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Abstract

Recursive block decomposition algorithms (also known as quadtree algorithms when the

blocks are all square) have been proposed to solve well-known problems such as matrix

addition, multiplication, inversion, determinant computation, block LDU decomposition and

Cholesky and QR factorization. Until now, such algorithms have been seen as impractical,

since they require leading submatrices of the input matrix to be invertible (which is rarely

guaranteed). We show how to randomize an input matrix to guarantee that submatrices meet

these requirements, and to make recursive block decomposition methods practical on well-

conditioned input matrices. The resulting algorithms are elegant, and we show the recursive

programs can perform well for both dense and sparse matrices, although with randomization

dense computations seem most practical. By ‘homogenizing’ the input, randomization provides

a way to avoid degeneracy in numerical problems that permits simple recursive quadtree

algorithms to solve these problems.

Capsule Review

Block recursive algorithms for matrix operations hold a fascination for functional program-

mers and numerically-oriented computional scientists alike. Their recursive structure is very

naturally expressible in functional languages, this expression lends itself straightforwardly to

decomposition on parallel computers, and in certain cases the asymptotic complexity of the

algorithms beats traditional schemes. Practical application has been hampered by matrices

with zero entries, or other kinds of ‘degeneracy’. Recursive algorithms for inversion, for

example, can break down on matrices with zeroes on the diagonal. Lê and Parker show that

a novel application of randomization can go a long way towards solving these problems.

The randomized algorithms are still easily expressible in functional style, they have perfor-

mance similar to (or even better than) traditional algorithms with pivoting, and their level of

numerical accuracy should be acceptable for many applications.

1 Introduction

We have investigated alternative computation schemes for large-scale matrix com-

putations. A natural functional programming approach called recursive block de-

composition (or quadtree decomposition when the blocks are all square) operates via

divide-and-conquer recursion.
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606 D. Lê and D. Stott Parker

1.1 Recursive block decomposition algorithms

The basic idea here is that when a matrix is decomposed into smaller blocks, many

useful functions of the matrix can be computed recursively. A natural question is

whether recursive programming can play a practical role in numerical computation,

although today most numerical algorithms are programmed iteratively.

A central example is LDU factorization of a square matrix. the block-Gaussian

elimination step (
I 0

−CA−1 I

)(
A B

C D

)
=

(
A B

0 D − CA−1B

)
can be used to give the block LDU decomposition(

A B

C D

)
=

(
I 0

CA−1 I

)(
A 0

0 D − CA−1B

)(
I A−1B

0 I

)
assuming A−1 is defined. When applied recursively, decompositions like this give

natural (and often asymptotically faster) algorithms for matrix transpose, sum,

product, inverse, generalized inverse, Schur complement (D−CA−1B), determinant,

norm, unitary transforms, SVD, and factorizations like QR and Cholesky (Aho

et al., 1974; Golub and van Loan, 1989).

1.2 Problems facing quadtree algorithms

In this paper we are particularly concerned about the case where A, B, C , D are

quadrants of the matrix (blocks of equal size). In this case, the recursive style is

particularly elegant, and naturally leads to the representation of square matrices as

recursive quadtrees.

The heritage of the quadtree decomposition dates back to the very roots of matrix

theory, in the quaternion theory of Hamilton from the mid-nineteenth century.

Recently the use of quadtrees to represent matrices was popularized by David Wise

(1985, 1986, 1987, 1992). The quadtree representation has many strengths: it is

elegant, can be mapped naturally to various memory and machine architectures,

and also can often handle sparse matrices in a uniform manner.

Unfortunately, general-purpose implementations of quadtree algorithms can be

very complicated. For instance, when pivoting is included the complexity of Wise’s

matrix inversion algorithm (in terms of the number of cases and code size) seems

much higher than that which is suggested by Wise (1986). The quadtree structure

seems ill-suited to extensions like pivoting.

Also, the quadtree representation raises many challenges for serious implementors

of matrix computations. First, naive quadtree algorithms for standard computations

like matrix multiplication and Gaussian elimination tend not to be competitive, in

terms of speed, memory requirements, and input restrictions, with their iterative

counterparts such as those in LAPACK (Anderson et al., 1995) and ScaLAPACK

(Choi et al., 1996) for uni- and multi-processors, respectively. Although their memory

overhead may not be significant on many machines, and the quadtree algorithms
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may be asymptotically faster, implementors must weigh practical considerations

carefully.

Perhaps the most serious problem is that quadtree algorithms cannot always be

used for all input matrices. In the block Gaussian elimination and LDU factorization

above, for example, the leading principal submatrix A must be invertible. If this fails

to hold, and it often does even when the whole matrix is invertible, the algorithm

cannot be used. Block Gaussian elimination, for another, can be used only when

pivoting is not needed, i.e. the leading principal submatrices of A are invertible

(Golub and van Loan, 1989).

1.3 The role of randomization

Recently, a randomization technique developed by Parker (1995a, b, c), Parket and

Lê (1995a) and Parker and Pierce (1995) has been applied to recursive block

decomposition matrix algorithms. The basic idea (which will be described below in

more detail) is to transform an input matrix M to a ‘randomized’ matrix U∗MV ,

where U and V belong to a particular class of random matrices. If M is invertible,

then the submatrices of the transformed matrix are guaranteed to be invertible. For

example, with the LDU factorization above the leading principal submatrix A is

guaranteed to be invertible after randomization.

