
X ¼ ProjRAðIÞ, Y ¼ ProjRAðJÞ and Z ¼ ProjRAðI; JÞ. Because Z ffi ProjRAðIJÞ
has rational singularities, it is by Lemma 4.9 enough to show that RAðI; JÞ is normal
and thatHiðZ;OZðp; qÞÞ ¼ 0 for all i > 0 and p; qX 0. Consider ¢rst the latter claim.
Since RAðIJÞ has rational singularities, we have HiðZ;OZðn; nÞÞ ¼ 0 for all i > 0 and
nX 0. By Lemma 4.2(a) we then getHiðZ;OZðp; qÞÞ ¼ 0 for all i > 0 and p; qX 2� i.
It remains to prove thatH1ðZ;OZðp; 0ÞÞ ¼ 0 andH1ðZ;OZð0; qÞÞ ¼ 0 for all p; qX 0.
But because RAðIÞ and RAðJÞ have rational singularities, this again follows from
Lemma 4.9 by an easy Leray spectral sequence argument. We still need to show
that RAðI; JÞ is normal. Note ¢rst that A is normal. Because Z is normal, we know
by [21, p. 100] that GðZ; IpJqOZÞ ¼ IpJq for all p; qX 0. This means in particular
that GðZ; IOZÞ ¼ I , GðZ; JOZÞ ¼ J and GðZ; IJOZÞ ¼ IJ. Lemma 4.2(a) then yields
GðZ; IpJqOZÞ ¼ IpJq for all p; qX 0. So IpJq ¼ IpJq for all p; qX 0. Hence,
RAðI; JÞ is normal (cf. [17, p. 126]).

Conversely, if RAðI; JÞ has rational singularities, then so have RAðIÞ and RAðJÞ
(use e.g. [11, Proposition 2.3]). By utilizing again the isomorphism ProjRAðIJÞ ffi
Z, it is also clear from Lemma 4.9 that RAðIJÞ must have rational singularities.

Let A be a ring and let a � A be an ideal. Recall that the reduction number of a
with respect to a reduction b � a is the least integer r such that arþ1 ¼ bar. It is
denoted by rbðaÞ. The reduction number of a is then de¢ned as

rðaÞ ¼ minfrbðaÞ j b � a is a reduction of ag:

The next theorem deals with the Cohen^Macaulay property of a multi-Rees algebra
when the product of the ideals has a small reduction number. In this case we need
not to assume anything about the analytic spread.

THEOREM 4.4. Let ðA;mÞ be a Cohen^Macaulay local ring of positive dimension,
and let I ; J � A be m-primary ideals such that rðIJÞW 1. Then RAðI; JÞ is
Cohen^Macaulay if and only if IJ : I ¼ J and IJ : J ¼ I.
Proof. Since rðIJÞW 1, we know that RAðIJÞ is Cohen^Macaulay (see [27,

Corollary 5.13]). By [26, Proposition 3.2] we obtain aðGAðIJÞÞW � d þ 1 where
d ¼ dimA. Lemmas 4.2(a) and 4.4(a0) therefore imply that HiðZ;OZðp; qÞÞ ¼ 0
for all i > 0 and p; qX 1� i. Let us now show that HiEðZ;OZðp; qÞÞ ¼ 0 for all
i < d and p; qW � 1. We use induction on i. Note ¢rst that by Lemmas 4.2(b)
and 4.4(b0) we have HiEðZ;OZðp; qÞÞ ¼ 0 for all i < d and p; qW 1� i. For iW 2,
there is thus nothing to prove. Let i > 2. SetU ¼ SpecA n fmg andV ¼ f �1ðUÞwhere
f :Z�! SpecA is the canonical projection. We then have the exact sequence

� � � �!Hi�1ðV ;OV Þ �!HiEðZ;OZðp; qÞÞ�!H
iðZ;OZðp; qÞÞ�! � � � :

