
6

Faster Simulation with Optimized Automatic
Differentiation and Compiled Linear Solvers

olav møyner

Abstract

Many different factors contribute to elapsed runtime of reservoir simulators. Once
the cases become larger and more complex, the required wait time for results
can become prohibitive. This chapter discusses three features recently introduced
into the object-oriented, automatic differentiation (AD-OO) framework of the
MATLAB Reservoir Simulation Toolbox (MRST) to make simulation of large
cases more efficient. By analyzing the sparsity pattern of the Jacobians for some
of the most common operations involved in computing residual flow equations,
we have developed different implementations of automatic differentiation that
offer better memory usage and require fewer floating-point operations. Using these
so-called AD backends ensures (much) faster assembly of linearized systems.
Likewise, these systems can be solved much faster by utilizing external packages
for linear algebra; herein, primarily represented by the AMGCL header-only
C++ library for solving large sparse linear systems with algebraic multigrid
(AMG) methods. Last, but not least, the new “packed problem” format simplifies
the management of multiple simulation cases and enables automatic restart
of simulations and an ability for early inspection of results from large batch
simulations. Altogether, these features are essential if you are working with bigger
simulation models and want timely results that persist across MATLAB sessions.

6.1 Introduction

The premise of this chapter is that you wish to use the MATLAB Reservoir Sim-
ulation Toolbox (MRST) to perform simulations that involve many thousands of
unknowns. Maybe you have developed your own simulation scripts, or maybe your
research involves one of the many preexisting ones in MRST. You have verified
that your setup gives correct results for a smaller case, and it is time to run a much

200

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 201

bigger version to get fully resolved results for your paper, or you have simply read
somewhere that MRST supports simulations of industry-standard complexity and
want to try the software for a complex (real asset) model you have. You are probably
aware that MRST is primarily written to be a flexible prototyping platform and, like
many others, you may question whether it scales to large models and how well its
runtime compares with commercial simulators or academic research codes written
in a compiled language.

As a prototyping platform, MRST cannot and should not try to compete with
dedicated high-performance simulators written in Fortran, C, or C++ in terms of
computational speed. If given the choice between efficiency when writing code or
efficiency when executing it, a prototyping platform should always tend toward
ease of implementation. There is a caveat to this, however, because the value of a
prototype solver is limited if it cannot run relevant test cases within a reasonable
amount of time. There are several factors that potentially could cause MRST codes
to be slow:

1. Interpreted language: You may have good reasons to suspect that any oper-
ation executed in an interpreted language is slower than in standard com-
piled languages like Fortran, C, or C++. In MATLAB, this is addressed
by, among others, the just-in-time (JIT) compiler that translates scripts into
machine code and by vectorization calling highly efficient libraries written in
C++/C/assembly behind the scene. In MRST, we have been careful to utilize
vectorization, logical indexing, preallocation of memory, etc., as discussed
throughout the MRST textbook [14], to improve computational performance.
In many cases, MRST scripts can therefore run almost as fast as if they were
written in a compiled language. We believe that our experience in this regard is
applicable in general.

2. Computational overhead: It is generally difficult to avoid introducing com-
putational overhead when prototyping a new computational idea. In MRST,
a primary contributor to this is the automatic differentiation that comprises a
crucial part of the object-oriented, automatic differentiation (AD-OO) frame-
work. Because AD is used extensively in the linearization and assembly of
linear systems, which usually constitute a significant part of the total runtime
of a simulator, it is important that the AD implementation is as computationally
efficient as possible. In Section 6.2 we therefore introduce you to a family of
new AD backends that have been optimized to utilize certain sparsity patterns
in the computation and accumulation of derivatives. These backends can also
potentially be MEX-accelerated. Although the discussion focuses on MRST,
we highlight many issues and possible remedies that may be relevant to other
vectorized languages.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

202 O. Møyner

3. Redundant computations: When prototyping a new idea, avoiding redundant
function and property evaluations may not be the first thing on your mind. These
can easily become quite entrenched in your code and difficult to root out after the
simulator has been validated. The modular state-function framework introduced
in Chapter 5, with its associated cache mechanism and dependency graphs, has
been designed to mitigate this problem. We believe that these ideas represent a
very promising way forward to develop more versatile simulators, not only in
MRST but also more generally.

4. Linear algebra: Hearsay has that the major fraction of the computational cost
of a carefully designed reservoir simulator should come from the linear solver.
MATLAB’s direct linear solvers are highly efficient and hard to beat on small
linear systems but do not scale well to larger reservoir models. Subsection 12.3.4
of the MRST textbook [14] therefore outlined how you can configure MRST to
use more efficient (preconditioned) iterative solvers. In Section 6.3, we give
an updated and more in-depth discussion of how you can use external iterative
solvers, written in a compiled language, to ensure that the computational perfor-
mance of MRST scales well also for (surprisingly) large models. The interfaces
presented are specific to MRST, but the specific solution strategies and solvers
discussed should be applicable to any reservoir simulator.

For completeness, we emphasize that there are also other sources of computational
overhead that are not as simple to reduce. Per design, MATLAB has many con-
venience features that contribute to making the language an attractive prototyp-
ing platform. This includes dynamic types, dynamic allocation and deallocation,
a lot of safety checks, and variable list of input–output parameters. There is also
overhead associated with certain indexing operations in sparse matrices and calling
compiled libraries. Likewise, the model for utilizing concurrency is not optimal and
it may be difficult to avoid expensive cache misses. So, in sum: MRST can be made
efficient also for (surprisingly) large models, but you should not generally expect
that it can compete 100% with a compiled and highly optimized simulator.

Running a case with many cells and complex flow physics will nonetheless take
time, regardless of the simulator, so you will often have to leave it running for
several hours. Sometimes, the simulation is aborted because the timestep was cut
too many times or you decide to abort it yourself because it takes too long to
finish. You may also experience unwanted computer crashes or reboots during a
long simulation. In either case, unless your setup has a restart mechanism, your
results are gone, and you have no choice but to start the simulation again and hope
that the same thing does not happen this time. If this sounds familiar, Section 6.4
was written for you; it describes recent functionality that enables automatic restarts
for aborted or failed simulations.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 203

The discussion in this chapter does not contain any details about the underlying
reservoir modeling, and to benefit from it you should therefore be familiar with
how to set up and run simulations in MRST; this is described in the MRST textbook
[14]. To a certain extent, features discussed later in this chapter can be automati-
cally selected. If you are using utility functions such as initEclipseProblemAD,
selectLinearSolverAD, or getNonLinearSolver, chances are that you are
already using many of the features from this chapter.

Benchmark setup: All computational performance results reported later in this
chapter, in terms of the runtime for individual operations and simulation steps, are
from a Windows 10 workstation with a single Intel Xeon E3-1275 v6 and 64 GB of
RAM. This CPU is a 2017 model that operates at 3.8 GHz with four cores. Some
of the functionality discussed relies on MEX extensions that herein were compiled
with the Visual Studio 2019 compiler. Appendix A gives you more details about
how such MEX extensions are set up in MRST.

6.2 Accelerated Implementation of Automatic Differentiation

The literature about automatic differentiation is abundant, but if you are not familiar
with the concept and how it can be used for numerical computations, we recom-
mend the introductory article by Neidinger [18], which focuses on how this tech-
nique can be implemented efficiently in MATLAB. This paper was a strong source
of inspiration when we first developed capabilities for automatic differentiation in
MRST. In this section, we first explain the context for automatic differentiation
in reservoir simulation, briefly outline the different ways it can be implemented,
and then discuss what we have done to improve the efficiency of this technique
in MRST.

The need for derivatives: The basic flow equations in reservoir simulation can
be summarized as a set of equations that each model the discrete conservation for
a quantity M with a corresponding flux V and source term Q,

Mn+1 − Mn

�tn
+ div(V)− Q = 0. (6.1)

This is a generalized form of the type of flow equations you will encounter in many
of the chapters in Part III of the book; Chapters 7 and 8, for instance, present more
details for the specific cases of chemical enhanced oil recovery (EOR) and com-
positional simulation. These resulting nonlinear equations are usually solved by a
Newton–Raphson method, which requires the full set of derivatives with respect to

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

204 O. Møyner

all primary variables to construct the necessary Jacobian matrix needed to compute
an iterative increment.

In Chapter 5 we discussed the interdependencies of the many quantities that
enter such a computation, explained how the computation can be modularized
using state functions, and highlighted how the output from specific state functions
often are used in several different equations simultaneously. For example, the total
phase mobility in a given cell may enter into each of the component conservation
equations, as well as in the equations for any wells connected to that cell. So,
in reservoir simulation, unlike in many other applications that utilize automatic
differentiation, the computation of derivatives is in a many-to-many context, in
which we require the derivatives of the residual equations in all cells (and well
completions/segments) with respect to all primary variables.

Forward versus reverse AD: One possible classification distinguishes between
forward-mode and backward- or reverse-mode AD. In the former, the derivatives
of each individual operation involved in evaluating a mathematical function are
tracked simultaneously with the value of these operations using standard algebraic
rules. The effect of the individual operations is accumulated using the well-known
chain rule. The forward mode can be implemented by introducing types for dual
numbers that hold values and derivatives or by operator overloading, depending
on the language itself. In reverse-mode AD, the graph of operations leading to
a final value is carefully recorded and values of any intermediate variables are
stored in a forward sweep. This is followed by a backward phase that propagates
back the derivatives again using the chain rule. This is what is commonly called
backpropagation in the context of machine learning and is similar to the adjoint
method [9] for sensitivities of a time-dependent reservoir simulation. In addition,
there exist source-transformation approaches in which the source code of a program
is examined by another program with the intent to generate additional source code
that produces any required derivatives.

Which of the methods will be most computationally efficient depends on the
characteristics of the problem. Forward AD needs to store intermediate values and
derivatives and is therefore considered to be the most efficient when the number
of independent variables (input) is much lower than the number of function values
(output). Conversely, reverse AD only stores intermediate values and the depen-
dency and will therefore be more efficient for cases with many variables and few
function values, as is typically the case in machine learning.

Use of AD for reservoir simulation: As we have already seen, reservoir simu-
lation is a many-to-many context. At first glance it may not necessarily be obvious

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 205

which of the two methods just outlined will be the most efficient, and different
approaches have therefore been applied in the literature. The first implementation
of AD we are aware of appeared in an early version of the commercial INTERSECT
simulator [5]. Its use was not continued, and use of AD for reservoir simulation has
instead primarily been pioneered by Stanford’s AD-GPRS simulator [22, 23, 27],
which builds on ADETL, a library for forward-mode AD implemented in terms of
expression templates in C++ [25, 26]. Seeing the success of AD-GPRS, we decided
to implement the same type of methods in MRST [2, 12, 17], using ideas from
Neidinger [18] to develop a variable-first forward-AD library suited for vector-
ized operations in MATLAB. The same approach was subsequently implemented
almost verbatim in the open-source simulator OPM Flow [21] but has later been
superseded by a localized, cells-first forward-AD library that is more suited to the
underlying C++ language. It is our belief that forward AD is the best choice for
reservoir simulation, but we acknowledge that other authors argue for the use of
reverse-mode AD [13].

Improving the efficiency of MRST: Much of the flexibility found in MRST
would not be possible without automatic differentiation. For instance, all simulators
that use state functions described in Chapter 5 rely on AD to compute the Jacobians
of complex graphs that consist of discretizations, functional relationships, and ther-
modynamic quantities. The benefit of such a flexible framework is limited if the
evaluation becomes too slow. The main advantage of the original AD implementa-
tion in MRST was its simplicity. However, in trying to make a vectorized library, we
also made some choices that affect performance adversely. For this reason, MRST
has recently been extended to include support for C/C++ accelerated and optimized
AD implementations. In the rest of the section, we examine how you can utilize
known sparsity patterns of certain operations to reduce their computational cost
(and memory consumption). We then discuss how different types of specialized
AD backends can be used in MRST to quickly assemble Jacobians for larger test
cases and obtain performance that rivals that of compiled simulators on typical
shared memory systems used for prototyping; e.g., on workstations and laptops.
Parts of this discussion are specific to MRST and reservoir simulation, but there
are also patterns and considerations that are generally applicable to any vectorized
language and for applications other than reservoir simulation.

6.2.1 Different Backends for Automatic Differentiation

If you are familiar with the AD-OO framework, from the MRST textbook [14] or
one of the many tutorial examples, you have already seen primary variables being

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

206 O. Møyner

initialized with initVariablesADI, which is the initializer for the default AD
implementation in MRST. In a recent reformulation of the AD-OO framework,
we introduce the concept of an automatic differentiation backend to initialize pri-
mary variables, because this makes it easy to change the AD implementation by
replacing the backend in use. AD-OO contains several variations of forward-mode
automatic differentiation that, e.g., use different storage formats for accumulating
derivatives.

