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On a class of differential equations
which model tide-well systems

B. J. Noye

For three possible types of tide-well systems the non-dimensional

head response, -^(T) , to a sinusoidal fluctuation of the

sea-level is given by the differential equation

dY/dx + B"1|y|"/2sgn(7) = COST , n = 1, 2, 3 .

Estimates of the non-dimensional well response

Z( T ) = sinx - Y ( T )

are found by considering the steady state solutions of the above

equation. With n = 2 the equation is linear and an exact

solution can be found; for n t 2 the equation is non-linear

and several methods which give approximate solutions are

described. The methods used can be extended to cover other

values of n ; for example, with n = h the equation

corresponds to one governing oscillations near resonance in open

pipes.

1. Introduction

Recently attention has been focussed on the response of tide wells to

sea level oscillations of different frequencies and amplitudes. The water

inside the well is usually connected to that outside by means of a

circular orifice near the bottom of the well; two other alternatives

consist of a long horizontal pipe connection and a constant width vertical
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392 B.J. Noye

slit. In the past it has been assumed that the water level recorded

inside the well is the same as the sea level outside.

The governing differential equations for the three systems are

(1.1) dS/dt + Cjtf|n/2sgn(ff) = dhjdt , n = 1, 2, 3 ,

where ^0(£) i-s the fluctuating sea level, h At) is the level inside

the well, t is the time, and the excess external head is

(1.2) H(t) = hQ(t) - hu(t) .

n = 1 applies for the well with orifice, n = 2 for a well with laminar

flow in a uniform long horizontal pipe, and n = 3 for the well with a

sharp edged uniform vertical slit. C is a constant depending only on

the well dimensions. It is shown in [2] that

l

2 I'D 1 - 1
C = gA (OTTVL A )d. p p W'

where C is the coefficient of contraction (̂  0.6) , g is the
o

gravitational constant, A is the area of cross-section of the

connection, A is the area of cross-section of the well, L is thew p
pipe length and v the kinematic coefficient of viscosity. By extending

the argument used for n = 1 to flow through a slit of constant width

W , one obtains (l.l) with n = 3 and

l

In each case we are interested in finding the well response

for a given input h (t) . In particular, much can be learned about the

response of the system to an arbitrary input from the steady state response

to a sinusoidal input of amplitude a and circular frequency to , namely,

(1.1*) hQ = asinut .
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Substituting (l.U) in (l.l) and non-dimensionalising by the substitutions

Y = H/a and T = ut gives

(1.5) dY/dT + i rV l^sgnU) = COST ,

where 6 = uXLX~nl2C~'L .n n

The non-dimensional well response

Z = hw/a

is then found from

(1.6) Z = sinx - Y .

With n = 2 equation (l.l) is linear and it has an exact solution;

for n t 2 the equation is non-linear and no exact solution has been

found. A search of the literature revealed very little; attempts to

solve (l.l) with n = 1 were reported in [/] and [3]. Several methods

for finding approximate solutions for n = 1, 3 are developed in the

following, each of these supplying additional information about the well

response Z(T) . These methods can be extended to other values of n ;

for example, to n = k , when (l.l) corresponds to a non-linear equation

governing oscillations near resonance in an open pipe [5].

2. The linear equation

With n = 2 , (1.5) becomes

(2.1) dY/dT + fr^-Y = COST ,

with 62 = C~
Xu .

The solution of this linear equation is

(2.2) Y = a^s

where

(2.3) a2h=

and
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(2.!+) 8 , = arctan B"1

2h (_ 2

The non-dimensional well response is given by (1.6) and can be

written

(2.5) Z = a sin(f-8 )

where

and

a_, sin9o,
(2.7) 9 = arctan'

Substitution of a. , and 9 , in (2.6) and (2.7) gives the amplitude

response of the water in the tide-well

(2.8) % =

and the phase lag of the response behind the sinusoidal input,

(2.9) 6 ^ = arctan02 .

