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RATIONAL CLASSIFICATION OF SIMPLE FUNCTION
SPACE COMPONENTS FOR FLAG MANIFOLDS

SAMUEL BRUCE SMITH

ABSTRACT. Let M(X, Y) denote the space of all continuous functions between X and
Y and Mf (X, Y) the path component corresponding to a given map f : X ! Y. When X
and Y are classical flag manifolds, we prove the components of M(X, Y) corresponding
to “simple” maps f are classified up to rational homotopy type by the dimension of the
kernel of f in degree two cohomology. In fact, these components are themselves all
products of flag manifolds and odd spheres.

1. Introduction. When X and Y are flag manifolds or, more generally, F0-spaces
(simply connected finite complexes with finite-dimensional rational homotopy and no
rational cohomology in odd degrees), the rational classification problem for components
of the function space M(X, Y) intersects two basic areas of research. First, W. Meier [10]
proved the identity component M1(X, X) for an F0-space X is rationally a product of odd
spheres if and only if the rational Serre spectral sequence collapses for any orientable fi-
bration with fibre X. Thus identifying the rational homotopy type of this particular func-
tion space component is equivalent to resolving the Halperin conjecture for F0-spaces.
Second, the rational classification of components is directly related to the problem of
describing the set [XQ, YQ] of maps between the rationalizations of X and Y. For conve-
nience, we denote this set by [X, Y]Q. When X ≥ Y is a generalized complex flag mani-
fold this latter problem has been studied extensively by several authors (see [4,9]) with
particular emphasis on the group E(XQ) of rational self-equivalences. By [1, Corollary
3.6] the set [X, Y]Q for F0-spaces is in bijection with Hom

�
HŁ(Y,Q), HŁ(X,Q)

�
and so

determining its structure is a purely algebraic problem. Nonetheless, there appears to be
no general structure theorem in the literature for the rational maps between two different
flag manifolds. In this paper, we focus on the large class of “simple” and “signed-simple”
maps between flag manifolds and classify the components corresponding to these maps
in the complex and symplectic cases.

Let X ≥ G1ÛT and Y ≥ G2ÛT be flag manifolds where G1 and G2 are compact,
connected Lie groups and T denotes a maximal torus of appropriate rank. By [2],
HŁ(GiÛT) ≥ BiÛJi, i ≥ 1, 2, where Bi is the polynomial algebra on rank(Gi) variables
generated in degree two and Ji is the ideal consisting of polynomials invariant under the
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action of the Weyl group Wi of Gi on the subscripts of the variables. (Here and through-
out, all (co)homology and homotopy groups are taken to have rational coefficients.) Write
B1 ≥ Λ2(t1, . . . , tk) and B2 ≥ Λ2(x1, . . . , xn) where k ≥ rank(G1) and n ≥ rank(G2).

DEFINITION. A map f : X ! Y between flag manifolds is simple (respectively, signed-
simple) if there is a 2 Q such that for each xi 2 B2 if û(xi) Â≥ 0 then û(xi) ≥ a Ð tj (resp.,
û(xi) ≥ ša Ð tj) for some tj 2 B1 where û: B2 ! B1 is the map induced by f .

Examples of simple maps arise naturally from the basic inclusions U(k) !̈ U(n) and
Sp(k) !̈ Sp(n) for k � n and of signed-simple maps via Sp(k) !̈ U(n) for 2k � n. In
Section 2, we show that the simple maps in [U(k)ÛT, U(n)ÛT] and [Sp(k)ÛT, Sp(n)ÛT]

are classified by the integer l ≥
�

n� dim
�
kerfH2(f )g

��
Ûk and the signed-simple maps

in [Sp(k)ÛT, U(n)ÛT] by the integer l ≥
�

n � dim
�
kerfH2(f )g

��
Û2k. Using an explicit

construction of the Haefliger model for F0-spaces (Section 3), we establish

THE CLASSIFICATION THEOREM. Let f be a simple or signed-simple map between
complex or symplectic flag manifolds and let l be as above. Then

