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The Ample Cone for a K3 Surface

Arthur Baragar

Abstract. In this paper, we give several pictorial fractal representations of the ample or Kähler cone

for surfaces in a certain class of K3 surfaces. The class includes surfaces described by smooth (2, 2, 2)

forms in P1 × P1 × P1 defined over a sufficiently large number field K that have a line parallel to one

of the axes and have Picard number four. We relate the Hausdorff dimension of this fractal to the

asymptotic growth of orbits of curves under the action of the surface’s group of automorphisms. We

experimentally estimate the Hausdorff dimension of the fractal to be 1.296 ± .010.

The ample cone or Kähler cone for a surface is a significant and often complicated

geometric object. Though much is known about the ample cone, particularly for

K3 surfaces, only a few non-trivial examples have been explicitly described. These

include the ample cones with a finite number of sides (see [N1] for n = 3, and

[N2, N3] for n ≥ 5; the case n = 4 is attributed to Vinberg in an unpublished work

[N1]), the ample cone for a class of K3 surfaces with n = 3 [Ba3], and the ample

cones for several Kummer surfaces, which are K3 surfaces with n = 20 [V,K-K,Kon].

Though the complexity of the problem generally increases with n, the problem for K3

surfaces with maximal Picard number (n = 20) appear to be tractable because of the

small size of the transcendental lattice.

In this paper, we introduce accurate pictorial representations of the ample cone

and the associated fractal for surfaces within a class of K3 surfaces with Picard num-

ber n = 4 (see Figures 1, 3, 4, and 5). As far as the author is aware, the associated

fractal has not been studied in any great depth for any ample cone for which the frac-

tal has a non-integer dimension, except the one in [Ba3]. The fractal in that case is

Cantor-like (it is a subset of S1), and rigorous bounds on its Hausdorff dimension are

calculated in [Ba1]. The Hausdorff dimension of the fractal in this paper is estimated

to be 1.296 ± .010.

Our second main result is to relate the Hausdorff dimension of the fractal to the

growth of the height of curves for an orbit of curves on a surface in this class. Pre-

cisely, let V be a surface within our class of K3 surfaces, and let A = Aut(V/K) be its

group of automorphisms over a sufficiently large number field K. Let D be an ample

divisor on V , and let C be a curve on V . Define

NA(C)(t, D) = #{C ′ ∈ A(C) : C ′ · D < t}.

Here we have abused notation by letting C ′ also represent the divisor class that con-

tains C ′. The intersection C ′ · D should be thought of as a logarithmic height of
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C ′, and the quantity NA(C)(t, D) should be thought of as an analog of NA(P)(t, hD),

which is the number of points P ′ in an A orbit of a point P with Weil height hD(P ′)

bounded by t . See [Ba1, Section 5] for a detailed comparison. Let

α = lim
t→∞

log(NA(C)(t, D))

log t
.

For curves C with C · C > 0, this limit exists and is the Hausdorff dimension of the

fractal associated with the ample cone. Our estimate for α is inferred from a plot of

log(NA(C)(t, D)) as a function of log t .

It should be stressed that the dynamics studied in this paper are in Pic(V ) ⊗ R,

and not on V itself. The rich subject of dynamics on K3 surfaces has been studied by

Cantat [C] and McMullen [McM]. Both authors study the dynamics of an automor-

phism whose pullback to Pic(V ) is hyperbolic. On Pic(V ) ⊗ R, the dynamics of the

pullback is discrete and uninteresting, but on the K3 surface, the orbits of points un-

der iterations of this map are in places dense and quite fascinating. See in particular

[C, Figure 1] and [McM, Figure 2].

1 Background

Let V be an algebraic K3 surface defined over a number field K. That is, V is a surface

with trivial canonical divisor and irregularity equal to zero. Its arithmetic genus ρa is

1. If C is a smooth curve on V , then the genus of C is given by the adjunction formula

2g − 2 = C ·C. The Picard group Pic(V ) is an even lattice of dimension n ≤ 20. Let

D = {D1, . . . , Dn} be a basis of Pic(V ), so

Pic(V ) = ZD1 ⊕ ZD2 ⊕ · · · ⊕ ZDn.

Let J = [Di · D j] be the intersection matrix for V with respect to the basis D. By

the Hodge index theorem, the signature of J is (1, n − 1). That is, J has one positive

eigenvalue and n − 1 negative eigenvalues.

Let A = Aut(V/K) be the group of automorphisms on V . For an automorphism

σ ∈ A, the pullback σ∗ acts linearly on Pic(V ), so can be represented by a matrix

with integer entries. Since σ preserves intersections, we further have that σ∗ is in

O = O(Z) = {T ∈ Sln(Z) : Tt JT = J}.

For an ample divisor D, the hypersurface xt Jx = D ·D is a hyperboloid of two sheets,

one of which contains D. Let us distinguish this sheet with H, and define

O+
= O+(Z) = {T ∈ O : T(H) = H}.

The surface H can be thought of as a model of n − 1 dimensional hyperbolic geom-

etry imbedded in a Lorentz space, where the Lorentz product is the negative of the

intersection product. The distance |AB| between two points A and B in this model H

is given by

At JB = A · B = ‖A‖‖B‖ cosh(|AB|) = −D · D cosh(|AB|),
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where ‖A‖ =
√
−A · A. With this metric, the group of isometries on H is O+(R),

where the definition of this group is the obvious analog of O+(Z). For more details

of this model, we refer the reader to Ratcliff [R].

