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Summary

Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both
popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the
mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and
the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response
(or cancer–stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that
allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of
microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved
against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of
action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.

1. Introduction

Scientific discoveries are often dictated by our
experimental tools. Cancer research has made dra-
matic progress since the discovery that cancer cells
carry chromosomal imbalance (Boveri, 1902), that
chromosomes carry our heritable material (Morgan,
1911), that DNA is the molecule of heredity (Avery
et al., 1944), that somatic DNA changes occur in and
modulate the behaviour of cancer cells (Knudson,
1971; Varmus et al., 1973) and ultimately through
to our ability to target cancers effectively and pre-
dictably (Druker et al., 1996; Pegram et al., 1998).
Beyond these cell autonomous aspects of cancer, there
are promising aspects to treatment that rely on the
support that cancer cells demand from their neigh-
bours (Karin et al., 2004; Fidler et al., 2006; Brown
et al., 2008), such as inflammation (Balkwill &
Mantovani, 2001), angiogenesis (Folkman, 1971) and

selective metastatic destinies (Fidler, 2003). A focused
targeting of these aspects depends on model systems
that allow affordable, high-throughput, reliable and
physiologically relevant measurements of the tumour
microenvironment.

Xenograft transplantation of human cancer cells
into immunocompromised mice is a common in vivo
model of human cancer. However, a genome-wide
study of genes involved in tumour/host interactions
in xenografts using a hybridization-based microarray
platform is hindered by the undefined extent of cross-
hybridization, which precludes the assessment of the
origin of the transcript. Ideally, xenograft samples
could be hybridized to a human array to provide
estimates of the gene expression of the transcripts
originating from the (human) tumour sample and
then hybridized against a mouse array for expression
estimates corresponding to transcripts originating
from the (mouse) host. However, clearly the similarity
of the genomes of the two species will mean that trans-
cripts originating from the host mouse may hybridize

* Corresponding author: School of Medicine in the Galilee, Bar
Ilan University, Israel. E-mail: izhak.haviv@biu.ac.il

Genet. Res., Camb. (2013), 95, pp. 14–29. f Cambridge University Press 2013 14
doi:10.1017/S0016672313000013

https://doi.org/10.1017/S0016672313000013 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672313000013


to the probes of the human array and vice versa,
inflating the estimate of gene expression. We solve
this problem by identifying and removing cross-
hybridizing probes on the mouse and human versions
of the Affymetrix1 All Exon arrays and creating a
novel set of probes specifically designed for xenograft
studies. Given the difficulty in accurately predicting
cross-hybridization based only on knowledge of the
probe sequence (Pariset et al., 2009), we based our
selection of cross-hybridizing probes on a control set
of non-xenograft samples (i.e. pure human or mouse
mRNA) profiled on both the mouse and human
arrays. We demonstrate the effectiveness of these
selected probes on both the control set and an
additional set of xenograft samples profiled on both
the human and mouse Exon arrays. Moreover, we
identify a specific case for induction of epithelial
mesenchymal transition (EMT) in the tumoral com-
ponent, against a backdrop of mouse stomal ex-
pression of mesenchymal genes. This is achieved by
comparison of the deconvoluted human signature
with those achieved in vitro.

2. Results

(i) Description of the filtering process

Using the set of control samples, we classified
each probe on each of the microarray platforms
as either cross-hybridizing or species-specific (see
Fig. 1a). The determination was based on whether
those probes showed significant signal when the in-
correct species was hybridized to the array, with the
assignments being made based on unsupervised clus-
tering of the intensities of the probes (see section 4(iv)
for details).

Probes classified as cross-hybridizing generally
demonstrated high signal in the human sample as well
(Fig. 2). Empirical measurement of cross-hybridiza-
tion allowed the illustration of the mixture model
filtering procedure for finding cross-hybridizing
probes and non-response probes, showing all of the
sets of samples (Supp. Fig. S1), as well as the illus-
tration of different choices of posterior probability for
making the cutoff into low-expressing (Supp. Fig. S2).
If we compare the gene expression estimates of those
samples hybridized with the correct array, we see that
removal of cross-hybridizing probes result in a
noticeable drop in our estimate of gene expression in
the human sample (Supp. Fig. 3). One reason for the
decrease in gene expression levels is that the removal
of cross-hybridizing probes increases the percentage
of probes that are ineffective in hybridizing to the
mRNA that is present (‘non-responding’). As a re-
sult, removal of only cross-hybridizing probes – that
has, by definition, been shown to generally hy-
bridize well – results in a higher proportion of non-
responding probes per gene. An increase of 10–15%
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Fig. 1. Illustration of the filtering procedure for finding
cross-hybridizing probes, using mouse samples assayed on
the human Exon array. The density of the second largest
probe across the six mouse samples (for all probes) is
shown in black in both human and mouse panels.
A two-group mixture model was fit to this distribution,
and each probe classified as high or low expressing based
on their posterior probability of being in the low-
expressing group. For the cross-hybridizing filter, only
probes classified as low expressing for samples assayed on
the opposite species array were kept. The same approach
was used for filtering non-responsive probes, only in that
case samples assayed on the correct array were used, and
probes in the high-expressing group were retained. Left :
Overlayed on the overall density (black), are the predicted
normal densities of the two underlying groups found by
fitting the mixture model ; these densities form the basis of
determining the posterior probability of being in the
low-expressing group of probes. The green density is
interpreted as the estimated density of the high-expressing
group of probes and the red density as that of the
low-expressing group. Right : The shaded areas overlaid on
the density show the values for which probes were
classified into the low-expressing group, based on
increasingly lenient values of the posterior probability:
0.80, 0.50 and 0.20. Ultimately the most stringent criteria
(0.80) was used for classification of the probes.
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in non-response probes is common, even for geneswith
originally low levels of non-response probes (see Supp.
Fig. S4). A sizable number of expressed genes also
contain non-responding probes (see Supp. Fig. S5).