Mf

�
U(k)ÛT, U(n)ÛT

�
'Q

�
U(l)ÛT

�k
ðU(l � 1)ÛT ðU(n � kl)ÛT ð odd spheres

Mf

�
Sp(k)ÛT, Sp(n)ÛT

�
'Q

�
U(l)ÛT

�k
ð Sp(n� kl)ÛT ð odd spheres

Mf

�
Sp(k)ÛT, U(n)ÛT

�
'Q

�
U(l)ÛT

�2k�1
ðU(l� 1)ÛT ðU(n� 2kl)ÛT ð odd spheres.

2. Rational Maps Between Flag Manifolds. Let X ≥ G1ÛT and Y ≥ G2ÛT be flag
manifolds, as above. Since rational self-equivalences of X and Y induce rational equiv-
alences between components of M(X, Y), for our purposes we need only determine the
structure of the set [X, Y]Q “modulo rational equivalences”. In other words, we identify
rational maps f : X ! Y up to pre- and post-composition by rational self-equivalences in
Y and X, respectively.

The Weyl group of a compact Lie group is a finite reflection group and so may be
viewed as a subgroup of the orthogonal group. Thus the polynomials P2,1(t1, . . . , tn) ≥
t2
1 + Ð Ð Ð+ t2k and P2,2(x1, . . . , xn) ≥ x2

1 + Ð Ð Ð+x2
n are elements of the ideals J1 and J2 of grade

four. If G1 is simple then P2,1 is (up to scalar multiple) the unique element of grade four in
J1 (see, e.g., [8, p. 59]). If G1 ≥ U(k) then the element t1 + Ð Ð Ð+ tk of grade two appears in
J1 and so P2,1 is not unique. However, if we replace B1 by B0

1 ≥ Λ2(t1, . . . , tk�1), J1 by the
appropriate subideal J01 and set tk ≥ �t1� Ð Ð Ð � tk�1, then the polynomial P2,1(t1, . . . , tk)
appears and is the unique element of grade four in J01. We use this uniqueness to prove

THEOREM 2.1. Let X ≥ G1ÛT and Y ≥ G2ÛT with G1 simple or U(k). Let f : X ! Y
be any map. Then f Ł: HŁ(Y)! HŁ(X) is either trivial or surjective.

PROOF. Suppose f Ł: H2(Y)! H2(X) is nontrivial. Let aj ≥ û(xj). Then, making the
above replacement if necesssary, we have û(P2,2) ≥ ãP2,1 for some ã 2 Q. If ã ≥ 0
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then a2
1 + Ð Ð Ð + a2

n ≥ û
�
P2,2(x1, . . . , xn)

�
≥ 0 which implies each aj ≥ 0, contrary to our

assumption. Thus ã Â≥ 0 and we have a nontrivial identity of the form P2,2(a1, . . . , an) ≥
ãP2,1(t1, . . . , tk). Viewing the aj as linear endomorphisms aj(t1, . . . , tk) of the vector space
Q(t1, . . . , tk), we take ∂

∂ti
of both sides and obtain

ã Ð ti ≥
nX

j≥1
aj Ð

∂aj

∂ti
.

Thus Q(a1, . . . , an) ≥ H2(X).

COROLLARY 2.2. Let X ≥ GÛT with G simple or G ≥ U(k). Then [X, X]Q ≥ E(XQ)[
f0g.

While the set [X, Y]Q modulo rational equivalences is fairly simple when k ≥ rank(G1)
½ q rank(G2) ≥ n, when k Ú n the structure is apparently much more complicated. We
focus on the simple maps.

THEOREM 2.3. Let X ≥ G1ÛT and Y ≥ G2ÛT with G1 simple or U(k) such that
the Weyl group of G2 contains the symmetric group Sn. Then [X, Y]Q contains at most
[nÛk] + 1 distinct simple maps modulo rational equivalences. If G1 is simple and G2 ≥

U(k) then [X, Y]Q contains at most [nÛ2k]+1 distinct signed-simple maps modulo rational
equivalences.