Let E be the set of effective divisor classes in Pic(V ). That is, E ∈ E if we can write

E = a1C1 + · · · + amCm with ai ≥ 0 and Ci a divisor class that can be represented

with a curve on V .

A divisor D is ample if D · E > 0 for all effective divisors E. The ample cone, also

known as the Kähler cone, is the set

K = {C ∈ Pic(V ) ⊗ R : C ·C > 0, C · E > 0 for all E ∈ E}.

The ample cone is convex and is a subset of the light cone

L+
= {x ∈ Pic(V ) ⊗ R : x · x > 0, x · D > 0},

where D is any ample divisor. If an irreducible curve has negative self intersection

on V , then it is a smooth rational curve and has self intersection −2. Such a curve is

called a −2 curve. If V contains no −2 curves, then K = L+ [Kov]. Let E−2 be the

set of nodal classes, that is, the set of divisor classes of smooth rational curves. Then

K = {C ∈ L+ : C · E > 0 for all E ∈ E−2}.

Furthermore, every plane C · x = 0 with C ∈ E−2 is a face of K, so there are no

superfluous inequalities in the above description [St].

When the Picard number n is 4, an appropriate (Euclidean) cross section of the

light cone is a sphere. The ample cone is bounded by hyperplanes, each of which

cut out a circle on this sphere. This is one way of describing Figure 1; each circle

in the pattern represents one of the hyperplanes that properly bound K. There is,

however, a more satisfying interpretation. Each bounding hyperplane of K intersects

the hypersurface H in a (hyperbolic) plane. When viewed from a point −P0 with

P0 on H, we get the Poincaré sphere representation of H, as is further explained in

Section 4. Using this interpretation, each circle in Figure 1 represents a hyperbolic

plane, and K ∩ H is the region in the Poincaré sphere bounded by all these planes.

The advantage of this interpretation is that it does not depend on the choice of basis.

The different pictures one gets correspond to different choices of P0, so the object is

the same; it is only our perspective that has changed.

It is clear that if σ ∈ A, then σ∗(K) = K, so let us define

O′ ′
= {T ∈ O+ : TK = K}.

If there are any −2 curves on V , then there exists a large subset of O+ that cannot be

in O′ ′. Suppose C · C = −2 and C is effective. Let us define the reflection through C

by

RC D = D + (C · D)C.

In the Lorentz space, this is a reflection through the hyperplane C · x = 0, or in

the hyperbolic geometry H, it is reflection through the (hyper)line formed by the
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Figure 1: A representation of the ample cone. The point D1 is an accumulation point of circles

(one of infinitely many).

intersection of H with C ·x = 0. Note that RC is in O, since it preserves intersections.

But since RCC = −C , we have that RC 6∈ O′ ′.

Since the canonical divisor on V is trivial and the arithmetic genus is one, the

Riemann–Roch formula on V is

l(D) + l(−D) ≥ 1
2
D · D + 2,

where l(D) is one more than the dimension of the complete linear system for D.

Hence, if l(D) > 0, then D is effective. In particular, if C · C = −2, then either C or

−C is effective. Thus RC = R−C 6∈ O′ ′ for all divisors C ∈ Pic(V ) with C ·C = −2.

Let O′ be the subgroup of O+ generated by the reflections through −2 curves. Note

that TRC T−1
= RTC . Hence, O′ is a normal subgroup of O+. In [PS-S], Pjateckiĭ-

S̆apiro and S̆afarevic̆ show that, for a sufficiently large number field K, the natural

map

Φ : Aut(V/K) → O′ ′, σ 7→ σ∗

has a finite kernel and co-kernel, and that O′ ′ ∼= O+/O′.

2 (2, 2, 2) Forms in P1 × P1 × P1

The results of this paper depend only on the Picard lattice Pic(V ) and apply to any

K3 surface with the intersection matrix J described below. Yet the result is, in the
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author’s opinion, much more appealing when coupled with a class of surfaces that

have the given Picard lattice. In this section, we describe such a class of K3 surfaces.

Let V be a surface described by a smooth (2, 2, 2) form in P1 × P1 × P1. Such a

surface is the zero locus of a polynomial in three projective variables that is quadratic

in each variable. Let us write

(2.1) F(X,Y, Z) = X2
0F0(Y, Z) + X0X1F1(Y, Z) + X2

1F2(Y, Z) = 0,

where X = (X0 : X1) ∈ P1, and the Fi(Y, Z) are (2, 2) forms in P1×P1. Since smooth

(2, 2) forms in P1 ×P1 are elliptic curves, V is fibered by elliptic curves in each of the

three directions.

Let

p1 : P
1 × P

1 × P
1 → P

1, (X,Y, Z) 7→ X

be projection onto the X-axis, and similarly define p2 and p3. Let Di = p−1
i H be the

pullback of a point H ∈ P1 for i = 1, 2, 3.

2.1 The Generic Case

Generic surfaces in this class have been studied by Wang [W], Billard [Bi], and the

author [Ba2]. Explicit examples (defined over Q and with full dimension in the

moduli space) are given in [B-L]. If V is generic, then Pic(V ) = D1Z + D2Z + D3Z so

the Picard number is n = 3; the intersection matrix with respect to this basis is




0 2 2

2 0 2

2 2 0



 ;

and V contains no −2 curves, so its ample cone is the light cone.

An attractive feature of studying smooth (2, 2, 2) forms in P1 ×P1 ×P1 is that we

get several automorphisms “for free”. Let us view (2.1) as a quadratic in X with two

roots (say) X and X ′. We define the map

σ1 : V → V (X,Y, Z) 7→ (X ′,Y, Z).