Each backend is derived from the AutoDiffBackend base class that takes care
of initialization and consistent conversion of doubles to AD variables. For example,
assume that we have three vectors and have declared two of them to be independent
primary variables with AD type:

x = rand(10, 1); y = rand(10, 1); z = rand(10, 1); % Three vectors
[x, y] = initVariablesADI(x, y); % Initialize x, y as AD

We can then convert the third to be the same type of AD variable as x and y – i.e.,
utilize the same AD implementation and have the same primary variables – and
initialize it to have zero derivatives with respect to these primary variables:

z = double2ADI(z, x); % z -> AD, dz/dx = 0, dz/dy = 0

This gives us a systematic way of converting (vectors of) doubles to AD variables.
Converting doubles to AD is essential when working with vectorized code.
Examples of usage are provided in Subsection 6.2.5. Alternatively, we can express
the same operations by first instantiating a backend and then using standard
interfaces:

backend = AutoDiffBackend();
[x, y] = backend.initVariablesAD(x, y);
z = backend.convertToAD(z, x);

These two listings are completely equivalent in results. The only difference is that
in the second alternative we could replace AutoDiffBackend in the first line
with another class to use another type of AD. All AD-OO simulation models
in MRST automatically set up a backend upon construction, which is later
used when linearizing equations. You can extract or set the associated backend
as follows:

backend = model.AutoDiffBackend; % Get AD backend
model.AutoDiffBackend = backend; % Set AD backend

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 207

AD objects initialized from different backends are usually not directly compat-
ible. For this reason, we recommend that you always use the backend from the
model when possible.

In the following, we first demonstrate the difference between the standard sparse
AD representation and the diagonal AD on a simple test problem, before outlining
the available implementations and discussing their advantages and drawbacks.

6.2.2 Motivation for Different Types of AD Backends

It will be illustrative to work through a simple numerical example to understand
why we have implemented several AD variants in MRST. To this end, we consider
a vector version of the simple scalar equation used in the crash course on state
functions in Chapter 5:

G(x,y,a,b) = xy + ab. (6.2)

To understand the specific details of the following discussion, you should read this
section first.

The output of the function in (6.2) is itself a vector with length L. The element-
wise nature of the operations1 means that the calculation of entries i and j of G
only depends on the corresponding entries i and j in x, y, a, and b. We have four
vector inputs to G, and to compute the partial derivatives with respect to all input
parameters we let the vector v of primary variables correspond to these four vectors:

v = [xT ,yT ,aT ,bT]. (6.3)

Setup of the problem: The example showConceptualAD computes G and a few
related operations together with the corresponding derivatives in several different
ways. We first describe the basic operations in terms of doubles, omitting the setup
of the state functions themselves. We set up a state and assign to it a container for
the group of state functions that represent G to enable caching:

[a,b,x,y] = deal(rand(n,1), rand(n,1), rand(n,1), rand(n,1)); % n entries each
state0 = struct('a', a, 'b', b, 'x', x, 'y', y); % Initial state
state = group.initStateFunctionContainer(state0); % Set up storage

1 Note that, as in Chapter 5, we abuse notation for vector multiplication so that the multiplication of two column
vectors results in element-wise multiplication. In this way, we match the MATLAB times operator x.*y; i.e.,
(xy)i = xiyi .

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

208 O. Møyner

We then define the four operations we will use to study computational performance
of automatic differentiation:

Listing 6.1 Example of four operations that are typical in simulators.

G = group.get([], state, 'G'); % Compute G for all input values
G_sub = G(1:100:n); % Extract a subset: every 100th value
v = 2*G_sub; % Compute on the subset of values
G(1:100:n) = v; % Insert the modified subset values

In addition to calculating G, we extract every hundredth element, multiply the
resulting subset with a scalar, and then reinsert the values into G. Operations on
subsets of values are very common in simulators that couple different models
together or when introducing source terms in parts of the domain. Note that
because the index is nonsequential, the subset operation is more expensive in terms
of memory access than with an index that would pick the same number of elements
in sequence.

For each of these four operations, the script measures the average time taken
over many repeated calls of the four operations. If we assume the cost of adding
and multiplying two numbers to be the same, computing each entry of G consists of
three floating-point operations (flops). For the AD part, the derivative of an addition
is simply the addition of the derivatives of each argument. The derivative of a
product of two numbers with known derivatives can be found by the product rule(

f (x)g(x)
)′ = f ′(x)g(x) + f (x)g′(x). (6.4)

Hence, the cost of computing the derivative of multiplication is three flops. For
G, we must thus perform a total of seven flops for each derivative. Because we
have four nonzero derivatives, computing all derivatives of G with respect to v
requires at least 28 flops per entry in G, in addition to the three operations for the
value itself. Using AD to compute values and derivatives hence requires roughly 10
times as many operations than for just doubles to only compute the values. Note that
counting flops is just a part of the picture for modern computing, because memory
locality, cache effects, and specialized processor features in practice will have large
impacts on the execution speed. In the following comparison, however, we will for
simplicity say that a new AD implementation is very promising if its runtime is less
than 10 times that of computing the G values only (using plain doubles).

Local AD operations in reservoir simulation: Even though (6.2) is just a con-
ceptual illustration, the local operations in Listing 6.1 are nonetheless relevant to

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 209

Table 6.1 Examples of values M can take in (6.1) depending on the type of model
in use.

Physics M Interpretation Module

Immiscible �ρwSw Mass of water
phase

ad-blackoil

Black oil �ρs
g(bgSg + RsboSo) Mass of gas

pseudocomponent
ad-blackoil

Compositional �(ρlXi,lSl + ρvXi,vSv) Mass of
component i

compositional

Thermal �ρf uf + (1 −�)ρrcrT Thermal energy in
rock & fluid

geothermal

reservoir simulation and are encountered often during the assembly of discretized
residual equations of the form (6.1). For instance, M is typically an expression that
closely resembles (6.2); Table 6.1 shows a few possible examples from MRST.
Each specific M is generally composed of a series of functions such as phase
density or heat capacity that are functions of the primary variables. These are then
multiplied and added together to form the final term we are interested in. Many
of the intermediate results will also be used to evaluate other terms in the flow
equations. Efficient computation of Jacobians for local operations is therefore an
important prerequisite for fast assembly. In the following, we describe how utilizing
the diagonal structure of such Jacobians is a key to fast assembly in MRST.

Two different AD representations: We can perform the same operations by ini-
tializing AD variables to simultaneously compute the Jacobians with respect to v:

[aAD, bAD, xAD, yAD] = initVariablesADI(a, b, x, y);
state0 = struct('a', aAD, 'b', bAD, 'x', xAD, 'y', yAD);

The rest of the operations proceed as before, with the final value of G being an ADI

class object that contains a vector of values for G and a list of square and sparse
Jacobian submatrices, one for each of the four input vectors:

disp(G)

ADI with properties:
val: [1000000x1 double]
jac: {[1000000x1000000 double] [1000000x1000000 double]

[1000000x1000000 double] [1000000x1000000 double]}

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

210 O. Møyner

We can also initialize the variables with another initialization function:

[aAD, bAD, xAD, yAD] = initVariablesAD_diagonal(a, b, x, y);

which has the same interface but gives a different representations of AD variables,
which we discuss in detail later on. We now have a GenericAD instance with a
DiagonalJacobian that replaces the four sparse matrices:

disp(G)

GenericAD with properties:
numVars: [4x1 double]
offsets: [2x1 double]
useMex: 0

val: [1000000x1 double]
jac: {[1x1 DiagonalJacobian]}

Computational efficiency: Figure 6.1 reports the execution time for each of the
four operations in Listing 6.1 when the input variables are doubles or class objects
of the sparse or diagonal AD type. With sparse AD data type of the standard AD
library, MRST spends significantly more than 10 times as much time as with regular
doubles. Computing G itself with derivatives takes 44 times as much time, but the
performance penalty is significantly worse when we extract a subset of the larger
vector. The new diagonal AD class, in contrast, significantly outperforms both the
sparse AD and our goal of 10 times slower performance with four derivatives per

only values values+Jacobian

Figure 6.1 Time consumed by the four different operations in Listing 6.1 with
vectors of 1 million cells. The times taken to evaluate values using doubles only
are compared to the times consumed using two different versions of AD. The
number above each bar indicates the relative increase in execution time when
compared to computing values only using doubles.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 211

entry in G. For all operations, the diagonal AD class uses roughly five times as
much time as plain doubles. In the following, we try to answer two questions: Why
does the standard AD in MRST use so much time? And what is done differently in
the diagonal AD?

The answer lies in how the derivatives are represented. As you have already seen,
the default AD implementation in MRST stores all derivatives as a list of sparse
matrices. These are highly memory efficient for general sparse matrices because
only nonzero entries are kept in memory. In reservoir simulation, you often want to
manipulate the matrix blocks that correspond to individual independent variables
in the full linearized system, and using a list of sparse matrices to represent the
derivatives of the independent variable is much more efficient than using one big
matrix for all of the derivatives, which is the standard choice in many forward AD
libraries. However, the use of sparse matrices is not without drawbacks, because
the bookkeeping of which matrix entries are present makes matrix operations more
complex than for a dense matrix. In addition, MATLAB stores all sparse matrices
in the column-major format [16], which means that all entries for a given column
are stored together. Accessing all entries in a given column is therefore much more
efficient than accessing all entries in a given row, because each entry then will be
retrieved from a different column. Upon taking the subset of a AD vector, we must
extract the sub-Jacobians that correspond to certain rows in the larger Jacobian,
resulting in the construction of a new sparse matrix.

To improve execution speed, the diagonal AD uses a specialized class to store
the Jacobians, which can be expanded to a standard sparse matrix when necessary.
Because Gi only depends on values in the ith entries of each of the four inputs,
most of the entries Jij = ∂Gi/∂vj in the L × 4L Jacobian matrix will be zero. To
be precise, Jij can only be nonzero when j equals i, i + L, i + 2L, and i + 3L.
We therefore say that J is diagonal in the sense that the ADI class would represent
it as four sparse matrices in which only the diagonals are nonzero. Interpreted as
one large sparse matrix, J has four nonzero bands. In general, the new diagonal AD
class stores matrices in which the nonzero entries follow a simple pattern:

Jij =
{

v if (j − 1) mod L = i − 1

0 otherwise.
(6.5)

This trick enables highly efficient AD computations when operations are local to
each cell. Subsection 6.2.4 discusses in more detail how this is done in practice, as
well as how MRST uses diagonal-like representations even when the Jacobians are
not as neatly structured as in (6.5).

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

212 O. Møyner

Computer exercises

1. Here, G had 1 million entries, but you should test the example with larger or
smaller n values. For smaller n, the sparse version may outperform the diagonal
version; e.g., the author observed that the sparse version is comparable to the
diagonal version when G has around 1 000 entries. How many elements do you
need for the diagonal AD to outperform the sparse AD on your computer?

2. How does the difference between the AD types change with the number of
threads? You can use maxNumCompThreads to control the number of threads.
Experiment with the number of elements, threads, and AD variants to get a feel
for the performance.

6.2.3 Sparse AD Backends in MRST

At the time of writing, MRST offers two different sparse AD backends. To compare
and contrast the two, we use a simple flow example (backendOptionsExample.m)
for which all of the existing backend options are available for experimentation.

Model setup: Consider a three-phase immiscible problem with pressure, water
saturation, and gas saturation as primary variables. The specific details of the sce-
nario are not important, because our primary concern is the structure of the Jaco-
bians. We set up an initial state and initialize the model:

model.AutoDiffBackend = backend; % Set backend
model = model.validateModel(); % Validate model with new backend
state0 = initResSol(G, p0, s0); % Set up initial state
state0 = model.validateState(state0); % Validate initial state
state = model.getStateAD(state0); % Initialize AD-state
forces = model.getValidDrivingForces(); % Set up dummy forces

All changes in the following sections depend on the choice for the backend vari-
able. Once everything has been set up, we can evaluate a few state functions via
getProp:

% Get two primary variables, the mass in each cell and the phase flux
[p, sw] = model.getProps(state, 'pressure', 'sw');
[cm, v] = model.getProps(state, 'ComponentTotalMass', 'PhaseFlux');
eqs = model.getModelEquations(state0, state, 1*day, forces);

For the discussion of the different Jacobian representations, it will be useful to make
note of the dimensions of the grid in terms of cells and faces, which we verify from
the dimensions of the outputs. Here, the grid has been set to 10 × 10 cells:

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 213

fprintf('Grid has %d cells with %d interfaces\n', numelValue(p), numelValue(v{1}))

Grid has 100 cells with 180 interfaces

The Standard Backend: AutoDiffBackend

The default backend is for all intents and purposes identical to the standard ADI

class described in appendix A.5 of the MRST textbook [14]. If we examine the
pressure primary variable, we see that the Jacobian consists of the usual list of
sparse matrices:

disp(p)

ADI with properties:
val: [100x1 double]
jac: {[100x100 double] [100x100 double] [100x100 double]}

Each sparse matrix in the cell array p.jac corresponds to the derivative of p

with respect to the corresponding primary variable. This means that p.jac{1}
represents ∂p/∂p, p.jac{2} is ∂p/∂Sw, and so on. Because p is itself a primary
variable, the first entry is the identity matrix and the remaining entries are zero
matrices.

Only the default backend provides instances of the ADI base class that
all AD objects inherit from. This class implements the canonical repre-
sentation that all AD functions should support. Other backends provide
instances of the subclass GenericAD, which is flexible with respect to the
Jacobian structure. If your code relies on particulars of the canonical per
variable sparse Jacobian representation, you should use assert(˜isa(x,

'GenericAD')) to throw an error inside your function if a nonstandard
backend is in use.

The Sparse Backend: SparseAutoDiffBackend

The storage format and the underlying algorithms of the default AutoDiffBackend
class may change in future releases of MRST and, hence, the sparse backend
(SparseAutoDiffBackend) is introduced to enable backward compatibility and
as a convenient way to ensure that a model can explicitly initialize the sparse
backend. The general advantage of sparse backends is that Jacobians are easily
manipulated as matrices and that any variable can depend on any other variable.
Using a standard sparse matrix format ensures that the performance of this class

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

214 O. Møyner

will automatically improve when MATLAB’s and Octave’s sparse implementations
improve and that the underlying data elements can be directly passed to linear
solvers that support column-major sparse matrices. The drawback is that certain
sparse matrix operations like insertion and matrix–matrix operations may be
expensive when in-memory data must be moved around to accommodate a new
sparsity pattern. Typical simulations require a large number of linearizations, and
the performance of the sparse representation is often a bottleneck if a fast linear
solver is used.