Because the system is linear both a_ and 9 are independent of

the amplitude of the incident oscillations, and the principle of

superposition of solutions holds. Therefore the amplitudes a and phases

<j) of (say) tidal components obtained from a Fourier analysis of the

record of the water level in the well can be corrected to give their true

values, namely, a/ou, and d> - 9« .

3. The non-linear equations

For n = 1 and 3 (l.l) is non-linear. The concept of a response

function defined for a linear system no longer applies; a sine-wave input

gives an output with a fundamental oscillation of the same freguency but

distorted by the presence of higher harmonics and the principle of

superposition of solutions no longer holds.

Four ways of finding approximate solutions to (l.l), with arbitrary
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n , are described in the following sections. Each method concerns

different ranges of frequencies and amplitudes. For each method the

approximate solution with n = 2 is compared with the exact solution

obtained in Section 2 as a check. The first two methods, one being an

asymptotic solution for small 3 and the other an exact solution for an

n

'almost-sinusoidal' input, give an indication of the way in which the

fundamental and the harmonics in the output are related to the input. The

two remaining methods, one using collocation and the other being numerical,

indicate the way in which the output as a whole is related to the input.

4. An asymptotic method for small 3

Rewriting (1.5) gives

|y|M/2sgn(Y) = E "

where e = 3 • Successive approximations to the solution of this

equation when z is small can be found by the method of matched

asymptotic expansions described in [4]. In the following work only the

f 2]
outer asymptotic expansion, which applies for T larger than 0\c , is

derived since this gives the steady state response.

Let J = lim l'k' , where Y^ = J Yp and Yp+1 = o(lp) with

respect to e . Then (U.l) becomes

Letting e -*• 0 we obtain to leading order on e

= ejccx

from which follows

2 2/n
. Y = e |COST| sgn(cosx) .

X ft
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To find Y2 this value of

(k.2), namely,

is substituted into a re-arranged form of

with

...)= sgnjcosx - J ^ + ̂  +...)}•

f 111
Again taking the limit e -»• 0 , we see that I. = O k and obtain

(U.3) * = e^|cosT|2/"sgn(cosT)|l+2n-V|cosT|(2"2n)/n
SinTsgn(cosT)}

2/"

This process can be continued giving I correct to successively higher

orders of approximation.

Solutions for the non-dimensionalised head, I , to C|G are shown

in Figure 1 for e = 0 . 2 , n = 1, 2, 3 .

NUMERICAL SOLUTION FOR ORIFICE (n « 1) \ \ \
OUTER ASYMPTOTIC SOLUTION FOR ORIFICE (n - H V> \
EXACT STEAOY-STATE SOLUTION FOR PIPE In - 2) ^
OUTER ASYMPTOTIC SOLUTION FOR SLIT In - 3)

Figure 1. The dimensionless head (Y) for the three systems

with 3 = 0.2 .

F o r n = 2 the solution obtained by modifying (2.2) to (2.1*) for

g2 « 1 > gives to o(B2) ,

(!*.!*) = 62COS(T-B2) + 0
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On expansion, {h.k) yields the same result as (U.3) with n = 2 , namely,

I = E2COST + E2sinT + O[Z2] •

The three head responses differ noticeably in the neighbourhood of

the turning points and of the zero heads. For the tide-well with an

orifice (n = l) the head response tends to dwell around the zero value,

and changes most rapidly at the turning points. For the tide-well with a

vertical slit (n = 3) the head response changes most rapidly when the

head is zero, and tends to dwell at the turning points. For the tide-well

with a pipe connection (« = 2) the sinusoidal head response lies between

these two extremes.