Explicitly,

X ′
=

{

(F1(Y, Z)X1 + F0(Y, Z)X0 : −F0(Y, Z)X1) if this is in P1,

(F1(Y, Z)X0 + F2(Y, Z)X1 : −F2(Y, Z)X0) otherwise.

In the generic case, the curves Fi(Y, Z) = 0 do not intersect, so σ1 is defined every-

where. We similarly define σ2 and σ3. The action of σ1 on Pic(V ) is

σ∗

1 =





−1 0 0

2 1 0

2 0 1



 ,

while σ∗

2 and σ∗

3 are symmetrically defined. The map σ∗

i is reflection across a line in

H2 with endpoints D j and Dk, where i, j, k is a permutation of 1, 2, and 3. Thus, the

fundamental domain for 〈σ∗

1 , σ∗

2 , σ∗

3 〉 is a triply asymptotic triangle, so by Pjateckiĭ-

S̆apiro and S̆afarevic̆’s result, 〈σ1, σ2, σ3〉 has finite index in Aut(V/K).
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2.2 A Class with Picard Number 4

If there exists a point (Q, Q ′) ∈ P1 × P1 over K̄ such that

F0(Q, Q ′) = F1(Q, Q ′) = F2(Q, Q ′) = 0,

then (X, Q, Q ′) is a point on V for all X ∈ P1. That is, V contains a line parallel to

the X-axis. Since this is a smooth curve of genus zero, it must be a −2 curve. If a

surface is generic, modulo this condition, then it has Picard number n = 4. These

are the K3 surfaces we study in this paper.

An example of such a K3 surface is the surface V given by F(X,Y, Z) = 0 where,

in affine coordinates,

F((x : 1), (y : 1), (z : 1))

= f (x, y, z)

= x2(y2 + yz + z2 + z) + x(y2z2 + y2z + z) + (y2z2 + y2z + y + z)

This surface includes the line (X, (0 : 1), (0 : 1)), so its Picard number is at least

four. The equation f (x, 1/y, z − 1) is equivalent modulo two to the polynomial that

describes the surface Y2 in [B-L], and so V has Picard number four. We can use this

example to find infinitely many. Let

G(X,Y, Z) = X2
0G0(Y, Z) + X0X1G1(Y, Z) + X2

1G2(Y, Z) = 0

be a (2, 2, 2) form with rational coefficients with odd denominators. The curves

G0(Y, Z) = 0 and G1(Y, Z) = 0 intersect somewhere, say at Y = Q and Z = Q ′. Let

us suppose that Q and Q ′ are rational. Though we have imposed some constraints on

G, those constraints are of codimension 0 in the moduli space of all (2, 2, 2) forms.

By making a change of basis, we may assume that Q = Q ′
= 0. After this change of

basis, let us require that G2(Y, Z) have no constant term, so G2(0, 0) = 0. This is a

one-dimensional constraint. The set of (2, 2, 2) forms given by

F(X,Y, Z) + 2G(X,Y, Z) = 0

is of codimension one in the set of all (2, 2, 2) forms, and all have Picard number 4.

We have therefore constructed a set of K3 surfaces of full dimension in the moduli

space of all (2, 2, 2) forms with Picard number 4.

Let V be a surface in this class. Let us suppose that the line is parallel to the X-axis

and denote the divisor class for this line with D4. Since there is only one curve in this

divisor class (D4 ·D4 = −2), let us abuse notation slightly and represent the line with

D4 too. Note that the fibers in D2 and D3 over Q and Q ′ are each the union of the

line D4 and a conic.

Lemma 2.1 The set D = {D1, D2, D3, D4} forms a basis of Pic(V ).
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Proof The set D is a linearly independent subset of Pic(V ), so generates a sublattice

of finite index in Pic(V ). Let this index be m. It is easy to check that

Di · D j =

{

0 if i = j 6= 4,

2 if i 6= j; i, j = 1, 2, or 3,

D4 · Di =

{

1 if i = 1,

0 if i = 2, 3.

Thus, the intersection matrix J for the sublattice generated by D is

J =









0 2 2 1

2 0 2 0

2 2 0 0

1 0 0 −2









.

Since m2 divides det( J) = −28, we know m = 1 or 2. If m = 2, then there exists a

nonzero divisor D ′ ∈ Pic(V ) that is a linear combination of the elements of D with

coefficients 0 or 1/2. Since D ′ ∈ Pic(V ), we know D ′ ·D ′ is even and D ′ ·Di ∈ Z. Of

the fifteen combinations, only two satisfy these conditions, namely D2/2, and D3/2.

Since D2 and D3 represent classes of elliptic curves, they cannot be reduced as the

sum of two elliptic curves.

Remark 2.2 Since the lattice with basis {D1, D2/2, D3, D4} is even, we know there

must exist a K3 surface whose Picard lattice is this lattice [Mo].

3 The Group of Automorphisms

A surface V in our class of K3 surfaces includes the automorphisms σ2 and σ3, as de-

fined in the generic case. The map σ1 as described above in the generic case is defined

in our case for all points on V \ D4. We can extend this map to D4 as follows. With-

out loss of generality, we may assume Q1 6= 0 and Q ′

1 6= 0 (where Q = (Q0 : Q1),

Q ′
= (Q ′

0 : Q ′

1)). Let q = Q0/Q1, q ′
= Q ′

0/Q ′

1, and consider (y, z) = (Y0/Y1, Z0/Z1)

in a neighborhood of (q, q ′). Let

M1(z − q ′) = M0(y − q),

and write F0, F1, and F2 as functions of y and M = (M0 : M1) ∈ P1. Then,

Fi(q, M) = 0

for all M and all i, so (y − q) divides Fi(y, M) for all i. Define Gi(y, M) so that

(y − q)Gi(y, M) = Fi(y, M).