Single-matrix representation: The sparse backend has an additional feature:
We can change to a single-matrix representation to compute the full Jacobian as
a sparse matrix, by setting backend.useBlocks=false:

disp(p)

GenericAD with properties:
numVars: [3x1 double]
offsets: []
useMex: 0

val: [100x1 double]
jac: {[100x300 double]}

The GenericAD class now contains three data fields not present in the canonical
ADI class, and the list of sparse matrices has been replaced by a single large Jaco-
bian representing the entirety of [∂p/∂p,∂p/∂Sw,∂p/∂Sg]. Single-matrix storage
will be faster for operations involving addition and multiplication of full matri-
ces, because this enables better thread parallelization in MATLAB than opera-
tions that have to loop over lists of sparse submatrices. The disadvantage is that
extracting a sub-Jacobian for one or more variables is more expensive for single-
matrix storage, because a new sparse matrix must be created. The diagonals with
respect to a group of variables are less accessible in the single-matrix backend,
and functions that need to access groups of derivatives separately may not sup-
port this representation. One such example is the constrained pressure residual
(CPR) linear solver, CPRSolverAD, which relies on access to each submatrix sepa-
rately and does not currently support equations assembled with single-matrix AD as
input.

6.2.4 High Performance: DiagonalAutoDiffBackend

The DiagonalAutoDiffBackend is designed to leverage dense linear algebra
when possible and only uses the full sparse representation when strictly required.
With many options that improve execution speed, this is the primary test bed for
AD performance improvements in MRST.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 215

Optimized Representation of Diagonal Matrices

To understand how the class is constructed to optimize storage and number of
flops, we again examine the initialized AD objects for the p variable after switching
backends:

disp(p)

GenericAD with properties:
numVars: [3x1 double]
offsets: [2x1 double]
useMex: 0

val: [100x1 double]
jac: {[1x1 DiagonalJacobian]}

Here, we see that the list of sparse matrices that represented the Jacobian in the ADI
class has been replaced by an instance of the DiagonalJacobian class:

Jp = p.jac{1}; Jw = sw.jac{1}; % Get pressure and S_{w} Jacobians
disp(Jp) % Show the pressure Jacobian

DiagonalJacobian with properties:

diagonal: [100x3 double]
dim: [100 3]

subset: []
:

The dim property indicates that this is a Jacobian with respect to a primary variable
vector with 100 elements and three variables per element. The diagonal property
stores the local derivatives for each element as an nv × nd dense matrix, where nv

is the number of values and nd is the number of local derivatives for each value.
The first column of the Jacobian is all ones, whereas the remaining two columns
are all zero. These zeros are stored in memory, however, which means that, e.g.,
multiplying p with a constant would result in additional multiplication operations
when compared to the sparse representation. The values stored in memory are
shown in Figure 6.2 for the three storage formats we have encountered so far:
separate sparse blocks, a single large sparse block, and the diagonal Jacobian.

It is easy to think that the explicit storage of all diagonal entries would mean
reduced performance when many entries have zero value, but the overhead of
tracking the sparsity far exceeds the extra time spent multiplying out extraneous
zeros: With a grid of dimensions 1 000 × 1 000, the author recorded a speedup of
2.4 by switching to the diagonal backend for the operation x = p*5.

Why is it more efficient to store the derivatives as a dense matrix? If we mul-
tiply vectors x and y element-wise with the corresponding Jacobians Jx and Jy , a
vector-valued variant of (6.4) reads

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

216 O. Møyner

Figure 6.2 Three different ways of storing the Jacobian of the same primary
variable in MRST: Sub-Jacobian blocks that distinguish between each type of
primary variables (top), a single large sparse matrix (bottom), or storing the
diagonals as a dense matrix (right). The bands here are not the nonzero elements;
rather, they are values that are explicitly stored in memory. For the sparse
representations, this obviously coincides with the nonzero entries.

Jxy = diag(y)Jx + diag(x)Jy . (6.6)

Here, diag() takes a vector and produces a matrix with the vector entries on the
diagonal. The effect of this is that every row of the Jacobian Jy is multiplied by the
corresponding value of x and vice versa. To understand how the diagonal backend
gets better performance, we can manually set up and examine the operations each
backend performs when realizing (6.6). Letting m be the number of elements and
nder the number of derivatives per element, we initialize:

Dx = rand(m, nder); Dy = rand(m, nder); % Diagonals of Jacobians
x = rand(m, 1); y = rand(m, 1); % Vector values

Let us first consider how operation (6.6) would be computed with the sparse back-
end. We first initialize sparse matrices to represent each of the sub-Jacobians:

Jx = cell(1, nder); Jy = cell(1, nder);
for i = 1:nder

Jx{i} = sparse(1:m, 1:m, Dx(:, i), m, m); % m-by-m diagonal matrix, J_xi
Jy{i} = sparse(1:m, 1:m, Dy(:, i), m, m); % m-by-m diagonal matrix, J_yi

end

Computing the full Jacobian itself consist of creating two sparse matrices that
contain x and y on their respective diagonals and multiplying and adding each
diagonal:

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 217

J_sparse = cell(1, nder); % Storage
dx = sparse(1:m, 1:m, x, m, m); % diag(x)
dy = sparse(1:m, 1:m, x, m, m); % diag(y)
for i = 1:nder, J_sparse{i} = dx*Jy{i} + dy*Jx{i}; end

For a diagonal matrix, the Jacobians are represented as the rectangular matrices
Dx and Dy and we can directly evaluate the Jacobian2:

J_diag = Dx.*y + Dy.*x;

To compare, we perform each operation 100 times and output the average time. For
five derivatives and 1 million elements:

Sparse: 0.2972s. Diagonal: 0.0076s (39.3 speedup from diagonal)

This amounts to nearly 40 times speedup by using the diagonal representation. One
possibility would be that the for loop required for the sparse representation has a
high cost. If we consider a single derivative per element to avoid the for loop,

Sparse: 0.1100s. Diagonal: 0.0018s (62.0 speedup from diagonal)

we see that the gap in performance is even larger. Modern CPUs have exceptional
performance when performing the same operation on two arrays that lie contigu-
ously in memory, and even the most optimal sparse implementations thus have a
hard time achieving comparable performance to dense linear algebra.

The subset property of the Jacobian makes it possible to retain efficiency
on subsets of diagonal Jacobians. For instance, slicing rows from a diagonal
Jacobian, which occurs when extracting a subset of a AD vector, also gives a
diagonal:

Jps = Jp(5, :) % Pick the fifth element of pressure Jacobian

DiagonalJacobian with properties:

diagonal: [1 0 0]
dim: [100 3]

subset: 5
:

Note that the dim field is still [100,3], because the subset is taken from a primary
variable with 100 entries and three variables per entry. If we were to represent this

2 On MATLAB versions prior to R2016b, we use bsxfun instead of the implicit expansion:
J_diag = bsxfun(@times, D1, v2)+ bsxfun(@times, D2, v1). MRST automatically determines
whether the implicit expansion is available and uses the fastest version available.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

218 O. Møyner

subset as a sparse matrix, it would be a 1 × 300 matrix. The increased speed of the
diagonal structure is maintained whenever possible; e.g., when a modified subset is
reinserted into the same position:

Jp(5, :) = 2*Jps; % Inserting in the same position still gives a diagonal
class(Jp) % -> DiagonalJacobian: Diagonal structure preserved
Jp(6, :) = 3*Jps; % Insertion in another position results in sparse
class(Jp) % subset mismatch -> double: Sparse matrix

Operations on subsets get the efficiency of the diagonal representation if possible. If
an operation requires a sparse representation, the object is automatically converted:

Jws = Jw(5, :); % Take the fifth element of S_w Jacobian
class(Jps + Jws) % Different variables, same subset -> DiagonalJacobian
class(Jps + Jw(6, :)) % Different variables, different subset -> double

In addition to the automatic conversion, we can expand an instance of the diagonal
representation to a matrix at any time by explicitly casting to sparse:

Jp = sparse(Jp);
fprintf('Jacobian has type %s with dimensions %d by %d.\n', class(Jp), size(Jp))

Jacobian has type double with dimensions 100 by 300.

In this way, the diagonal backend can still represent fully general derivatives when
needed, although the disadvantages with sparse matrices will then apply to any
subsequent operations on the Jacobians. In Subsection 6.2.4, you will see how we
can retain the diagonal efficiency even when working with nondiagonal values; for
instance, when we have values on faces that are differentiated with respect to cell
variables on an unstructured grid.

Finally, we note that the diagonal backend will group the derivatives of vectors
of the same length together. In the following case, it will store the Jacobians as two
separate groups:

u = zeros(10, 1); e = zeros(5, 1);
[a, b, c, d] = initVariablesAD_diagonal(u, u, e, e);
disp(a)

GenericAD with properties:
:
val: [10x1 double]
jac: {[1x1 DiagonalJacobian] [1x1 DiagonalJacobian]}

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 219

The first Jacobian has derivatives with respect to the two vectors with 10 entries
each and the second Jacobian represents the derivatives with respect to the two
primary variables with five entries each:

disp(a.jac{1})

DiagonalJacobian with properties:

diagonal: [10x2 double]
subset: []

dim: [10 2]
:

disp(a.jac{2})

DiagonalJacobian with properties:

diagonal: [10x0 double]
subset: [10x1 double]

dim: [5 2]
:

Because we here examined the first primary variable, all derivatives in the second
group, which correspond to the second primary variable, are zero. This leads to
two observations: (i) the diagonal has zero for the second dimension to represent
a zero Jacobian and (ii) the subset is already initialized. The subset entries are all
zero values, which indicates that any value can be inserted anywhere in the array
without switching to a sparse matrix.

Modified Discrete Operators

The diagonal Jacobians we have described so far will turn into sparse matrices when
they are multiplied by a general matrix. Many of the discrete operators used in the
assembly of the linearized system for (6.1) are linear maps that take cell values as
input and produce results on the faces; i.e., a mapping of the type R

nc → R
nf . For

example, the discrete gradient and divergence operators in MRST are implemented
using a sparse matrix D ∈ R

nc × R
nf :

grad(p) = −Dp, div(v) = DT v. (6.7)

As described in [14, subsection 4.4.2], each row of this matrix corresponds to a face
and contains two nonzero entries in the positions where the cells belonging to that
face are found. The same principle applies to the other operators that compute face
values from cell values, namely, faceUpstr and faceAvg. These are all used to
compute discrete phase fluxes of the form

vα = −upw(λα)Tf

(
grad(pα) + gfavg(ρα)grad(z)

)
. (6.8)

We saw earlier that computing derivatives for these multiplication and addition
operators is significantly more efficient if we can exploit the structure of the Jaco-
bians to avoid introducing unnecessary intermediate sparse matrices. The diagonal
backend has an option to replace the existing matrix-based operators with cus-
tom operators tailored to expressions involving diagonal Jacobians. This setting

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

220 O. Møyner

is enabled by default but can be disabled by setting the public backend property
modifyOperators to false.

To see this effect, we examine the Jacobian of one of the phase fluxes we
retrieved earlier. When modified operators are not enabled, we get a sparse Jacobian
of 180 × 300 entries, but if the option is enabled, we get a class instance instead:

vw = v{1} % Get the water flux

>> backend.modifyOperators=false;
GenericAD with properties:

:
val: [180x1 double]
jac: {[180x300 double]}

>> backend.modifyOperators=true;
GenericAD with properties:

:
val: [180x1 double]
jac: {[1x1 FixedWidthJacobian]}

The new class, FixedWidthJacobian, is designed to represent Jacobians of oper-
ations on multivariate functions when each entry in the output vectors depends
on a fixed number of entries in the original vector. If modified operations are
activated in the backend, face averages, upwinded quantities, and gradients all get
Jacobians of this class. Element-wise operations on the output from these discrete
operators also retain the same structure, which means that (6.8) will also have a
dense Jacobian representation. This means that the intermediate multiplications and
additions are all able to get the efficiency through the same means as the regular
diagonal Jacobians.

The Jacobian of the discrete water flux from our example gives several hints to
how this is implemented in practice:

disp(vw.jac{1})

FixedWidthJacobian with properties:
map: [180x2 double]

mapName: ’interiorfaces’
parentSubset: []

diagonal: [180x6 double]
dim: [100 3]

subset: []
:

Because the class is derived from the regular DiagonalJacobian class, we still
have the diagonal property. Though it is expected that we have one entry per
face, we also observe that there are six columns instead of the three we saw
for the cell pressure in the beginning of this section. Each face separates two
cells, which means that the Jacobian will have dimensions nf × 2nd . Figure 6.3
outlines the layout of the diagonal matrix for face quantities for a small grid.
Here, the neighborship matrix N is stored as the map property. In the case of
face values, the rows tell us the pair of cells any given face value depends

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 221

Figure 6.3 The in-memory diagonal Jacobian structure of derivatives local to each
cell (upper left) gets converted into a Jacobian defined on interior faces (right) for
a grid with two cells per faces (lower left). This way, the Jacobian can still be
represented as a dense matrix.

on. The property mapName can contain a string that uniquely defines map, here
'interiorfaces'. In this way, the class does not need to check each entry of
map to see whether two fixed-width Jacobians can be safely multiplied together.
As with the regular DiagonalJacobian class, we can seamlessly operate on
subsets of variables and expand to a sparse matrix when encountering, e.g., a
general matrix–vector product. We also have a parentSubset that may contain
the subset array of the original cell values used to produce the fixed-width
Jacobian.