The tide-well output given by (1.6) is

Z = sinx - e2|cosx|2/nsgn(cosx) - W ^ I C O S T I ^ " ^ s i n x + ofejj)

which applies for all x , except in the neighbourhood of (2/c+l)ir/2

when n > 2 . Expanding |cosx| sgn(cosx) and kn |cosx| sinx

in their Fourier series gives

OO 00 , -i

Z = sinx - £
2 I C^COSOH-DT - ^ I X ^ s i n ^ - D x + 0 e l

m=l m=l *• '

(U.5) Z = a(l)sinfx-e(l)l - e2 ? [c2 + e V HsinUan-lh-* } + ofe6run \ ran ) n L^ { rm n ran) ran [ n

where

u — 1 — A — —^ nran [ nl 2 nl

and

fl^) - r e - 2

ran nl n

Since all other harmonics apart from the fundamental oscillation are of

0 e then ct gives an estimate of the amplitude response, and 6
^ n) ran ran

an estimate of the phase lag, for small £
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In par t i cu la r , for the tide-well with an o r i f i ce , n = 1 , and

, m = 1, 2, 3 . . . ,

X = 1 for m "= 1, 2 ,

= 0 otherwise.

Then the estimate of the amplitude response is, to

with corresponding phase lag

The values for a | / for small e may be compared with the values

of Keulegan's approximation [/] to the solution of (1.5) with n = 1 .

Basically, h is method consisted of finding a solution of the form

OO 00

X = I A sin(2n-l)<J. + £ #2 [cos(2n-l)<f>-cos(2n+l)<t>]
n=l ~ n=1

where <j> = T + I|J , and I|I is a zero of Y ( T ) = 0 . The coefficients A\,

A^ and Sj , were evaluated by truncation of the series for / and using

a process of iteration, substituting approximate values of these

coefficients in the given differential equation to obtain more accurate

values. Besides the complete omission of all harmonics with frequency

greater than 3 , there is partial omission of the contribution of the

harmonic of frequency 3 , since this involves the coefficient B3 . This

explains why, for 3j < 0.6 in Figure 2, (see page 399), t n e amplitude

response of the fundamental oscillation in the output is greater than

unity using his estimate.

The ratio of the amplitude of the harmonic with a frequency three

times the fundamental of the output to the amplitude of the fundamental is

a measure of the distortion of the output. The amplitude of this harmonic

is found from (̂ .5) to be
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so the required ratio is

- 0.17B? •

The same ra t io calculated for £j < O.k from Keulegan's data i s

approximately" 25 percent larger over most of the range.

Oa.
CO

a
3

a.

<

1.0

0.8

0.6

0.4

0.2

0.2

\ PHASE LAG

\
\

\
\ \

-FROM KEULEGAN'S DATA ~ :

-FROM 'ALMOST-SINUSOIDAL' INPUT

AMPLITUDE
RESPONSE

I I

TT/2

TT/3 Q

g

CD

<

0.5 1 2

DIMENSIONLESS FREQUENCY (3,

10

Figure 2. The amplitude response and phase lag

at the input frequency, for n = 1 .

The results of this section indicate the presence of higher harmonics

in the response of a tide-well with an orifice or a vertical slit to a

sinusoidal input, when £ is small. Since most tide gauges consist of

a well with an orifice, we must therefore be careful when interpreting the

results of an analysis of tide-records. Some of the apparent tidal

components obtained from a tide-well record may not exist in the

fluctuations of the sea-level outside the well; these harmonics may

appear in the oscillations of the water inside the well simply because the

tide-well with an orifice is a non-linear device.
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5. An exact solution for an "almost-sinusoidal" input

Won dimensionalising (l.l) with arbitrary h yields

(5.1) dZ/dj + e^|y|n/2sgn(I) = dX/di

where X = ho/a is given by

(5.2) X = Y + Z .

If it is assumed that the head difference Y is a sinusoid

(5.3) Y = sinx

we can solve for X . Substituting in (5-l) we obtain

dX/dx = C O S T + (T^sin^ sgn(sinx) ,

the steady state solution for which is

D-l I
71 I • I"/2 l • ^X = s m T + B |sina;| sgn(sina;;da: .

n 'o

If the Fourier series representation of the integrand is

00

|sinx| sgn(sina;) = I a sin(2r-l)a;
nr

then

r=2

where

This may be rewritten

_ — 1 V -j

where Y = arctanYb 3" . The input X becomes more truly sinusoidal,

approaching unit frequency, unit amplitude, and zero phase, as 3
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becomes larger.