The randomization technique makes it possible to avoid complications like pivot-

ing that have obstructed adoption of quadtree algorithms in the past. Randomization

is not a panacea, but it opens a door to new algorithms and matrix computation

techniques.

1.4 Objectives

Our purpose is to study the use of functional programming in matrix computations

(via quadtree and recursive block decomposition) using the randomization tech-

nique. We argue that randomization preserves the following qualities that make the

functional style attractive in the first place:

1. simplicity and expressiveness;

2. consistency with fast divide-and-conquer algorithms, such as Strassen’s matrix

multiplication algorithm (Strassen, 1969).

These qualities translate to important benefits. First, simplicity and expressiveness

implies ease of programming. To anyone who has tried to express matrix computa-

tions in existing multiprocessor programming environments, this is a great benefit.

For example, the ScaLAPACK Gaussian elimination code exceeds 2500 lines! Sec-

ond, utilization of fast divide-and-conquer algorithms permit better asymptotic

complexities than possible with iterative algorithms, at the cost of potentially higher

error growth. Strassen’s algorithm, once considered impractical, is seeing increasing

use with large matrices in real applications.

This paper begins by describing matrix computations with quadtrees. Matrix

addition and multiplication are then shown in full detail. High level descriptions

https://doi.org/10.1017/S0956796899003470 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003470
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of other matrix algorithms – including matrix inversion, Gaussian elimination, QR

and Cholesky decomposition – are then presented. In these problems the problem

of degeneracy (matrices whose first quadrant is noninvertible) is highlighted.

Next, the randomization technique developed by Parker (1995a, b, c) is described

and used to avoid this potential degeneracy. Experience with implementations of

randomized matrix inversion and Gaussian elimination is then presented. Their

performance and error properties are analyzed, showing effectiveness of the ran-

domization technique.

The quadtree representation is certainly not the only possible representation

for matrix decompositions. For example, in transformations related to the Fourier

Transform, tensor (Kronecker) product decompositions can be more natural (van

Loan, 1992). However, the quadtree is an important special case, and can even be

used to implement tensor products. This paper argues the quadtree position from

the new perspective of randomization.

2 Quadtrees

Wise’s quadtree representations of matrices are very interesting, and raise issues

going far beyond the scope of this paper. We discuss some of these issues in more

detail elsewhere (Parker and Lê, 1995b). Here we review essential aspects.

2.1 Quadtree representations of matrices

Here let us define a quadtree representation of a matrix to be either a constant

diagonal matrix or a matrix that is composed of four equal-sized square submatrices.

Let M be an n× n matrix, where n is a power of two. The canonical representation

of M in quadtrees can be defined recursively:

M =

{
Const(v),

Quad(A11,A12,A21,A22)

where Const(v) is a diagonal matrix of size 2` × 2` whose diagonal entries are all v,

Quad(A11,A12,A21,A22) is a matrix of four equal-sized submatrices A11, A12, A21, and

A22. For example, the matrix Me below

Quad(Const(1),

Quad(Const(0),

Const(0),

Quad(Const(0), Const(0),

Const(2), Const(0)),

Const(0)),

Quad(Const(0),

Quad(Const(0), Const(3),

Const(0), Const(0)),

Const(0),

Const(0)),
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Quad(Quad(Const(1), Const(2),

Const(3), Const(1)),

Quad(Const(0), Const(0),

Const(2), Const(0)),

Quad(Const(0), Const(3),

Const(0), Const(0)),

Quad(Const(1), Const(2),

Const(3), Const(1))))

can be represented pictorially as:

Const(1)

Const(0)

Const(0) Const(0)

Const(0) Const(0)

Const(0)

2

0

0

0

3

00

0 2

13

1

2

0

0

0

3

0

0

0

2

3

1

1

In this paper we consider only two constructors, Const and Quad, but of course there

are alternative representations. This is a sparse representation; Wise (1992) studied

the space requirements of quadtree representations for a variety of sparse matrices.

2.2 Conversion to quadtree representations

The process of converting a n × n matrix Mn to a sparse representation Mc can

be naturally implemented in two stages – padding and compacting. First, if n is not

a power of 2, then Mn is padded with, say, identity or zero matrices so that the

resulting matrix Mp has full size 2` × 2` where ` = dlog2 ne.
Compacting can then be applied to this matrix to render it more sparse, replacing

all-zero subquadrants with Const(0), etc., and arriving ultimately at a quadtree

matrix. It is not difficult to prove by induction on ` that there is a unique ‘maximally

compact’ quadtree representation for any 2` × 2` matrix.

For example, consider the 5× 5 matrix below:
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2 00

3

0

2

13 2

0

0

0

3

0

0

0

2

3

1

10

0

01

1

The northwest corner can be padded with an identity matrix to give the (dense)

23 × 23 quadtree matrix Mp:

2

0

0

0

3

00

0 2

13

1

2

0

0

0

3

0

0

0

2

3

1

1

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

0

0 1

1

0

0 1

1

Compacting the matrix above would yield the sparse quadtree matrix Me shown at

the beginning of this section.