The fixed-width representation reuses most operations directly from the regu-
lar diagonal Jacobian class: The class consists of mere 130 lines, most of which
concern conversions to sparse matrices and equality comparisons between two
Jacobian classes of different type. The backend also includes a custom version of
div and AccDiv. These operators take face quantities as input and produce output
in each cell, and the custom versions can exploit the fixed-width representation for
faster assembly. At this stage, the sparse Jacobian is usually assembled, unless a
specific option is set, as detailed in Subsection 6.2.4. As with the face operators,
these custom operators degrade gracefully to the standard sparse versions when
provided with sparse Jacobians.

Row-Major Option

MATLAB stores all matrices in column-major order. This means that accessing
consecutive entries in a single column is more efficient than accessing the same

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

222 O. Møyner

number of consecutive entries in any given column. For example, the following
two codes produce identical outputs with the same number of flops:

for i = 1:nrow % Row outer
for j = 1:ncol % Column inner

A(i, j) = i + j;
end

end

for j = 1:ncol % Column outer
for i = 1:nrow % Row inner

A(i, j) = i + j;
end

end

With nrow and ncol both set to 2 000, the second alternative is almost 2.4 times
faster than the first. For historical reasons, MRST stores solution quantities such as
pressures or saturations as column vectors, and the default behavior of the diagonal
backend matches this: Each row of an nv ×nd diagonal matrix corresponds to all
derivatives of a single value. Unfortunately, this can be inefficient if all derivatives
of a value are retrieved more often than, e.g., getting the first derivative of all values.
With the rowMajor option set, the backend stores the transpose of (6.5) in each
object to improve memory locality. Figure 6.4 demonstrates the difference between
the two representations when accessing the data consecutively in memory.

MEX Acceleration

The results in Figure 6.1 were achieved with pure MATLAB code and show
that users without access to a C++ compiler can also benefit from switch-

Figure 6.4 The diagonal backend can store the diagonals containing nonzero
derivatives as either column-major or row-major. If using a row-major ordering,
the derivatives for each value are consecutive in memory, making retrieval of all
derivatives much more efficient.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 223

Table 6.2 Overview of MEX-accelerated operators for the diagonal AD backend.
Some operators have acceleration for both calculating values and computing the
associated Jacobian.

Operation Function MEX Value MEX Jacobian

upw singlePointUpwind Yes Yes
grad twoPointGradient Yes Yes
favg faceAverage Yes Yes
div discreteDivergence Yes Yes
diag(y)Jx diagMult – Yes
diag(y)Jx + diag(x)Jy diagProductMult – Yes
Diagonal to sparse sparse – Yes

ing to the diagonal backend. The runtimes can be further reduced by setting
backend.useMex=true and thereby enable MEX acceleration of many oper-
ations in the AD library. Table 6.2 list operators that have accelerated versions
available. The accelerated versions are written in C++ and use OpenMP for
parallelization, enabling MRST to take advantage of multiple threads without
any additional toolboxes.

Deferred Assembly Option

Normally, the AccDiv and Div operators lead to the sparse matrix assembly. The
diagonal backend also has an option of deferred assembly, so that these operators
instead return an intermediate representation that can then be assembled into other
matrix formats; e.g., when using a linear solver that prefers another input than
the default compressed sparse column format. Examining the water conservation
equation, we see the difference by changing the option:

ew = eqs{1} % Equation for conservation of water component

>> backend.deferredAssembly=false;
GenericAD with properties:

val: [100x1 double]
jac: {[100x300 double]}

:

>> backend.deferredAssembly=true;
GenericAD with properties:

val: [100x1 double]
jac: {[1x1 ConservationLawJacobian]}

:

With deferred assembly enabled, the Jacobian contains the accumulation terms and
the discrete flux as diagonal and fixed-width Jacobians, respectively:

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

224 O. Møyner

disp(ew.jac{1})

ConservationLawJacobian with properties:
flux: [1x1 FixedWidthJacobian]

accumulation: [1x1 DiagonalJacobian]
divergenceOptions: [1x1 struct]

This class can then add cell-wise contributions to the accumulation term. As before,
we can always cast this class to sparse to get the scalar compressed sparse column
representation or use the intermediate Jacobians to assemble the matrix into another
type. In Example 6.5.2, this form is used to assemble a block CSR matrix that is
passed directly onto a linear solver.

A Few Words of Caution

The advantage of the diagonal representation is that it can often be more efficient
than the default sparse implementation. In the end, the diagonal representations
will gracefully degrade to sparse matrices as needed, but if this occurs early in
a complex expression, the performance benefits may be lost. If your code uses
additional discrete operators beyond those included with MRST, you may have
to implement a diagonal version that uses the fixed-width Jacobian if a sparse
representation of the discrete operator is inefficient. This part of MRST is rel-
atively new and also under active development, but the principles discussed are
general and should be relevant to anybody interested in reducing computational
overhead. We cannot yet guarantee that there will not be bugs in untested corner
cases and thus recommend that you first validate your implementation with the
canonical sparse AD backend and then only start experimenting with the addi-
tional options when you progress your research to larger cases and assembly time
becomes significant.

6.2.5 Performance of AD Backends

We end the discussion by presenting three test cases that compare and contrast the
performance and scalability of the AD backends currently available on larger and
more representative setups, sampled from multiphase simulation models.

Benchmarking Operations for Different Backends

You have already seen that using the diagonal backend improves certain element-
wise operations. MRST includes the routine benchmarkAutoDiffBackends,
which performs a more systematic performance test for any given set of backends.
The use of this routine is demonstrated in exampleBenchmarkBackends, in
which different backends can be compared for grids of varying size and with
a varying number of degrees of freedom. Here, we only report one such case

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 225

x.*y (cell) x.*y (on face) x(subs) x(subs)=y favg(x) grad(x) upw(x) div(x) x + div(y)
0

0.2

0.4

0.6

0.8

1

T
im

e
[s

]
Sparse
Diagonal-MEX
Diagonal-MEX-RowMajor

elementwise subset cell→face face →cell mix

Figure 6.5 A benchmark of three different backends for automatic differentiation
with a million cells and five primary variables in each cell. The first tests are
element-wise products, followed by subset operations, cell-to-face operators, and
finally a face-to-cell operator and a mixed operator.

with 1 million cells and five primary variables per cell, but we encourage you
to experiment with the different options to see what parameters give the best
performance on your configuration. We first define the backends we would like to
benchmark:

sparseBlocks = SparseAutoDiffBackend();
diagRowMex = DiagonalAutoDiffBackend('useMex', true, 'rowMajor', true);
diagColMex = DiagonalAutoDiffBackend('useMex', true, 'rowMajor', false);
backends = {sparseBlocks, diagRowMex, diagColMex};

We then call the benchmark itself, passing the Cartesian dimensions of a desired
test grid as the first input. Alternatively, we could either pass a model or a grid to
benchmark on a specific case:

dim = [100, 100, 100]; % Get a 100 by 100 by 100 Cartesian grid
results = benchmarkAutoDiffBackends(dim, backends, 'block_size', 5);

The first backend is used as the reference when measuring speed and correctness
of the backends. Each operation is performed a number of times based on the
'iterations' optional parameter and the average wall time is output together
with the observed speedup if no outputs are requested or the 'verbose' option
is enabled. The output contains a large number of tests, which are provided in
Appendix B.

Figure 6.5 plots a few element-wise operations, operations on 20% of the ele-
ments, as well as some discrete operators. By using the most efficient diagonal
backend with row-major storage of Jacobians and MEX acceleration, we obtain
a speedup in the range of 5 to 10 for element-wise operations and a factor of

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

226 O. Møyner

three to five for the discrete operators. The performance can be accelerated up
to three orders of magnitude in the case of smaller subsets, in line with our earlier
observations.

Computer exercises

1. We only tested three backends. Change the example so that it includes the single-
block sparse representation and any other options you would like to test.

2. How do the MEX backends perform on your machine? Are there any differences
compared to our reported results?

3. The operators can be tested on any kind of grid. How do they perform on a
corner-point grid having a variable number of faces per cell? Try to set up one
of the grids from the MRST textbook and replace the dims input with this grid.

Assembly Benchmark: Different Sets of Governing Equations

In the preceding section, we assessed the performance of MRST’s AD library on
many of the key discrete operations found in a reservoir simulator. The timing of
each operation may be difficult to relate to the full assembly process in a simulation
model, because some operations may occur more often than others in a nonlinear
problem. To assess the performance of MRST’s assembly in practice, we consider
the linearization of a parameterized test problem. Just as for the individual AD
operations, MRST has a dedicated routine for benchmarking assembly of a single
linearized system; assemblyBenchmarkAD can be used to estimate the assembly
speed for a variety of different models:

results = assemblyBenchmarkAD(N, backend, physics, 'wells')

The test problem is posed on a Cartesian grid with N × N × N cells. If the fourth
argument is 'wells', the assembly includes a set of four vertical wells, placed in
the corners of the domain and perforated throughout all N layers of the model. We
let N vary from 20 to 126, with the smallest grid having 8 000 cells and the largest
two million cells. In the example showADBenchmarkAssembly, three different
sets of governing equations are considered:

1. Three-phase immiscible flow: three degrees of freedom per cell, no capillary
pressure or gravity, and linear relative permeabilities.

2. Three-phase black oil with the SPE 9 benchmark fluid [10]: three degrees of
freedom per cell, capillary pressure, gravity, dissolved gas, no vaporized oil.

3. Liquid–vapor compositional problem with overall composition formulation:
The fluid model is taken from the SPE 5 benchmark [11], with six component
degrees of freedom per cell. The compositional model allows components to be
present in both phases.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 227

Table 6.3 Overview of the execution time in seconds for a single linearization
using the diagonal AD backend with C++ acceleration for three different fully
implicit flow systems posed on a Cartesian grid with N × N × N cells. See
Figure 6.6 for a plot of the same data.

Grid Single-phase Immiscible Black oil Compositional

N # Cells Base Wells Base Wells Base Wells Base Wells

20 8 000 0.02 0.04 0.04 0.06 0.07 0.10 0.44 0.54
25 15 625 0.02 0.03 0.04 0.07 0.09 0.12 0.63 0.74
30 27 000 0.03 0.04 0.05 0.08 0.10 0.14 0.90 1.05
35 42 875 0.03 0.04 0.07 0.10 0.14 0.19 1.21 1.36
50 125 000 0.04 0.07 0.13 0.20 0.28 0.38 2.79 3.09
75 421 875 0.10 0.14 0.36 0.52 0.85 1.09 9.26 9.95

100 1 000 000 0.21 0.28 0.78 1.11 1.87 2.37 20.57 22.13
126 2 000 376 0.39 0.54 1.53 2.25 3.77 4.62 40.89 44.17

We consider the assembly of a single linearized set of equations. For black oil and
compositional, we let 10% of the domain be in the two-phase hydrocarbon state,
so that cells contain both free gas and oil–liquid, because this leads to additional
work during assembly for these models. The overall compositional solver performs
a number of linearizations to get derivatives of the outputs from the flash equations
with respect to the chosen primary variables in the region with both liquid and
vapor present; see Chapter 8 for more details.

In the following, we focus on the diagonal representation with C++ acceleration,
which is the fastest implementation currently available. The results are shown in
Table 6.3. We note that each combination of grid and fluid system has two bench-
marks in the table. If the problem has wells, we can describe the linearized system
by dividing the Jacobian into four parts:

J =
[
Jrr Jrw

Jwr Jww

]
. (6.9)

In the upper row, Jrr represents the Jacobian of the reservoir equations with respect
to primary variables defined in reservoir cells and Jrw is the derivative of the same
equations with respect to the well primary variables. In the lower row, the well
equations are differentiated with respect to reservoir primary variables, Jrw, and the
well variables themselves, Jww. In the table, “base” refers to the assembly of Jrr

alone, whereas the “wells” results correspond to the coupled system that contains
all four blocks of J .

Because the length of the wells grows with the vertical extent of the domain, the
overhead of assembling the well equations remains roughly the same percentage of

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

228 O. Møyner

1 104 1 105 1 106 2 106

Number of cells

10–2

100

102

A
ss

em
bl

y
tim

e
[s

]
single-phase
3ph, immiscible
3ph, blackoil
6c, compositional
0.5 s / million cells
50 s / million cells

Figure 6.6 The time consumed by the diagonal AD backend with C++ accelera-
tion to assemble a single linearized residual with respect to all primary variables
for three different fluid models: immiscible three-phase, three-phase black oil, and
compositional. All models contain five wells perforated in all layers of the domain.
Note that the y axis is logarithmic, with two different types of linear scaling shown
as black guards that correspond to 0.5 seconds per million cells and 50 seconds
per million cells. The data for this plot are provided in Table 6.3.

the total time as the grid resolution increases. The different physical systems have
widely different costs: Whereas a million-cell scalar problem can be assembled in
0.28 seconds with wells, a million-cell compositional system with the same wells
takes 44.17 seconds. For the latter, the large number of interactions between the
component pairs in the equation of state and the calculation of implicit derivatives
consume significant time. Assembly of the conservation equations takes approx-
imately 40% of the time for the compositional model and closer to 95% for the
other models. The immiscible and black-oil systems are less expensive, clocking in
at assembly times of 1.11 and 2.37 seconds, respectively, for a million cells with
wells.