Here Hi�1ðV ;OV Þ ffi Hi�1ðU;OU Þ ffi HimðAÞ. By the Cohen^Macaulayness of A, this
implies thatHiEðZ;OZðp; qÞÞ ¼ 0 for i < d and 1� iW p; qW � 1. Then suppose, for
example, that 1� iW qW � 1, but p < 1� i. By the case jW 2 and the induction
hypothesis we now have HjEðZ;OZð1� j; qÞÞ ¼ 0 for all j < i. We just saw that
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also HiEðZ;OZð1� i; qÞÞ ¼ 0. It thus follows from Lemma 4.2(b) that
HiEðZ;OZðp; qÞÞ ¼ 0 also for all p < 1� i and 1� iW qW � 1. It remains to show
that GðZ;OZðp; qÞÞ ¼ IpJq for all p; qX 0 if and only if IJ : I ¼ J and IJ : J ¼ I .
But this is now a consequence of Lemmas 4.5 and 4.6.

Finally, we want to investigate the effect of the Cohen^Macaulayness of a
multi-Rees algebra on the depths of the corresponding single Rees algebras.

THEOREM 4.5. Let ðA;mÞ be a Cohen^Macaulay local ring of dimension d, and let
I � A be an ideal of positive height satisfying for some k 2N the conditions
A=InX d þ 1� k� n ðn ¼ 1; . . . ; d � kÞ. Suppose that there exist ideals
I1; . . . ; Ir � A of positive height such that RAðI; I1; . . . ; IrÞ is Cohen^Macaulay. Then
RAðIÞX d þ 3� k. In particular, we always have depth RAðIÞX 3. When d ¼ 2, this
means that RAðIÞ is Cohen^Macaulay.
Proof. Set R ¼ RAðIÞ, and let M denote the homogeneous maximal ideal of R.

Also set X ¼ ProjR and E ¼ X �A A=m. Using Proposition 3.3 it follows from
Theorem 3.1 that GðX ;OX ðnÞÞ ¼ In and HiðX ;OX ðnÞÞ ¼ 0 for all i > 0 and nX 0.
By Proposition 3.2 this gives ½HiMðRÞ�n ¼ 0 for all iX 0 and nX 0. We also obtain
HiEðX ;OX ðnÞÞ ¼ H

i
mðI

nÞ for all nX 0. Because A is Cohen^Macaulay, we have
HimðI

nÞ ¼ Hi�1m ðA=InÞ for all nX 0. It therefore follows that HiEðX ;OX ðdþ
1� k� iÞÞ ¼ 0 for all iW d þ 1� k. By Lemma 4.2(b) this implies that
HiEðX ;OX ðnÞÞ ¼ 0 for all iW d þ 1� k and n < 0. By the Sancho de Salas sequence
([20, p. 150]) we then obtain ½HiMðRÞ�n ¼ 0 for all n < 0 and iW d þ 2� k. This proves
the claim.

5. An Application to Joint Reductions

We begin by recalling from [15, p. 218] the de¢nition of a joint reduction of a stan-
dard graded ring S ¼

L
n2Nr Sn. Let q 2Nr. A set fzi;j 2 S1i j i ¼ 1; . . . ; r;

j ¼ 1; . . . ; qig is called a joint reduction of S of type q if

Sn ¼
Xr
i¼1

ðzi;1; . . . ; zi;qi ÞSn�1i ðyÞ

for all n� 0. Suppose that S0 is local with the maximal idealm. If the residue ¢eld of
S0 is in¢nite, then joint reductions always exist for jqjX dimSD=mSD. Finally, when
I1; . . . ; Ir � A are ideals, one says that a set fai;j 2 Ii j i ¼ 1; . . . ; r; j ¼ 1; . . . ; qig is a
joint reduction of I1; . . . ; Ir of type q if the set fai;j ti j i ¼ 1; . . . ; r; j ¼ 1; . . . ; qig is
a joint reduction of RAðI1; . . . ; IrÞ ¼ A½I1t1; . . . ; Irtr� of type q.