3 Recursive block decomposition algorithms

This section reviews implementations of well-known block decomposition algo-

rithms: matrix multiplication and inversion, Gaussian elimination, block LDU de-

composition, QR factorization and Cholesky factorization. To ground the discussion,

matrix multiplication is shown in detail. The rest of the algorithms are described at

a high level of abstraction, but translation to detailed implementations is immediate.

We use the ML programming language for implementation here.

The definitions here are complicated by the fact that matrices may have multiple

quadtree representations (Parker and Lê, 1995b). For example, the identity matrix

can be implemented as a single constant matrix (whose diagonal elements are all
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1), or as a dense matrix of 0’s and 1’s. A disadvantage of multiple representations

is that function definitions must cover more cases. This is illustrated by matrix

multiplication in the following subsection, which covers four cases instad of only the

two Const × Const and Quad × Quad required by dense matrices. An advantage of

multiple representations is that sparse matrices are neatly representable (and usable

directly with dense matrices), and that treating sparseness specially has performance

benefits. Another advantage is that all quadtrees can be viewed as having the same

full size, so function definitions can ignore the possibility that one input matrix is

smaller than another.

3.1 Quadtree data structure

The quadtree data structure described in section 2 can be defined in ML as a

polymorphic datatype qtree that takes one argument α as follows:

datatype α qtree =

Const of α

| Quad of α qtree × α qtree × α qtree × α qtree

Here α specifies an appropriate element type, such as real. Const(v) denotes a 2`×2`

diagonal matrix whose diagonal elements are all v, and Quad(A11,A12,A21,A22) denotes

a matrix of four quadtree submatrices A11, A12, A21, A22.

3.2 Matrix multiplication

Let M1,M2 ∈ Mat where Mat be the set of matrices represented with qtree. The

function matmul returns the product M1 ×M2 of M1 and M2 (matadd is similar):

matmul: Mat × Mat → Mat

matmul(Const(v), Const(w)) = Const(v × w)

matmul(Const(v), Quad(A11,A12,A21,A22)) =

Quad(matmul(Const(v),A11), matmul(Const(v),A12),

matmul(Const(v),A21), matmul(Const(v),A22))

matmul(Quad(A11,A12,A21,A22), Const(v)) =

Quad(matmul(A11,Const(v)), matmul(A12,Const(v)),

matmul(A21,Const(v)), matmul(A22,Const(v)))

matmul(Quad(A11,A12,A21,A22), Quad(B11,B12,B21,B22)) =

Quad(matadd(matmul(A11, B11), matmul(A12, B21)),

matadd(matmul(A11, B12), matmul(A12, B22)),

matadd(matmul(A21, B11), matmul(A22, B21)),

matadd(matmul(A21, B12), matmul(A22, B22)))

The final case breaks the two matrices into four regions(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
C11 C12

C21 C22

)
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before multiplying them recursively as

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22.

It is significant that we can simply replace this standard computation with the

asymptotically faster computation (Strassen, 1969)

M1 = (A11 + A22)(B11 + B22)

M2 = (A12 − A22)(B21 + B22)

M3 = (A11 + A12)B22

M4 = A22(B21 − B11) C11 = M1 +M2 −M3 +M4

M ′2 = A11(B12 − B22) C12 = M ′2 +M3

M ′3 = (A21 + A22)B11 C21 = M ′3 +M4

M ′4 = (A11 − A21)(B11 + B12) C22 = M1 +M ′2 −M ′3 −M ′4.
Let Ts(n) and Tr(n) represent the time required by the Strassen and recursive

block multiplication algorithms, respectively. Their recurrence relations are Ts(n) =

7Ts(n/2) + 18(n/2)2, and Tr(n) = 8Tr(n/2) + 4(n/2)2. Assuming that when n = 1 the

time required is 1, these have solutions Tr(n) = 2n3− n2, Ts(n) = 7nlg(7)− 6n2, where

lg(7) ' 2.81.

The space S(n) required to hold intermediate results by a naive implementation of

Strassen’s algorithm satisfies S(n) = S(n/2)+7(n/2)2 = 7/3 n2−7/3. (This assumes

that each subproduct’s local variable space is deallocated on completion, as is usual

in implementations of recursion.) Furthermore, this space will be reduced by the

factor 4/7 if M2, M3, and M4 are deallocated after their lifetimes (and scavenged by

M ′2, M ′3, and M ′4). With or without this compiler optimization, the space overhead

is reasonable.

3.3 Matrix inversion

A recursive decomposition for matrix inversion is (Faddeev and Faddeeva, 1963)(
A B

C D

)−1

=

(
A−1 − A−1BY −A−1BZ

Y Z

)
,

where Z = (D−CA−1B)−1 and Y = −ZCA−1. This may be implemented in ML in

the following way, using only six multiplications and two recursive inversions:

matinv: Mat → Mat

matinv(Const(v)) = Const(1/v)

matinv(Quad(A,B, C, D)) =

let

val A−1 = matinv(A)

val CA−1 = matmul(C , A−1)

val Z = matinv(matsub(D, matmul(CA−1, B)))

val Y = matneg(matmul(Z , CA−1))

val A−1B = matmul(A−1, B)
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val W = matsub(A−1, matmul(A−1B, Y ))

val X = matneg(matmul(A−1B, Z))

in

Quad(W ,X,Y ,Z)

end

This algorithm requires both A and (D − CA−1B) to be invertible (recursively).