The results for assembly with wells are plotted in Figure 6.6. On the smallest
grids, the assembly cost is dominated by computational overhead of the classes and
functions in MATLAB and hence does not increase significantly with the number
of degrees of freedom. The state functions used by the simulator to compute the
residual equations are all vectorized over all cells, so that the number of function
calls is the same for 100 cells and for 1 million cells. For this reason, we observe a
linear trend once the vector operations dominate the constant overhead.

Assembly Benchmark: Parallel Performance

Developing highly parallel programs is fraught with difficulties, and benchmarking
of parallel programs even more so. It is generally accepted that codes must be

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 229

(re)written with parallel performance in mind from the ground up to benefit from
a large number of processors. The MEX-accelerated AD backends do not aim
to make MRST’s prototyping simulators massively parallel. Rather, the goal is
that each of the individual AD routines should be shared memory parallel to get
reasonable performance on modern workstations that have many cores, without
sacrificing any of the prototyping flexibility.

In the context of strong scaling, in which a large problem is executed faster by
adding more threads, it is natural to compare to Amdahl’s law. If we define the
serial fraction of a program as Fs , so that the part of the program that can fully take
advantage of any number of processors is 1−Fs , the speedup achieved when going
from 1 to Np processors has a closed-form expression [1]:

Ss = 1

Fs + (1 − Fs)/Np

. (6.10)

We can exploit Amdahl’s law to estimate the fraction of the assembly that is parallel
without having to test individual parts of the simulator. To exemplify, we repeat
the immiscible assembly from the previous example with a varying number of
threads active for a model with fixed size (source code: parallelScalingAD).
The test was run on a dual-CPU workstation with two Intel Xeon E5-2630 CPUs
with 2.6 GHz base speed and 128 GB of RAM with 12 cores in total. The Intel
Turbo Boost feature was disabled to ensure that the single-thread performance is
close to 1/12th of the total capacity of the processor.

If we perform the test for a model with 6 million cells, so that each thread has
at least 500 000 cells, MRST uses 23.9 seconds in total for a single thread and
3.8 seconds for 12 threads, a total speed up of 6.3. Figure 6.7 reports the results
for 1 to 12 threads, together with the theoretical scaling according to (6.10) for
a serial fraction Fs of 0.1 and 0.05, as well as the idealized case with speedup

1 2 3 4 5 6 7 8 9 10 11 12
Number of threads

2

4

6

8

10

12

S
pe

ed
up

Init
Equations
Total
Ideal
Amdahl's law, Fs = 0.10

Amdahl's law, Fs = 0.05

Figure 6.7 Strong scaling of an immiscible three-phase assembly case with a total
of 6 000 000 cells and up to 12 threads.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

230 O. Møyner

proportional to the number of threads. Judging from the figure, the total assembly
would be classified as between 90% and 95% parallel according to the estimate
from Amdahl’s law, so that the assembly of the equations themselves with AD is
largely parallel. The initialization of AD variables and state, although small for the
single-thread case, does not take advantage of more than a few threads.

Common Pitfalls with AD

We end the performance discussion by pointing out a few potential pitfalls. The
first comes from the way MATLAB is designed:

MATLAB, and by extension Octave, does not perform type conversion when
assignment by indexing (subasgn) is used. This can sometimes result in less
than intuitive behavior when preallocating arrays as doubles.

We can easily make an example illustrating the dangers of implicit conversion. Note
that as of MRST 2019a, this example will result in a runtime warning from the AD
implementation:

x = zeros(10, 1); % Initialized vector
y = initVariablesADI(1); % Make AD
x(5) = y; % Insert AD object in array. Will produce a warning.
disp(x) % We still have a double! Derivatives were lost.

For this reason, the backend can also convert values of type double to AD vari-
ables with zero-initialized derivatives, which is useful when preallocating storage
for vectors, as the previous code excerpt illustrated. Let us consider a function
myfun, which has many numerical input arguments. We do not know which of
the numerical arguments are AD (if any), but we can still write an AD-capable
function:

function z = myfun(model, x, y)
s = getSampleAD(x, y); % Find whichever of x and y are AD
z = zeros(10, 1); % Class of double
z = model.backend.convertToAD(z, s); % Convert to AD with same context as s
% ... do operations on z as normal

end

Another important consideration is that the performance of an operation decreases
with the number of derivatives and their storage format. You can often obtain better
performance by rearranging operations to minimize the number of operations on
nondiagonal Jacobians.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 231

6.3 High-Performance Linear Solvers

The runtime of a typical MRST simulation can be classified into three parts: (i) the
assembly and update functions, primarily governed by the performance of AD and
the state functions in use; (ii) the time spent in the linear solver; and (iii) the number
of nonlinear iterations required to meet the convergence criteria.

We have already explained how you can reduce the time spent in assembly by
replacing the AD backend. Next, we consider the linear solver, with a focus on
the possibilities that lie in the compiled solvers you can automatically download
and use with MRST. We will not go into the same level of detail for the nonlinear
solvers but instead refer you to [14, subsection 12.3.2]. Our starting point is that you
have a simulation that convergences nicely after tweaking the residual tolerances
and nonlinear solver parameters like acceptance factor, relaxation, line search, and
maximum updates for pressure and saturation, but the simulation is still too slow.

The helper utility getNonLinearSolver has several options for setting up a
nonlinear solver with automatic timestepping and a suitable linear solver. These
reasonable conservative defaults are used throughout MRST, including the setup
routines that use input files described in Subsection 6.4.1.

6.3.1 Selecting Different Linear Solvers

Whereas configuring the nonlinear solver is important to get good computational
performance, the linear solver is usually the factor that limits the size of the prob-
lems you can solve with MRST. Unfortunately, the one-size-fits-all linear solver is
yet to be invented and therefore there are a number of linear solvers available in the
AD-OO framework. These are all derived from the base class LinearSolverAD.
If you have instantiated one such class object, linsolver, there are basically
two ways you can pass it to your simulator. The first option is to configure the
NonLinearSolver object, which is responsible for calling the linear solver and
thus always contains a linear solver class object:

nls.LinearSolver = linsolver;
[ws, states, report] = ...

simulateScheduleAD(state0, model, schedule, 'NonLinearSolver', nls)

Alternatively, you can pass the linsolver object directly to the simulator if you
are otherwise satisfied with the default nonlinear solver:

[ws, states, report] = ...
simulateScheduleAD(state0, model, schedule, 'LinearSolver', linsolver)

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

232 O. Møyner

Overview of Linear Solvers in the AD-OO Framework

To start, we complement the discussion in subsection 12.3.4 of the MRST textbook
[14] by listing all of the linear solvers available to MRST, together with their
requirements. First of all, the software offers a number of self-contained linear
solvers that can be used out of the box:

• BackslashSolverAD: This default option corresponds to the \ (mldivide)
operator. Depending on the structure of the input matrix, different direct solvers
will be used. Many of the linear systems produced by simulation models in MRST
are non-Hermitian and will normally be solved by LU factorization, which is
fairly expensive for models with more than a few thousand degrees of freedom.
The limited scaling of direct factorization for sparse systems is usually the factor
that prevents you from simulating larger cases with MRST.

• CPRSolverAD: An implementation of different CPR [4, 24] preconditioners for
fully implicit systems. The solver creates an approximate pressure equation,
which is passed onto another, user-configurable linear solver of any type. It then
uses MATLAB’s built-in scalar incomplete LU factorization ILU(0) on the entire
system.

• GMRES_ILUSolverAD: A pure MATLAB implementation of GMRES, precon-
ditioned with scalar ILU(0). Can often perform better than the direct solvers,
especially for pure transport systems.

• HandleLinearSolverAD: Not technically a complete linear solver but rather a
wrapper class that takes a function handle on the form @(A, b) as input. Useful
for quickly integrating your favorite linear solver, if it already has a MATLAB
interface, into an MRST simulation without writing any code.

Because the first three of these base solvers primarily rely on standard MATLAB
functionality, their computational performance is somewhat limited.

Large sparse systems arising from the discretization of partial differential equa-
tions are usually best solved with a combination of different sparse preconditioning
techniques. To account for this, we have recently introduced a number of interfaces
to external linear solvers in MRST, including both general iterative solvers and
algebraic multigrid (AMG). The latter is especially useful for solving elliptic-
like equations such as pressure or steady-state thermal distributions, either as
a stand-alone system or for the elliptic part of the two-stage preconditioner in
CPRSolverAD. These external solvers can be used if the prerequisite dependencies
are met, or their interfaces can serve as the base for developing links to your
favorite linear solver.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 233

• AGMGSolverAD: Agglomeration-based AMG, wrapping the agmg solver [20].
Precompiled binaries are available from the AGMG website [19] at no cost for
academic use. A license is required for commercial use. Over the years, we have
used AGMG extensively with the incompressible family of solvers in MRST but
less so for solvers based on the AD-OO framework.

• AMGCLSolverAD: The AMGCL library is a header-only C++ library for solving
sparse linear systems developed by Demidov [7]. The source code is released
under the permissive BSD license and can be used for any purpose [6]. The library
contains efficient implementations of both scalar and block Krylov-accelerated
sparse solvers, with a range of different available preconditioners, including many
variants of AMG, different smoothers (Jacobi, Gauss–Seidel), and partial factor-
izations. Quoting [6]: AMGCL builds the AMG hierarchy on a CPU and then
transfers it to one of the provided backends. This allows for transparent accelera-
tion of the solution phase with help of OpenCL, CUDA, or OpenMP technologies.
Users may provide their own backends which enables tight integration between
AMGCL and the user code.

• AMGCL_CPRSolverAD: Interface to the CPR implementation in AMGCL. The
interface includes quasi-IMPES, true IMPES, and dynamic row-sum [8] types of
reductions.

• AMGCLSolverBlockAD and AMGCL_CPRSolverBlockAD are variants of the
regular AMGCL solvers requiring that the deferred-assembly option from
Subsection 6.2.4 is enabled in the backend. These solvers eschew the use of
regular sparse matrices and instead assemble directly into a custom block-CSR
system that can be passed unmodified onto AMGCL. Because the linear systems
are transferred directly without any postprocessing or copying, these are the
fastest linear solvers available when applicable.

• There also exists a set of bindings to the DUNE iterative solver template library
(DUNE-ISTL) [3]. At the time of writing, this is only experimental, but we hope
to provide a fully functional interface in the not-too-distant future.

Performance Tests

The linearSolversExample.m script from ad-core demonstrates many of the
solvers just described for a 3D test problem.

Problem setup: We again consider an N × N × N Cartesian mesh, this time
with four single-cell wells in the corners of the domain and a 1:10 vertical aspect
ratio. We are only solving a linearized system, so the details of the setup are
less important, but we note that the problem has significant density differences,

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

234 O. Møyner

nonlinear relative permeabilities, and compressibility. We consider three different
linear systems that may arise from simulating such a system: (i) the linearized fully
implicit system, (ii) a pressure subproblem, and (iii) a transport subproblem. These
can all be derived from the same underlying model equations as follows:

model = GenericBlackOilModel(G, rock, fluid);
tmodel = TransportModel(model);
pmodel = PressureModel(model);

Here, the fully implicit model solves for pressure, water and gas saturation in
each cell, and four variables per well; the pressure model only solves for the
pressure in each cell; and the transport model solves for three saturations with a
fixed total velocity. The fully implicit problem is of a mixed parabolic–hyperbolic
type, whereas the pressure problem is purely parabolic and the transport is purely
hyperbolic.

Solver setup: We let each solver use a maximum of 100 iterations to reach a strict
tolerance of 10−6 in the residual norm.3 We set up a few solvers for the fully implicit
system: The MATLAB built-in mldivide solver; our MATLAB-based CPR solver
with either mldivide, AGMG, or AMGCL as solvers for the pressure subproblem;
and two AMGCL-CPR solvers. We use the default setup for most of the solvers and
leave out the boilerplate setup code for brevity (full details are found in the script).
We can examine the AMGCL_CPRSolverAD instance to see the default setup:

disp(cpr_cl)

AMGCL-CPR-block linear solver of class AMGCL_CPRSolverAD

--

AMGCL constrained-pressure-residual (CPR) solver. Configuration:

solver: bicgstab (Biconjugate gradient stabilized method.)

preconditioner: amg (Algebraic multigrid)

relaxation: spai0 (Sparse approximate inverse of order 0)

coarsening: aggregation (Aggregation with constant interpolation)

- aggr_eps_strong = 0.08

- aggr_over_interp = 1

- aggr_relax = 0.666667

s_relaxation: ilu0 (Incomplete LU-factorization with zero fill-in - ILU(0))

- ilu_damping = 1

-> AMGCL_CPRSolverAD with properties:

doApplyScalingCPR: 1

:

3 In practice, simulators typically use less strict tolerances, because the nonlinear system requires many
linearized systems to fully converge. Here, however, we employ a strict tolerance because some linear solvers
have decreased rate of convergence after a few iterations because they only remove high-frequency errors,
which may be misleading in terms of their general efficacy.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 235

The solver uses BiCGStab with aggregation AMG as preconditioner. The AMG
preconditioner uses a sparse approximate inverse of the lowest order (SPAI0) as
smoother, and because this is a CPR solver, there is a configuration present for a
second-stage relaxation, which uses ILU(0) on the full system. In addition, there are
a few hints of additional parameters specific to ILU(0) and aggregation coarsening
that can be adjusted in solver.amgcl_setup or by variable input arguments
to the constructor. If we would like to examine the possible options for, e.g., the
coarsening, we can call the corresponding set routine without input arguments:

cpr_cl.setCoarsening()

No coarsening argument given. Available options:
smoothed_aggregation: Smoothed aggregation
ruge_stuben: Ruge-Stuben / classic AMG coarsening
aggregation: Aggregation with constant interpolation
smoothed_aggr_emin: Smoothed aggregation (energy minimizing)

We set up two versions of this solver: One that uses the regular sparse matrix rep-
resentation and one that uses the block-CSR representation. The two are identical
from a mathematical point of view, but the block format makes memory access
more efficient.