The main result of this section is Theorem 5.1, which says that in the
Cohen^Macaulay case the formula (y) already holds for all nX q. Its proof is based
on the following lemma.
LEMMA 5.1. Let S be a standard r-graded ring. Set Z ¼ ProjS. Let fzi;j 2
S1i j i ¼ 1; . . . ; r; j ¼ 1; . . . ; qig be a joint reduction of S of type q. Let n 2Nr. Suppose

COHEN^MACAULAY MULTI-REES ALGEBRAS 337

https://doi.org/10.1023/A:1014335520269 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014335520269


that HiðZ;Oðn� pÞÞ ¼ 0 for all 0 < i < jqj and 0W pW q with jpj ¼ i þ 1. Then the
elements zi;j de¢ne a surjective homomorphism

sn:
Mr
i¼1

GðZ;OZðn� 1iÞÞ�qi �!GðZ;OZðnÞÞ:

Proof. In any case the elements zi;j induce an epimorphism

s:
Mr
i¼1

OZð�1iÞ�qi �!OZ:

Set F ¼
Lr
i¼1OZð�1iÞ

�qi . It follows that the corresponding Koszul complex

K�ðF ; sÞ: ^jqjF �! � � � �! ^j F �! ^j�1 F �! � � � �!F �!OZ

is exact. We now have

^jF ¼
M
jpj¼j

Or
i¼1

OZð�pi1iÞ
� qi

pi

� � !
:

Note that

Or
i¼1

OZð�pi1iÞ
� qi

pi

� � !
¼ 0

if pi > qi for some i. By tensoring K�ðF ; sÞ with OZðnÞ we obtain an exact sequence

0�!Ljqj �! � � � �!Lj �!Lj�1�! � � � �!L0�! 0

where Lj ¼ ^jF �OZðnÞ. This sequence gives raise to exact sequences

0�!Kj �!Lj �!Kj�1�! 0 ðj ¼ 1; . . . ; jqj � 1Þ

where K0 ¼ L0 and Kjqj�1 ¼ Ljqj. The assumption now guarantees that we have
Hj�1ðZ;LjÞ ¼ 0 for all 1 < jW jqj. So there is for every 1W jW jqj � 1 a
monomorphism Hj�1ðZ;Kj�1Þ �!HjðZ;KjÞ. As H jqj�1ðZ;Kjqj�1Þ ¼ 0, this implies
that H1ðZ;K1Þ ¼ 0. But then the homomorphism GðZ;FðnÞÞ �!GðZ;OðnÞÞ is an
epimorphism, which proves the claim.

THEOREM 5.1. Let S be a standard r-graded ring de¢ned over a local ring such that
Sþ has positive height. If S is Cohen^Macaulay with aðSÞ < 0, then

Sn ¼
Xr
i¼1

ðzi;1; . . . ; zi;qi ÞSn�1i

when nX q for all joint reductions fzi;j 2 S1i j i ¼ 1; . . . ; r; j ¼ 1; . . . ; qig of type q.
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Proof. Set Z ¼ ProjS. Theorem 3.1 implies thatHiðZ;OZðn� pÞÞ ¼ 0 for all i > 0
and nX p. Moreover, we have GðZ;OZðnÞÞ ¼ Sn for all nX 0. The claim therefore
follows from Lemma 5.1.

As an immediate consequence of this we obtain

COROLLARY 5.1.Let A be a local ring, and let I1; . . . ; Ir be ideals of positive height.
Let fai;j 2 Ii j i ¼ 1; . . . ; r; j ¼ 1; . . . ; qig be a joint reduction of I1; . . . ; Ir of type q. If
RAðI1; . . . ; IrÞ is Cohen^Macaulay, then

In11 � � � I
nr
r ¼

Xr
i¼1

ðai;1; . . . ; ai;qi ÞI
n1
1 � � � Ini�1i�1 I

ni�1
i Iniþ1iþ1 � � � I

nr
r

for all nX q.

6. A Formula for Mixed Multiplicities

Let ðA;mÞ be a local ring of dimension d, and let I1; . . . ; Ir be m-primary ideals.
Mixed multiplicities were introduced by Teissier in [25]. Recall ¢rst that the function
lAðA=I

n1
1 � � � I

nr
r Þ is a numerical polynomial of degree d for n� 0. Let i1; . . . ; ir 2N

with i1 þ � � � þ ir ¼ d. The mixed multiplicity of I1; . . . ; Ir of type ði1; . . . ; irÞ which
is denoted by ½I ½i1�1 ; . . . ; I ½ir�r �, is then de¢ned as the coef¢cient of ni11 � � � n

ir
r =i1! � � � ir!