PROOF. Let f : X ! Y be simple. Then, after permuting the subscripts of the xi (ra-
tional equivalence in Y), we may assume û(x1) ≥ Ð Ð Ð ≥ û(xl) ≥ a Ð t1 for some l.
Thus the coefficient of t2

1 in û(P2,2) is l Ð a2. By the uniqueness of P2,1 in J1, it follows
that, after further permutation of subscripts, the list fx1, . . . , xng splits into k + 1 sublists,
fx1, . . . , xlg, . . . , fx(k�1)l+1, . . . , xklg and fxkl+1, . . . , xngwith the property that û(xj) ≥ aÐti
for xj in the i-th sublist i ≥ 1, . . . , k and û(xj) ≥ 0 for xj in the k + 1-st sublist. Since
multiplication by a in degree two cohomology induces a rational equivalence of X, the
first statement follows.

For the second statement, observe that û(x1 + Ð Ð Ð + xn) ≥ 0. Using the previous case,
we see that, after permutation, fx1, . . . , xng splits into 2k +1 sublists, the first 2k of length
l, such that û(xj) ≥ a Ð ti for xj in the i-th and û(xj) ≥ �a Ð ti for xj in the 2i + 1-st sublist,
i ≥ 1, . . . , k, while û(xj) ≥ 0 for xj in the 2k + 1-st sublist.

For each l ≥ 0, . . . , [nÛk] the inclusion
Ql

i≥1 U(k) !̈ U(n) induces a map il:Ql
i≥1 U(k)ÛT ! U(n)ÛT. Define fl: U(k)ÛT ! U(n)ÛT by setting fl ≥ ∆ Ž il where

∆: U(k)ÛT !
Ql

i≥1 U(k)ÛT is the diagonal map. It is clear that the fl are simple and ratio-
nally distinct. This construction can be applied, as well, to the other classical inclusions
(Section 1) and so

COROLLARY 2.4. Modulo rational equivalences, the sets [U(k)ÛT, U(n)ÛT]Q
and [Sp(k)ÛT, Sp(n)ÛT]Q contain exactly [nÛk] + 1 distinct simple maps while
[Sp(k)ÛT, U(n)ÛT]Q contains exactly [nÛ2k] + 1 distinct signed-simple maps.
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3. The Haefliger Model for F0-Spaces. By [6], the minimal model (MY , dY) for
an F0-space Y is a two-stage DGA; specifically, MY ≥ Λ(V0) 
dY Λ(V1) where V0 is
evenly graded, V1 oddly graded and where the differential dY satisfies dYjV0 ≥ 0 and
dY(V1) � Λ(V0). This simple rational structure implies the Haefliger model for compo-
nents of M(X, Y) admits a direct and accessible construction when X and Y are F0-spaces.
Our argument follows the line of proof of [13, Theorem 3] which, in turn, was based on
the methods of [11].

THEOREM 3.1. Let f : X ! Y be a map between F0-spaces with MY ≥ Λ(V0) 
dY

Λ(V1). There is a two-stage model Af ≥ Λ(Z0)
df
Λ(Z1) for the function space compo-

nent Mf (X, Y) with

Zm
0 ≥

1M
i≥0

H2i(X)
 V2i+m
0 and Zm

1 ≥
1M

i≥0
H2i(X)
 V2i+m

1 .