The well response, Z , to this "almost-sinusoidal" input is found by-

substituting X and Y from (5.U) and (5.3) in (5-2), giving

r=2

The amplitude response of the well at the fundamental frequency is

therefore

(2) / 2 - 2
nw { n rcl

with the output lagging the input at this frequency, by

(2) ( -ll
6X ' = arctan 6 b 7 .

vw [ n nl)

For n = 1 we obtain

b.^ = 1.113, 0.053, O.OlU, 0.006, ... , for r ~ 1, 2, 3, h, ... .

Therefore, for a tide-well with an orifice, an estimate of the amplitude

response to a sinusoidal input is, for large $1 ,

with corresponding phase lag

6:2^ = arctan(0.903^ .

Graphs of these estimates are displayed in Figure 2 (see page 399). for

3i > 1 , where they are compared with estimates obtained using Keulegan's

data.

For n = 2 we obtain b^ = 1 with fc_ = 0 for r = 2, 3, ... •

This gives the same result for the amplitude response and phase lag of a

tide-well with a long pipe connection as (2.8) and (2.9)-

For n = 3 we find

b3r = 0.915, -0.03U, -.005, -.001, ... , for r = 1, 2, 3, h

This gives the following estimates for a tide-well with a vertical slit,
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for large 33 ,

9 ^ = arctan(l.09e3) .

The ratio of the amplitude of the third harmonic to the amplitude of

the fundamental oscillation in the response of the conventional tide-well

system to a sinusoidal input i s , for large $i ,

The same ratio calculated from Keulegan's approximate data is 0.0U2 .

6. A collocation method

To obtain an estimate of the head response as a whole we may seek a

solution to

(6.1) dY/dx + B ^ W ^ s g n U ) - COST = 0

which has the form

Y* = a^sin(T+eJ .

The preceding sections have shown that such a function cannot satisfy (6.1)

for all x , even though the solution of (6.1) is nearly sinusoidal and has

the same period as the input, X = sini .

Estimates of the amplitude response a , and phase lead 0 , of the

head response are obtained by collocating Y* and Y in the neighbourhood

of the zero-crossings and turning points of Y* . This requires that

(6.2) dY*/dx + e^1|l't|"/2sgn(i"1) - COST = 0

for values of T tha t make Y* = 0 and dY*/dx = 0 . When Y* = 0 ,

subs t i t u t ion of the appropriate values of T in (6.2) yie lds

a , = cosB ,
nh nh
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and when dl*/dx = 0 , we obtain

3"V{2 = sine . .n rih nh

Squaring and adding gives

the appropriate solution being in the range 0 < a , £ 1 . Furthermore,

by division we obtain

The response of the water level inside the well is now found using

the same reasoning as in the linear case. Application of (2.6) gives the

amplitude response of the water in the tide-well,

and (2.7) gives the phase lag

In particular, for the tide-well with an orifice, (6.3) becomes

from which is obtained

Substitution of this result in (6.5) and (6.6) yields

1 . 1

and

For the tide-well with a vertical slit (6.3) becomes
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n2 2 J2.

the only positive real root being

a ^ = v^/(2cosh6) , where 6 = i arcoshj3/3/ f23|] 1 for ^

= /3/(2cos6) , where 6 = j arcosJ3/I/[26^1 > for $2 > 3/3/2 .

Substitution of these values in (6.5) and (6.6) yields

with

J3) _ a3/2 -1
% ' a3^ 63

el3) = arctan

Figure 3 compares the graphs of the estimated overall amplitude

response,
(3) , and phase lag, , ( 3 )

dlw
, for the conventional tide-well

system, with the results obtained by numerical means described in the next

section.