To guard against non-responding probes diluting
the estimates of gene expression, we further remove
non-responding probes. We again classify individual
probes, using the same classification procedure used
in identifying the cross-hybridization probes, but this
time based on the intensity levels when the correct
species is hybridized to the array; in this way we
identify individual probes that are expressed lowly.
Many probes so identified will come from genes that
are simply not expressed in our control samples, and
therefore we only remove non-response probes from
genes that would be otherwise classified as expressed
(see section 4(iv) for details).

Because our method of filtering probes will only
detect cross-hybridization if the gene is expressed in
our control samples, we also aligned the probes of
each array to the genome of the opposite species as a
simple comparison of how many probes we might
be missing. The probes removed based on our cross-
hybridization filter include approximately 96% of
probes that exactly matched the genome of the op-
posite species (i.e. with zero mismatches) and 87%
of probes that matched with one mismatch; see Supp.
Table S1. To make sure that we were not missing any
cross-hybridizing probes, we further removed these
probes from further consideration (approximately
additional 8000–10 000 probes).

Removal of (1) cross-hybridizing probes, (2) non-
responding probes in expressed genes and (3) probes
aligning to the opposite genome with no more

than one mismatch resulted in a set of probes that
we will refer to as ‘xenograft-specific ’. The entire fil-
tering procedure removed approximately 83% of the
human probes and 79% of the mouse probes (of those
probes meeting our original annotation standards) ;
see Table 1.

(ii) Assessing the xenograft-specific probes

As noted above, an alignment of the array probes
to the genome of the opposite species shows that
our set of filters, based on empiric measurement of
cross-hybridization, remove approximately 98%
of probes that identically map to the genome of
the opposite species, with almost all of these probes
being removed based on our cross-hybridization fil-
ters (as opposed to the non-response filter). However,
the data derived filters detect much more than this
simple sequence similarity, with perfect matches to the
genome of the opposite species constituting a small
proportion of the probes removed due to cross-
hybridization. Indeed, the majority of probes re-
moved due to the cross-hybridization filter did not
match to the opposite species genome with less than
two mismatches. Examining the probe intensity of the
probes removed due to cross-hybridization (Fig. 2), it
is clear that the overall distribution of probe intensity
on the opposite species declines with decreasing se-
quence similarity.However, ourprobesdetectedbyour
cross-hybridization that do not have high-sequence
similarity with the opposite species’ genome still show
very high levels of expression. Similarly, the pro-
portion of probes removed from a gene is generally
only slightly higher for genes identified by Ensembl as

Fig. 2. Distribution of individual probes across all of the samples, grouped by their classification on the filtering and the
number of mismatches to the opposite species.
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having a homologue as compared with those that do
not (Supp. Fig. S6). As a model of cross-hybridiza-
tion, pure sequence similarity is simplistic and clearly
overlooks other possible factors, but it highlights the
advantage of using cross-hybridization observed on
actual mouse and human samples to obtain accurate
xenograft-specific estimates.

One reason that our cross-hybridization filter de-
tected many probes with low sequence similarity to
the opposite species is that some probes detected may
be generally non-specific and easily hybridize to other
targets than those for which they were designed.
For example, of the probes that had high guanine and
cytosine (GC) content – a feature that can result in
greater propensity to cross-hybridize – all but one of
the probes on the two arrays combined were classified
as cross-hybridizing, even though high GC probes
showed no greater propensity to align to the contrary
genome than other probes (see Supp. Table S2).
Removal of cross-hybridization probes is therefore also

removing probes that show poor performance even for
the correct species. Similarly, we note that the probes
identified as non-response are slightly enriched in
probes with high adenosine and thymidine (AT) con-
tent (ignoring probes identified as cross-hybridizing).

Evaluation of the gene expression values from the
control set of arrays shows that the gene estimates for
samples hybridized to the incorrect array, which pre-
viously spanned a large range of values, generally
dropped to background levels once only the xeno-
graft-specific probes were used (Fig. 2). Furthermore,
restricting attention to those genes that contain at
least five probes in the xenograft-specific set shows
that even those few instances of high expression came
from genes with less than five probes remaining after
the filtering (again see Fig. 2). For this reason we
maintained a minimum of five probes per gene in all
of our further analysis. We note that the design of the
Exon array had a goal of four probes per probeset
(Exon) when feasible : http://www.affymetrix.com/

Table 1. Number of probes and genes at different stages of filtering

Human array Mouse array

Remaining
after filter

After require o5
probes per gene

Remaining
after filter

After require o5
probes per gene

Original Annotation # Genes 17 594 17 317 17 052 16 462
# Probes 1 018 144 1 017 035 818 131 815 829

After removal of cross-
hybridizing probes

# Genes 16 488 10 627 16 574 11 846
# Probes 207 783 190 747 209 196 194 186

After removal of cross-hybridization
and non-responding probes

# Genes 16 488 10 056 16 536 11 035
# Probes 169 218 149 469 171 933 153 629

Fig. 3. Gene expression estimates for single mouse sample (MO2-3 E17) profiled on the human Exon array. Gene
expression values using only the xenograft specific probes (y-axis) are plotted against the gene expression estimates using
all probes on the array (x-axis). Left : All genes that have a probe in the xenograft-specific set are plotted. Right: Only
genes that have at least five probes in the xenograft-specific set are plotted.
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support/downloads/library_files/HuEx-1_0-st-v2.r2.
dt1.hg18.ps.zip) ; thus this is a similar cutoff.

In addition to the complete lack of expression in the
cross-species samples, our xenograft-specific probes
found no genes with significant differences between
the tumour and the normal mouse samples profiled on
the human array, nor between the tumour and the
normal human samples hybridized to the mouse ar-
ray. In contrast, before filtering, 919 and 197 genes
were found to be differentially expressed for the
mouse and human samples, respectively (based on
adjusted p-values <0.05 for genes with at least five
probes in the set of xenograft-specific probes, Supp.
Table S2).

