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RATIONAL CLASSIFICATION OF SIMPLE FUNCTION
SPACE COMPONENTS FOR FLAG MANIFOLDS

SAMUEL BRUCE SMITH

ABsTrRACT.  Let M(X, Y) denote the spaceof all continuous functions between X and
Y and M¢ (X, Y) the path component corresponding to a given map f: X — Y. When X
and Y are classical flag manifolds, we prove the components of M(X, Y) corresponding
to “simple” mapsf are classified up to rational homotopy type by the dimension of the
kernel of f in degree two cohomology. In fact, these components are themselves all
products of flag manifolds and odd spheres.

1. Introduction. When X and Y are flag manifolds or, more generaly, Fo-spaces
(simply connected finite complexes with finite-dimensional rational homotopy and no
rational cohomology in odd degrees), the rational classification problem for components
of the function space M(X, Y) intersects two basic areas of research. First, W. Meier [10]
proved the identity component M (X, X) for an Fo-space X isrationally a product of odd
spheresif and only if therational Serre spectral sequence collapsesfor any orientable fi-
bration with fibre X. Thusidentifying the rational homotopy type of this particular func-
tion space component is equivalent to resolving the Halperin conjecture for Fo-spaces.
Second, the rational classification of components is directly related to the problem of
describing the set [Xq, Yo] of maps between the rationalizations of X and Y. For conve-
nience, we denote this set by [X, Y]qg. When X = Y is a generalized complex flag mani-
fold this latter problem has been studied extensively by several authors (see [4,9]) with
particular emphasis on the group E(Xg) of rational self-equivalences. By [1, Corollary
3.6] the set [X, Y]q for Fo-spacesisin bijection with Hom(H*(Y, Q), H*(X, @)) and so
determining its structure is a purely algebraic problem. Nonetheless, there appearsto be
no general structure theorem in the literature for the rational maps between two different
flag manifolds. In this paper, wefocuson thelarge classof “simple” and “ signed-simple”
maps between flag manifolds and classify the components corresponding to these maps
in the complex and symplectic cases.

Let X = Gi/TandY = G,/T be flag manifolds where G; and G, are compact,
connected Lie groups and T denotes a maximal torus of appropriate rank. By [2],
H*(Gi/T) = Bi/J;, i = 1,2, where B is the polynomial algebra on rank(G;) variables
generated in degree two and J; isthe ideal consisting of polynomialsinvariant under the
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action of the Weyl group W; of G; on the subscripts of the variables. (Here and through-
out, all (co)homology and homotopy groupsaretakento haverational coefficients.) Write
By = Ax(ty, ..., 1) and B, = Ax(Xq, ..., X,) where k = rank(G;) and n = rank(G,).

DerINITION.  Amapf: X — Y between flag manifoldsis simple (respectively, signed-
simple) if thereisa € Q such that for each x; € By if ¢(x) # O0then ¢(x) = a- tj (resp.,
(%) = £a- ) for somet; € B, where ¢: B, — By isthe map induced by f.

Examples of simple maps arise naturally from the basic inclusions U(k) — U(n) and
Sp(k) — Sp(n) for k < n and of signed-simple maps via Sp(k) — U(n) for 2k < n. In
Section 2, we show that the simple mapsin [U(k) /T, U(n)/T] and [Sp(k) /T, Sp(n) /T]
are classified by the integer | = (n - dim(ker{HZ(f)})) /k and the signed-simple maps

in [Sp(k) /T, U(n)/T] by the integer | = (n - dim(ker{HZ(f)})) /2k. Using an explicit
construction of the Haefliger model for Fo-spaces (Section 3), we establish

THE CLASSIFICATION THEOREM. Let f be a simple or signed-simple map between
complex or symplectic flag manifolds and let | be as above. Then

M¢ (U(K)/T,U(n)/T) ~q (U(I)/T)k x U(l —1)/T x U(n —KI) /T x odd spheres

M (Sp(K) /T, Sp(n) / T) ~¢ (U() /T)k x Sp(n—Kl) /T x odd spheres

Mt (Sp(K)/ T, U(n)/T) =~ (U)/T)* ™ x Ul — 1)/T x U(n — 2K)) /T x odd spheres

2. Rational MapsBetween FlagManifolds. LetX = G;/TandY = G, /T beflag
manifolds, as above. Since rational self-equivalencesof X and Y induce rational equiv-
alences between components of M(X, YY), for our purposes we need only determine the
structure of the set [X, Y]g “modulo rational equivalences’. In other words, we identify
rational mapsf: X — Y up to pre- and post-composition by rational self-equivalencesin
Y and X, respectively.