Assuming this is guaranteed, and Strassen’s matrix multiplication algorithm has

complexity M(n), the complexity for the inversion algorithm is T (n) = 2T (n/2) +

6M(n/2) + 4(n/2)2 = 14nlg(7) − 17nlg(6) + 4n2.

The space required by the program above is S(n) = 2S(n/2)+10(n/2)2 = 5n2−5n,

which again is reasonable, but can be improved by an optimizing compiler.

3.4 Gaussian elimination

Like the block LU approach described by Golub and van Loan (1989), a recursive

Gaussian elimination algorithm (without pivoting) follows from the decomposition(
A B

C D

)
=

(
L 0

X 1

)(
1 0

0 A′

)(
U Y

0 1

)
=

(
L 0

X L′

)(
U Y

0 U ′

)
if 1 is the identity, A = LU, and D −XY = A′ = L′U ′. This may be implemented:

GE: Mat → Mat × Mat

GE(Const(v)) = (Const(1), Const(v) )

GE(Quad(A,B, C, D)) =

let

val (L,U) = GE(A)

val X = matmul(C, matinv(U))

val Y = matmul(matinv(L), B)

val A′ = matsub(D, matmul(X,Y ))

val (L′, U ′) = GE(A′)
in

(Quad(L,Const(0),X,L′),
Quad(U,Y ,Const(0),U ′))

end

Both matinv and GE succeed if, and only if, we can recursively guarantee the the

input matrix and its first quadrant are both invertible. Obviously this is necessary.

It is sufficient because when both Quad(A,B, C, D) and A are invertible, the result

of Gaussian elimination (D − CA−1B) also will be invertible.

3.5 Some other matrix algorithms

Other suitable block decomposition algorithms using the quadtree representation

include the Cholesky and QR factorizations, and the FFT.
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Cholesky factorization

If a square matrix M is symmetric positive definite, then there exists a unique lower

triangular matrix L with positive diagonal entries such that M = LLT .

M =

(
A CT

C D

)
=

(
XXT XY T

Y XT Y Y T + ZZT

)
=

(
X 0

Y Z

)(
XT Y T

0 ZT

)
.

If ‘
√

’ denotes Cholesky factorization, then

√
M =

( √
A 0

Y
√
D − Y Y T

)
where Y = C(

√
A
T

)−1.

QR factorization

If M is a symmetric positive definite matrix, then M can be written uniquely in

the form M = QR, where Q is orthogonal and R is upper triangular with positive

diagonal elements, obtainable via Cholesky factorization:

Q = MR−1, R = (
√
M)T .

Discrete Fourier transform, and tensors

Generally speaking, quadtrees are effective at representing transformations that are

naturally expressed with tensor (Kronecker product) notation. For example, when n

is a power of 2, ωn = exp(−2π
√−1/n), and 1 6 i, j 6 n, the Fast Fourier Transform

(FFT) of size n factors the n× n matrix Fn = (ω(i−1)(j−1)
n ) into the form

Fn = Bn (I2 ⊗ Fn/2) σn
−1 , Bn =

 In/2 Dn/2

In/2 −Dn/2


where Bn is a ‘butterfly matrix’ with Dn = diag(ωi−1

n ), and σn is the ‘perfect shuffle’

permutation matrix (van Loan, 1992). Here ‘⊗’ is the tensor or Kronecker product,

which for m× m and n× n matrices A and B is the (mn)× (mn) matrix

X ⊗ Y =



x11Y x12Y · · · x1mY

x21Y x22Y · · · x2mY

...
...

. . .
...

xm1Y xm2Y · · · xmmY


.

Quadtrees easily handle this tensor product. An ML implementation is as follows:

tensor: Mat × Mat → Mat

tensor(Const(x), Const(y)) = Const(x× y)

tensor(Const(x), Quad(Y11,Y12,Y21,Y22)) =
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Quad(tensor(Const(x), Y11), tensor(Const(x), Y12),

tensor(Const(x), Y21), tensor(Const(x), Y22))

tensor(Quad(X11,X12,X21,X22), Y ) =

Quad(tensor(X11,Y ), tensor(X12,Y ),

tensor(X21,Y ), tensor(X22,Y )) .

3.6 At issue: guaranteeing nondegeneracy

Some important quadtree algorithms work if and only if we can guarantee nonde-

generacy: every recursively input quadtree and its first quadrant are both invertible.

For example, when the input matrix is symmetric positive definite this guarantee

will be met (Golub and van Loan, 1989). In general, of course, it is not.

