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1. In 1964, L. J. Herbst (3) introduced the generalized spectral density 
function 

To E aj» 
3=0 

for a non-stationary process {X(t)} denned by 

(1) X{t) = X) apt-flt-j, t = 0, d=l, ± 2 , 

where {rj(t)} is a real Gaussian stationary process of discrete parameter and 
independent variâtes, the (a ;)'s and (o-̂ O's being constants, the latter, which 
are ordered in time, having their moduli less than a positive number M. y0 in 
the above expression stands for 

1 N um~̂  X **2> 

where it is supposed that the limit exists and is finite. 

2. In this paper we start from a general non-stationary process {X(t)} of 
discrete parameter with finite first moments {E(X(t))} and second moments 
{p(t, u)} = {E(X(t)X(u))} (the bar denoting the complex conjugate), and 
build up the concept of spectrum in terms of {p(/, u)). The idea is to construct 
from the double sequence {pit, u)} a sequence {p(k)} such that 

p(k) = f eikXda(\), k = 0, ± 1 , ± 2 , . . . , 

the function o-(X) having the properties of a spectral distribution function. If 
this can be achieved, cr(\) may be called the spectral function, and what 
corresponds to the derivative of its absolutely continuous part as the spectral 
density at a continuity point. 

3. Let us define 

1 
(2) ^ ( X ) = 

47riV 

N ! ( N p-ikX _ 

( T + X) Z P ( * , « ) + £ ( Z P(f,u)-—-7Ç 
t,u=-N; k \ t,u=-N; — I K 
u—t=0 \ u—t=k 
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where the prime in the sum over k indicates t h a t 0 is omit ted . As N varies, 
we get a sequence of functions {otf(A)}. W e next define, for each positive 
integer N, 

1 N 

pN(k) = — 2 P(t> u)> k = 0> ± 1 . ± 2 , . . . , 
ZiV t,u=-N; 

u— t=k 

and assume t h a t the limit as N tends to infinity of pN(k) exists and is finite 
for each integer k. Under this assumption, we prove the following lemma. 

L E M M A . A sequence of positive integers {N' f\ exists such that \m\Nj^œ(jNj(\) 
exists, and is a bounded, non-decreasing and non-negative function in ( — T, 7r), 
vanishing at — T. 

Proof. First ly, whatever N may be, O-N( — TT) = 0. Secondly, calculations 
show t h a t for — 7T ^ Xi < X2 ^ 7r, we have t h a t 

(3) aN (X2) - o*(Xi) = j - 1 ^ f2 E E eitXX(t) 
4 7TiV t / \ i I t=-N 

Hence, every aN(\) is zero a t — w, and is a non-decreasing function of X in 
( — 7T, 7r), SO t h a t aN(X) is non-negat ive. W e have t h a t 

1 N 

O-ivO) = Ô~Â? 2 3 Ptt, U) + 0 = PAT(0) . 
^1V t,u=~N; 

u-t=0 

By our assumption t h a t lim^ooPi^O) exists and is finite, i t follows t h a t a-N(ir) 
is less than a cons tant L whatever N m a y be. Thus , the sequence of functions 
{cTiv(X)} satisfies the conditions of Helly 's first theorem (see B . V. Gnedenko 
(2)) for yielding a subsequence {^-(X)} which converges to a function o-(X) 
a t all cont inui ty points of the la t ter . Th i s function will also possess the same 
properties, viz., it is bounded and non-negative, non-decreasing, and vanishes 
a t — 7T. T h u s o-(X) is a spectral dis t r ibut ion function. 

4 . We can now establish the following. 

T H E O R E M 1. If — T and ir are continuity points of a(\), then 

,w. r eikXda(\), k = 0, ± 1 , ± 2 , . . . , 

where p(k) is the limit as N tends to infinity of pN(k) which is assumed to exist 
and be finite for each k. 