The Weyl group of a compact Lie group is afinite reflection group and so may be
viewed as a subgroup of the orthogonal group. Thus the polynomials P2 (ts, ..., t) =
24 +t2 and Ppa(Xq, . . ., Xn) = X3+ - - +X2 are elements of theideals J; and J; of grade
four. If Gy issimplethen P, ; is (up to scalar multiple) the unique element of gradefourin
Ji (see, e.g.,[8, p.59)). If G; = U(K) thentheelement t; +- - - +1, of gradetwo appearsin
J1 and so Py 1 isnot unique. However, if wereplace By by B] = Ax(ta, . .., t—1), J1 by the
appropriate subideal J; and setty = —t; — - - - — 1, then the polynomial P21 (ts, . . ., t)
appears and is the unique element of grade four in J;. We use this uniquenessto prove

THEOREM 2.1. LetX =G;/TandY = G, /T with G; simpleor U(k). Letf: X — Y
be any map. Then f*: H*(Y) — H*(X) is either trivial or surjective.

PROOF.  Supposef*: H?(Y) — H?(X) isnontrivial. Let 8 = ¢(x;). Then, making the
above replacement if necesssary, we have ¢(P22) = aPy1 forsomea € Q. If « = 0
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thenaZ +-- - +a3 = ¢(P22(Xw, ..., %)) = Owhichimplies each a; = 0, contrary to our
assumption. Thus o # 0 and we have anontrivial identity of theform P, »(ay, ..., an) =
aPoa(ty, ..., t). Viewing the g aslinear endomorphismsa(ts, . . . , t) of the vector space

Q(ty, ..., ), wetake a% of both sides and obtain

Thus Q(ay, . .., an) = H3(X). "

COROLLARY 2.2. LetX = G/TwithGsimpleor G = U(K). Then[X, X]qg = E(Xq)U
{0}. n

Whiletheset[X, Y]q modulorational equivalencesisfairly simplewhenk = rank(G;)
> qrank(Gz) = n, when k < n the structure is apparently much more complicated. We
focus on the simple maps.

THEOREM 2.3. Let X = G;/TandY = G,/T with G; simple or U(k) such that
the Weyl group of G, contains the symmetric group S,. Then [X, Y] contains at most
[n/K] + 1 distinct simple maps modulo rational equivalences. If G; issimpleand G, =
U(K) then X, Y]q containsat most [n/ 2k]+1 distinct signed-simplemapsmodul o rational
equivalences.

PrOOF. Letf:X — Y besimple. Then, after permuting the subscripts of the x; (ra-
tional equivalence in Y), we may assume ¢(x;) = --- = ¢(X) = a- t; for somel.
Thus the coefficient of t2 in ¢(P,2) is| - a2. By the uniqueness of P in Jy, it follows
that, after further permutation of subscripts, thelist {xs, ..., X} splitsinto k+ 1 sublists,
X1, 0% b X -+ X and {Xige1, ..., Xa } With the property that ¢(xj) = a-t;
for x; inthe i-th sublisti = 1,...,kand ¢(x) = O for x; in the k + 1-st sublist. Since
multiplication by a in degree two cohomology induces a rational equivalence of X, the
first statement follows.

For the second statement, observethat ¢(x; + - - - +X,) = 0. Using the previous case,
we seethat, after permutation, {Xy, . .., Xn} splitsinto 2k+1 sublists, thefirst 2k of length
[, suchthat ¢(x;) = a- t; for x; in the i-th and ¢(x;) = —a- tj for x; in the 2i + 1-st sublist,
i=1,...,k while ¢(x) = Ofor x; in the 2k + 1-st sublist. "

For each | = 0,...,[n/K] the inclusion TTI_; U(K) — U(n) induces a map i:
I_,UK)/T — U(n)/T. Define fi: U(K)/T — U(n)/T by setting fi = A o i; where
A:UKK)/T — TIl_, U(K)/ T isthe diagonal map. Itisclear that thef; are simple and ratio-
nally distinct. This construction can be applied, as well, to the other classical inclusions
(Section 1) and so