Note that if Gi(q, M) = 0 for all i and some M, then V has a singularity. Thus, since

V is smooth, the equation

X2
0G0(y, M) + X0X1G1(y, M) + X2

1G2(y, M) = 0
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is a quadratic in X for all y in a neighborhood of q. It is defined on an open subset U

of V containing D4, and, as before, we may define a map σ ′

1 on U . The two maps σ1

and σ ′

1 agree wherever they are both defined, and, piecing them together, we get an

automorphism σ1 of V .

The following describes how σ∗

i acts on Pic(V ).

Theorem 3.1 Let Ti be the matrix representation of σ∗

i in the basis D. Then

T1 =









−1 0 0 0

2 1 0 0

2 0 1 0

−1 0 0 1









, T2 =









1 2 0 0

0 −1 0 0

0 2 1 1

0 0 0 −1









, T3 =









1 0 2 0

0 1 2 1

0 0 −1 0

0 0 0 −1









.

Proof We calculate T1 by considering the intersection numbers of the basis elements

in D intersected with the elements in the image of D under σ∗

1 . Since σ1 leaves Y and

Z fixed, we know σ∗

1 D2 = D2, σ∗

1 D3 = D3 and σ∗

1 D4 = D4. Thus,

σ∗

1 D1 · D2 = D1 · (σ∗

1 )−1D2 = D1 · σ∗

1 D2 = D1 · D2 = 2

σ∗

1 D2 · D1 = 2

. . .

Observe that σ2
i is the identity, a property that was made use of in the above. The

only difficult calculation is σ∗

1 D1 · D1 = 7. Recall that D1 is the divisor class of the

curve F(H,Y, Z) = 0 for some fixed H. From (2.1) we have

H2
0 F0(Y, Z) + H0H1F1(Y, Z) + H2

1 F2(Y, Z) = 0,

which is a (2, 2) form in P1 × P1 (if we think of H as a constant). The divisor D1

intersects σ∗

1 D1 if H is a double root of this equation. That is, if

2H0F0(Y, Z) + H1F1(Y, Z) = 0,

which is another (2, 2) form. These two curves intersect at eight points, but one

solution is (Y, Z) = (Q, Q ′), for which the above argument that H is a double point

is not valid. Thus, σ∗

1 D1 · D1 = 7. We therefore get

Tt
1 J = JT1 =









7 2 2 1

2 0 2 0

2 2 0 0

1 0 0 −2









,

from which we derive T1.

For T2, we note that σ∗

2 D1 = D1 and σ∗

2 D3 = D3, so the only difficult intersections

to calculate are σ∗

2 D2 · D2, σ∗

2 D2 · D4 and σ∗

2 D4 · D4. We calculate σ∗

2 D2 · D2 in

the same way that we calculated the intersection σ∗

1 D1 · D1 above, only this time no

intersections are discarded, so σ∗

2 D2 · D2 = 8.
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We calculate σ∗

2 D2 ·D4 by noting that the curve F(X,Y, Q ′) is the union of the line

D4 and the conic σ2D4. Thus D3 = D4 + σ∗

2 D4. Hence,

σ∗

2 D2 · D4 = σ∗

2 D2 · D3 − σ∗

2 D2 · σ∗

2 D4 = 2 + 0 = 2.

We also use this observation to calculate σ∗

2 D4 · D4:

0 = D3 · D3 = (D4 + σ∗

2 D4) · (D4 + σ∗

2 D4) = −2 + 2σ∗

2 D4 · D4 − 2.

Thus,

Tt
2 J = JT2 =









0 2 2 1

2 8 2 2

2 2 0 0

1 2 0 2









,

from which we derive T2. The matrix T3 is found in a symmetric way.

The elements T1, T2, and T3 are all in O+ (as they should be) but the group

〈T1, T2, T3〉 is not all of O+. There is, of course, the reflection RD4
through D4 and

the map S that switches D2 and D3:

RD4
=









1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 −1









, S =









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1









.

There is also another matrix

T4 =









1 8 8 0

0 −1 0 0

0 0 −1 0

0 4 4 1









,

which was found by trial and error. Note that T3 = ST2S.

Lemma 3.2 The maps S and T4 are in O′ ′.

Proof Any map T ∈ O+ can be written as a product T = T ′T ′ ′, where T ′ ∈ O′ and

T ′ ′ ∈ O′ ′ (by Pjateckiĭ-S̆apiro and S̆afarevic̆’s result). The map T is in O′ ′ if and only

if T ′
= I. Note that T ′K ∩ K = ∅ for any T ′ ∈ O′ that is not the identity. Thus, to

show that T ∈ O′ ′, it is enough to find an ample D such that TD is also ample.

The divisor D = D1 + D2 + D3 is ample, and SD = D, so S ∈ O′ ′.