in this polynomial.
It has been proven by J. Lipman ([19, Corollary 3.7]) (see also [28, Corollary 3.3])

that in a two-dimensional regular local ring ðA;mÞ any two integrally closed
m-primary ideals I; J � A satisfy the ‘the mixed multiplicity formula’

½I ½1�; J ½1�� ¼ ‘ðA=IJÞ � ‘ðA=IÞ � ‘ðA=JÞ:

A result of Verma ([29, Theorem 3.4]) says that in this case the multi-Rees algebra
RAðI; JÞ is Cohen^Macaulay. We are now going to show that under the latter
assumption an analogous formula holds in an arbitrary local ring.

THEOREM 6.1. Let ðA;mÞ be a local ring of dimension d, and let I1; . . . ; Ir be
m-primary ideals. If RAðI1; . . . ; IrÞ is Cohen^Macaulay, then

½I ½i1�1 ; . . . ; I ½ir�r � ¼
Xi1
n1¼0

� � �
Xir
nr¼0

i1
n1

� �
� � �

ir
nr

� �
ð�1Þd�n1�����nr lAðA=In11 � � � I

nr
r Þ:

Proof. We ¢rst show that there is a numerical polynomial H 2 Q½t1; . . . ; tr� such
that HðnÞ ¼ ‘AðA=I

n1
1 � � � Inrr Þ when nX 0. We proceed inductively by proving for

all j ¼ 0; . . . ; r the existence of numerical polynomials Hj 2 Q½t1; . . . ; tj� such that
Hjðn1; . . . ; njÞ ¼ ‘AðA=I

n1
1 � � � Injj Þ when n1; . . . ; njX 0. If j ¼ 0, then there is nothing

to prove. Suppose j > 0. Set

Y ¼ ProjRAðI1; . . . ; IrÞ=IjRAðI1; . . . ; IrÞ:
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Recall that the Euler^Poincare¤ characteristic

wðY ;OY ðnÞÞ ¼
X
iX 0

ð�1ÞilAðHiðY ;OY ðnÞÞÞ ðn 2 ZrÞ

is a numerical polynomial (see [16, Lemma 4.3]). This implies that also

Xnj�1
k¼0

wðY ;OY ðn1; . . . ; nj�1; k; 0; . . . ; 0ÞÞ

is a numerical polynomial. Consider the long exact sequence of cohomology cor-
responding to the exact sequence

0�!OZðnþ 1jÞ �!OZðnÞ �!ðj�OY ÞðnÞ �! 0

where Z ¼ ProjRAðI1; . . . ; IrÞ and j:Y �!Z is the inclusion. The Cohen^
Macaulayness of RAðI1; . . . ; IrÞ implies by Theorem 3.1 that GðZ;OZðnÞÞ ¼
In11 � � � Inrr and HiðZ;OZðnÞÞ ¼ 0 for all i > 0 and nX 0. It follows that

GðY ;OY ðnÞÞ ¼ In11 � � � Inrr =I
n1
1 � � � Inj�1j�1 I

njþ1
j Injþ1jþ1 � � � I

nr
r

and HiðY ;OY ðnÞÞ ¼ 0 for all i > 0 and nX 0. This means that

wðY ;OY ðnÞÞ ¼ lAðIn11 � � � Inrr =I
n1
1 � � � Inj�1j�1 I

njþ1
j Injþ1jþ1 � � � I

nr
r Þ

for all nX 0. Therefore

lAðA=I
n1
1 � � � Injj Þ

¼ lAðA=I
n1
1 � � � Inj�1j�1 Þ þ

Xnj�1
k¼0

wðY ;OY ðn1; . . . ; nj�1; k; 0; . . . ; 0ÞÞ

for all n1; . . . ; njX 0. We can thus take

Hjðn1; . . . ; njÞ

¼ Hj�1ðn1; . . . ; nj�1Þ þ
Xnj�1
k¼0

wðY ;OY ðn1; . . . ; nj�1; k; 0; . . . ; 0ÞÞ:

For H ¼ Hr, we then have HðnÞ ¼ lAðA=In11 � � � Inrr Þ for all nX 0. Let
Dj ¼ Hðnþ 1jÞ �HðnÞ be the jth difference function corresponding to H. According
to [24, Proposition 1.1] we then have ½I ½i1�1 ; . . . ; I ½ir�r � ¼ ðDi11 � � �D

ir
r HÞð0Þ for all

i1 þ � � � þ ir ¼ d. Using [24, Proposition 1.2] it is easy to see that

ðDi11 � � �D
ir
r HÞð0Þ ¼

Xi1
n1¼0

� � �
Xir
nr¼0

i1
n1

� �
� � �

ir
nr

� �
ð�1Þd�n1�����nrHðnÞ:
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Hence

½I ½i1�1 ; . . . ; I ½ir�r � ¼
Xi1
n1¼0

� � �
Xir
nr¼0

i1
n1

� �
� � �

ir
nr

� �
ð�1Þd�n1�����nr lAðA=I

n1
1 � � � Inrr Þ:

Let ðA;mÞ be a regular local ring. Let I � A be an ideal. Recall that the order of I ,
denoted by ordðIÞ, is the largest integer k such that I � mk. It has been proven
in [19, Corollary 3.2] that if A is two-dimensional and I is an m-primary integrally
closed ideal, then ordðIÞ ¼ mðIÞ � 1. In the following proposition we will show that
an analogous formula holds in any dimension if the bi-Rees algebra RðI;mÞ is
Cohen^Macaulay.

PROPOSITION 6.1.Let ðA;mÞ be a regular local ring of dimension d, and let I � Abe
an m-primary ideal. If RAðm; IÞ is Cohen^Macaulay, then

ordðIÞ ¼
Xd�2
k¼0

d � 2
k

� �
ð�1Þd�kmðmkIÞ � d þ 1:

Proof.We ¢rst recall from [30, Lemma 1.1] that ordðIÞ ¼ ½m½d�1�; I ½1��. According
to Theorem 6.1 we now have

½m½d�1�; I ½1��

¼
Xd�1
k¼0

d � 1
k

� �
ð�1Þd�klAðA=mkÞ þ

Xd�1
k¼0

d � 1
k

� �
ð�1Þd�1�klAðA=mkIÞ:

Clearly

Xd�1
k¼0

d � 1
k

� �
ð�1Þd�klAðA=mkÞ

¼
Xd�1
k¼1

ð�1Þd�k
d � 1
k

� �
d þ k� 1
k� 1

� �

¼
Xd�2
k¼0

ð�1Þd�1�k
d � 1
kþ 1

� �
d þ k
k

� �
:

By considering the coef¢cient of td�2 in

ð1� tÞd�1
1

ð1� tÞdþ1
¼

1

ð1� tÞ2
;

we obtain

Xd�2
k¼0

ð�1Þd�1�k
d � 1
kþ 1

� �
d þ k
k

� �
¼ �d þ 1:

COHEN^MACAULAY MULTI-REES ALGEBRAS 341

https://doi.org/10.1023/A:1014335520269 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014335520269


Since

d � 1
k

� �
¼
d � 2
k� 1

� �
þ
d � 2
k

� �
;

we observe that

Xd�1
k¼0

d � 1
k

� �
ð�1Þd�1�klAðA=mkIÞ

¼
Xd�1
k¼1

d � 2
k� 1

� �
ð�1Þd�1�klAðA=mkIÞ þ

Xd�2
k¼0

d � 2
k

� �
ð�1Þd�1�klAðA=mkIÞ

¼
Xd�2
k¼0

d � 2
k

� �
ð�1Þd�klAðA=mkþ1IÞ þ

Xd�2
k¼0

d � 2
k

� �
ð�1Þd�1�klAðA=mkIÞ

¼
Xd�2
k¼0

d � 2
k

� �
ð�1Þd�kðlAðA=mkþ1IÞ � lAðA=mkIÞÞ

¼
Xd�2
k¼0

d � 2
k

� �
ð�1Þd�klAðmkI=mkþ1IÞ

¼
Xd�2
k¼0

d � 2
k

� �
ð�1Þd�kmðmkIÞ:

We have thus proven the claim.
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