However, there is loss of sensitivity in detecting
differential expression for samples arrayed onto their
species-appropriate array. As compared with the
original moderated t-statistics, the t-statistics using
only the xenograft-specific probes are much smaller in
magnitude than the original, although still highly
correlated (Supp. Fig. S7). This is undoubtedly due to
the dampened gene expression signal after filtering,
described above (section 4(iv)) (Fig. 3). As a result,
many genes that were originally found differentially
expressed before filtering were no longer so identified
after filtering: approximately 39% of genes on the
human array and 28% of genes on the mouse array
that were originally found significant were no longer
detected as significant with the xenograft-specific
probes (Supp. Table S2).

A large number of genes are completely lost by the
filtering process (about 32–40% of genes, once the
requirement of five probes per gene was taken into
account). For descriptive purposes, we evaluated
the genes that are lost based on their gene ontology
categorization. Some GO categories are completely
unrepresented after removal of these genes, but all
of these were categories that contained less than
six genes to begin with, with over 75% having only
1–2 genes. This indicates that, at a minimum, most
important GO categories are represented, though
perhaps by small numbers of genes. More precise
testing of which GO categories are over represented
in lost genes compared with that expected by
chance, result in only a handful of categories (see
Supp. Tables S3 and S4). Categories that suffer
higher-than-expected loss of genes in both mouse
and human are related to sensory perception, G-
protein-coupled receptor protein signalling pathway
and cellular macromolecular complex assembly (see
Supp. Fig. S6).

(iii) Interrogating xenograft samples

Thus far, we have considered only the pure human
and pure mouse samples profiled on each array in
order to evaluate how well our xenograft-specific

probes removed the signal from the incorrect species
and conserved the signal from the correct species. We
now turn the impact of using our xenograft-specific
probes in analysis of actual xenograft samples, which
are a mixture of mRNA originating from the mouse
and human cells. Xenograft samples were each
hybridized to the two types of array (MoEx-1_0-st-v1
and HuEx-1_0-st-v2), with the goal of deconvoluting
the RNA levels into a contribution due to the mouse
(stromal) cells and the contribution of the human
(tumour) cells. The xenograft-specific probes on the
mouse array give an estimate of the expression of
mouse mRNA levels and those of the human array
give estimates of human mRNA levels.

We compared estimates of gene expression using
the xenograft-specific probes (the ‘species-specific’
estimate) to that obtained using all probes with no
filtering (the ‘contaminated’ estimate). We again
limited ourselves to genes with a minimum of five
probes in the xenograft-specific set of probes because
of the improved species specificity seen above. This
resulted in 10 056 human genes and 11 035 mouse
genes that contained more than five probes after both
filters.

We first note that using only the xenograft-specific
probes has a definite impact on the gene expression
estimates as compared with using the full set of
probes. Classification of the xenograft-specific mouse
gene estimates as expressed or non-expressed (see
section 4(vii)) shows approximately 15–25% of genes
per sample are considered expressed in the mouse, as
compared with approximately 60% if the contami-
nated estimates are classified; for the human array,
approximately 60% of xenograft-specific gene esti-
mates are classified as expressed, as compared with
90% of contaminated estimates (see Supp. Table S6).
About 25% of human genes and 40–50% of mouse
genes that were originally classified as expressed,
based on contaminated estimates, change to being
classified as non-expressed.

In Supp. Fig. S15, we compare the distribution of
the xenograft-specific and contaminated gene esti-
mates. For both the mouse and human array, there
are not clear distinctions in expression levels of the
contaminated estimates, with both showing a general
spread across the expression space and a few lower-
expressed estimates. The xenograft-specific gene esti-
mates, in contrast, have a very different distribution
on the two arrays and also a very different from the
contaminated estimates : the human estimates show
large clusters of both expressed and non-expressed
genes, whereas the mouse estimates are predominately
low-expressed, although there is large tail from the
expressed genes.

We can also see the effect of the filtering by plotting
the contaminated expression estimates against the
corresponding average gene signal seen for the
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contaminating species in the control set (Supp. Figs S8
and S10). In both human and mouse expression
estimates, we see a distinct set of genes for which there
is strong correlation between the contaminated
gene estimate and the average signal of the contami-
nating species (although it is important to note there
is some correlation even for the pure (non-xenograft)
samples from the control set, Supp. Fig. S9). The
species-specific estimates given by using the xeno-
graft-specific probes give these correlated genes
low species-specific estimates with little correlation
with the average signal of the contaminating
species, demonstrating the effect of removal of the
contamination.

Examining those genes that only had cross-
hybridizing probes removed in the filtering process
(and no non-responding probes) shows that the drop
in gene expression is greater for the xenograft samples
than the pure samples, again indicating that the
xenograft-specific probes are removing a larger por-
tion of the signal due to removing the effect of the
contaminatingmRNA (Supp. Fig. S11). Furthermore,
the drop in gene expression increases for genes with
increasing percentage of cross-hybridizing probes re-
moved from the gene. For pure samples in the control
set, in contrast, there is a drop with increasing per-
centage of cross-hybridization probes in the gene,
but the drop in xenograft expression is consistently
larger, again demonstrating that the xenograft-
specific probes are removing contaminating signal
and not merely replicating the behaviour seen for pure
samples.