PROOF. By [7, Theorem B] we may assume Y is a rational space. We view Y as the
total space of a principal fibration with base K0 ≥ ΠiK

�
Hom(Vi

0,Q), i
�

and fibre K1 ≥Q
i K
�
Hom(Vi

1,Q), i
�
. Observe that M(X, K1) is connected since [X, K1] ≥

L
i Hi(X)
Vi

1

and HŁ(X) is evenly graded while V1 is oddly graded. Thus applying the mapping space
functor to the classifying fibration for Y we obtain the diagram

Mf (X, Y)  ≠ M(X, K1) !̈ M(X, PK1)??y p
??y p1

MpŽf (X, K0)
k
�! M0(X, BK1)

Since the obstructions to lifting a homotopy between pŽf , pŽg: X! K0 to a homotopy be-
tween f , g: X ! Y lie in the trivial groups Hn

�
X,ôn(K1)

�
, this is a pull-back diagram.By

the classical result of Thom [15] on the space of maps into an Eilenberg-Maclane space,
p1 is a principal fibration. The Hirsch Lemma ([3 Lemma 4.1]) applied to p implies there

is a two-stage model for Mf (X, Y) of the form Af ≥ HŁ
�
MpŽf (X, K0)

�

df

HŁ
�
M0(X, K1)

�
.

The result now follows from Thom’s result.
We pursue applications of this model for general F0-spaces in [14] and consider here

only the case when Y is cohomologically generated in degree two. In this case, MY ≥

Λ2(x1, . . . , xn)
dY Λ(V1) and so Af ≥ Λ2(x1, . . . , xn)
df
Λ(Z1) where Zm

1 ≥
L1

i≥0 H2i(X)

V2i+m

1 . Given b 2 H2i(X) we view b as an element of the dual space to HŁ(X) and write
b(a) 2 Q for the value of b on a 2 HŁ(X). Let ai ≥ f Ł(xi) 2 H2(X) and write c ≥
(c1, . . . , cn) to denote an n-tuple of non-negative integers with jcj ≥

Pm
i≥1 ci. Regarding

the differential df we have

THEOREM 3.2. Let f : X ! Y be a map between F0-spaces with Y cohomologically
generated in degree two. Given b
y 2 H2i(X)
V2i+m

1 ² Zm
1 write dY(y) ≥ P(x1, . . . , xn)

for some homogeneous polynomial P. Then

df (b
 y) ≥
X
jcj≥i

1
(c1! Ð Ð Ð cn!)

Ð b(ac1
1 Ð Ð Ð a

cn
n ) Ð

∂jcj

∂xc1
1 Ð Ð Ð ∂xcn

n
P(x1, . . . , xn).
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PROOF. By the Hirsch Lemma, df (b 
 y) ≥ kŁ(b 
 y) 2 HŁ
�
MpŽf (X, K0)

�
¾≥

Λ2(x1, . . . , xn). Let ¢pŽf : XðMpŽf (X, K0)! K0 be the evaluation map. Then [13, Lemma
7.2] ¢ŁpŽf (xi) ≥ 1
xi +(p Ž f )Ł(xi)
1 ≥ 1
xi +ai
1, for xi 2 H2(K0). Given b 2 HŁ(X)

and a
P 2 HŁ
�
XðMpŽf (X, K0)

�
following Haefliger write b\(a
P) ≥ b(a)P 2 HŁ(K0).

By [13, Lemma 7.1]

df (b
 y) ≥ kŁ(b 
 y)

≥ b \ ¢ŁpŽf

�
kŁ(y)

�
≥ b \ ¢ŁpŽf

�
P(x1, . . . , xn)

�
≥ b \ P

�
¢ŁpŽf (x1), . . . , ¢ŁpŽf (xn)

�
≥ b \ P(a1 
 1 + 1
 x1, . . . , an 
 1 + 1
 xn).

The result now follows from the identity
P(a1 
 1 + 1
 x1, . . . , an 
 1 + 1
 xn)

≥
X

jcj�jPj

1
(c1! Ð Ð Ð cn!)

ac1
1 Ð Ð Ð a

cn
n 


∂jcj

∂xc1
1 Ð Ð Ð ∂xcn

n
P(x1, . . . , xn).