Since the divisor D1 represents an elliptic fibration, it is irreducible. Since D4

represents a −2 curve, it is irreducible. Let D ′
= 2D1 + D4. The intersection of D ′

with its irreducible components are non-negative, so the intersection of D ′ with any

effective divisor is non-negative. Hence, D ′ is in the closure of the ample cone. Since

D1 · D1 = 0, it is on the boundary of the ample cone. Thus, since the ample cone

is convex, the divisor D ′ ′
= D ′ + D1 = 3D1 + D4 is either in the ample cone or on

the boundary of the ample cone. If it is on the boundary of the ample cone, then

there exists a −2 curve whose intersection with D1 and 2D1 + D4 are both 0. It is not

difficult to verify that no such −2 curve exists, so D ′ ′ is not on the boundary of the

ample cone, and is therefore ample. Finally, T4D ′ ′
= D ′ ′, so T4 ∈ O′ ′.
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Remark 3.3 There exists an automorphism σ4 ∈ Aut(V ) such that σ∗

4 = T4. It

can be described as follows. For a point P ∈ V , let E be the elliptic curve in the

divisor class D1 such that P ∈ E. Let OE be the unique point of intersection between

E and D4. Define σ4(P) = −P, where −P is the additive inverse of P with respect

to addition on the elliptic curve E with zero at OE. Then σ4 is an automorphism

on V . For every E in the class D1, σ4 fixes E, and since σ4(OE) = OE, it also fixes

D4. Thus D1 and D4 are both eigenvectors of σ∗

4 . This is enough to narrow down the

possibilities for σ∗

4 to T4, ST4, S, and the identity. In [B-McK] we show σ∗

4 = T4.

This also shows that, for the class of K3 surfaces described in Section 2, we may

take K = Q . That is, Q is a sufficiently large number field.

4 Visualizing the Group O ′ ′

As noted earlier, the hypersurface H is a three-dimensional hyperbolic space. In

this section, we describe how to project H to the Poincaré ball and upper half plane

models of H3, and through these models, we investigate the tilings generated by the

actions of O+ and O′ ′ on H.

The matrix J has three negative eigenvalues and one positive eigenvalue. Let us

denote them with −a2
1, −a2

2, −a2
3, and a2

4. Let Q be the matrix that diagonalizes J so

that J = −Qt At J0AQ, where

A =









a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4









and J0 =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1









.

The surface V+ described by yt J0y = −1 with y4 > 0 is the usual Lorentz model of

H3. The map y = ±λAQx sends H to V+, where λ = (
√

D · D)−1. The stereographic

projection of V+ to the hypersurface y4 = 0 through the point (0, 0, 0,−1) is an

isomorphism of V+ to the Poincaré ball model of H3. This projection distinguishes

a point, the point P0 on H where P0 = λ−1Q−1A−1(0, 0, 0, 1). The point P0 is the

point “closest to the eye” and is mapped to the center of the Poincaré ball. By applying

an isometry to H before projecting, we can make a choice for P0. Throughout this

paper, we make the choice P0 = D1 + D2 + D3, which is an ample divisor.

The Poincaré ball can be unwrapped to give the Poincaré upper half space model

for H3. This map distinguishes a point P∞ on ∂H, the boundary of H, which is sent

to the point at infinity. The point P∞ can be represented with a point on the light

cone x · x = 0. In the upper half space model (with z > 0), planes in H3 are modeled

with planes and half spheres that are perpendicular to the plane z = 0. This model is

often represented by its boundary, the plane z = 0 together with the point at infinity,

on which planes in H3 appear as circles or lines. The rest of the figures in this paper

are these types of representations of H3.

The map T1 is a reflection through a plane in H. That plane is the intersection

of H with the hyperplane (2,−2,−2, 1) · x = 0. When mapped to the plane z = 0,

as described above with the point P∞ = D1, its boundary is a circle Γ1, as shown in

Figure 2. The plane includes the points (divisors) D2 and D3, which are on the light

cone x · x = 0, which represents ∂H.

https://doi.org/10.4153/CJM-2011-006-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-006-7


The Ample Cone for a K3 Surface 491

D
2

D
3

D
1
+D

4

Γ
1

Γ
S

Γ
2

Γ
3

P
1

Γ′

1

Γ′

3 Γ′

2

Γ
5

P
2

Figure 2: The fundamental domain for G(= O
+): The region in H

3 bounded by the planes

above Γ2, Γ5, ΓS, and above the hemispheres represented by Γ1, Γ
′
1, and Γ

′
2. The base angles θ

of the isosceles triangle satisfy cos θ =
1

2
√

2
.

The map S is also a reflection through a plane in H. That plane is the intersection

of H with the hyperplane (0, 1,−1, 0) · x = 0, and is represented by the line ΓS in

Figure 2. It includes the points D1, D1 + D4, and P1 = (1, 1, 1,−2).

The maps T2, T3, and T4 are each rotations by π about parallel lines (parallel in

H), each with one endpoint at D1 and the other endpoint at D3, D2, and D1 + D4,

respectively. The map T2 rotates everything on one side of the plane represented by

Γ2 to the other side. The map T3 maps everything from on one side of Γ3 to the other.

The map RD4
is reflection through the plane represented by Γ

′

1. In Figure 2, the

planes Γ
′

2 and Γ
′

3 are the planes perpendicular to T2D4 and T3D4, respectively, so

represent the reflections T3RD4
T3 and T2RD4

T2, respectively.

We also represent, with Γ5, the plane through which T2T4T3S = T2T4ST2 reflects.

We can now see enough to prove something.

Let G = 〈T1, T2, T4, S, RD4
〉, and let F be the region in H3 bounded by the planes

represented by Γ2, Γ5, and ΓS in Figure 2, and above the hemispheres represented by

Γ
′

1, Γ ′

2, and Γ1.