Moreover, the effect on the signal by creating
species-specific gene estimates for the xenograft sam-
ples is clearly much larger for the mouse estimates
than the human estimates. Across all genes, the de-
crease in mouse gene estimates in the xenograft sam-
ples is much larger than we see in the corresponding
human-specific estimates or in the pure mouse esti-
mates from the control set. Moreover, the decrease
in expression is dramatically larger, as compared
with the human-specific estimates on the same sam-
ples, for genes with that were originally estimated to
have high expression using the unfiltered probes
(Supp. Fig. S10) and for genes with a large percentage
of probes removed due to cross-hybridization (Supp.
Fig. S11); again this is contrary to what is observed
for the pure mouse samples. This all supports the
proposition that the xenograft-specific probes are
providing novel estimates of gene expression beyond a
shift in the level of signal. For estimates of mouse
expression, the effect is particularly striking, which
is expected given the expected preponderance of
human (tumour) cells in a xenograft sample, and thus
greater levels of contamination from human cells
when trying to estimate levels of expression of mouse
mRNA.

(iv) Examination of homologous genes

To supplement in situ hybridization or laser capture
microdissected RNA profiling, we present an analysis
tool for xenografts, which could inform human cancer
gene expression profiling by indicating which cell
types a particular gene is expressed from in the mix-
ture of cells that form tumour mass. To achieve that,
we developed a statistical estimate that exploits the
sequence discrimination between human and mouse
RNA in the xenograft, to identify whether a transcript
is produced by cancer cell or stroma. Of the genes that
have unique homologues in the human and mouse
and also pass the filtering requirements (8682 genes),
approximately 20% were expressed in both mouse
and human, 20% were non-expressed in either, 34%
expressed in human and not in mouse and only 2%
in mouse and not human (see Supp. Table S6). By
contrast, before the filtering these same set of genes
indicated 70% were expressed in both, 1% were non-
expressed in both, 6% in human and not mouse and
0.1% only in mouse and not human.

As a specific example, we look at a set of six genes
reported in the literature to be important for stromal
reaction to tumours. MMP13 (Lafleur et al., 2005),
CDH9 (Thedieck et al., 2007), FAPa (Scanlan et al.,
1994) and PTGS2 (Hu et al., 2009) have been shown to
exhibit elevated expression in stroma, in response to
carcinoma. We also used genes that appear in mes-
enchymal-type cancers, in order to utilize this plat-
form system to assess if these genes in mesenchymal-
type cancer are expressed by the cancer cells as well.
These include PTX3, CDH11 (Schneider et al., 2012)
and COL1A2, and are central to stromal signatures
in our previous publications on expression profiling
of human gastric (Boussioutas et al., 2003), GBM
(TCGA, 2008) and ovarian (Tothill et al., 2008)
cancers. These genes have homologues in both the
human and the mouse, and thus it is expected that they
have a great deal of sequence similarity and cross-
hybridizing probes. Indeed 60–90% of the probes for
these genes are removed due to cross-hybridization,
with a much smaller percentage due to non-response,
particularly for the mouse array (Fig. 4). Such
homologues are of great interest in xenograft studies,
since differences in gene expression for the stromal
and tumour could be extrapolated back to tumour–
stromal interactions in human subjects.

In Fig. 5, we show the human and mouse gene
expression estimates for these genes on the xenograft
samples with different phases of filtering. The mouse
gene estimates mainly show an overall reduction in
signal, except for FAP that retains the same level
of expression before and after filtering. Indeed, com-
pared with the large drop seen in the mouse gene es-
timates from the xenograft samples more generally
(discussed above), the relatively small change in
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expression of some of the genes is notable ; however,
this is not unduly surprising since these genes were
selected as examples of genes showing a stromal reac-
tion, and thus likely to be well expressed in the xeno-
graft sample. The human gene estimates, however,
illustrate how the filtering process can change the
interpretation of gene expression. For example, half of
the genes have no average drop in signal in the final
xenograft-specific estimate, whereas the other half de-
crease to various degrees. After filtering at least three
of the genes show greater range of expression than
before and CDH11, shows slightly greater differential
expression between Matrigel and Collagen samples,
the two conditions of interest. These genes also illus-
trate the effect of removing the non-responding probes
to maintain the level of gene expression, particularly
for genes such as CDH9 and MMP13, which have a
large percentage of non-responding probes.

We can characterize whether genes are expressed in
solely the tumour or the stromal cells (human and
mouse, respectively) by classifying either their species-
specific estimates of gene expression of the individual
probes that make up the gene expression estimate
(section 4(vii)). For the homologous genes discussed
above, FAP and COL1A2 appear to be expressed in
only the stromal (mouse) tissues, whereas the other
genes appear to be expressed in at least some samples
for both stromal and tumour tissue, with the possible
exception of PTX3 (Fig. 7). One such example is the
gene CDH11, which has been characterized in the
literature as part of a stromal response signature (in
the midst of genes such as COL1A2, FAP, ACTA2,
etc.). However in our results, it is expressed in the
human cancer cell as well. As proof that CDH11

in human cancer cases is indeed expressed by the
cancer cell, we performed immunohistochemistry on
human gastric cancer sections, with antibodies against
CDH11 protein (see Fig. 6). The results show that
indeed, consistent with our xenograft model, the
CDH11 protein is expressed by cancer cells. As aluded
to above, CDH11 also shows significant difference in
expression levels between the Matrigel and Collagen
conditions (p-value<0.01). The comparison of
Matrigel versus Collagen suggests that the reason this
gene expression is correlated with stromal derived
extracellular matrix genes is not because the cell
of origin is stromal, but rather as part of the response
of the human cancer cell to stromal-derived extra-
cellular constitution. We were interested in the
gene expression of the cancer cell and the stroma
to altered extracellular matrix, but it is also possible
that the gene expression reaction is directly driven
by the extracellular matrix (ECM). To address this,
we exposed murine tissues without human tumours,
in two animals with Matrigel or Collagen, and used
real-time PCR of mouse xenograft response genes,
such as GzmD and GzmE, and found them to be re-
sponsive to the Matrigel directly. By contrast, ex-
pression profiling of cultured MCF7 to Matrigel and
Collagen did not include the mesenchymal response
genes (not shown).