To determine the rational homotopy type of Mf (X, Y) for F0-spaces we must construct
the minimal model for the DGA (Af , df ). In many cases, this can be done by simply com-
puting the image of the differential df in Λ(Z0). The elements of Z1 giving “superfluous
relations” correspond to odd spheres whose degrees can be computed directly. We give
some

EXAMPLES 3.3. (a) Let X and Y be F0-spaces with Y cohomologically generated in
degree two. Then M0(X, Y) 'Q Yð odd spheres. See [14] for an extension of this result.

(b) When X ≥ GÛT is a flag manifold with G simple or U(k), Corollary 2.2 implies
there are at most two rationally distinct components of M(X, X). By (a) and the (known
case of the) Halperin conjecture [12] we have

Mf (GÛT, GÛT) 'Q

(
GÛT ð odd spheres f rationally null
odd spheres otherwise.

(c) Let X ≥ U(n + 2)ÛU(1)2ðU(n) for n ½ 1. The minimal model (MX, dX) is MX ≥

Λ2(x1, x2)
dX Λ(yn+1yn+2), with dX(ym) ≥ Tm(x1, x2) where Tm(x1, x2) ≥
Pm

i≥0 xi
1xm�i

2 [4].
Thus Af ≥ Λ2(x1, x2) 
df

Λ(Z1). If n is odd [4, Theorems 1.3, 1.4] imply [XQ, XQ] ≥
E(XQ) [ f0g. Let n be even and suppose f is rationally nontrivial. If f is not a rational
equivalence then by [4, Theorem 1.4] f is a “projective map” and so (swapping subscripts
if necessary) f Ł(x1) ≥ ãx1 and f Ł(x2) ≥ �ãx1 for some ã Â≥ 0. We may assume ã ≥ 1.
Let bk 2 H2k(X) be dual to xk

1 2 H2k(X) for k ≥ n, n + 1. By Theorem 3.2

df (bn 
 yn+1) ≥
X
jcj≥n

1
(c1! c2 !)

bn

�
xc1

1 (�x1)c2
� ∂n

∂xc1
1 ∂xc2

2

Tn+1(x1, x2)

≥
nX

c2≥0
(�1)c2 [n + 1� c2]x1 + [c2 + 1]x2.
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Since n is even, we see df (bn 
 yn+1) ≥ n+2
2 (x1 + x2) and df (bn+1 
 yn+2) ≥ n+2

2 (x1 � x2).
Thus df : Z1 ! Λ2(x1, x2) is surjective and we have shown

Mf (X, X) 'Q

(
X ð odd spheres f rationally null
odd spheres otherwise.

(d) Let Y ≥
Qk

j≥1 CPnj and X any F0-space. We show the components of the space
M(X, Y) are classified by the “heights” in HŁ(X) of the images of the generators of HŁ(Y)
under f . Given f : X ! Y let hj be zero if f Ł(xj) ≥ 0 and otherwise hj ≥ maxfn j
f Ł(xn

j ) Â≥ 0g, where the xj 2 H2(Y) are the generators. Write MY ≥ Λ2(x1, . . . , xk) 
dY

Λ(yn1+1, . . . , ynk+1) where dY(ynj+1) ≥ xnj+1
j . Let bj,m 2 H2m(X) be dual to f Ł(xm

j ) 2
H2m(X). By Theorem 3.2, the image of df is generated by the elements

df (bj,m 
 ynj+1) ≥
1

m!
dm

dxm
j

xnj+1
j ≥

0
@nj + 1

m

1
A Ð xnj�m+1

j ,

for m ≥ 0, . . . , hj; that is, by the monomial xnj�hj +1
j . Thus

Mf

�
X,

kY
j≥1
CPnj

�
≥

kY
j≥1
CPnj�hj ð odd spheres.