There are several old tricks that work in the important case where M is invertible

but nothing specific is known about its submatrices. Bunch and Hopcroft (1974)

mention two. First, the rows of such M can always be permuted so that the

invertibility requirement needed for Gaussian elimination is met. Unfortunately there

is no way of knowing the permutation a priori other than, for example, performing

Gaussian elimination. Secondly, any invertible matrix M can be made nondegenerate

by premultiplying with its Hermitian adjoint (conjugate transpose) M∗. The resulting

matrix M∗M is Hermitian and positive definite. With this approach, for example,

we can compute the inverse M−1 by computing a generalized inverse of M:

M+ = (M∗M)−1 M∗.

When M is invertible, M+ = M−1. Unfortunately, this method needs extra multipli-

cations.

This adjoint approach is also risky because it amplifies numerical ill-conditioning.

The quality of many computations involving a matrix A depends upon its condition

number κ(A) = ‖A‖‖A−1‖, where ‖A‖ is a norm reflecting the magnitude of all

entries in A (Golub and van Loan, 1989). A popular choice is the spectral norm

‖A‖2 = max{√λ | λ is an eigenvalue of A∗A }. A matrix A is called ill-conditioned

when κ(A) is very large, and well-conditioned when it is small. A rule of thumb

(Golub and van Loan, 1989) is that when κ(A) ≈ 10q , floating-point arithmetic

computations involving A often lose at least q significant digits. Because ‖M∗M‖2 =

‖M‖2
2, κ(M∗M) = κ(M)2. Thus, operating on M∗M instead of on M generally

loses twice as many significant digits.

4 Randomized matrix algorithms

We have discussed issues in using quadtrees to achieve practical algorithms based on

recursive block-matrix definitions. Although the promise of quadtrees is enormous,

this promise has not led to success in practice. This paper has tried to summarize

why.

Many of the problems with quadtrees raised above stem from the fact that

invertible matrices can have noninvertible submatrices. Although such matrices

arise often in practice, they are ‘insignificant’ in theory, in the sense that they have

https://doi.org/10.1017/S0956796899003470 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003470
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measure zero in the space of all matrices. Our idea is to exploit their insignificance

through the fact that randomization of an invertible matrix can eliminate degeneracy

(noninvertible blocks).

4.1 The randomization technique

Suppose M is an invertible real n× n matrix, and let U and V be invertible random

n× n matrices. Then:

• To solve Mx = b, we can solve (U∗MV )y = U∗b instead. Afterwards, it follows

that x = Vy.

• To compute M−1, we can instead compute (U∗MV )−1, since U∗ and V

are both guaranteed to be invertible. Afterwards, it follows that M−1 =

V (U∗MV )−1 U∗.

Intuitively U∗ and V ‘homogenize’ M enough so that M̃ is not degenerate. For

example,

U∗ =

(
+0.6483 −0.7614

+0.7614 +0.6483

)
, V =

(
+0.7279 −0.6857

+0.6857 +0.7279

)
randomize the degenerate problem(

0 1

1 0

)
x =

(
2

3

)
into the nondegenerate problem(

0.1097 0.9940

0.9940 0.1097

)
y =

(−0.9870

3.468

)
where x = Vy. Solving the randomized problem gives the solution (correct to 3

digits)

y =

(
3.556

−0.6005

)
, x = V y =

(
3.000

2.001

)
.

Theorem 1 (Parker (1995a)

If M =

(
A B

C D

)
is a n × n invertible matrix, and R, S are invertible diagonal

independent random complex-valued (n/2)× (n/2) matrices, then in the randomized

matrix

M̃ = U∗MV =

(
I R

I −R
)(

A B

C D

)(
I I

S −S
)

each quadrant is invertible, with probability 1.

Here, by an independent random complex-valued matrix, we mean a matrix whose

elements are chosen independently from a suitable distribution. When R and S are

of the form exp(i Θ) and Θ is a diagonal random real matrix, they are invertible,

diagonal, and unitary. Furthermore, U and V are unitary butterfly matrices.

The proof proceeds by showing that the quadrants are invertible with probability

1 because their determinants are nonzero with probability 1. Note that the random
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butterfly transformations U∗ and V on M yield

M̃ =

(
A+ BS + RC + RDS A− BS + RC − RDS
A+ BS − RC − RDS A− BS − RC + RDS

)
.

Each entry in M̃ is a polynomial of form a+b s+ c r+d rs in some random variable

r of R and s of S . The determinant of any quadrant of M̃ is thus a polynomial

in the variables of R and S . Using the Binet-Cauchy theorem (Marcus and Minc,

1964), we can find an explicit form for this determinant polynomial, and show that

it cannot be identically zero if M is invertible. So, the determinant is zero only if

all of its random variables take on values that make the polynomial zero. Since

these variables are continuous (complex-valued), the probability such values arise

simultaneously is 0; and with probability 1, the value of the determinant polynomial

will be nonzero. Thus with probability 1 each quadrant is invertible.

Technically, the phrase “with probability 1” is inaccurate here, because we are

using floating point computation. If floating point numbers have t-bit precision, and

the probability that two randomly-chosen floating point numbers are equal is 2−t,
the phrase should be replaced by “with probability 1 − O(2−t)”. In what follows,

“with probability 1” should be read this way.

A similar approach works for many kinds of random matrices (Parker, 1995b,

c; Parker and Pierce, 1995). With non-sparse random matrices U, V , the product

U∗MV is generally nondegenerate. The challenge lies mainly in finding randomizing

transforms that are fast (e.g. sparse or factorable).