For the last AMGCL-CPR solver, we can use some intuition of the problem to
modify the defaults. For instance, the uniform permeability field is amenable to
the alternative coarsening strategy of smoothed aggregation. It also seems likely
that resolving the pressure to a strict tolerance is the most difficult part of the
system, so we switch to multiple pre- and postsmoothing steps, with two cycles
per level instead of the default of one. We can also explicitly set the solver to use
the biconjugate gradient stabilized (BiCGStab) method as our outer solver:

cpr_mod = AMGCL_CPRSolverBlockAD(base_arg{:}, ...
'aggr_eps_strong', 0.1, 'aggr_over_interp', 1.5, ...
'npre', 1, 'npost', 2, 'ncycle', 2, 'id', '-bcsr-tweaked');

cpr_mod.setCoarsening('smoothed_aggregation')
cpr_mod.setRelaxation('spai0')
cpr_mod.setSolver('bicgstab')

Block solvers: The fully implicit system includes an additional preparation
step for many of the solvers, which amounts to eliminating well equations via a
Schur complement. The AMGCL-CPR solvers also require both a transpose and
a reordering of the linear system to cell-major from the default variable-major
ordering unless a block-CSR variant is used. For a system with two equations
Rw,Ro and two primary variables p,s in each cell, we have

xvar = [p1,p2, . . . ,pn,s1,s2, . . . ,sn] → xcell = [p1,s1,p2,s2, . . . ,pn,sn].

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

236 O. Møyner

Table 6.4 Linear solver time in seconds for a three-phase fully implicit problem.

8 000 cells 125 000 cells 421 875 cells 1 000 000 cells

Solver Req. Total Setup Total Setup Total Setup Total Setup

LU – 2.49 0.02 576.58 0.18 – –
CPR� – 0.90 0.03 137.30 0.38 – –
CPR� AGMG 0.18 0.03 3.60 0.35 13.78 1.17 43.39 2.96
CPR� AMGCL 0.21 0.03 3.44 0.36 16.20 1.18 51.35 3.24
CPR AMGCL 0.07 0.02 0.43 0.02 3.38 1.11 10.20 3.12

CPR AMGCL† 0.05 0.00 0.86 0.35 1.97 0.03 5.60 0.09

CPR AMGCL‡ 0.05 0.00 0.38 0.01 1.33 0.03 2.51 0.06

Here, � indicates that we are using CPRSolverAD (MATLAB) with another solver for the
elliptic subsystem. Solvers marked with † and ‡ are both block-CSR solvers, with ‡ having
algorithmic tweaks to improve performance for this test case.

The same reordering is also applied to the equations themselves, enabling the global
Jacobian to be interpreted as a block Jacobian:

(J)b
ij =

⎡⎣ ∂Rwi

∂pj

∂Rwi

∂sj

∂Roi

∂pj

∂Roi

∂sj

⎤⎦ . (6.11)

This system is then applicable to block solvers; i.e., conventional scalar solvers con-
verted by redefining elementary arithmetic operations, e.g., by replacing division by
a number with a small block-sized matrix inverse. The default configuration of the
AMGCL-CPR solver in MRST reflects the mixed nature of the system and treats
the pressure system as scalar, with a block preconditioner for the whole system.

Performance comparison: The results are reported in Table 6.4 for 8 000 to
1 million cells, corresponding to 24 000 to 3 million cell-wise and 12 well degrees
of freedom. We see that mldivide is by far the slowest for all but the small-
est problem, using almost 500 seconds for the second smallest case; the fastest
CPR solver uses only 1.3 seconds for this case. We generally see improvements
when introducing a compiled elliptic solver for the MATLAB CPR solver and even
more improvements as we go to the fully compiled AMGCL-CPR solvers, to the
extent where it is difficult to recommend CPRSolverAD if a compiler is available.
Switching to the block-CSR matrix significantly reduces runtime. We also note that
the adjusted parameters for our tweaked AMGCL-CPR‡ solver results in a 50%
improvement in solve time for the 1 million cells case.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 237

Table 6.5 Linear solver time in seconds for a three-phase pressure problem. The
AMGCL variants all use variations of AMG to solve the system, whereas AGMG
uses agglomeration only.

8 000 cells 125 000 cells 421 875 cells 1 000 000 cells

Solver Total Total Total Total

LU 0.06 0.27 32.6 –
AMGCL (classical) 0.03 0.18 0.83 1.80
AMGCL (aggregation) 0.04 0.21 0.78 2.31
AMGCL (smoothed
aggregation)

0.05 0.17 0.55 1.47

AMGCL (energy
minimization)

0.06 0.72 2.28 4.89

AGMG 0.03 0.23 0.75 1.77

The reported timings include overhead for the Schur complement and possible
reordering for the block solvers that do not used deferred assembly. This is
an area of possible future improvement, because the current implementation is
written in pure MATLAB.

The solve times are generally much lower for the scalar pressure system reported
in Table 6.5. Even a 1 million cell problem can be solved in just over a second with
the optimal choice of AMG coarsening. The mldivide solver still has limited
performance beyond the 10 000 cell range and cannot complete the largest model
due to memory constraints. AGMG is algorithmically similar to AMGCL with
aggregation and gives comparable performance. Although the transport subprob-
lem, whose runtimes are reported in Table 6.6, has the same size as the fully
implicit system, it is readily solved by all of the iterative solvers, even by the
GMRES-ILU(0) solver implemented directly in MATLAB, which was not able to
solve any of the fully implicit systems. Switching from a scalar ILU(0) with partial
factorization to a block version significantly reduces the solve time.

Summary and recommendations: MRST has many general linear solvers
available, but there can often be significant gains in adjusting your choice to
the problem at hand. Systems that contain pressure (sub)systems are gener-
ally harder to solve than pure transport problems. Many solvers can be used
in a black-box fashion and reasonable default choices for a given model can

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

238 O. Møyner

Table 6.6 Linear solver time in seconds for a three-phase transport problem.

8 000 cells 125 000 cells 421 875 cells 1 000 000 cells

Solver Total Total Total Total

mldivide 0.50 127.4 – –

mldivide 0.50 127.4 – –

MATLAB-GMRES-ILU(0) 0.03 0.40 1.71 4.92

AMGCL-ILU(0) 0.03 0.44 1.48 3.57

AMGCL-block-GS 0.02 0.30 0.97 2.49

AMGCL-block-ILU(0) 0.02 0.27 0.91 2.32

AMGCL-block-ILU(0)† 0.01 0.09 0.34 0.90

The block solver marked with † uses the block-CSR representation of the system matrix.

be selected by selectLinearSolverAD, which is automatically called by
getNonLinearSolver and initEclipseProblemAD, but spending some time
testing different parameters can pay off for longer simulations. If your system
exhibits a block structure, it is highly likely that even just a one-level block
solver like GMRES-ILU(0) will significantly speed up your simulation. If you
are working with large problems with high permeability contrasts, going to a
multilevel method like AMG is highly recommended. There is always some degree
of trade-off when performing an expensive setup phase that reduces the number of
iterations; modern AMG variants like aggregation AMG provide a good balance
between rigorous AMG hierarchy setup and computational performance if ILU(0)
is not sufficient.

Installing and configuring a C++ compiler is worth the time for problems with
more than a few thousand cells, especially if you wish to perform many simulations.

6.4 Setting Up and Managing Simulation Cases

Most examples and tutorials included with MRST are by design fairly small so that
they can be run quickly to demonstrate functionality. From a conceptual point of
view, there is no difference between setting up a model with 10 cells and a model
with 1 million cells. In practice, however, larger simulation cases have additional
requirements. Earlier in this chapter, you saw that models with a large number of
degrees of freedom can be efficiently assembled and solved in MRST. In this sec-
tion, we discuss how to efficiently manage single or multiple cases, with automatic
restarts of aborted simulations and storage and retrieval of simulation results. We
also explain how you can quickly set up a simulation from an ECLIPSE input file

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 239

and use functionality from MRST to choose intelligent defaults for the configura-
tion of nonlinear and linear solvers.

6.4.1 Packed Problems: Storing and Running Simulation Cases

Many tutorials in MRST and several examples in the MRST textbook [14] use
the main simulator interface simulateScheduleAD. It is efficient at simulating
an entire schedule of time steps but will by default only return results once the
simulation is complete. If the simulation stops due to a convergence failure at
step 99 out of a 100, the first 99 steps are lost. The ad-core module supplies the
ResultHandler class to automatically store intermediate results to disk4 and it is
possible to trigger the restart of a simulation from intermediate results through the
restartStep optional argument. As an alternative to fine-grained manual calls to
the simulator, we have introduced a concept we refer to as packed problems that
separates the configuration and setup of a case from the simulation itself. We will
demonstrate the basic functionality in this section before we use the functionality
extensively in the examples. To this end, we use a pair of simple simulations.

Problem specification: We use a comparable setup to example 12.1.1 from [14],
which in turn corresponds to adBuckleyLeverett1D.m from ad-core. This
example can be found in ad-core as demoPackedProblems.m. We have a one-
dimensional domain, 1 000 m long and discretized into 100 cells. We inject one pore
volume of a fluid over 10 years, displacing the resident fluid that initially fills the
domain. The fluid model is incompressible and immiscible, with equal viscosities
for both phases. Let us say that we would like to see how this scenario behaves with
two different relative permeability models:

fluid_1 = initSimpleADIFluid(..'n', [1, 1]..); % Linear relperm
model_1 = TwoPhaseOilWaterModel(G, rock, fluid_1);
fluid_2 = initSimpleADIFluid(..'n', [2, 2]..); % Quadratic relperm
model_2 = TwoPhaseOilWaterModel(G, rock, fluid_2);

We omit setup of initial state and schedule, which is immaterial to the discussion.

Setting up a packed problem: To use the packed problems, we must have
a unique identifier for the case we are working with. Behind the scenes, all
problems with the same name are stored in the same subfolder set up by the
mrstOutputDirectory() utility. Keep in mind that your operating system must

4 See example 12.1.1 in the MRST book [14] for details on using the ResultHandler class directly with
simulateScheduleAD.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

240 O. Møyner

be able to create and access a folder with this name and that there is sufficient space
to store your results. We opt for a simple name in this case:

BaseName = 'test_packed';

Once we have the initial state, model, schedule, and a name for the scenario,
we are ready to pack the pair of problems. The required input arguments of
packSimulationProblem are the same as for simulateScheduleAD, followed
by the case name and possibly a (short) description:

problem_1 = packSimulationProblem(state0, model_1, schedule, BaseName, ...
'Name', 'linear_relperm', ...
'Description', '1D displacement with linear flux');

problem_2 = packSimulationProblem(state0, model_2, schedule, BaseName, ...
'Name', 'quadratic_relperm', ...
'Description', '1D displacement with nonlinear flux');

The case name and the short description are optional, but the name is required here,
because it will default to class(model), which in our case would be the same for
the two solvers. Additional optional arguments include NonLinearSolver and
ExtraArguments, which are passed onto simulateScheduleAD when simulat-
ing. We can examine a packed problem to see the structure:

disp(problem_1)

BaseName: ’test_packed’
Name: ’linear_relperm’

Description: ’1D displacement with linear flux’
SimulatorSetup: [1x1 struct]

Modules: 1x4 cell
OutputHandlers: [1x1 struct]

Apart from the already discussed fields, the SimulatorSetup field contains the
inputs to simulateScheduleAD, the Modules field contains the list of loaded
modules at initialization, and OutputHandlers contains ResultHandlers

for all outputs. A packed problem then represents the entire definition of a
simulation, including initial conditions, timestepping, and solvers. As we can
see, it is fairly simple to convert a call to simulateScheduleAD to a packed
problem.

Simulating packed problems: Now that the problems have been properly set up
and packed, it is time to solve them:

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 241

problems = {problem_1, problem_2};
[ok, status] = simulatePackedProblem(problems);

Here, we have wrapped both problems in a cell array. We could alternatively have
called simulatePackedProblem with a single problem as the input. The simula-
tions are then performed sequentially, starting with the first problem:

**
* Case "test_packed" (linear_relperm) *
* Description: "1D displacement with linear flux" *
**
-> No output found, starting from first step...
Solving timestep 001/108: -> 3 Hours, 1518 Seconds, 750.00 Milliseconds
Solving timestep 002/108 ...

If the simulation is aborted for any reason – for instance if you sent an interrupt or
your laptop ran out of battery – you can rerun the example script up to the same
point to get an automatic restart:

-> Partial output found, starting from step 3 of 108...
Solving timestep 003/108 ...

If the entire case was already simulated, this will be acknowledged as well:

-> Complete output found, nothing to do here.

