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THE BERGMAN PROJECTION ON WEIGHTED
NORM SPACES

JACOB BURBEA

1. Introduction. Quite recently Bekollé and Bonami [1] have charac-
terized the weighted measures X on the unit disk A for which the Bergman
projection is bounded on L,(A : X\), 1 < p < 0. Our methods in [4] can
be applied to even extend their result by replacing the unit disk with
multiply connected domains. This is done via a rather interesting identity
between the Bergman kernel and its ‘‘adjoint” [2]. As a corollary of our
result we obtain a generalization of a result due to Shikhvatov [7].

Let D be a bounded plane domain and let A be a positive locally inte-
grable function in D. X is said to belong to M,(D) (1 < p < o) if it
satisfies the Muckenhoupt condition:

Sup [T%’_I f V)\(z)da(z)] [Tflf_l f V)\(z)-””_lda(z)]p_l <o,

where the supremum is taken over all sectors IV C D, do is the area
Lebesgue measure and |V] = o(V).

We denote by L, (D : \) the space of all measurable functions fin D for
which

1/p
HfHLp(D:)\) = {fD ’f(Z) |p>‘(z)d‘7(z)} < 0, 0< P <00,

and we write L, (D) for L,(D : 1). We also write ||f||, for ||f||z,m). We
shall always assume that 1 < p < o and that ¢ = p/(p — 1). From the
M,(D)-definition follows that if N & M,(D) then X € L,(D) and
Nt € L,,(D). Moreover, in this case
N[Nl = GIDP?,

where C,(D) is a positive constant which can be taken as the supremum
in the definition of N € M, (D).

We consider the Hilbert transform

(To(NE) =+ fp T de ()

and the Riesz transform

O = {i/@eE)

|z
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where the integrals are taken in the principal value sense. [t is well known
that these operators are bounded on L,(D) 1 < p < co. Moreover, if
fz € L,(D) then f, = —Rp*; and therefore

||f2||17 = Ap'IfEHD-

Here f, = df/dz and f; = 9f/9z.
We shall be using the following proposition (cf. [5]):

ProrosiTION 1. 1) is bounded on L,(D : \) if and only if N € M,(D).
Let G = Gp(z, ¢) be the Green's function of D. Here
G(Z, g') = H<Zr g-) - IOg |Z - g-la

where H = H(z, {) is symmetric and harmonic in (z,{) € D X D. The
Bergman kernel is given by

- 2 9°G
(11) KD(Zy f) = - _71'_ aza(:
and its “‘adjoint’”’ [2] is
2 9°G
(1.2) Lp(z¢) = — ¥ 9200
Consequently,
1 1
Lp(z,¢) = Pt In(z,§),
where
2 9°H
Ip(z,¢) = 9207

is symmetric and holomorphic in (z3,¢) € D X D. We note that
Ip(z,¢{) =0 when D is a disk and that I,(z, ¢) is holomorphic in
(z,¢) € D X D when 9D is analytic (cf. [2, p. 211]). If ¢ is a conformal
mapping of D onto @ then

Gp(z,§) = Gale(2), ¢())

and therefore

(1.3) Kp(z, ) = Ka(¢(2), (:))¢' ()9 (1),
and

Lp(z,{) = La(e(2), #(5))e’ (2)e" (¢).

We consider the ‘‘Bergman-Schiffer transforms”

(L4) (o) (&) =fD Lyp(z, {)f(2)do(2)
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and

56 = [ RGO

where the first integral is taken in the principal value sense. It follows
that

(1.5) 7‘1) = QD + SD.
The (formal) adjoint of Q is given by

(@ () =fDL<z, $)f(@)do(2)

and the ‘“Bergman projection”’ is
(1.6) (Poh)() =fDKD(z, ) f(2)do (2).

2. Identities amongst operators. In this section we shall assume that
D is a bounded domain with dD being analytic. It will be clear from the
sequel that this assumption could be weakened considerably. For ex-
ample, it will be sufficient, after some modification of the argument, to
assume that D is of class C* with a Dini continuous normal (cf. [4]).

Since 9D is analytic it follows that Ip(z, ¢) is holomorphic for
(z,¢) € DX D and therefore S, is a bounded operator on L,(D),
1 £ p £ . Consequently, in view of (1.5), Qp is a bounded operator on
L,(D),1 < p < 0.

Let C.”(D) be the class of C®(D) functions with compact support
inside D and let H(D) designate the class of holomorphic functions in D.
The following theorem is crucial to our work. It holds also for domains
which are not so smooth (cf. [4]). For the special case that p = 2 and D
is analytic it was also proved by Block [3] by using different methods.