4. Simple Components. We classify the simple and signed-simple components of
maps into a complex or symplectic flag manifold. Define

Pm(x1, . . . , xn) ≥
nX

i≥1
xm

i , Tm(x1, . . . , xn) ≥
X
jcj≥m

xc1
1 Ð Ð Ð x

cn
n

and
S2m(x1, . . . , xn) ≥ õm(x2

1, . . . , x2
n),

where õm is the m-th symmetric function in n variables. It is easy to prove the
ideals (T1, . . . , Tn), (P1, . . . , Pn) and (õ1, . . . ,õn) coincide in the polynomial algebra
Λ2(x1, . . . , xn). The minimal model for X ≥ U(n)ÛT can thus be written MX ≥

Λ2(x1, . . . , xn�1)
dX Λ(y2, . . . , yn) where jymj ≥ 2m� 1 and dX(ym) ≥ Tm(x1, . . . , xn�1)
[4]. The minimal model Y ≥ Sp(n)ÛT is of the form MY ≥ Λ2(x1, . . . , xn) 
dY

Λ(y2, . . . , y2n) where jy2mj ≥ 4m� 1 and dY(y2m) ≥ S2m(x1, . . . , xn).
We will partition variable lists like fx1, . . . , xng into sublists like fx1, . . . , xlg, fxl+1,

. . . , x2lg, . . . . For convenience, we let Pm,i denote Pm applied to the i-th variable sublist.
Also, given a nonnegative integer ci we define linear operators Di(ci) on Λ2(x1, . . . , xn)
by

Di(ci) ≥
X
jdj≥ci

1
(d1! Ð Ð Ð dl!)

∂ci

∂xd1
l(i�1)+1 Ð Ð Ð ∂xdl

li

,

where the variables xj are those in i-th sublist. The following formula regarding partial
derivatives of Tm ≥ Tm(x1, . . . , xn) and S2m ≥ S2m(x1, . . . , xn) are proved consecutively
by inductive arguments.

(1)
lX

i≥1

∂
∂xi

Tm+1 � Pm,1 mod (T1, . . . , Tm)
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(2)
lX

i≥1

∂2

∂x2
i

Tm+2 � 2(m + 1)Pm,1 mod (T1, . . . , Tm)

(3)
lX

i≥1

2lX
j≥l+1

∂2

∂xi∂xj
Tm+2 � l(Pm,1 + Pm,2) mod (P1,1, . . . , Pm�1,1, P1,2, . . . , Pm�1,2, T1, . . . Tm)

(4)
l�1X
i≥1

lX
j≥i+1

∂2

∂xi∂xj
Tm+2 � (l� 1� [mÛ2])Pm,1 mod (P1,1, . . . , Pm�1,1, T1, . . . Tm)

(5)
lX

j≥1

∂
∂xj

S2m � (�1)m�12P2m�1,i mod (S2, . . . , S2m)

(6)
l�1X
i≥1

lX
j≥i+1

∂2

∂xi∂xj
S2m � (�1)m+14mP2(m+1),1 mod (P1,1, . . . , P2m�1,1, S2, . . . , S2m)

THEOREM 4.1. Let f : U(k)ÛT ! U(n)ÛT be a simple map where k Ù 2. Let l ≥�
n� dim

�
kerfH2(f )g

��
Ûk. Then

Mf

�
U(k)ÛT, U(n)ÛT

�
'Q

�
U(l)ÛT

�k
ðU(l � 1)ÛT ðU(n � kl)ÛT ð odd spheres.

PROOF. We split the list fx1, . . . , xn�1g into k + 1 sublists fx1, . . . , xlg, . . . , fxl(k�2)+1,
. . . , xl(k�1)g, fxl(k�1)+1, . . . xlk�1g and fxlk, . . . , xn�1g. By the Theorem 2.3 translated to
cohomology, we may take f Ł(xj) ≥ ti for xj in the i-th sublist i ≥ 1, . . . , k � 1, f Ł(xj) ≥
�t1�Ð Ð Ð� tk�1 for xj in the k-th and f Ł(xj) ≥ 0 for xj in the k + 1-st sublist. To determine
the differential df in the model Af ≥ Λ(x1, . . . , xn�1)
df

Λ(Z1) for Mf

�
U(k)ÛT, U(n)ÛT

�
we must solve monomials in the aj ≥ f Ł(xj) for monomials in the ti. Let c ≥ (c1, . . . , ck�1)
be a (k � 1)-tuple and let bc 2 H2jcj

�
U(K)ÛT

�
be dual to tc1

1 Ð Ð Ð t
ck�1
k�1 2 H2jcj

�
U(k)ÛT

�
.