Lemma 4.1 The group G has finite index in O+.

Proof The region F is a fundamental domain for G. Since G is a subgroup of O+, a

fundamental domain for O+ lies within F. Since F has finite volume, the group G has

finite index in O+.
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Since G ′
= 〈T1, T2, T4, S〉 is the largest subgroup of G that is in O′ ′, we get the

following corollary.

Corollary 4.2 The group G ′ has finite index in O′ ′.

At the end of the next section, we will show that G = O+ and G ′
= O′ ′.

5 The Ample Cone

In this section, we explain how we generate Figure 1 and why it represents a cross

section of the ample cone.

Lemma 5.1 There are no −2 divisors C such that the plane C · x = 0 properly inter-

sects F.

Proof Suppose C1 and C2 are two −2 divisors. Let us write Ci = ai1D1 + · · ·+ ai4D4.

From the calculation Ci · Ci = −2, we find ai1 ≡ 0 (mod 2), from which it follows

that C1 · C2 ≡ 0 (mod 2). If the planes C1 · x = 0 and C2 · x = 0 intersect, then

the angle θ of intersection is given by −2 cos θ = C1 ·C2. Hence, the planes are either

coincident (i.e., C1 = C2), perpendicular (C1 ·C2 = 0), tangent (C1 ·C2 = 2), or do

not intersect (C1 ·C2 > 2).

Now suppose there exists a −2 divisor C such that the plane C · x = 0 properly

intersects the fundamental domain F. If it goes through D1, then it is either tangent

to Γ
′

1, in which case it does not intersect Γ
′

3 perpendicularly, or it is perpendicular

to Γ
′

1, in which case it must be Γ2, since it must also be perpendicular to Γ
′

2. But no

normal to Γ2 with integer coefficients has self intersection −2. Thus, the plane given

by C cannot go through D1, so it is represented by a circle. If D2 or D3 is inside this

circle, then either C · D1 < 0, C · D2 < 0, or C · D3 < 0, which is a contradiction,

since D1, D2, and D3 represent elliptic curves. If the plane C ·x = 0 does not intersect

either Γ
′

1 or Γ
′

2, or if it intersects only one of the two, then it lies entirely in Γ1, and

so does not intersect F. Finally, if it intersects both Γ
′

1 and Γ
′

2 perpendicularly, then

solving we discover the coefficient a4 of D4 is even, from which we conclude C ·C ≡ 0

(mod 4). Thus no such C exists.

Corollary 5.2 The fundamental domain F is a subset of the closure of the ample cone.

Proof We first note that D = D1 + D2 + D3 is ample. It is not difficult to check that

D is on the face of F given by the plane represented by ΓS in Figure 2. Suppose there

exists a divisor D ′ in F that is not ample, and not on either of the faces represented by

Γ
′

1 and Γ
′

2. Since F is convex, the line segment joining D and D ′ lies entirely within

F. This line segment must cross the boundary of the ample cone, so must intersect a

plane given by C · x = 0 where C ·C = −2. By the previous lemma, no such C exists,

so D ′ cannot exist.

Thus the set {x ∈ TF : T ∈ G ′}, shown in Figure 3, is contained in the ample

cone. Since the boundary of this set is the union of planes generated by −2 curves,

this set is exactly the intersection of the ample cone with H. Wrapped up into the

Poincaré ball model, we get Figure 1. The same region is shown again in Figure 4

with D3 at infinity.
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Figure 3: A hyperbolic cross section of the ample cone – the region in H
3 above the hemispheres

represented by all the heavy black circles. The set of heavy black circles is the image of Γ
′
1 under

the action of G
′. The light lines represent the the action of G

′. The point at infinity is D1.

We close this section with the following result, which we include for completeness.

Lemma 5.3 The groups G and G ′ are, in fact, all of O+ and O′ ′, respectively.

Proof We know G ⊂ O+. Suppose T ∈ O+. There exists a T ′ ∈ O+ such that

T ′TD1 ∈ F. Since D1 is a cuspidal point whose intersection with any −2 curve is

non-zero, we know T ′TD1 = D1. The region in Figure 2 bounded by Γ2, Γ5, and

ΓS tiles H3 under the action of 〈T2, T4, S〉. This is clear, since T2 is rotation by π
about the line D1D3; S is reflection through ΓS, and T2T4ST2 is a reflection through

Γ5. Thus there exists a T ′ ′ ∈ 〈T2, T4, S〉 such that T ′ ′D1 = D1, and T ′ ′T ′TD3 ∈ F.

Since D3 is cuspidal and D3 · D4 = 0, we know T ′ ′T ′TD3 = D3. Let τ = T ′ ′T ′T.

Then D1 and D3 are eigenvectors for τ . Let λ1 and λ3 be their associated eigenvalues,

respectively.

Consider τ k(cD1 + cD3) = λk
1cD1 + λk

3cD3, where c is chosen so that cD1 + cD3

is on H. Since τ is an isometry, these images are all on H, and on the line given

by the intersection of H with the plane spanned by D1 and D3. Since τ maps H to

H, neither eigenvalue can be negative. Thus, either both eigenvalues are 1, or we get
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Figure 4: A different perspective of a hyperbolic cross section of the ample cone, the region be-

tween the two planes above the two dark parallel (Euclidean) lines and above the hemispheres

represented by each dark circle. The point at infinity is D3.

an infinite number of points in F under iterations of τ , which contradicts G having

finite index in O+. Thus, both D1 and D3 are fixed by τ . Hence, either τ is a rotation

with axis D1D3, or is reflection through a plane that includes the line D1D3.