TueorEM 1. I — Py = QpQp on L,(D), 1 < p < oo. Here I is the
identity operator on L,(D).

Proof. Let f € L,(D) and write

@.1) g@) =27" fD Gs(z, O)f(2)da (2).

From classical results of potential theory it is well known that g; and gz
exist a.e. in D, and they are given by

(22) g@®) =f¢) + 27" fD H (2, $)f(2)do (2)

and

23) g() =27 f Gas(z, ) (2)do (2).
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Using (1.2) and (1.4), we can express (2.3) as

(24) g() = —(Qf) ().

Further, Hz = Gz and so, using (1.1), (1.6) and (2.2),

(2.5) &) =T — Pp)f).

From (2.4) it follows that g¢ € L,(D) and therefore gr = — Rp?gr. This
together with (2.4) and (2.5) shows that

(2.6) I - Pp = RDZQD

and therefore I — P, is continuous on Lz(D). Because of the continuity
of the operators I — P, and QpQp, and the density of C.°(D) in L,(D),

it suffices to prove the theorem for C,”(D). Let now f be in C,”(D). Since
Ppf € H(D) we have from (2.5) that g7 = f3. By Green’s formula

2.7 fD G:fdo(z) = _f,, Gfsdo(z) = —fD Gg.:do(2) =fn Gsg.do(3).

We have used the fact that gz = —(Qpf, in accordance with (2.4), is in
C.° (D) because f € C.7(D). The above integrals are, of course, taken in
the principal value sense. Therefore, using (2.1), (2.5) and (2.7),

I —Pp)f=¢g.= —Q_D(gz) = —Q_D(_Qof) = QDQDf
and the assertion follows.

We have actually shown the following operators identities on L, (D)
(1< p <o), as (2.6) above shows:

I - PD = 1€I)2QD = Q—DQD.

3. The Bergman projection. We again assume that dD is analytic
and as before we note the possibility of weakening this assumption. We
fix1 < p <o and ¢ = p/(p — 1). Our main theorem is:

THEOREM 2. (i) If N € M,(D), then Qp s a bounded operator on L,(D : \).
(1) If Qpis bounded on L,(D : N) and \,\=1"" € L,(D), then N € M,(D).
(iii) If D is a disk and Qp is bounded on L,(D : N), then N € M, (D).

Proof. (i) Since X € M,(D) we have ||M}|INY|,, £ C,|DJ?. Therefore

Soflon = 1(SaH@ P ©)a )

-/

< | [ 1o | s 2] [ remeime )|

Ne)do ()

j;Eafv@Md@

X[f;Mﬂﬁ%w@ﬁpq=AmwmmﬂMAmsz
< A7 DI 1% -
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Consequently, Sp is bounded on L,(D : \). According to (1.5), Qp =
Tp — Sp and therefore, by Proposition 1, Qp is bounded on L,(D : \).

(ii) Since A, \=97 € L,(D) it follows, as in (i), that Sp is bounded on
L,(D : N). Also, since Qp is bounded on L,(D : \) it follows that Tp =
Qp + Sp has this property too. Proposition 1 shows, therefore, that
N € M,(D).

(iii) If D is a disk, then I5(z, {) = 0. Consequently, Qp = T and so
again, by Proposition 1, N € M, (D).

This leads to the following result about the Bergman projection Pp:

THEOREM 3. (i) If N € M,(D), then Pp is bounded operator on L,(D : \).
(ii) Pp is bounded on L, (D) if and only if Qp is.

Proof. This follows from Theorems 1 and 2, (1.5) and the fact that
SD = TDPD.

This theorem complements the result of [1].

4. Applications. We now derive some consequences from Theorem 3.
We shall allow the domain D not to be smooth. However, we shall assume
that D is bounded by # non-degenerate boundary components Cy, . .., C,
where, say, C is the outer boundary. Then D can be conformally mapped
onto a domain © which is bounded by % closed analytic curves. Let
¢ : D — Q be such a mapping. Then ¢ = ¢, 0 ¢,-10...0 ¢1, where each
factor ¢; is a conformal mapping of a simply connected domain D;. For
example, w; = ¢1(2) is conformal on the simply connected domain D,
which is bounded by C; and contains D, and ¢é;(D;) is the unit disk.
w; = ¢ (w;—1) (2 = j = n) is conformal on the simply connected domain
D, which is bounded by ¢;_10¢,20...0¢:1(C;) and contains ¢;_; 0
¢;20...00¢1(D); ¢;(D;) is the exterior of the unit disk. See [4] for
additional details. We write ¢ = ¢~

We define

t(D) = Sup {r € R\U {oo} : ||¢'[|, < 0}.