Theorem 2 (Parker and Pierce, 1995)

If M is a n × n invertible matrix, and R, S are invertible diagonal independent

random complex-valued n× n matrices, then in the Random Fast Fourier Transform

(RFFT)

M̃ = U∗ M V = (R Fn)
∗ M (S Fn) = Fn

∗ R∗ M S Fn

each leading principal submatrix (submatrix with row and column indices 1, . . . , k)

is invertible, with probability 1.

The proof rests on Fn being a Vandermonde matrix (Marcus and Minc, 1964),

and its submatrices with column indices 1, . . . , k also being Vandermonde, hence

having nonzero determinant. Expansion formulas for determinants show again that

the determinant of any leading principal square block of M̃ is a polynomial in the

random variables of R and S , and because M is invertible this polynomial is nonzero

with probability 1.

To be effective in quadtree LU decomposition or matrix inversion, randomization

should accomplish two goals:

1. The randomized matrix M̃ must be nondegenerate.

2. Roundoff error incurred in the randomized problem must be acceptable.

Theorem 2 allows us to show the RFFT accomplishes the first goal. Note that

in any block decomposition Consider any leading principal submatrix S of M̃,

S =

(
W X

Y Z

)
, where only W and Z need be square and X and Y can be
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rectangular. Theorem 2 shows both W and S will be invertible. Furthermore, every

diagonal square block produced by Gaussian elimination is the Schur complement

(Z−YW−1X) of some such S , which is invertible since W and S are. The RFFT does

as much randomization in one step as a sequence of random butterfly transforms.

As to the second goal, the randomized algorithms do generate greater roundoff

errors than their traditional counterparts with pivoting. However, the errors ap-

pear acceptable with well-conditioned input matrices as we show below. See also

Parker (1995a, c). Ultimately, a statistical error analysis like that in Trefethen and

Schreiber (1990) is important to evaluate any real variant of Gaussian elimina-

tion. In fact, although Gaussian elimination with partial pivoting has been believed

‘stable in practice’ for several decades, recently papers have appeared pointing out

that this belief is incorrect for commonly-encountered matrices, including important

orthogonal matrices; see Parker (1995b).

Furthermore, iterative improvement can be used to reduce error in the quadtree

solution. After solving Mx = b, iterative improvement repeatedly recycles the error

(b−Mx) through the initial LU factorization to get an update for x. Each iteration

requires only O(n2) time to compute, and generally performing k iterations gives

min(t, k(t− q)) correct digits in x if κ(M) ≈ 10q (Golub and van Loan, 1989).

4.2 Randomized matrix inversion

Recall Faddeev’s matrix inversion scheme mentioned earlier:(
A B

C D

)−1

=

(
A−1 − A−1BY −A−1BZ

Y Z

)
,

where Z = (D − CA−1B)−1 and Y = −ZCA−1. When Strassen’s multiplication

algorithm is used, this algorithm has complexity O(n2.81).

For comparison with LAPACK1, the Faddeev routine was rewritten in C. The

timings and errors of Faddeev matrix inversion and LAPACK’s matrix inversion

using partial pivoting2 on normally distributed random matrices are shown in Tables

1 and 2. All results in this section were obtained on a 80Mhz Intel 486 PC running

Linux with 32Mb RAM and 64Mb swap space.

The point of using matrices with normally-distributed entries is that they are well-

conditioned (Edelman, 1988) and almost certainly have no degenerate submatrices.

Thus unrandomized algorithms will succeed, and they can be compared directly

with our randomized version to get an appreciation for the timing overhead and

error properties of randomization itself.

Let Tf(n) be the time required by Faddeev inversion and Tg(n) the time re-

quired by GE inversion. Then Table 1 indicates Tg(n)/Tg(n/2) ≈ 8.0; whereas

1 “LAPACK is a library of Fortran 77 subroutines for solving the most commonly occurring problems in
numerical linear algebra. It has been designed to be efficient on a wide range of modern performance
computers. The name LAPACK is an acronym for Linear Algebra PACKage.” (Anderson et al., 1995)

2 Using Gaussian elimination with partial pivoting, the matrix A can be decomposed into PLU where
P is the pivoting permutation, L is unit lower triangular, and U is upper triangular. The inverse A−1

can then be formed as U−1L−1P−1.
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Table 1. Timings from Faddeev and LAPACK matrix inversion on normally

distributed random matrices. Timings for the RFFT alone show its overhead

n 64 128 256 512

RFFT only 1.4 4.1 9.3 25.8

Faddeev inverse 1.3 9.9 72.9 530.1

LAPACK inverse 1.3 10.8 87.7 711.7

Table 2. Errors from LAPACK, plain Faddeev, and randomized Faddeev matrix in-

version on normally distributed random matrices. For each method, the average, high,

and low numbers of significant digits are shown

n κ err x̄g Hg Lg x̄p Hp Lp x̄r Hr Lr

64 1D3 3D−13 13.9 15 12 13.0 14 11 12.9 14 11

128 7D3 2D−12 13.0 15 11 11.7 13 9 10.8 13 8

256 2D4 3D−12 12.7 15 10 10.2 13 7 9.0 11 6

512 4D4 3D−11 12.1 14 9 8.6 12 5 7.6 10 4

Tf(128)/Tf(64) ≈ 7.62, Tf(256)/Tf(128) ≈ 7.36, and Tf(512)/Tf(256) ≈ 7.27 —

converging to the scaling factor 7 we would expect (nlg(7) = 7lg(n)). Thus we expect

Tf(1024) to take approximately 7.27Tf(512) = 3850 seconds and Tg(1024) to take

about 8.0Tg(512) = 5700 seconds. Table 1 again shows the low overhead of the

O(n2 log n) RFFT.