The elements bc 
 ym span Z1. Using Theorem 3.2 and the binomial formula for (�t1 �
Ð Ð Ð � tk�1)d we find

df (bc 
 ym) ≥
X
jej�jcj

(�1)d

0
@ d

d1

1
A Ð Ð Ð

0
@ d

dk�1

1
AD1(e1) Ž Ð Ð Ð ŽDk�1(ek�1) ŽDk(d)(Tm)

where d ≥ jcj � jej and di ≥ ci � ei, i ≥ 1, . . . , k � 1.
The idea of the proof is to show that the image of df is precisely the ideal J of

Λ2(x1, . . . , xn�1) consisting of those polynomials which are symmetric in each of the
k + 1 variable lists separately. Now each operator Di(ei) is clearly invariant under per-
mutations of the variables in the i-th sublist and trivially invariant under permutations

https://doi.org/10.4153/CJM-1997-044-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-044-1


862 SAMUEL BRUCE SMITH

of the variables in the other k lists. Thus if T 2 J then Di(ei)(T) 2 J also. The inclusion
df

�
Λ(Z1)

�
� J follows.

To show df

�
Λ(Z1)

�
� J we first write

J ≥ (P1,1, . . . , Pl,1, . . . , P1,k�1, . . . , Pl,k�1, P1,k, . . . , Pl�1,k, T1, . . . , Tn).

Regarding df in grade one, we must show df (Z1
1) ≥ Q(P1,1, . . . , P1,k, T1). Let bi 2 H2(Xk)

be dual to ti 2 H2(Xk) so that bi 
 y2 2 Z1
1. Then

df (bi 
 y2) ≥
ilX

j≥l(i�1)+1

∂
∂xj

T2 �
lk�1X

j≥l(k�1)+1

∂
∂xj

T2 ≥ P1,i � P1,k + T1.

Next let b(1,1,0,...,0) be dual to t1t2 2 H4
�
U(k)ÛT

�
. Then

df (b(1,1,0,...,0) 
 y3) ≥
lX

i≥1

2lX
j≥l+1

∂2

∂xi∂xj
T3 �

2lX
i≥1

lk�1X
j≥l(k�1)+1

∂2

∂xi∂xj
T3

+
lk�1X

i≥l(k�1)+1

∂2

∂x2
i

T3 + 2
lk�2X

i≥l(k�1)+1

l(k�1)X
j≥i+1

∂2

∂xi∂xj
T3

≥ P1,1 + P1,2 + (l + 2)T1.

A similar calculation and equations (2)–(4) give

df (b(2,0,...,0) 
 y3) � 2P1,1 mod (T1),

where b(2,0,...,0) is dual to t2
1. Thus df

�
Λ(Z1

1)
�
� J(2).

Now since that df (1 
 ym) ≥ Tm it remains only to show the elements Pm,i, m Ù 1,
are in the image of df . Using equation (1) and computing as before we have

df (bi 
 ym+1) ≥
ilX

j≥l(i�1)+1

∂
∂xj

Tm+1 �
lk�1X

j≥l(k�1)+1

∂
∂xj

Tm+1

� Pm,i � Pm,k mod (T1, . . . , Tm)

for i ≥ 1, . . . , k � 1. Similarly, using equations (2)–(4) we get

df (b(1,1,0,...,0) 
 ym+2) � Pm,1 + Pm,2 + 2(m� 2� 2[mÛ2])Pm,k

mod (P1,1, . . . , Pm�1,1, . . . , P1,k, . . . , Pm�1,k, T1, . . . , Tm).

The inclusion df

�
Λ(Z1)

�
� J follows.