COROLLARY 2.4. Modulo rational equivalences, the sets [U(k)/T,U(n)/Tlq
and [Sp(K)/T,Sp(n)/T]e contain exactly [n/k] + 1 distinct simple maps while
[Sp(k)/ T, U(n)/T]q contains exactly [n/2K] + 1 distinct signed-simple maps. "
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3. The Haefliger Model for Fo-Spaces. By [6], the minimal model (My, dy) for
an Fo-space Y is a two-stage DGA,; specifically, My = A(Vo) @4, A(V1) where V is
evenly graded, V; oddly graded and where the differential dy satisfies dy|Vo = 0 and
dy(V1) C A(Vp). Thissimple rational structure implies the Haefliger model for compo-
nents of M(X, Y) admitsadirect and accessibleconstruction when X and Y are Fo-spaces.
Our argument follows the line of proof of [13, Theorem 3] which, in turn, was based on
the methods of [11].

THEOREM 3.1. Let f: X — Y be a map between Fo-spaces with My = A(Vo) @q,
A(V1). Thereis a two-stage model A = A(Zo) ®q, A(Z1) for the function space compo-
nent M; (X, Y) with

ZE)n = @ Ha(X) ® V(2)i+m and Zrln _ @ Hai(X) © Vfi+m.
=0 i=0

PrROOF. By [7, Theorem B] we may assumeY is arational space. Weview Y asthe
total space of a principal fibration with base Ko = MiK(Hom(V}, @),i) and fibre Ky =
T K (Hom(V}, @), i). Observethat M(X, K1) is connected since [X, Ky] = @ H'(X) @ V}
and H*(X) is evenly graded while V; is oddly graded. Thus applying the mapping space
functor to the classifying fibration for Y we obtain the diagram

M; (X, Y) — MKy —  M(X, PKj)
le Lo

Kk
Mpot (X, Ko) — Mo(X, BK1)

Sincethe obstructionsto lifting ahomotopy between pof, pog: X — Kg to ahomotopy be-
tweenf,g: X — Y lieinthetrivial groups H"(X, m(K1)), thisis a pull-back diagram.By
the classical result of Thom [15] on the space of mapsinto an Eilenberg-Maclane space,
P isaprincipal fibration. The Hirsch Lemma([3 Lemma4.1]) applied to pimpliesthere
isatwo-stagemodel for M (X, Y) of theform A; = H*(Mp. (X, Ko)) @g, H* (Mo(X, K1)).
The result now follows from Thom’s resullt. ]

We pursue applications of this model for general Fo-spacesin [14] and consider here
only the case when Y is cohomologically generated in degree two. In this case, My =
/\2(X1, e ,Xn)®dY/\(V1) andsoAf = /\2(X1, ce 1Xn)®df /\(Z]_) WhereZT = @Ioio Hoi (X)®
V2*M Given b € Hy(X) we view b as an element of the dual spaceto H*(X) and write
b(a) € Q for the value of bona € H*(X). Let & = f*(x) € H2(X) and write ¢ =
(c1,...,cCn) to denote an n-tuple of non-negative integerswith |c| = Y1, ¢;. Regarding
the differential di we have

THEOREM 3.2. Letf: X — Y be a map between Fp-spaces with Y cohomologically
generatedin degreetwo. Givenb®@y € Hz(X) @ VZ*™ C ZP write dy(y) = P(Xq, . . ., Xn)
for some homogeneous polynomial P. Then

ds (b = 1 b(a% o il P
f(boy) = > m (a aﬂ)m (X1, + -+ Xn)-

|cj=i
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PROOF. By the Hirsch Lemma, di(b © y) = K'(b ®@y) € H*(Mui(X,Ko)) =
Ao(X1, ... Xn). Let epes: XX Mpet (X, Kg) — Ko bethe evaluation map. Then[13, Lemma
7.2] egof(xi) =1ex+(Pof) (x)21=10x+a®1,forx € H3(Ko). Givenb € H,(X)
anda®P € H*(XxMp (X, Ko)) following Haefliger writebn(a®@P) = b(a)P € H*(Ko).
By [13, Lemma7.1]

diboy) =kbaoy)
=bNeps (k')
= b epe (P(Xe, - - -1 Xn)