If τ is a rotation, then it must send Γ
′

1 to either itself or Γ
′

2, so τ is either the

identity, or rotation by π. The latter is T2. In either case, τ , and hence T, is in G.

If τ is reflection through a plane that includes D1D3, then by considering the pos-

sible image of Γ
′

1, we conclude τ is either reflection through the plane above Γ2, or

reflection through the plane perpendicular to the plane above Γ2. Neither of these re-

flections are in O+, since both have fractional entries in their matrix representations.

Thus, τ is neither of these.

Hence, T ∈ G, so O+
= G. Since G ′ ⊂ O′ ′, and G ′ is the largest subgroup of G

that does not contain any elements of O′, we have G ′
= O′ ′.

Note that the set K ∩ H is a fundamental domain for O′, as expected. One can

also surmise, from Figure 2 and a little thought, that the group O′ ′ is the free group

on four elements T1, T2, T4, and S, modulo the relations T2
i = 1, S2

= 1, and

T2T4T2ST2ST4ST2S = 1.

6 The Fractal

Let ∂H be the points at infinity in the usual compactification of H. Figures 1, 3, and

4 suggest that there exists a fractal on ∂H associated with the ample cone for V .

Given a plane P in H, let us write x
P∼ y if x and y are on the same side of P, where
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Γ
1
′

(a) (b)

Figure 5: (a) The fractal associated with the ample cone, with the point D1 + D2 + D3 + 3D4 at

infinity. (b) The associated fractal. The dark portions are regions with denser fractal dust.

x and y are any two points in the compactification of H not on P. Let us define

Λres =

{

x ∈ ∂H :
for any plane P ∈ H that does not contain x,

there exists y ∈ K such that x
P∼ y

}

.

The plane P should be thought of as defining an open neighborhood of x on ∂H. By

results due to Kovács [Kov], Λres cannot include any proper open subset of ∂H.

To better visualize this fractal Λres, let us consider Figure 5(a), which is another

perspective of the hyperbolic cross section of K, this time with the point D1 + D2 +

D3 + 3D4 at infinity. The fractal is the set of points on ∂H inside the disc represented

by Γ
′

1, and outside all other discs. This set is shown in Figure 5(b).

The set Λres is reminiscent of the residual set of the Apollonian packing (see [L-M-

W]), and so ample cones of K3 surfaces generate a rich variation of the Apollonian

packing that is quite different from the many variations considered in Indra’s Pearls

[M-S-W].

There is another less obvious fractal associated with the surface V , namely the

limit set of O′ ′, which is

Λ(O ′ ′) =

{

x ∈ ∂H :
for any plane P ∈ H that does not contain x,

there exists T ∈ O′ ′ such that x
P∼T(x0)

}

.

The point x0 is a fixed point in H. The limit set Λ(O ′ ′), though, does not depend on

the choice of x0. We introduce the limit set because of the attention it has received in

the literature.

Theorem 6.1 The residual set Λres and the limit set Λ(O ′ ′) are equal.
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We will prove this result with the help of the following rather interesting finiteness

result.

Lemma 6.2 Let y be a point in the usual compactification of H. Let

S = {C ∈ E−2 : C · y < 0}.
Then |S| ≤ 3.

Proof Suppose there exist four elements, C1, . . . ,C4 in S. Suppose two planes

C j · x = 0 and Ck · x = 0 do not intersect. Then the set of points x such that Ci ·x > 0

for i = j or k is described by just one of these inequalities. That is, one of these

planes is not a face of K, which contradicts the observation made by Sterk [St] men-

tioned in Section 1. Thus these planes intersect, and by the observation made in the

proof of Lemma 5.1, are perpendicular. In the Poincaré upper half space model of H,

each plane is represented by a circle (with a suitable choice for the point at infinity).

Fix one of these circles and think of it as representing a Poincaré disc model of H2.

Since the other three circles intersect our distinguished circle perpendicularly, they

represent lines in H2, and therefore form a triangle whose angle sum exceeds π, a

contradiction. Thus, |S| ≤ 3.

Proof of Theorem 6.1 If we choose x0 ∈ K, then O′ ′(x0) ⊂ K, so Λ(O ′ ′) ⊂ Λres.

Suppose now that y ∈ Λres. Let us fix a Poincaré upper half space model of H

with y not at infinity, and let U be a neighborhood of y. We wish to show that there

exists a T ∈ O′ ′ such that TΓ
′

1 ⊂ U . If such a T exists for every U , then y is an

accumulation point for O′ ′(x0) for any x0 on the plane D4 · x = 0, so y ∈ Λ(O′ ′).

Suppose then that there does not exist a T ∈ O′ ′ such that TΓ
′

1 is contained in

U . Let r be the Euclidean radius of a disc centered at y contained in U (in our fixed

Poincaré model). Let U1 and U2 be discs centered at y with (Euclidean) radii r/2 and

r/4, respectively. If there exists a T ∈ O′ ′ such that the center of TΓ
′

1 lies in U1, then

its radius must be less than r/2, since it cannot cover y. But then TΓ
′

1 is contained in

U , which contradicts our assumption. Consider the set of discs TΓ
′

1 that intersect U2.

Each such disc must have radius greater than r/4, so must cover an area in U1 of at

least 1/3π(r/4)2. By the previous lemma, each point in U1 is covered by at most three

such discs, so there can be only a finite number of such discs that intersect U2. Thus, y

is an isolated point in Λres, so must be at the intersection of at least two of these discs.