1.0
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I
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Q
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<
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0.6

0.4

O
0.2

PHASE LAG

NUMERICAL METHODS

[AMPLITUDE RESPONSE
ITURNING POINT LAG

ZERO CROSSING LAG

• SHIPLEY'S RESULTS
COLLOCATION METHOD

[AMPLITUDE RESPONSE / /
[PHASE LAG / ' /

AMPLITUDE
RESPONSE

TT/2

W3 <

n/6

Q
<

1
a.

0.2 0.5 1 2 5

DIMENSIONLESS FREQUENCY 0,

Figure 3. The overall amplitude response and phase lag

to a sinusoidal input, with n = 1 .
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Substitution of n = 2 in (6.3) and (6.It) yields the exact solution

for a , and 9 , in the linear case [of. (2.3) and (2.U)).

7. A nunerical method

If, for a given system, the output due to a step input is known, an

approximate output for an arbitrary input can be found by replacing the

input by a series of steps. This provides a numerical method of solving

(1.5) with (1.6) to obtain the well response Z to the given sinusoidal

input sinT . Over the interval z>Ax £ T < (r+l)Ax , r = 0, 1, 2, ... ,

the input is taken to be

(7.1) X = sin(r+l)Ax .

If 2 is the well response at T = 2>Ax , the step input at the start of

the above interval is

(7.2) YP = xr - zr ,

and from the known step response the increase in water level in the well

over the interval AT can be compute

the well response at T = (r+l)Ax is

over the interval AT can be computed. Let this increase be W . Then

Commencing with initial conditions Z = 0 , successive applications of

(7-1) to (7.3) with r = 0, 1, 2, ... , yields the well response Z at

x = rAx to the stepped input (7.1).

In the case of the tide-well with an orifice n = 1 in the relevant

equations, and the response of the water in the well to the step Y is

(l.k)

r'
Ax 2

23,
V

For the well with a vertical slit, n = 3 in the relevant equations, and
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the response W to the step Y is given by

In both these cases the system is non-linear, so the principle of

superposition of solutions does not hold. The addition of step-responses

to give the required solution therefore requires justification; we must

show that as A T -*• 0 the output converges to that due to X = sinT . For

1
n = 1 , this is seen by taking AT < 23 (7 |2 5 and substituting in (7.k)

the expression for W from (7.3), which gives

i „

(7.6)

Use of (7.2) then yields

+ C(AT) .

This is the discrete analogue of (5.1) with n = 1 , which is obtained in

the limit as AT + 0 .

The stability of the finite difference scheme for n = 1 is evident

from the following. Let there be a small error SZ in the dimensionless

output at the r-th step so that 2 + 6Z replaces Z and X - 6Z

replaces X in all computations. To 0(AT) , equation (7-6) may be

written

( 7 . 7 ) zr+1 = zr ^ i f g

so that the error SZ _ in the output at the (r+l)-th step is given by

(7.8)

Using the relation

and substracting (7-7) from (7-8) gives

SZ = 6Z
r+1 r
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With AT <
1
I 2 it follows that

K < 1

and the error decreases as the process continues.

Similar results for convergence and stability are obtained for

n = 3 . Figure h shows the well responses computed for gj = 2.2 and

63 = l.U , with the sinusoidal input for comparison.

co

z
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0-5
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1-0

/
/
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'•• \
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1 I

\
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— WELL RESPONSE ft

;\
\ ^\\\

= 2.2
= 1.4

31T

1

i

Figure 4. The computed well response to a sinusoidal input,

for n = 1 (3i = 2.2) and n = 3 (83 = I.1*) .

In the output from the well with an orifice the wave-form has been

distorted, the amplitude attenuated, the output lags the input by a

greater amount at the zero-crossings than at the turning points, and there

is a transient response for about one cycle after which the output settles

down to its steady state value. The output from a well with a slit is

similarly effected, with the difference that it lags the input by a

greater amount at the turning points than at the zero-crossings.