= DNP(eps (Xa), - -+ Epot (Xn))
=bNP@®1+1®@X,..., 80 @ 1 +1® X).
The result now follows from the identity
P ®1+1®@X,...,80 @1+ 1@ X,)
> o . [c]
= —_——a.; -
IR R
To determinetherational homotopy type of M; (X, Y) for Fo-spaceswe must construct
the minimal model for the DGA (A, dr). In many cases, this can be done by simply com-
puting the image of the differential di in A(Zp). The elements of Z; giving “superfluous

relations” correspond to odd spheres whose degrees can be computed directly. We give
some

P(X1, ..., Xn). n

ExAMPLES 3.3. (@) Let X and Y be Fp-spaces with Y cohomologically generated in
degreetwo. Then Mg(X, Y) ~¢ Yx odd spheres. See [14] for an extension of this resullt.

(b) When X = G/ T is aflag manifold with G simple or U(k), Corollary 2.2 implies
there are at most two rationally distinct components of M(X, X). By (a) and the (known
case of the) Halperin conjecture [12] we have

G/T x odd spheres  f rationally null
odd spheres otherwise.

(c) Let X = U(n+2)/U(1)? x U(n) for n > 1. Theminimal model (Mx, dx) is Mx =
No(X1, X2) @dy ANYne1Yn+2), With dx(Ym) = Tm(X1, X2) Where Tm(Xq, X2) = X% o Xy X3 [4].
Thus As = Ax(X1,%2) @¢ A(Za). If nisodd [4, Theorems 1.3, 1.4] imply [Xg, Xg] =
E(Xq) U {0}. Let n be even and supposef is rationally nontrivial. If f is not arational
equivalencethenby [4, Theorem 1.4] f isa“ projectivemap” and so (swapping subscripts
if necessary) f*(x1) = ax; and f*(x2) = —ax; for some o # 0. We may assume « = 1.
Let b € Hax(X) bedual to Xk € H2k(X) for k = n,n+ 1. By Theorem 3.2

Mi(G/T,G/T) ~q

n

0
0 (b ® Yne1) = Z Glc I)bn(xil(_xl)cz)WTnﬂ(XLXZ)

= Z (—D%[n+1— colxg +[C + 1.

c=0
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Sinceniseven, we see di (b @ Yni1) = 2(X1 + X2) and di (Bne1 @ Yinwo) = 252 (X1 — X2).
Thus di: Z1 — Na(X1, X2) is surjective and we have shown

X x odd spheres f rationally null

M (X, X) ~a | 5qq spheres otherwise.

(d)LetY = H};l CP" and X any Fo-space. We show the components of the space
M(X, Y) are classified by the “heights” in H*(X) of theimages of the generators of H*(Y)
under f. Given f: X — Y let h; be zero if f*(x) = 0 and otherwise h; = max{n |
f*(x") # 0}, wherethe x; € H2(Y) are the generators. Write My = Ax(Xq, . .., X) @,
AYny+1s - - - Yn+1) Where dy(yn+1) = xnl+1 Let bjm € Hom(X) be dud to f*(xjm) €
H2™(X). By Theorem 3.2, the image of df is generated by the elements

1d™ qu_ (m+1) oo
(0 m @ Yn+1) = - dx‘mxjnj 1_ < Jm >~x]-n’ L

—h+1

form=0,...,h; thatis, by the monomial xjJ . Thus

k k
M (X, T €PY) = [] CP?" x odd spheres,
=1 =1
4. Simple Components. We classify the simple and signed-simple components of
maps into a complex or symplectic flag manifold. Define

Pm(X1, ., %) = D X", Tm(Xt, e Xn) = D XP
i=1 |c]l=m
and
Som(Xa -+ Xn) = om0E, ..., X0),

where op, is the mtth symmetric function in n variables. It is easy to prove the
ideals (T4,...,Tn), (P1,...,Pn) and (o1,...,0n) coincide in the polynomial algebra
Ao(X4, ..., X%). The minimal model for X = U(n)/T can thus be written My =
No(X1, ..., Xn-1) @dy A(Y2, ..., Yn) Where |ym| = 2m— 1 and dx(Ym) = Tm(X1, ., Xn-1)
[4]. The minimal model Y = Sp(n)/T is of the form My = Ax(Xy,..., %)) @q,
A(Y2, ..., Yon) Where [yom| = 4m— 1 and dy(Yom) = Som(X1, - - ., Xn)-