The diminished number of genes after filtering
and the small number of animals compromised the
ability to calculate false discovery and significance
t-statistics. However, we were specifically interested in
this xenograft model to answer a biological question;
which mesenchymal type gene is expressed by the
epithelial cancer cells as well, and in response to

Fig. 4. Barplots showing the percentage of probes lost due to cross-hybridizing (light grey), lost due to non-response
(dark grey) and xenograft-specific (black) for the six genes discussed in section 2(iv). Right : probes for the human array;
Left : probes for the mouse array.
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Fig. 5. For legend see following page
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altered environmental conditions, such as ECM den-
sity. We further extended our analysis to genes which
we previously identified as predictive of ovarian
cancer patient outcome, probably contributed by
stromal cells (Tothill et al., 2008), and which had been
interrogated for allelic association with ovarian
cancer predisposition (Johnatty et al., 2010). Of these
31 genes, 29 have homologues in mouse and human,
and we restrict our consideration to the 16 that had at
least five probes remaining in the xenograft-specific
probes on both the mouse and human platforms.
Among the stromal signature set, five genes are
classified as expressed only in the stromal tissue
(COL1A2, NID2, SFRP4, THBS2 and VCAN) and
two genes are only expressed in tumour tissues
(DFNA5 and NNMT). Four are classified as ex-
pressed in both (list), three are not expressed in either
(list), and two show variability among the samples
(list) (Fig. 7; see Supp. Figs S13 and S14 for plots of
the actual estimates of expression level from these
stromal signature genes). The fact that most of the
genes for which we can determine species of origin
were expressed in the stroma is further support to our
claim that xenograft arrays would properly reflect the
situation in human cancer (as reflected by expression
profiling of laser capture microdissected RNA). The
only two exceptions, DFNA5 and NNMT, may re-
flect the intricate biological signalling that is engaged
between cancer cells and their neighbours. Since these
genes were tightly co-expressed in human cancer
profiles, and our xenograft model show that they
originate from different cell types in the tumour
microenvironment, these results further demonstrate
the power of the xenograft arrays to deconvolute
cancer expression patterns that are contributed by
both stroma and cancer cells, and unravel the exist-
ence of paracrine crosstalk that contributes to the
tight co-expression exhibited by these genes.

Especially interesting are the genes that are ex-
pressed by the cancer cell, but are correlated with the
expression of stromal genes that predict patient out-
come. These are likely the results of the cancer cell
response to the altered microenvironment, presented
by the activated stroma (Thompson & Weigel, 1998;
Tomida et al., 2008). CDH11 appears in human can-
cer expression data in the midst of stromal response
genes (COL1A2, FAP, ACTA2, etc.) and yet, in our
results, it is expressed in the human cancer cell as well.
The comparison of Matrigel versus Collagen suggests,
however, that the reason this gene expression is cor-
related with stromal derived extracellular matrix

genes, is not because the cell of origin is stromal, but
rather as part of the response of the human cancer cell
to stromal-derived extracellular constitution. This re-
presents the first example of paracrine response of the
cancer cell to the stroma, demonstrated by the xeno-
graft model. As proof that CDH11 in human cancer
cases is indeed expressed by the cancer cell, we per-
formed immunohistochemistry on human gastric
cancer sections, with antibodies against CDH11 pro-
tein. The results show that indeed, consistent with our
xenograft model, the CDH11 protein is expressed by
cancer cells, ostensibly in response to altered tumour
extracellular matrix, laminin or other Matrigel-only
component.

We were perturbed by the absence of significant
changes in the canonical EMT regulators, TWIST1,
SNAI1/2, ZEB1/2. Therefore, we assumed that some
of the difficulty of identifying those was a consequence
of the lower number of analysed, species-specific
probes. To further substantiate that the cancer cell
response in the xenograft is related to EMT, we per-
formed gene set enrichment analysis (GSEA Mootha
et al., 2003; Subramanian et al., 2005). We performed
GSEA on the human-specific gene expression data,
and found the mesenchymal signature of ovarian
(Tothill et al., 2008) and breast cancer (triple negative
(Abraham et al., 2010)) gene sets to be most positively
correlated with the human response to the change
in extracellular matrix from Matrigel to Collagen.
Most of the other significantly associated gene sets
represent oestrogen response, which is likely con-
tributed by the oestrogen capsules that are necessary
for MCF7 xenografts. Among the mesenchymal
response associated with the Matrigel-driven cancer
cell signature were key EMT driver genes, such as
TGFb3, Zeb1, Snai2, FN1 and VIM.

3. Discussion

Xenografts and gene expression arrays are both
popular tools in the research of cancer aetiology and
ideal for investigation of cancer–host interactions.
However, hybridization-based profiling of mixtures
of nucleic acids from different species is confounded
by an unknown degree of cross-hybridization. It has
been claimed that the degree of cross-hybridization
can simply be postulated from the sequence con-
servation (Davey et al., 2009; Toleno et al., 2009;
Samuels et al., 2010). It is noteworthy that more
conserved genes are likely of key regulatory import-
ance to the cell, and thus, excluding the homologous

Fig. 5. Values of gene expression for specific candidate genes when no probes are removed (grey), only cross-hybridizing
probes (light colour) and both cross-hybridizing and non-responding probes (dark colour). (Top): Human gene estimates
based on the human array (Bottom) mouse gene estimates based on the mouse array. Collagen samples are shown with a
dot and Matrigel samples are shown with a triangle.
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genes introduces an ascertainment bias of immeasur-
able impact. However, the focus of this paper is
primarily providing the empirical data to support
analysis of xenografts and assess the degree such

homologous genes are hindered from xenograft
analysis. We show here that these sequence-based fil-
ters fall short of properly deconvoluting the mRNA
species of origin. We describe here a method to em-
pirically identify the Affymetrix chip probesets that
are reliably interrogating the signal from one species
and not the other, allowing species-specific profiling
of both the host and the cancer cell within the mixture
derived from the xenograft. Moreover, because the
filtering is done at the probe level, we retain gene
estimates of even highly homologous genes, which
allows for analysis of the stromal–tumour interaction,
unlike recent filtering efforts which removed entire
homologous genes (Samuels et al., 2010).