We can retrieve the simulation results by either accessing the ResultHandler

instances in the packed problems or using routines that act directly on problems.
One approach gives identical ordered outputs as simulateScheduleAD:

[ws, states, reports] = getPackedSimulatorOutput(problem_1)

This routine will give you results even if the simulation was not complete, enabling
visualization of partial simulation results. You can even work with the results of
an ongoing simulation from a different session if the same problem is present in
both MATLAB instances. If you would like to rerun the simulation, you can either
specify the optional 'restartStep' argument to simulatePackedProblem

or remove the stored data prior to simulation via the file system or function
calls:

simulatePackedProblem(problem_1, 'restartStep', 1) % Restart from first step
clearPackedSimulatorOutput(problems, 'prompt', true/false) % Remove results

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

242 O. Møyner

If the prompt input is not set to false, the command window will query before
deleting each case to make sure you really want to throw away the fruits of the
simulator’s labors:

Do you want to delete 108 states and reports
for test_packed [linear_relperm]? y/n [n]: y
Removing files... Files removed.

6.4.2 Automatic Setup of ECLIPSE DataSets

If your simulation case is not set up from within MRST, chances are that it came
from an ECLIPSE input deck. Section 12 of the MRST textbook [14] describes
a set of routines you can use to make a script that runs simulations based on an
input deck. MRST provides a pair of convenience routines for setting up such cases
with reasonable defaults without having to manually read and parse the deck and
construct the model yourself:

[state0, model, schedule, nls] = initEclipseProblemAD(deck);

Here, deck can either be a struct that contains the parsed DATA file or simply a
string containing the path and name of the DATA file. The routine will initialize the
initial state struct, pick the appropriate model and a suitable AD backend, and set
up an appropriate nonlinear solver with automatic timestep selection and the best
guess at a working and fast linear solver by calling getNonLinearSolver. The
routine has a sibling, which enables you to set up an entire case directly into a
packed problem:

problem = initEclipsePackedProblemAD(deck);

By taking advantage of these routines, scripts for running ECLIPSE cases can be
quite short. The following example sets up SPE 9, simulates it with reasonable
acceleration, and plots both the well and reservoir results:

mrstModule add ad-blackoil ad-core mrst-gui ad-props deckformat
fn = fullfile(getDatasetPath('spe9'), 'BENCH_SPE9.DATA');
problem = initEclipsePackedProblemAD(fn, 'useMex', true, 'rowMajorAD', true);
simulatePackedProblem(problem, 'restartStep', 1); % Simulate!
plotPackedProblem(problem); % Plot

The code is somewhat conservative in its default choices, so here we have enabled
the row-major option and enabled useMex to indicate that MRST can pick options

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 243

that require a C++ compiler to get better performance. The packed problem auto-
matically retrieves the title from the input file:

disp(problem)

struct with fields:
BaseName: ’SPE 9TH COMPARATIVE STUDY’

Name: ’GenericBlackOilModel’
Description: ’GenericBlackOilModel’

SimulatorSetup: [1x1 struct]
Modules: 1x7 cell

OutputHandlers: [1x1 struct]

The routine uses the default output location configured by the utility function
mrstOutputDirectory. Hence, rerunning a problem made from the same deck
will automatically restart any simulation in progress. We can examine the properties
of the packed problem to see the choices made:

disp(problem.SimulatorSetup.NonLinearSolver.LinearSolver)

AMGCL-CPR-block linear solver of class AMGCL_CPRSolverAD
:

disp(problem.SimulatorSetup.NonLinearSolver.timeStepSelector)

IterationCountTimeStepSelector with properties:

:

Our development policy is to keep new functionality out of the automatic deck
initialization until it is considered fully stable. For instance, the deferred assembly
option is not yet exposed as an option. Similarly, the default nonlinear tolerances
and timestep strategies are fairly conservative. Modifying the model and nonlinear
solver after set up is often a good approach to fine-tune the simulator for a specific
case, leaving other options set to reasonable defaults.

6.5 Numerical Examples

We will consider two numerical examples that highlight how to benefit from many
of the features discussed in the earlier sections. The first example illustrates how
to use the concept of packed problems to simulate an ensemble of 1D models. In
the second example, we compare the computational efficiency for different AD
backends for a highly resolved sector model with more than 1 million cells.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

244 O. Møyner

6.5.1 Packed Problems: Simulation of an Ensemble

We have seen that packing simulation problems makes it easy to store and retrieve
simulation results between MATLAB sessions. We will next show how you can use
packed problems to work with an ensemble of many closely related models; e.g.,
for use with uncertainty quantification.

Ensemble model: Complete source code for this example is found as
ensemblePackedProblemsExample in ad-core. We consider the same 1D
domain as in the previous section, with quadratic relative permeability functions
and a 5:1 viscosity ratio between the resident and displacing fluid. To include the
effect of permeability on the flow, both fluids are set to be compressible. Next,
we generate 50 different porosity fields using gaussianField to give values
between 0.01 and 0.5. The permeability is then generated from the porosity using
the Carman–Kozeny relation. Parameters for specific surface area and grain size
are taken from the MRST textbook [14, subsection 2.5.2]. Both the permeability
and porosity are stored in matrices, with dimensions G.cells.num× 50. We loop
over the rows and create a simulation model for each realization of permeability
and porosity:

for i = 1:n
caseName = sprintf('Case %d', i); % Simple name
rock = makeRock(G, K(:, i), p(:, i)); % Get realization
model = GenericBlackOilModel(G, rock, fluid, 'gas', false);
description = sprintf('Average porosity %1.2f, average perm %1.2f md', ...

mean(p), mean(k)/(milli*darcy));
problems{i} = packSimulationProblem(state0, model, schedule, baseName, ...

'Name', caseName, 'Description', description);
end

There is a base name (baseName) for the entire case that groups the cases together,
with case names and descriptions assigned to each ensemble member. We note that
we could equally well have changed the schedule and the initial state for each case
if these vary from one realization to another. We assume the initial conditions and
injected volumes to be the same for all realizations and omit this configuration,
which is identical to the previous example.

Batch simulation: We now have a set of problems representing our entire ensem-
ble, which we can simulate with simulatePackedProblem. There are, however,
a large number of realizations, and running them sequentially may take a long time.
Modern computers usually have a number of CPU cores, and whereas many parts
of MRST are parallel, serial parts will limit the total speedup during simulation.
We can instead run the simulations in separate threads:

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 245

Figure 6.8 Visual progress monitoring for the ensemble case with simulations
running in parallel as separate threads. The screenshot is taken on a PC with
four available cores so that there are only 4 out of the 50 total cases running
simultaneously.

ppm = PackedProblemManager(problems); % Create manager class
ppm.simulateProblemsBatch(); % Run simulations in the background

After a few moments, you will be greeted by a sight similar to Figure 6.8. Four
parallel simulations are running, corresponding to the default choice of one sim-
ulation per available core on this particular CPU. As each case finishes, a new
simulation will be launched, ensuring that there are always four cases running if
possible, until the entire ensemble has been simulated. This functionality is avail-
able with a basic MATLAB license, and MRST does not rely on the parallel com-
puting toolbox to achieve this. Instead, a separate session without the graphical
user interface is launched for each simulation. MRST stores each packed problem
as a .mat-file together with details on which modules should be loaded. The main
MATLAB session will launch additional sessions as needed and continue to update
the progress bars. Each session loads MRST with startup.m, reads the packed
problem, and performs a simulation before quitting. Hence, there is some startup
cost to launching a background session, which for very small cases will outweigh
the benefits.

Once one or more simulations have finished, we can extract results in bulk with
a single call:

[ws, states, reports, names] = getMultiplePackedSimulatorOutputs(problems);

Instead of giving outputs for a single realization, this function gives us all results
as cell arrays of cell arrays. We can thus find the state corresponding to timestep
10 of realization 25 in states{25}{10}. The function has several useful fea-
tures for working with many similar simulation problems, including the output of

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

246 O. Møyner

Figure 6.9 Water saturation for a specific timestep for the ensemble case: 50
different saturation distributions, each corresponding to one permeability and
porosity realization are shown in different colors. The mean saturation over the
entire ensemble is plotted as a black line.

different timesteps and grids corresponding to each subproblem, as well as return-
ing ResultHandler instances to avoid reading all results into memory at once.

After we have retrieved the output from the entire ensemble, we can easily work
with the data. We are not going to perform a detailed analysis of this synthetic
example. Instead, we plot the solutions of all 50 ensembles for one timestep in
Figure 6.9 together with the average water saturation for the entire ensemble. As
expected, the large variation in petrophysical can have a large impact on the flow
behavior for cases sharing the same fluid model.

6.5.2 Bringing It All Together: Running a Big Model

For our final example, we consider a larger variant of the model used for upscaling
in [14, subsection 15.6.3]. In blockAssemblyBigModelExample we define a
three-phase flow scenario on a 100 × 100 × 120 grid with a total of 1 017 960
fine cells shown as in Figure 6.10. During simulation, the model has 3 053 880
degrees of freedom that describe the reservoir state. The fluid phases are compress-
ible with nonlinear relative permeabilities, and the model is initialized at equilib-
rium by specifying water–oil and gas–oil contacts. We operate the three producers
at fixed bottom-hole pressure and inject 0.25 pore volumes in a single injector over
a 10-year period with 30-day timesteps. Just as when we tested the linear solvers,
the exact details of the flow scenario are not of high importance.

The scenario is set up to use the GenericBlackOilModel with three different
backends: sparse, row-major diagonal, and row-major diagonal with deferred
assembly. All models use the same formulation for CPR: GMRES with aggre-
gation AMG for the pressure subproblem, block ILU(0) for the global precon-
ditioner, and quasi-IMPES pressure reduction with a tolerance of 10−3. Aside

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 247

Figure 6.10 A larger model with 1 017 960 cells used in Example 6.5.2. The
original version of this model with fewer grid cells is found in subsection 15.6.3
of the MRST textbook [14].

from the tolerance being loosened from 10−4, this is the default setup in MRST.
The diagonal block version with deferred assembly replaces the standard scalar
solver with the AMGCL_CPRSolverBlockAD version. It is likely that further
fine-tuning of the linear solver for this case could result in better results than
the defaults.

When setting up multiple problems that share many parameters, it is often useful
to define an anonymous helper function at the start of the script to ensure that all
problems are otherwise identical:

packer = @(model, name, varargin) packSimulationProblem(state0, model, schedule,...
'BigSectorExample', 'name', name, varargin{:});

Once set up, each of the models is packed as a problem and simulated with the
sequential interface, making use of the full resources of our PC:

sparse_problem = packer(model_sparse, 'sparse-backend', 'NonLinearSolver', nls);
diag_problem = packer(model_diag, 'diagonal-backend', 'NonLinearSolver', nls);
block_problem = packer(model_bdiag, 'block-backend', 'NonLinearSolver', nls);
problems = {sparse_problem, diag_problem, block_problem};
simulatePackedProblem(problems);

Each of the cases produces the exact same results, converging in the exact same
number of nonlinear iterations but takes a different amount of time to do so. We
retrieve the timing of each simulation:

timings = cellfun(@(x) getReportTimings(x, 'total', true), reports);
d = arrayfun(@(x) [x.Assembly./x.NumberOfAssemblies, ...

[x.LinearSolve, x.LinearSolvePrep]./x.Iterations],...
timings, 'UniformOutput', false);

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

248 O. Møyner

Sparse-backend Diagonal-backend Diagonal-backend-block
0

5

10

15

20

T
im

e
[s

]

Time per assembly
Time per linear solve
Prep per linear solve

Figure 6.11 The time spent per assembly and per nonlinear iteration for a
1 million cell three-phase model with different AD versions.

Then, we plot the assembly time per linearization and the linear solver time for
each nonlinear iteration:

bar(vertcat(d{:})) set(gca, 'XTickLabel', names)
legend('Time per assembly', 'Time per linear solve', 'Prep per linear solve')
ylabel('Time [s]')

Note that there are fewer iterations than assemblies, because the assembled dis-
crete residual equations are not passed onto the linear solver if a timestep has
converged. Figure 6.11 shows a graphical display of the timings. The same data
are shown in Table 6.7, where we see that the sparse backend uses 17.9 seconds,
the diagonal backend 1.8 seconds, and the block version 1.3 seconds per assembly
with four threads. For comparison, using the C++ OPM Flow simulator [21] to
simulate the same model consumes 1.1 seconds per assembly with four threads on
the same CPU. The major benefit of the block version is that the preparation step
for the linear solver avoids concatenating, reordering, and transposing the linear
system before it is passed onto AMGCL, thereby reducing the time spent from
2.4 to 0.6 seconds per solve. The solvers generally spend a comparable amount of
time on the linear solve itself, which limits the overall speedup.

Switching from sparse to the diagonal backend gives us a total speedup of
2.8, and using the block-diagonal version brings this up to a factor 4.3. If we
examine the speedup of the assembly only, switching to diagonal variants nets
us approximately one order of magnitude speedup. By switching the backend to
the fastest available, we can reduce the total simulation time from 9 hours and
15 minutes to just under 3 hours for the whole case. The speedup would be much
larger if we started with a less efficient linear solver, but using, e.g., a direct solver
for this case would be somewhat disingenuous, because it would easily take a
week to simulate. We also remark that the new generic models from Chapter 5
are in general faster than the original family of black-oil models discussed in
the MRST textbook [14], because the former use vectorized code for wells and

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 249

Table 6.7 Breakdown of runtime in seconds for a three-phase model on a grid
with 1 million cells simulated with sparse, diagonal, and block-diagonal
assembly. All solvers use exactly the same number of nonlinear iterations.
Speedup is reported relative to the default sparse backend.