THEOREM 4.2. Let f : GÛT ! U(n)ÛT be a signed-simple map where G is simple of

rank k Ù 1. Let l ≥
�

n� dim
�
kerfH2(f )g

��
Û2k. Then

Mf

�
GÛT, U(n)ÛT

�
'Q

�
U(l)ÛT

�2k�1
ðU(l � 1)ÛT ðU(n � 2kl)ÛT ð odd spheres.

PROOF. In this case, we split the list fx1, . . . , xn�1g into 2k+1 sublists: the first 2k�1
of length l, the 2k-th of length l� 1 and the last of length n � 2kl. By Theorem 2.3, we
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may assume f Ł(xj) ≥ ti for xj in the i-th and f Ł(xj) ≥ �ti for xj in the i + k-th sublist
i ≥ 1, . . . , k while f Ł(xj) ≥ 0 for xj in the last sublist. In this case,

df (bc 
 ym) ≥
X
jej�jcj

(�1)dD1(e1) Ž Ð Ð Ð ŽDk(ek) ŽDk+1(d1) Ž Ð Ð Ð ŽD2k(dk)(Tm)

where d ≥ jcj � jej and di ≥ ci � ei, i ≥ 1, . . . , k. The proof now proceeds in a similar
manner to the above.

THEOREM 4.3. Let f : GÛT ! Sp(n)ÛT be a simple map where G is simple of

rank k Ù 1. Let l ≥
�

n� dim
�
kerfH2(f )g

��
Ûk. Then

Mf

�
GÛT, Sp(n)ÛT

�
'Q

�
U(l)ÛT

�k
ð Sp(n � kl)ÛT ð odd spheres.

PROOF. Here we split the variable list fx1, . . . , xng into k + 1 sublists; the first k of
length l and the last of length n � kl and take the map f Ł to satisfy f Ł(xj) ≥ ti for xj in
the i-th and f Ł(xj) ≥ 0 for xj in the k + 1-st sublist. By Theorem 3.2., df (bc 
 y2m) ≥
D1(c1) Ž Ð Ð Ð ŽDk(ck)(S2m).

This time, we show that df

�
Λ(Z1)

�
equals the ideal J consisting of polynomials sym-

metric in our first k variable lists and in the squares of the elements of the k+1-st variable
list separately. Since the operators Di(ci) clearly preserve this ideal, df

�
Λ(Z1)

�
� J. For

the reverse inclusion, observe

J ≥ (P1,1, . . . , Pl,1, . . . , P1,k, . . . , Pl,k, P1,k+1, . . . , Pl�1,k+1, S2, . . . , S2n).

Recalling that bi is dual to ti 2 H2(GÛT), we have

df (bi 
 y2) ≥
ilX

j≥l(i�1)+1

∂
∂xj

S2 ≥ P1,i

and df (1
ym) ≥ Sm so it remains to produce the Pm,i, m Ù 1. If m is odd, say m ≥ 2j�1
for j Ù 1, then by equation (5)

df (bi 
 y2j) ≥
ilX

h≥l(i�1)+1

∂
∂xh

S2j � (�1)j�12Pm,i mod (S2, . . . , S2j).

If m is even, say m ≥ 2j for j Ù 1, let ci ≥ (0, . . . , 2, . . . , 0) be the k-tuple with a 2 in the
i-th position so that bci 2 H4(GÛT) denotes the element dual to t2

i 2 H4(GÛT). Using (5)
and (6) we find

df (bci 
 ym+2) ≥
1
2

ilX
h≥(i�1)l

∂2

∂x2
h

Sm+2 +
il�1X

h≥(i�1)l

ilX
k≥h+1

∂2

∂xh∂xk
Sm+2

� (2m� 3)(�1)jPm,i mod (P1,i, . . . , Pm�1,i, S2, . . . , S2n).
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39.

Department of Mathematics
St. Joseph’s University
Philadelphia, PA 19131
e.mail: smith@sju.edu

https://doi.org/10.4153/CJM-1997-044-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-044-1