The main motivation of this work was to avoid
drawing researchers ’ attention to the potential arte-
facts, caused by cross-hybridization. On the other
hand, the tool we describe carries an acute weakness,
where genes that respond to tumour–stroma interac-
tions do cross-hybridize. All of these genes are actu-
ally excluded from the analysis, although they may be
affected by the tumour–stroma interactions; there-
fore one will not be able to address their roles in
tumour–stroma interactions in further studies. It is
noteworthy that even with massively parallel sequen-
cing a large fraction of the genes are not interpretable
in terms of determining human or mouse origin
(Conway et al., 2012).

The control of EMT by the cancer microenviron-
ment has recently received a boost of recognition and
insights (Haviv & Thompson, 2012). Mesenchymal
signature represents poor patient outcome in a few
types of carcinoma (Sotiriou et al., 2006; TCGA,
2008, 2011; Tothill et al., 2008). Most of the mes-
enchymal gene expression stems from stromal cells,
but, since the EMT process in the epithelial cell is so
remarkably changing the phenotype of the cancer
cell, it is not clear that all the clinical features of a
whole tumour mass that expresses elevated levels of
mesenchymal genes, are driven exclusively by the
stromal cells. Further confounding the clinical and
aetiological interpretation of poor prognosis of mes-
enchymal gene expression is the extensive variation of
the gene expression caused by EMT. The model we
used here, with a cell line, MCF7, which represents
luminal A, ER+, epithelial breast cancer. A unique
advantage of this model, and the ability to discern the
expressing cells, is the demonstration that some of the
response to elevated ECM in mesenchymal type can-
cers (modelled by the difference betweenMatrigel and
Collagen) is borne in the epithelial cell, in terms of
CDH11, TGFb3, Zeb1, Snai2, FN1 and VIM. This
observation suggests that the debate, whether EMT
exists in vivo, is partially driven by the difficulty to
detect mesenchymal gene expression in the epithelial
cell under an overwhelming signal of the same genes
by the stromal cells, while phenotypically, it is

Fig. 6. Immunohistochemistry (IHC) results on human
gastric cancer sections, with antibodies against CDH11
protein. (A) IHC of gastric cancer at r20 magnification,
(B) IHC of gastric cancer at r10 magnification and (C)
gastric cancer haematoxylin and eosin (H&E) staining.
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possible that the more important gene expression is in
the cancer cell.

4. Methods

(i) Preparation of samples

To determine the degree to which human and mouse
transcripts cross-hybridize to the other array, normal

and malignant tissues of both mouse and human
origin, hereafter referred to as the ‘control set ’,
were profiled on both human and mouse Affymetrix1

All Exon arrays. Four pools of equimolar mixes
of total RNA were produced for each species:
two pools of normal cells and two of tumour cells or
tissues.

Human tumour pool : fresh frozen tissues from two
breast, two colon and two ovarian cancers from our

Fig. 7. Posterior probability (per sample) of gene being in the non-expressed gene group for set of candidate genes (top)
and set of stromal signature genes (bottom). High values indicate that gene is not expressed.
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previously published publication (Tothill et al., 2005)
were pooled to generate the hC6 human tumour pool.
An ideal tumour sample would represent a pool of all
tumours in the carcinoma of unknown primary
(CUP) collection (Tothill et al., 2005), and carefully
selected to represent the different molecular subtypes
for this cancer type (Perou et al., 2000). This is an
issue since tumour-to-tumour variation would affect
the representation of any given gene, and thus the
process of filtration would suffer from compromised
extendibility. We wanted the tool to be relevant to
particular types of cancers, which are the focus of re-
search in our laboratory. We tested the number of
publications per year for each cancer type, and
admit that prostate, lung and liver cancers exceed the
use of ovarian and colon cancer xenograft models.
Nonetheless, we believe that our results are more ex-
tendable by the fact that the tumour references re-
presented different tumour types ; so the effect of
tissue-specific expression of genes on the filtering is
minimized.

Human reference pool : the 11 cell line pool used by
Perou et al. (2000) was generated to form the human
hCL11 cancer cell lines reference pool. The focus of
this study was to characterize the contribution of
stromal cells to carcinoma-specific gene expression.
Thus, improving the reference RNA proximity as
representative of normal human tissue would have
been a potential improvement to the study design.
However, ‘normal ’ cell lines do not represent absol-
utely normal cells, but rather non-transformed cells
that have gained the capacity to grow in culture.
We therefore resorted to the common reference for
microarrays analysis of human solid tumours (Perou
et al., 2000).

Mouse references : three mouse tumours from each
of the mammary (4T1.2), colon (MC-26) and ovarian
(RAS mutation conditional knock-in and PTEN
knock out) tumour models were obtained to generate
the mC9 tumour pool. Three E17 embryos were used
to generate the mE17 reference normal pool. For each
of the four pools (six tumours or reference sources),

total RNA were pooled and arrayed on three inde-
pendent chips of each species.