Table 2 shows the average errors incurred by executing LAPACK, plain and

randomized Faddeev matrix inversion on fifteen (0,1)-normally distributed random

matrices with double-precision real computation. Here κ denotes the matrix condi-

tion number, err the matrix relative lower bound, and x̄/H/L the average/average

highest/average lowest digits of accuracy over all runs for LAPACK, plain Faddeev,

and randomized Faddeev, respectively. This table shows that computational speed-

up is countered by error growth. As the rank n increases from 64 to 512 the average

digits of accuracy decrease from 13.9 to 12.1, 13.0 to 8.6, and 12.9 to 7.6 for the

LAPACK, plain and randomized Faddeev inversions.

4.3 Randomized Gaussian elimination

Recall the recursive Gaussian elimination algorithm (without pivoting) developed

earlier from the LU decomposition(
A B

C D

)
=

(
L 0

X 1

)(
1 0

0 A′

)(
U Y

0 1

)
.
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When the input is randomized, the matrix A is invertible with probability 1. For

comparison with LAPACK, the recursive GE routine shown earlier in ML was

rewritten in C. Experimentation (Table 3) shows that the recursive method is about

10% slower than block LU without pivoting if block recursive matrix multiplication,

instead of Strassen matrix multiplication, is used.

Inversion of lower triangular and upper triangular matrices can be achieved with:(
A 0

C D

)−1

=

(
A−1 0

−D−1CA−1 D−1

)
(
A B

0 D

)−1

=

(
A−1 −A−1BD−1

0 D−1

)
.

Assuming Tm(n) is Strassen multiplication complexity, the complexity for either

upper or lower triangular inversion is Ti(n) = 2Ti(n/2)+2Tm(n) = 14/5 nlg(7)−6n2 +

21/5 n. Similarly, the products(
L 0

X L′

)(
A B

C D

)
=

(
LA LB

XA+L′C XB+L′D

)
(
A B

C D

)(
U Y

0 U ′

)
=

(
AU AY +BU ′
CU CY +DU ′

)
execute in time T (n) = 6Tm(n) + 2(n/2)2 = 6nlg(7) − 17/2 n2.

The complexity of both X ← CU−1 and Y ← L−1B is thus T (n) = Ti(n)+Tm(n) =

49/5 nlg(7) − 12 n2 + 21/5 n. Tables 4 and 5 show the timings and errors for (0,1)-

normally distributed random matrices for recursive LU without pivoting using

Strassen multiplication versus LAPACK’s LU with partial pivoting.

Let Ts(n) denote the timing function of recursive LU without pivoting using

Strassen multiplication and Tl(n) the timing function of LAPACK’s LU with par-

tial pivoting. In Table 4 one can determine that Tl(n)/Tl(n/2) ≈ 8.0; whereas

with Strassen multiplication Ts(256)/Ts(128) = 8.1, Ts(512)/Ts(256) = 7.75, and

Ts(1024)/Ts(512) = 7.53, converging to the scaling factor 7. Thus, we expect Tl(2048)

to take approximately 8.0×Tl(1024) = 15000 seconds and Ts(2048) to take approxi-

mately 7.5×Ts(1024) = 12000 seconds. Table 4 again shows that the RFFT overhead

is relatively low.

Analogous to Table 2, Table 5 compares LAPACK’s LU with partial pivoting and

plain and randomized recursive LU without pivoting using Strassen multiplication.

Fifteen runs were made on (0,1)-normally distributed random input matrices with

double-precision real computations. Again, these numbers show that computational

speed-up is countered by error growth. As the rank n increases from 128 to 1024

the average digits of accuracy decrease from 13.5 to 12.1, 11.8 to 8.6, and 11.3 to 8.2

for LAPACK, plain and randomized recursive LU decomposition, respectively.

We should stress that the quadtree/Faddeev/Strassen approach to matrix inver-

sion is not new. For example, in Bailey et al. (1991) a general Strassen multiplication

is derived to solve LU factorization on a Cray-YMP. Also, in Balle and Hansen

(1994), a more thorough analysis on the stability of a Strassen-type matrix inversion

algorithm is described. Our contribution is to point out that randomization makes
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Table 3. Timings from recursive GE without pivoting vs. block GE without pivoting

n 128 256 512 1024

Recursive GE 3.5 28.5 232.9 1887.3

Block GE 3.2 26.3 209.4 1712.9

Table 4. Timings from recursive LU without pivoting using Strassen multiplication vs.