Backend Time (total) Time (each) Speedup % of total

Sparse

Assembly 33 362.3 17.9 1.0 72.79

(baseline)

Preparation 3 805.3 2.4 1.0 8.30

Linear solve 7 493.5 4.7 1.0 16.35

Total 45 832.9 28.5 1.0 100.00

Diagonal

Assembly 3 419.3 1.8 9.8 20.89

Preparation 3 930.7 2.4 1.0 24.02

Linear solve 7 690.3 4.8 1.0 46.99

Total 16 366.7 10.2 2.8 100.00

DiagonalBlock

Assembly 2 455.5 1.3 13.6 22.97

Preparation 911.2 0.6 4.2 8.52

Linear solve 6 535.4 4.1 1.1 61.14

Total 10 690.0 6.6 4.3 100.00

state functions that avoid redundant recomputations during assembly. In the end,
assembly and related routines make up approximately 20% of the total runtime,
which makes further improvements subject to diminishing returns. Speeding up
this simulation significantly from this point would likely involve a combination
of adjusting the timesteps, tweaking the linear solver settings, and changing the
numerical method in use.

6.6 Concluding Remarks

We have seen that there are several ways to accelerate simulations in MRST. Opti-
mized AD backends and improved linear solvers significantly reduce the time spent
simulating. Packed simulation problems automatically store intermediate simula-
tion results and can restart aborted simulations automatically so that you can restart
your MATLAB session or tweak the solver parameters during a long simulation.
Finally, whereas MRST is not intended as a platform for high-performance com-
puting, the ongoing efforts demonstrated herein to improve performance make it
possible to use the framework for problems with more than 1 million degrees of
freedom and get a level of performance that is quite surprising when balanced
against the flexibility MRST provides.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

250 O. Møyner

Appendix A Compilation of MRST Extensions

A large part of this chapter concerns improved execution speed. For some of the
AD techniques described in Section 6.2, a C++ compiler must be available to MAT-
LAB. The same applies for the AMGCL linear solvers from Section 6.3. A major
advantage of using an integrated development environment such as MATLAB
for writing numerical code is to avoid the myriad of compilation issues that are
associated with external libraries and different compilers. Unfortunately, whereas
MATLAB can be very efficient when using the high-level vectorized syntax
correctly, some functions are not amenable to vectorization and compiled code may
be needed for optimal performance. However, the thought of dealing with depen-
dencies, platform-specific quirks, and build systems may intimidate potential users,
and for this reason we have tried to streamline the process as much as possible:

• External dependencies are automatically downloaded from within MRST. For the
linear solvers, this includes the AMGCL sources and the small required subset
of the Boost library known to work with your specific release.

• Compilation should be supported by the free, license-permissive compilation
option for a given MATLAB version. Specifically, this means GCC under
GNU/Linux, the MinGW compiler on Windows, and Clang under OS X.

• The compilation should be performed directly from within MATLAB as needed.

As a user, you will nonetheless need to make sure that MATLAB has a working
C++ compiler available. For details on the available options for your platform,
please see the MathWorks help page on compilers [15]. To verify that you have a
working C++ compiler available for MATLAB, please run mex -setup C++ and
follow the provided instructions.

All features described earlier in this chapter are automatically compiled as
needed, but if you would like to get the compilation out of the way in a fresh install
of MRST, you can manually trigger a build.

AD backends: For the AD operators described in Subsection 6.2.4:

mrstModule add ad-core
buildMexOperators(); % Build all operators that are not already compiled
buildMexOperators(true); % Force rebuild of all operators

It is also possible to build a specific named operator. To illustrate, we only build a
single operator to reduce the amount of output:

buildMexOperators('names', 'mexDiscreteDivergenceJac');

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 251

Building MEX file mexDiscreteDivergenceJac...
Building with ’Microsoft Visual C++ 2019’.
MEX completed successfully.
Extension built in 4.87s -> OK!

Calling the function again with the same inputs results in no additional compila-
tion, even if MATLAB is restarted:

buildMexOperators('names', 'mexDiscreteDivergenceJac');

mexDiscreteDivergenceJac is already compiled -> OK!

Linear solvers: The AMGCL solvers from Section 6.3 are compiled similarly:

mrstModule add linearsolvers
buildLinearSolvers();

Building with ’Microsoft Visual C++ 2019’.
AMGCL is compiled and ready for use.

MRST may in this process ask for permission to download the required source
files, because these are not included with the released version of MRST. Note
that the AMGCL interface in MRST includes a large number of different solvers
and may take a few minutes to build. For this author, building linear solvers as
just explained took slightly more than 2 minutes. The MEX extensions are also
tentatively supported in GNU Octave, but there is some additional performance
overhead as the MEX compatibility layer performs a copy of variables passed to
the compiled executable. Extending MRST with the option to use the native Oct-
file interface would remove this overhead, but this is not something we have been
able to prioritize at present.

Appendix B Output from AD Benchmark

The output for the sparse reference and the diagonal row-major MEX backends in
Subsection 6.2.5 for the 1 million cells model is shown here, demonstrating the
backend performance on a large number of different tests together with significant
speedup:

Backend #1 (baseline):
Sparse:

Name | Time (s)

cell_xy | 0.204016
cell_xv | 0.099936

Backend #3:
Diagonal-MEX-RowMajor:

Name | Time (s) | Speedup

cell_xy | 0.012575 | 16.22
cell_xv | 0.010842 | 9.22

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

252 O. Møyner

cell_xy_2z | 0.268010
diagmult | 0.101080

diagproductmult | 0.245032
interp1_10 | 0.122377
interp1_50 | 0.124154

interp1_1000 | 0.127021
sparse | 0.000389

subset_small | 0.037223
subasgn_small | 0.123621

subset_med | 0.039283
subasgn_med | 0.124855
subset_large | 0.054378
subasgn_large | 0.157129

faceavg | 0.233785
Grad | 0.247267
upw | 0.292929

face_xy | 0.834371
face_xv | 0.321489

face_xy_2z | 1.164837
Div | 0.508060

AccDiv | 0.671153

Total time | 6.102395

cell_xy_2z | 0.031201 | 8.59
diagmult | 0.007379 | 13.70

diagproductmult | 0.009892 | 24.77
interp1_10 | 0.014856 | 8.24
interp1_50 | 0.017938 | 6.92

interp1_1000 | 0.024308 | 5.23
sparse | 0.025759 | 0.02

subset_small | 0.000087 | 429.88
subasgn_small | 0.012634 | 9.78

subset_med | 0.000499 | 78.77
subasgn_med | 0.013550 | 9.21
subset_large | 0.007671 | 7.09
subasgn_large | 0.017950 | 8.75

faceavg | 0.042958 | 5.44
Grad | 0.048814 | 5.07
upw | 0.042245 | 6.93

face_xy | 0.051084 | 16.33
face_xv | 0.043241 | 7.43

face_xy_2z | 0.143504 | 8.12
Div | 0.160009 | 3.18

AccDiv | 0.161755 | 4.15

Total time | 0.900749 | 6.77

References

[1] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18–20, 1967, Spring Joint
Computer Conference, pp. 483–485, Academic Press, London, UK, 1967. doi: 10.
1145/1465482.1465560.

[2] K. Bao, K.-A. Lie, O. Møyner, and M. Liu. Fully implicit simulation of polymer
flooding with MRST. Computational Geosciences, 21(5–6):1219–1244, 2017. doi:
10.1007/s10596-017-9624-5.

[3] M. Blatt and P. Bastian. The iterative solver template library. In B. Kagström et al.,
eds., International Workshop on Applied Parallel Computing, pp. 666–675. Springer,
Berlin, 2006. doi: 10.1007/978-3-540-75755-9_82.

[4] H. Cao, H. A. Tchelepi, J. R. Wallis, and H. E. Yardumian. Parallel scalable
unstructured CPR-type linear solver for reservoir simulation. In SPE Annual Tech-
nical Conference and Exhibition, Dallas, TX, 9–12 October. Society of Petroleum
Engineers, 2005. doi: 10.2118/96809-MS.

[5] D. DeBaun et al. An extensible architecture for next generation scalable parallel
reservoir simulation. In SPE Reservoir Simulation Symposium, 2005. doi: 10.2118/
93274-MS.

[6] D. Demidov. C++ library for solving large sparse linear systems with algebraic
multigrid method. URL https://github.com/ddemidov/amgcl.

[7] D. Demidov. AMGCL: an efficient, flexible, and extensible algebraic multigrid
implementation. Lobachevskii Journal of Mathematics, 40(5):535–546, 2019. doi:
10.1134/S1995080219050056.

[8] S. Gries, K. Stüben, G. L. Brown, D. Chen, and D. A. Collins. Preconditioning for
efficiently applying algebraic multigrid in fully implicit reservoir simulations. SPE
Journal, 19(4):726–736, 2014. doi: 10.2118/163608-PA.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://github.com/ddemidov/amgcl
https://doi.org/10.1017/9781009019781.011

Optimized Automatic Differentiation and Compiled Linear Solvers 253

[9] J. D. Jansen. Adjoint-based optimization of multi-phase flow through porous media—
a review. Computers & Fluids, 46(1):40–51, 2011. doi: 10.1016/j.compfluid.2010.09.
039.

[10] J. Killough. Ninth SPE comparative solution project: a reexamination of black-oil
simulation. In SPE Reservoir Simulation Symposium, 12–15 February, San Antonio,
Texas. Society of Petroleum Engineers, 1995. doi: 10.2118/29110-MS.

[11] J. Killough and C. Kossack. Fifth comparative solution project: evaluation of miscible
flood simulators. In SPE Symposium on Reservoir Simulation, 1–4 February, San
Antonio, Texas. Society of Petroleum Engineers, 1987. doi: 10.2118/16000-MS.

[12] S. Krogstad, K.-A. Lie, O. Møyner, H. M. Nilsen, X. Raynaud, and B. Skaflestad.
MRST-AD – an open-source framework for rapid prototyping and evaluation of
reservoir simulation problems. In SPE Reservoir Simulation Symposium, 23–25
February, Houston, Texas, USA. Society of Petroleum Engineers, 2015. doi: 10.2118/
173317-MS.

[13] X. Li and D. Zhang. A backward automatic differentiation framework for reser-
voir simulation. Computational Geosciences, 18(6):1009–1022, 2014. doi: 10.1007/
s10596-014-9441-z.

[14] K.-A. Lie. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave:
User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge
University Press, Cambridge, UK, 2019. doi: 10.1017/9781108591416.

[15] MathWorks. Compilers – MATLAB & Simulink. URL https://mathworks
.com/support/requirements/supported-compilers.html.

[16] MathWorks. IR array of sparse array – MATLAB. URL https://se.mathworks
.com/help/matlab/apiref/mxsetir.html.

[17] O. Møyner. Next generation multiscale methods for reservoir simulation. PhD thesis,
2016. URL http://hdl.handle.net/11250/2431831.

[18] R. Neidinger. Introduction to automatic differentiation and MATLAB object-oriented
programming. SIAM Review, 52(3):545–563, 2010. doi: 10.1137/080743627.

[19] Y. Notay. AGMG software and documentation. URL https://agmg.eu/.
[20] Y. Notay. An aggregation-based algebraic multigrid method. Electronic Transactions

on Numerical Analysis, 37(6):123–146, 2010.
[21] A. F. Rasmussen, T. H. Sandve, K. Bao, A. Lauser, J. Hove, B. Skaflestad,

R. Klöfkorn, M. Blatt, A. B. Rustad, O. Sævareid, K.-A. Lie, and A. Thune. The open
porous media flow reservoir simulator. Computers & Mathematics with Applications,
81:159–185, 2021. doi: 10.1016/j.camwa.2020.05.014.

[22] D. V. Voskov and H. A. Tchelepi. Comparison of nonlinear formulations for two-
phase multi-component EoS based simulation. Journal of Petroleum Science and
Engineering, 82–83:101–111, 2012. doi: 10.1016/j.petrol.2011.10.012.

[23] D. V. Voskov, H. A. Tchelepi, and R. Younis. General nonlinear solution strategies
for multiphase multicomponent EoS based simulation. In SPE Reservoir Simulation
Symposium, 2–4 February, The Woodlands, Texas, 2009. doi: 10.2118/118996-MS.

[24] J. R. Wallis. Incomplete Gaussian elimination as a preconditioning for generalized
conjugate gradient acceleration. In SPE Reservoir Simulation Symposium, 15–18
November, San Francisco, California. Society of Petroleum Engineers, 1983. doi:
10.2118/12265-MS.

[25] R. Younis. Advances in modern computational methods for nonlinear problems;
a generic efficient automatic differentiation framework, and nonlinear solvers that
converge all the time. PhD thesis, Stanford University, Stanford, CA, 2009.

[26] R. Younis and K. Aziz. Parallel automatically differentiable data-types for next-
generation simulator development. In SPE Reservoir Simulation Symposium,

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

http://hdl.handle.net/11250/2431831
https://agmg.eu/
https://mathworks.com/support/requirements/supported-compilers.html
https://mathworks.com/support/requirements/supported-compilers.html
https://se.mathworks.com/help/matlab/apiref/mxsetir.html
https://se.mathworks.com/help/matlab/apiref/mxsetir.html
https://doi.org/10.1017/9781009019781.011

254 O. Møyner

26–28 February, Houston, Texas, U.S.A., Society of Petroleum Engineers, 2007. doi:
10.2118/106493-MS.

[27] Y. Zhou, H. A. Tchelepi, and B. T. Mallison. Automatic differentiation framework
for compositional simulation on unstructured grids with multi-point discretization
schemes. In SPE Reservoir Simulation Symposium, 21–23 February, The Woodlands,
Texas, USA, Society of Petroleum Engineers, 2011. doi: 10.2118/141592-MS.

https://doi.org/10.1017/9781009019781.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.011