The set of xenograft-specific probes were evaluated
on xenograft samples created from implanting the
MDA-MB-231 breast cancer cell line into mouse
mammary glands. All cells were embedded in a two-
layer ECM gel. The top layer of 15%Matrigel in 85%
Collagen I was placed over a layer of 100% rat-tail
Collagen I. The comparison in this study was between
gels containing identical numbers of MDA-MB-231
cells, embedded either in the top layer (hereafter
referred to as Matrigel) or the bottom layer (hereafter
referred to as Collagen). After 72 h of culture at
37 xC in Dulbecco’s Modified Eagle medium
(DMEM) 10% fetal calf serum (FCS) medium,
1.5 mm3 pieces of these artificial tissues were im-
planted into the fourth mammary gland of severe
combined immunodeficiency (SCID) BALB/c mice.
The cell density in the ECM was calculated to allow
for 1r106 MDA-MB-231 cells to be introduced into
each animal. Tumour growth was monitored using
electronic callipers and the mice were culled when the
tumours reached 500 mm3. Tumour mass, collected
from three independent animals per group, was
excised from euthanized animals, and used for total
RNA preparation. Total RNA was prepared using
Trizol (Invitrogen1) followed by RNeasy mini kits
(Qiagen1) as previously described (Boussioutas et al.,
2003). Each of the human and mouse All Exon arrays
were hybridized with total RNA from each animal
(Table 2).

(ii) Annotation and processing of the arrays

For the human and mouse arrays, a custom anno-
tation of the array was generated by mapping the
probeset (Exon) boundaries provided by Affymetrix
to the Ensembl 50 database of gene boundaries. Only
probesets that were both annotated by Affymetrix
as ‘core ’ probesets and that were mapped to the
coding region of a gene in Ensembl were retained.
Furthermore, we excluded any genes that overlapped

Table 2. Summary of the samples that were hybridized onto mouse and human All Exon Arrays

Species

Biological
condition of
interest Nature of triplicate arrays Description of pool

Control set
(12 samples)

Human Tumour Technical repeat of the same material hCL11: 2 tumours from each of
3 tumour types

11 cell linesa Technical repeat of the same material hC6: 11 normal human cell lines
Mouse Tumour Technical repeat of the same material mC9: 3 tumours from each of

3 tumour types
Normal Technical repeat of the same material mE19: 3 embryos

Xenograft set
(six samples)

Xenograft Matrigel Biological repeats from three animals
Collagen I Biological repeats from three animals

a Represents the reference in many solid tumour profiling papers (Perou et al., 2000).
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in their probesets, unless all of the probesets that
mapped to the genes were shared. This resulted in
17 594 gene definitions for the human array (with
1 018 144 probes) and 17 052 gene definitions for the
mouse array (with 818 131 probes). This information
was converted into the standard chip definition file
(cdf) type for processing of the arrays. The samples
from the species-specific experiment were background
corrected and normalized using quantile normalization
with the package aroma.affymetrix in R (Holmquist &
Ashley, 2006), separately for each array type (MoEx-
1_0-st-v1 or HuEx-1_0-st-v2) and sample species type
(mouse or human). For the xenograft samples, the ar-
rays were similarly background corrected and quantile
normalized separately for each array type using all of
the probes from this custom annotation.

(iii) Alignment of probes

For each of the arrays, the FASTA file of probe se-
quences, made available by Affymetrix, were aligned
to the opposite species genome using Bowtie 0.12.5
(Langmead et al., 2009). Alignments were allowed
up to two mismatches and based on hg18 (human)
and NCBIv37 (mouse). All aligned probes were con-
sidered aligned, regardless of if the alignment was
unique.

(iv) Defining xenograft-specific probes

The process used to select the xenograft-specific
probes was exactly the same for probes on both the
mouse and human arrays, and so for simplicity we
will describe only the human array.

After preprocessing of the arrays, we took a sum-
mary of each probes’ intensity value across the six
mouse samples and then clustered the probes into
high and low expressing probes based on this sum-
mary value (see Fig. 1 for an illustration of the filter-
ing procedure). Our summary was the second largest
value of the probe across the six mouse samples. This
summary value was chosen so as to be sensitive to
signal from sample type but still require at least some
replications in behaviour across the samples. This
gave us a single summary value per probe for the level
of mouse signal on the human array. We fitted a two-
group mixture model to a random sample of probes
(n=100 000) using these summary values with the
package mclust in R (Stefanova & Demin, 2006).
Using the mixture distributions, we calculated a pos-
terior probability of coming from the ‘ low’ expression
cluster for every probe (see Fig. 1 for an illustration).
Probes were considered to be cross-hybridizing if they
had a posterior probability of 0.20 or greater of being
in the ‘high’ expression cluster, indicating high levels
of cross-hybridization.

We similarly identified and removed probes from
the human array that were non-responding to human
mRNA, if they came from expressed genes. We per-
formed the same cluster analysis described above,
only this time using the human samples profiled on
the human array (for the mouse samples on the mouse
array, the procedure was slightly altered to fit three
groups, as the distribution of these probes, unlike the
others, was more dispersed). With these samples,
probes were classed as non-responders if they had a
posterior probability of 0.20 or greater of being in the
‘ low’ expression cluster, i.e. showed low expression.
To identify whether the gene was considered ex-
pressed, we created gene expression estimates after
removal of only the cross-hybridizing probes and
after the joint removal of both the cross-hybridizing
and non-response probes. Using the gene estimates
from removal of only the cross-hybridizing probes, we
again performed a mixture-model clustering based on
the largest gene expression estimate across the human
samples. This mixture model, based on removing the
cross-hybridizing probes, formed our basis for classi-
fication of the genes as non-expressed (genes estimates
based on jointly removing both the cross-hybridizing
and non-response probes would create inflated cutoffs
for classification of genes as non-response, since
most non-expressed genes would not have estimates,
after non-response probes were removed). We then
classified both sets of gene estimates based on the
mixture model. Most genes were predicted the
same, regardless of whether the non-response probes
were first removed. Of those genes whose classifi-
cation changed from ‘non-expressed’ to ‘expressed’
after the removal of non-response probes, the
majority dropped to less than five probes after
removal of non-expressed probes, which is our mini-
mal requirement for the number of probes needed
for a usable gene estimate. For these genes, we con-
sidered the gene non-expressed and did not remove
the non-response probes. For the few genes whose
classification changed and still had five or more
probes after removing non-response probes, we
treated the gene as expressed and removed the non-
responding probes.