This definition is clearly independent of the particular choice of the
analytic domain @ = ¢ (D) and it is also obvious that t, = (D) = 2. It
can be shown [4] that in fact{, > 2. We can, therefore, define the interval

~ 5[& q »tu] 1l < o,
o 2 g ) 061, - o

We also write

J(D) = I(D) — {1, ©}.
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For a fixed p € J(D) we let ¢ = p/(p — 1) (and thusq € J(D)). D is
said to belong to class W, if ¢’ satisfies
1 Pl
1) Sup (b 161,08)00) <0,
v \le¢ly

where the supremum is taken over all sectors U C D and

o = | 11010 |

Obviously, this definition is independent of the particular choice of the
analytic domain @ = ¢(D). Further, always D € W, and D € W, if and
only if D € W,.

The following result was also obtained in [4].

THEOREM 4. Let p € J(D). Then Py is a bounded operator on L,(D) if
and only if D € W,

Proof. For z,¢ € D we write w = ¢(2), 7 = ¢({) with », 7 € Q. Also,
for f € L,(D) welet g = (foy) - ¢/ Using (1.3) and (1.6), we have

Ppf) () = ¢'() fQKQ(w, 7)g(w)do(w) = ¢'(£) (Pag) ().

Therefore,
2ol = | O (Pag) () P 6)

- [ 1eworyorise.

Hence the L,(D) boundedness of P, is equivalent to the inequality

fs, [(Pag) @) P|¥ (@) [ 7do (@) < A, £l

However,

e = | @)Y @) 7o ).

Therefore, the above inequality is equivalent to the boundedness of I’
on L,(Q:\) with X + [¢/|>~?. By Theorems 2 and 3, since p € J(D), thisis
equivalent to A € M,(Q) which exactly means D € W,. This concludes
the proof.

If D is simply connected and 9D is of class C* with a Dini continuous
normal then it follows from a theorem of Warschawski (see [6, p. 298])
that there exist positive constants ¢ and b so that 0 < a < |¢'(z)| <
h < o, z € D. This is also true in the more general case when D is
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multiply connected by appealing to the above mentioned factorization ot
¢. Therefore, for Dini smooth domain D, t, = o, I(D) = [1,©] and
J(D) = (1, ). Further, D ¢ W, for any p ¢ J(D) = (1,0).

Assume now that D is Dini smooth except at one point ¢ € dD. At the
point ¢ the boundary makes an angle with aperture /e, 1/2 £ a < ©.
We denote the class of such domains by M,.

Let D € M,. We may assume that ¢ ¢ C;. It is then well-known that
wlz — ¢t | (2)] £ o)z — ¢t forall 3 € Dy

Since Cy, . . ., C, are Dini smooth it follows from the above factorization
of ¢ that

4.2) alz—cl =9’ E) S0z — Y «, b€ (0,0),z € D.

In this case, condition (4.1) is equivalent to the condition that

1 N/l 1
[Tgr—,g ~ ¢ lpu

U

¢’Hq:U é (/V

for the sector
U=D(p:B)={zcD:z—c=re",0=r =p, —B/2=60 <p/2},

and, that the constant C is independent of p and 8. Now,

_ a=p _ fatprt, B a-bpse
fUIz cl do () 6f07 dr (a—l)p—i—?p ,

only when (¢ — 1)p + 2 > 0. This of course is true for all p > 1 if
a>1. When 1/2 £ a < 1 we must have p < 2/(1 — «). Therefore,
J(D) = (1,0)if D € Mywithae =2 1,and J(D) = (2/(1 + @), 2/(1 — a))
if D€ M,with 1/2 < o < 1. Also, using (4.1) and (4.2) we obtain

2 2
a d < ,1‘, el el < (ll) .
() s = ol 1ol 3 (2) by
with g(a, p,q) = [(@ — 1)p 4+ 2]V?[(« — 1)q + 2]'/%. For domains D of
class M, therefore, we have that D € W, whenever p € J(D). Conse-
quently using Theorem 4, we obtain:

THEOREM 5. Let D € My If @ = 1 then Pp is bounded on L,(D) for all
pe€ (1,0). If 1/2 =a <1 then Pp s bounded on L,(D) for all
pe2/A+a)2/(0—a).

A special case of this theorem was also obtained by Shikhvatov [7] by
using different methods.
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