Proof. Since eikX is cont inuous, and {aNj(\)} are uniformly bounded, we 
have from Helly 's second theorem (see B . V. Gnedenko (2)) t h a t 

https://doi.org/10.4153/CJM-1968-114-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-114-5


NON-STATIONARY PROCESSES 1205 

J" e^d<r(\) = lim elhK daNj{\) 
N ~>oo £ ik\ 

lim I e -—— 
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Z P(^»«) 
U-t=0 

Nj 

+ Z £ P(*,«) 
t,u=-Nj; 
u—t=k 

-ik\ d\ 

lim — X) P & * 0 = p(&). 
iV .-too 2^Vj t,u=-N. 

T h u s 

/ : 
eikXda(X) = p(jfe) 

for each given integer &. 

5. In view of (3) we may refer to 

(4) D(\) = lim 
4:irN< 

2 eiïxx(i) 

as the spectral densi ty of {X(t)} a t X. 
Next , we prove the following theorem. 

T H E O R E M 2. For the process defined by (1), the generalized spectral density of 
Herbst is the same as that given by (4). 

Proof. W e shall mention two details regarding the use of symbols and then 
give the proof. Since the symbol j is used as a suffix for N in the subsequence, 
we shall replace j in (1) by / . Again, the t ime-dependent constants (<rt) will 
be replaced by (ct). Wi th these changes, 

D(X) = lim — - - . 
Nj / V \ 

t=-Nj \ /=0 / 

which, if wri t ten as 

1 
lim ___ 

2icN^2N 

1 / Nj-p \ 

1\ j \t=-Nj+p / X>^ 
/=o 

</x 

yields |i?jvj| is bounded by a cons tant which can be chosen in terms of 
p, a0, aly a,2, . . . , ap and M. Then it will follow t h a t 

DM = f lim ^ ^ 
2 * ^ 2iV, 2(iV, 

1 / iVy-p \ 

-—id E W' + s J 
j P) \t=-Nj+p / 

JloLfe 
f=0 

if\ 

= 9~T0 
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Here, 70 is the limit of the average overtime instants starting from a negative 
integral value and going up to the corresponding positive integral value, 
instead of being the average overtime, the initial instant being taken as zero. 

Again, an extra constant factor 1/2T occurs in our expression. This is because 
our spectral range is ( — T, T). 

Taking these into account, we find that D(\), given by (4), is the generalized 
spectral density of Herbst for the process {X(i)\ defined by (1). 

6. Remarks. 1. We had to use only the stationary and the non-auto­
correlation properties of the 77-process to get the spectral density. The Gaussian 
nature of the process variâtes was not required, but it would be helpful in 
forming consistent estimates of it. 

2. When 

lim — aN(X) = —( lim aN(X) ) 

we have that D(X) = da(X)/dX. This will hold, for instance, if the series 
obtained by term-by-term differentiation of the right side of (2) is uniformly 
convergent. 

3. The relationship of the present concept of spectrum to that of the 
evolutionary spectrum of M. B. Priestley (3) will be taken up in a later study. 

4. Spectra of processes obtained by replacing rç's by variâtes of more general 
stationary processes can also be obtained by the method given in this paper. 

5. Some of the arguments employed in this paper have similarity with those 
of U. Grenander and M. Rosenblatt (4) in their proof of the Herglotz theorem. 

REFERENCES 

1. B. V. Gnedenko, The theory of probability (Chelsea, New York, 1962). 
2. U. Grenander and M. Rosenblatt, Statistical analysis of stationary time series (Wiley, 

New York, 1957). 
3. L. J. Herbst, Spectral analysis in the presence of variance fluctuations, J. Roy. Statist. Soc. 

Ser. B 21 (1964), 354-360. 
4. M. B. Priestley, Evolutionary spectra and non-stationary processes, J. Roy. Statist. Soc. 

Ser. B 27 (1965), 204-237. 

Andhra University, 
Waltair, India 

https://doi.org/10.4153/CJM-1968-114-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-114-5