To obtain the final set of xenograft specific probes,
we further removed probes that aligned anywhere in
the mouse genome with no more than one mismatch.
The probes remaining after all three filtering steps
make up our xenograft-specific probes. After identi-
fication of xenograft specific probes, we created an-
other custom cdf file corresponding to those probes.
Gene expression estimates were fitted based on both
of our custom cdfs : the xenograft-specific cdf and
the original Ensembl annotation cdf, described
above. Custom cdfs using just this set of probes and
Ensembl gene definitions are available as supplemen-
tary files.
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(v) Gene expression analysis

The standard RMA model (Irizarry et al., 2003) im-
plemented in the package aroma.affymetrix was used
to obtain gene expression estimates. Differential ex-
pression was evaluated using the limma package in R
(Smyth, 2005; Robinson, et al., 2010), which adjusts
the estimates of standard deviation by moderating
extreme values to be closer to the overall mean of the
standard deviations across all genes. For the control
set (used in filtering the probes), the moderated t-test
was a comparison of the two types of tissue pools
within a species, one representing malignant tumours
and the other normal tissue, with each group con-
taining three technical replicates (see section 4(i)). For
the xenograft samples, the comparison was between
Matrigel and Collagen.

(vi) GO annotation analysis

To summarize characteristics of the genes that were
lost to possible analysis (due to removal of probes,
as well as our requirement of at least five probes
after filtering described below), we used the topGO
package in R (TOPGO) to perform a GO analysis
for detection of ontology groups that had a dis-
proportionately large loss of genes. As our basis
of comparison, we identified all genes from our orig-
inal annotation that initially contained at least five
probes and whose Ensembl ID identified with a
GO term (13 278 and 12 189 genes for human and
mouse, respectively). Of those genes, we then eval-
uated those genes lost to analysis due to our filtering
(7103 and 5421 for human and mouse, respectively)
and whether they were significantly over-represented
in certain GO terms. We implemented Fisher’s exact
test per GO term, as well as weighted tests that correct
for significance due to neighbouring nodes (Alexa
et al., 2006). For most purposes, we considered only
the p-value obtained after correction due to neigh-
bouring terms, which tends to assign a single category
the significance level, rather than spreading the effect
through entire branches of the DAG (see, for ex-
ample, Supp. Fig. S10 for comparison). However, to
compare the intersection of the mouse and the human
terms, we relied on the uncorrected p-values so as to
capture similarities better, since the weighted version
at times assigned significance to related, but distinct
terms.

(vii) Gene-level predictions of non-expression

An important biological question is whether hom-
ologous genes are expressed by the mouse or human
cells. Specifically, once xenograft samples are hy-
bridized to both mouse and human arrays, our set of
xenograft-specific probes will give gene expression

estimates corresponding to estimates of human and
mouse mRNA levels, respectively, in the xenograft
sample. We give a procedure for evaluating such gene
estimates and classifying whether a gene was present
in the mouse or human cells, or both.

We built on the mixture-model procedure described
above to identify genes that are expressed at back-
ground. However, we developed a method that will
appropriately classify genes regardless of whether the
observed distribution of gene expression estimates
contains members of both classes. Instead we only
assumed that both expressed and unexpressed probes
are well represented on the array, regardless if the
probes are used in our gene expression estimates. This
is particularly relevant in the case where our genes
will be mostly unexpressed, such as the stromal signal
in xenograft samples (see Supp. Fig. S15). Indeed,
because expressed genes naturally take on a much
wider distribution of values than unexpressed genes,
naı̈ve clustering of the xenograft-specific mouse esti-
mates does not recover reasonable classifications, but
rather identifies almost as many genes expressed as
not, even though they have quite low expression
values (see Supplementary Text (available at http://
journals.cambridge.org/grh) for more details on the
problems in clustering the gene expression estimates
directly).

Our method first classifies all probe intensities in
the original annotation as expressed/non-expressed
using the same mixture model approach described in
section 4(iv), the only difference being that we now
use as input individual probe intensities and not a
summary across samples (we use as input a random
sample of 2 million probes). The distribution of probe
intensities from the xenograft samples shows a clear
distinction between expressed and non-expressed
probes on both arrays (Supp. Fig. S15). However, the
mixture-model from the probes is inappropriate for
clustering gene expression estimates since it does not
reflect the distribution of the gene expression values.
Specifically, the mixture model creates an estimate of
the prior probability of being in the expressed or non-
expressed groups, as well as estimating the spread
of the cluster around its mean. Both of these values
would not be expected to be the same when con-
sidering gene expression estimates.

In order to use the probe-level information, we
made the assumption that the mean value for the
clusters found by the probe-level model is a good es-
timate of the mean of the expressed/non-expressed
genes as well. We then fitted a gene-based mixture
model, but constrained the mean estimates to be equal
to those found in the probe-level mixture model. This
means that we only estimated the standard deviations
of the two clusters and the mixing proportion (see
Supp. Fig. S16 for a comparison of the mixture
models). For the human array, there is little difference
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in our approach and direct clustering of the gene es-
timates, but for the mouse array there is a big impact,
with four times as many genes classified non-ex-
pressed as expressed (see the Supplementary Text for
more comparisons of this method with direct cluster-
ing of gene expression estimates).

Using this mixture model, we can then find pos-
terior probabilities for a gene to be from the expressed
and non-expressed classes. We classify genes as ex-
pressed/non-expressed if their posterior probability is
>0.80 of being in that class ; otherwise we declare it
uncertain.

(viii) Ingenuity pathway analysis

The differentially expressed genes under two-fold
change and uncorrected significance of p=0.05 were
submitted to Ingenuity Pathways Analysis1, and the
first network was presented in Supp. Fig. S18.
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The online data can be found available at http://journals.
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