LAPACK’s LU with partial pivoting on normally distributed random matrices

n 128 256 512 1024

RFFT only 4.1 9.3 25.8 68.3

Strassen LU 3.4 27.4 212.3 1600.1

LAPACK LU 3.6 29.3 231.9 1887.4

the recursive block decomposition and quadtree approaches practical for a broader

class of invertible matrices than has been thought possible in the past.

5 Conclusion

The elegance of functional programming often cannot be exploited in practice be-

cause ‘real’ problems exhibit quirks and peculiarities that frustrate general recursive

definitions. This is particularly true in matrix computations, where mild degeneracy

can prevent a problem from being solved with a natural recursive style.

Matrix computations represent an important application area in which functional

programming can excel. As matrix computations grow in size, FLOPS fall in cost,

and word lengths get longer, interest in new matrix algorithms will inevitably

Table 5. Errors from plain and randomized recursive LU without pivoting using

Strassen multiplication vs. LAPACK’s LU with partial pivoting, on normally dis-

tributed random matrices. For each method, the average, high, and low numbers of

significant digits are shown

n κ err x̄l Hl Ll x̄p Hp Lp x̄r Hr Lr

128 5D3 1D−12 13.5 15 11 11.8 15 9 11.3 13 8

256 1D4 5D−12 13.0 15 10 11.0 14 7 10.4 12 7

512 8D4 1D−11 12.5 15 9 9.5 14 6 9.3 12 6

1024 8D4 4D−11 12.1 15 9 8.6 13 4 8.2 11 4
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622 D. Lê and D. Stott Parker

increase. Although Strassen’s algorithm was initially dismissed as impractical, it has

recently seen growing use because it runs faster for large n than other algorithms

(thanks to its O(n2.81) complexity).

This paper has explored the use of a new randomization technique in making

recursive block decomposition and quadtree algorithms practical. We have reviewed

the potentials and pitfalls that the quadtree representation of matrices provides in

implementing recursive block decomposition algorithms. The quadtree representa-

tion is not the only representation possible for matrix decompositions, but it is very

natural, and for example we have shown that even tensor product decompositions

(van Loan, 1992) can be implemented directly with quadtrees.

In spite of the fact that many important matrix computations can be expressed

naturally with quadtree decompositions, they have not been adopted in mainstream

implementations. A key reason for quadtrees not gaining popularity in practice

appears to be that degenerate input matrices (matrices with block submatrices that

fail to be invertible) can render the quadtree approach useless.

We showed how the randomization technique developed by Parker (1995a, b, c,

Parker and Lê (1995a) and Parker and Pierce (1995) can avoid degeneracy. We have

successfully incorporated the randomization technique to avoid degeneracy in solving

block decomposition matrix inversion and Gaussian elimination with quadtrees. In

particular, this gives a choice between two basic approaches to Gaussian elimination:

Gaussian elimination Degeneracy handling

Standard O(n3) Partial pivoting O(n2)

Quadtree O(n2.81) RFFT O(n2logn)

Our initial discussion argued three qualities of recursive block decomposition

(especially quadtree) algorithms:

• simplicity and expressiveness;

• access to faster divide-and-conquer algorithms like Strassen’s algorithm.

Block decomposition codes using quadtrees are simple and expressive and generally

have better computational complexity than their iterative counterparts, at the cost

of somewhat higher error growth on well-conditioned input matrices (normally-

distributed matrices are known to be well-conditioned (Edelman, 1988)).

The ML programs shown earlier can do much more sophisticated handling of

sparse matrices; for example, multiplication by identity matrices can be handled

specially. Generally, however, randomization voids special handling of sparse matri-

ces (such as identity matrices) and the tradeoffs they present. Randomization yields

dense matrices, and trades away clever handling for simplicity.

Actually we believe that randomization has multiple uses in quadtree algorithms

(Parker and Lê, 1995b):
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1. Randomization eliminates degeneracy. Recursive block decomposition algo-

rithms make assumptions about the submatrices being operated upon, and

these assumptions fail to hold for degenerate matrices. Randomization can

eliminate this degeneracy with probability 1.

2. When the quadtree/randomization approach is adopted, fast algorithms like

Strassen’s matrix multiplication and Faddeev matrix inversion can also be

naturally adopted. This is especially important for computations involving

very large matrices, where the improvement in complexity is significant.

3. Randomization can also be performed recursively. That is, randomization

can be interleaved with the recursive computations described above. This

was actually done in Parker (1995c), and appears to yield somewhat better

numerical accuracy than the implementations in the previous section. Further

improvements in accuracy result from scaling, tricks for avoiding cancellation

error, and iterative improvement (Golub and van Loan, 1989).

4. Randomization can also be used in padding to full size. Instead of padding

with identity or zero matrices, we can pad with random matrices. This avoids

several problems concerning padding (Parker and Lê, 1995b).

5. Because randomization eliminates conditional computations such as pivoting,

and as shown here permits modular evaluation of matrix expressions by

recursive decomposition, it seems a natural tool for developing systolic systems.

We discuss this further elsewhere (Lê et al., 1995).

All in all, a practical direction for the use of quadtrees and randomization seems

to lie in dense matrix computations, particularly large-scale computations, where

block-matrix definitions work well.
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