This means y is the image under some T of the point P2 of intersection of Γ
′

2 and Γ
′

3

(see Figure 2). This point of intersection is P2 = D1−αD2 −αD3 + (α−1)D4 where

α = 1 +
√

7/2, and is the eigenvector of T1T2T4T3 with eigenvalue 2 + 6α. Hence P2

is in Λ(O ′ ′), so y is in Λ(O ′ ′) too.

7 Orbits of Curves

These fractals are related to the lattice point problem in hyperbolic geometry. Given

a Kleinian group G of H3 (a discrete group of isometries of H3), and points x and y

in H3, let n(s, x, y) be the number of points in the G orbit of x that are in the ball of

radius s centered at y. That is,

n(s, x, y) = #{γx : γ ∈ G, d(γx, y) < s}.
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Here d(∗, ∗) is the hyperbolic metric. Determining the behavior of n(s, x, y), partic-

ularly its asymptotics, is the lattice point problem. When C · C > 0, our quantity

NA(C)(t, D) is just a lattice point problem. In fact, with G = O′ ′, we have

NA(C)(t, D) = kn

(

cosh−1

(

t√
C ·C

√
D · D

)

,
C√

C ·C
,

D√
D · D

)

,

where the constant k depends on the size of the kernel and cokernel of the natural

map Φ from A to O′ ′.

For an arbitrary Kleinian group G, we can also define the limit set

Λ(G) =

{

x ∈ ∂H
3 :

for any plane P ∈ H3 that does not contain x,

there exists γ ∈ G such that x
P∼ γ(x0)

}

,

for any fixed x0 ∈ H3.

Sullivan [Su] showed that if the group G is geometrically finite (i.e. the boundary

of a fundamental domain is a finite number of planes), then the quantity

(7.1) α(G) = lim sup
s→∞

log n(s, x, y)

s

and H.dim(Λ(G)), the Hausdorff dimension of Λ(G), are equal.

Lax and Phillips [L-P] related n(s, x, y) to the minimal eigenvalue λ0 of the Lapla-

cian on the hyperbolic three-fold M = G\H3. They showed that if G is geometrically

finite, then

n(s, x, y) = k1eα(G)s + O(eβ(G)s),

where the constant k1 depends on M,

α(G)(2 − α(G)) = λ0,

and β(G) < α(G). This shows that we may replace the limit supremum in (7.1) with

the limit.

Combining these results, we get

α = H.dim(Λ(O′ ′)) = H.dim(Λres).

8 The Dimension

In this section, we empirically estimate H.dim(Λres). We do this by estimating α(G)

(see (7.1)) for G = 〈T1, T2, T3, T5〉, where T5 = T2T4T3. The map T5 is a rotation by

π about the line P1D1 (see Figure 2). The fundamental domain FG for G is the region

bounded by the planes represented by Γ2, Γ3, and Γ5, and above the hemisphere

represented by Γ1. Since G has index two in O′ ′, we know α(G) = H.dim(Λ(G)) =

H.dim(Λ(O ′ ′)) = H.dim(Λres).

To efficiently estimate α(G), we choose y carefully and identify a descent on

G-orbits. We choose y = (1, 2, 2,−1), which is in K, so is ample. Let yi be the
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s n(s, y, y) log(n(s, y, y)) s n(s, y, y) log(n(s, y, y))

6.5 2795 7.936 9.5 136429 11.824

7 5381 8.591 10 259600 12.467

7.5 10225 9.233 10.5 498266 13.119

8 19547 9.881 11 954663 13.769

8.5 37173 10.523 11.5 1820845 14.415

9 71435 11.177 12 3484566 15.064

Table 1: The number of points in a G-orbit of y = (1, 2, 2,−1) that is a distance at most s away

from y.

reflection of y through the (hyperbolic) plane represented by Γi for i = 1, 2, 3, and

5. Then Ti(y) = yi . That is, the line segment yyi has the property that it is per-

pendicular to the axes of rotation for each of T2, T3, and T5. In particular, the set of

points equidistant from both y and yi is the plane represented by Γi . Because of this

property, we know

d(Tix, y) = d(x, Tiy) = d(x, yi)

for i = 1, 2, 3, and 5, and if x and y are on opposite sides of the plane represented

by Γi , then x and yi are on the same side, so d(Tix, y) < d(x, y). Note that for any

x ∈ H such that x is not in FG, there exists at least one plane represented by Γi

for i = 1, 2, 3, or 5 such that x and y are on opposite sides of this plane. Note

too that if x has integer entries, then Tx · y is a non-negative integer for all T ∈ G,

and Tix · y < x · y, so descent must terminate. Thus, for any x ∈ H, there exists

a finite sequence of points x0, . . . , xk such that x0 = x, x j+1 = Tix j for some i,

d(x j+1, y) < d(x j , y), and xk ∈ FG. This gives us a method of descent. Reversing

this, we get an efficient algorithm for passing through all points in an orbit. We view

the orbit as a tree, pruning branches that descend and pruning when we reach a node

we have been at before. Implementing this algorithm gives us the data in Table 1,

and a least squares fit to the data (for s vs. log(n(s, y, y)) with s > 7) gives us the

approximation α ≈ 1.296 ± .010.
The error estimate is based on calculating the slope of secants to the curve s

vs. log(n(s, y, y)) for s > 7. All slopes lie within the given range. This latter tech-

nique for estimating Hausdorff dimension was tested in [P-S] for a couple of known

examples and was found to be fairly accurate.
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