We will partition variable lists like {x, ..., %n} into sublistslike {xq, ..., %}, {X+1,

., Xa},.... For convenience, we let P,j denote Py, applied to the i-th variable sublist.
Also, given a nonnegative integer ¢; we define linear operators Di(c) on Ax(Xq, ..., Xn)
by

D)= ¥ o ~
A jd=c (da!---d!) axld(lifl)ﬂ' "axidiI ’

where the variables x; are those in i-th sublist. The following formula regarding partial
derivatives of Ty, = Tm(X1, - .., Xn) and Sm = Sm(Xa, . . ., Xy) are proved consecutively
by inductive arguments.

.0
1) Z a_ Trw1 = Pma mod (T1,..., Tm)
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) Z O 2Tm+2—2(m+ 1)Pm1 mod (Ty, ..., Tm)
()
2 62
Z Z Ix a — T2 = |(Pm1+Pm2) mod (P]_]_,...,Pm_l']_, Pl,2,---;Pm—1,21le---Tm)
i=1j=I+1 J

4 Z Z I a TM_(I—l [M/2])Pm1 mod (P11, ..., Pm11, T1,... Tm)
i=1j=i+1 i

(5) _iai = (=)™ 2Py 1; mod (S, ..., Som)

62

1 aX axl = (_1)W14mp2(ml-l),1 mOd (Pl,lr sy sz—l,l! SZI ey Szm)
|

THEOREM 4.1. Let f:U(K)/T — U(n)/T be a simple map wherek > 2. Let| =
(n - dim(ker{HZ(f)})) /k. Then

M¢ (U(k)/T,U(n)/T) ~q (U(l)/T)k x U(l —1)/T x U(n — Kl)/T x odd spheres

Proor.  Wesplitthelist {Xi, ..., X1} intok+21sublists {Xs,..., X}, ..., {Xik-2+1,
. ,X|(k,1)}, {X|(k,1)+1, o Xk—1} and {Xi, - - ., Xn—1}. By the Theorem 2.3 translated to
cohomology, we may takef*(x) = t; for x; inthei-th sublisti = 1,...,k— 1, f*(x) =
—ty —--- —t_q for xj inthek-th and f*(x;) = O for x; in the k+ 1-st sublist. To determine
the differential d; inthemodel As = A(xa, ..., Xn-1) @q, A(Z1) for My (U(K) /T, U(n)/T)
wemust solvemonomiasinthea = f*(x;) for monomialsinthet;. Letc = (cy,..., Ck—1)
be a(k — 1)-tuple and let be € Hyq(U(K)/T) bedual totg - -- ¥t € HAY(U(K)/T).
The elementsb; ® Y, span Z;. Using Theorem 3.2 and the binomial formulafor (—t; —
- —t1)% wefind

d(be @ ym) = > (—1)° ( d) (9 ) Di(e1) o - - - 0 Dy—1(8-1) © Dk(d)(Tm)
do - \dy) \de
whered =|c| — |elandd =c¢ —¢g,i=1,...,k—1.

The idea of the proof is to show that the image of d; is precisely the ideal J of
No(Xq, .., X—1) consisting of those polynomials which are symmetric in each of the
k + 1 variable lists separately. Now each operator Dj(g) is clearly invariant under per-
mutations of the variables in the i-th sublist and trivialy invariant under permutations
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of the variablesin the other k lists. Thusif T € J then Dj(g)(T) € J aso. Theinclusion
di (A(Z1)) C J follows.
To show d;(A(Zy)) 2 J wefirst write

J= (Pl,l! reey P|,1: ey Pl,kfl! reey P|,k71! Pl,k! RN P|71’k,T1, e ,Tn)-

Regarding d; in grade one, we must show d(Z}) = Q(Py1, . - ., P1k, T1). Letbi € Ha(Xy)
be dual to t; € H2(X,) so that by @ y» € Z1. Then
il 9 k-1 9

(b @ yo) = —T,— —Tp =Py — Py + Ty
e jzl(igl)ﬂaxi ? jzl(kgl)ﬂaxi ? . v

Next let b(l,l,O,...,O) bedual to t1t, € H4(U(k)/T). Then

|Z il 02 il lk—1 62
di(bL10...0 @ Y3) = —T3— — T3
( ) i=1j5r1 0% =1 j=i(C+1 OXi0X
Ik—1 2 k=2 (k=1 @2
513+2 3
izl O i=l(k—1)+1 jS71 0%i0%;

= Pp1+ P+ (1 +2)Ts.
A similar calculation and equations (2)—(4) give

dr(b20...0 @ y3) = 2P11 mod (Ty),

.....