In both cases the overall amplitude response and phase lag were found

in the following way. The well response Z has turning points when

X .v . < 0 . If the corresponding values of r , in ascending order, are

r(k) , k = 1, 2, ... , then the amplitude response is given by
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cS^ = lim \Z ,,

and the apparent phase lag at the turning points by

6 ^ = lim

Zero crossings in the well response occur when Z .Z , < 0 . If this
V 3?—1

occurs for values of r , in order, r'(fc) , k = 1, 2, ... , then the

apparent phase lag at the zero crossings is given by

e ^ ) r = lim {r'(fe)AT-feTT} .

(h)
The graphs of the overall amplitude response, oc , and phase lags

(h) (h)'
6 and 6 for a tide-well with an orifice are shown in Figure 3,

(see p. 'tO'i), where they are seen to compare favourably with the estimates

a, and 0, . The values for a. agree with five of the seven
AJj) DJJ AW

values computed by Shipley [3] using the Runge-Kutta method, with a

modified first step, to solve the differential equation for Z . His

amplitude response values at 3i = 2.5 and 5 are low and his results

did not indicate the difference in phase lags at the turning points and

zero-crossings.

(It) (h) (h) (h)
Graphs of o ^ ' , 6^' and a±^' , 0 1 / , the overall amplitude

response and lag at turning point of the non-linear systems, are compared

with ou^ , 6_ , the amplitude response and phase lag of the linear

system, in Figure 5, (see p. Uo°). The non-dimensional frequencies, $ ,

n = 1, 2, 3 , have been normalised by dividing by f , the value of 3

at which the energy of the output is half the energy of the input. This

permits comparison of the nature of the response, and shows that the

tide-well with an orifice retains a unit amplitude response much longer

than the other types of well, has a sharper "cut-off", and that it retains

a zero lag at the turning point much longer than the other types. In all

these regards the tide-well with a slit is worst.
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Figure 5. Pseudo energy response curves and lag at turning points

for the three tide-well systems.

8. Discussion

When comparing the solutions for the equation governing the response

of the three types of wells, the most important difference concerns the

linearity of the systems. For the conventional type of tide-well (with an

orifice) and also for the tide-well with a vertical slit, there is a

non-linear response. The output from a sinusoidal input of fixed amplitude

and frequency consists of a fundamental oscillation at the same frequency

plus odd harmonics of decreasing amplitude. The principle of superposition

of solutions does not hold, so no unique response function can be defined

which relates the output to an input which consists of the superposition of

a number of different waves.

In the previous sections estimates have been found for two types of

pseudo-response functions. These give a rough idea of the attenuation
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which occurs with increasing frequency, and can be used to correct

approximately records of harbour oscillations and tsunamis read directly

from tide-records obtained from conventional tide-wells. They can also be

used to determine the necessary sampling frequency for digital recording.

A comparison of the response estimates for the three systems show

that the well with an orifice retains a unit amplitude response and a zero

phase lag at the turning points to a higher frequency than the other types.

The amplitude response of this system also has the sharpest cut-off to

almost zero response. In both these regards the well with a slit is worst,

and this combined with its non-linear properties makes it unacceptable for

tidal work.

The linearity of an appropriately dimensioned well with a long pipe

connection is an advantage not easily out-weighed. Since the principle of

superposition of solutions holds, a direct application of the response

function to a spectral analysis of the tidal record will establish the

true amplitudes and phases of the sea level oscillations.

Great care must be taken when interpreting the results of a spectral

analysis of a record from a conventional type tide-well. Firstly, the

response of the well must be such that there is negligible energy in the

recorded oscillations above the Nyquist frequency, which is the reciprocal

of twice the sampling period of digitisation. If this is not so aliasing

can occur and some of the Fourier components produced by the analysis may

be fictitious. Secondly, the non-linearity of the system implies that

harmonics of any incident oscillation may appear in the record even though

they do not exist in the sea-level outside the well. One cannot be sure

whether small peaks which appear in the Fourier spectrum of the record are

contributions of the sea level oscillations or are due to the non-linear

effects of the orifice.

Being a linear system, the well with a long horizontal pipe connection

is preferable to the other alternatives considered in this paper.
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