Now since that di(1 ® ym) = T it remains only to show the elements Py,;, m > 1,
arein the image of dr. Using equation (1) and computing as before we have

d (b ) il d k=1 g
RY = — T — —T,
i (O 1 j:mz_:l)ﬂ o m+1 jZI(kX_:l)ﬂ o m+1

= Pmj — Pmx mod (T4, ..., Tm)
fori =1,...,k— 1. Similarly, using equations (2)—(4) we get
i (b1,10,..0) @ Yme2) = Pm1 + Pm2 +2(m— 2 — 2[m/ 2])Pr
mod (P11, -+ Pm-11,---,Piks -+ s Pmeiio T10 -+ o5 Tin)-
Theinclusion di (A(Z1)) 2 J follows. .
THEOREM 4.2. Letf:G/T — U(n)/T bea signed-simple map where G is simple of
rankk > 1. Let | = (n - dim(ker{Hz(f)})) /2k. Then

)Zkfl

Mi(G/T,U()/T) ~g (U(1)/T x U(l —1)/T x U(n— 2KI)/T x odd spheres

ProoF. Inthiscase, wesplitthelist {xs, ..., X1} into 2k+1 sublists: thefirst 2k—1
of length I, the 2k-th of length | — 1 and the last of length n — 2ki. By Theorem 2.3, we
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may assume f*(x) = t for x; inthei-th and f*(x)) = —t for x; in the i + k-th sublist
i=1,...,kwhilef*(x)) = Ofor X inthelast sublist. In this case,

O (be @ Ym) = > (—1)"Da(er) o - - - 0 Dy(&x) © Dys1(dly) 0 - - - 0 Da(dh)(Trm)

lef<c|

whered = |c| — |[elandd = ¢ — &,i = 1,...,k. The proof now proceedsin a similar
manner to the above. n

THEOREM 4.3. Let f:G/T — Sp(n)/T be a simple map where G is simple of
rankk > 1. Let | = (n - dim(ker{Hz(f)})) /k. Then

Mi(G/T, Sp(n)/T) = (U(1)/T)" x Sp(n — KI)/T x odd spheres

ProoF. Here we split the variablelist {xy, ..., %y} into k + 1 sublists; the first k of
length | and the last of length n — kI and take the map f* to satisfy f*(x;)) = t; for x; in
the i-th and f*(x) = O for x; in the k + 1-st sublist. By Theorem 3.2., di(be ® yom) =
Di(c1) o - - - o Di(Ck)(Som)-

Thistime, we show that d; (/\(Zl)) equalstheideal J consisting of polynomials sym-
metric in our first k variablelists and in the squares of the elements of thek+ 1-st variable
list separately. Since the operators D;(c;) clearly preserve thisideal, d(A(Zy)) 2 J. For
the reverse inclusion, observe

J=(P11,-.-,Pitseo s Pri oo Pro Prgets oo Piotiert, S0 Son)-
Recalling that bj isdual to t; € H?(G/T), we have

il d
dbiey)= > =

S = Py
j=1(i—1)+1 9%

and di (1 ®ym) = Snsoit remainsto producethe P, m > 1. If misodd, saym= 2j—1
forj > 1, then by equation (5)
il 0

dbi@yy)= >

i = (=1 12Pni mod (S, ..., ).
h:l(i—1)+1axh82] (1) i mod (S )

If miseven,say m= 2jforj > 1,letc, = (0,...,2,...,0) bethek-tuplewith a2 in the
i-th position so that b, € Ha(G/ T) denotesthe element dual tot?> € H4(G/T). Using (5)
and (6) we find

" 1 i g2 i-1 il 02
. ® — = — S t+ = S
(D @ Yme2) 2 h:(iz—l)l e 2 h:(izfl)l kzzhﬂ X0
= (Zm— 3)(_1)]Pm,| mOd (Pl,ly ypwl,i=821-- -ySZn)- .
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