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The generation of an autoresonantly phase-locked high-amplitude plasma waves to
the chirped beat frequency of two driving lasers is studied in two dimensions using
particle-in-cell simulations. The two-dimensional plasma and laser parameters correspond
to those that optimized the plasma wave amplitude in one-dimensional simulations.
Near the start of autoresonant locking, the two-dimensional simulations appear similar
to one-dimensional particle-in-cell results (Luo et al., Phys. Rev. Res., vol. 6, 2024,
p. 013338) with plasma wave amplitudes above the Rosenbluth–Liu limit. Later, just below
wave breaking, the two-dimensional simulation exhibits a Weibel-like instability and
eventually laser beam filamentation. These limit the coherence of the plasma oscillation
after the peak plasma wave field is obtained. In spite of the reduction of spatial coherence
of the accelerating density structure, the acceleration of self-injected electrons in the case
studied remains at 70 % to 80 % of that observed in one dimension. Other effects such as
plasma wave bowing are discussed.

Keywords: plasma waves, plasma instabilities, plasma nonlinear phenomena

1. Introduction

Plasma beat-wave acceleration (PBWA), first proposed by Tajima & Dawson (1979),
is based on driving relativistic plasma waves by the ponderomotive force of the beat
wave of two – typically picosecond long – laser pulses. Recently, there has been a
renewed interest in the PBWA scheme, as an alternative to the prevailing laser wakefield
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acceleration (LWFA) scheme driven by femtosecond pulses (Leemans et al. 2006; Ke et al.
2021; Chen et al. 2022; Oubrerie et al. 2022; Zhu et al. 2023), as it allows for efficient
acceleration over a wider range of plasma and laser parameters. For instance, the PBWA
can operate at relaxed requirements on laser diffraction (Ponomareva & Shevchenko
2023), allows electron acceleration at near-critical densities (Barraza-Valdez et al. 2022),
favours self-injection and it can be combined with a plasma channel to control the phase
velocity of the plasma wave (Pukhov et al. 2023). Our previous kinetic study of this
scheme (Luo et al. 2024) in one dimension demonstrates that autoresonance (Fajans &
Friedland 2001; Lindberg et al. 2004, 2006; Yaakobi et al. 2008; Chapman et al. 2012;
Luo et al. 2022a) can increase the plasma wave amplitude beyond the Rosenbluth–Liu
(RL) limit (Rosenbluth & Liu 1972), up to the wave-breaking limit, and it provides
guidance to choose the laser and plasma parameters optimally. However, the desirable
properties of autoresonant PBWA that survive the test of multi-dimensionality remain to
be demonstrated.

In this paper, we employ the fully kinetic, two-dimensional (2-D) particle-in-cell
(PIC) code SMILEI (Derouillat et al. 2018) to investigate multi-dimensional effects on
autoresonantly driven large amplitude plasma waves. This extends previous work (Luo
et al. 2024), where we examined, again using SMILEI, autoresonantly driven plasma
wave excitation in one dimension under a wide range of plasma and laser parameters.
In this paper, we restrict to a 2-D study of parameters that are representative in the
one-dimensional (1-D) case of large amplitude plasma waves and electron self-trapping in
the nonlinear regime. We are focused on the plasma dynamics, including both nonlinear
and 2-D effects, in the presence of autoresonant excitation of a plasma wave. The
autoresonant wakefield excitation process has not been previously studied in 2-D with
a kinetic code.

In some recent work (Jakobsson, Hooker & Walczak 2021; van de Wetering, Hooker
& Walczak 2024), a two-pulse scheme was studied, with a short initial relatively
high-intensity drive laser, followed by a short gap, and then a trailing relatively
low-intensity laser. Their scheme reaches the GeV-scale acceleration of an injected bunch
over a distance of ∼100 mm. In our simulations, both pulses are long and low power.
We do not consider here the performance of the 2-D autoresonant beat wave with an
injected bunch. At the high fields studied in our paper, beyond the RL limit and up
to wave breaking, we see self-injection of electrons which are subsequently accelerated
to ∼200 MeV over ∼3.5 mm. In comparison with Jakobsson et al. (2021) and van de
Wetering et al. (2024), the peak longitudinal electric field is higher here, because we have
a higher density and we exceed the RL limit, up to the point of wave breaking.

We find that in two dimensions, the acceleration of self-injected electrons remains
comparable to that observed in one dimension, particularly in the early stages of the
process. Further back in the process, after the peak plasma wave amplitude is reached,
a variety of 2-D effects emerge (Forslund et al. 1985) that reduce the wave amplitude and
transverse coherence. These include parametric coupling (Luo et al. 2022b; Sundström
et al. 2022), Weibel-like instabilities (Weibel 1959) and laser beam filamentation (Esarey,
Schroeder & Leemans 2009). These 2-D effects result in a reduced acceleration efficiency
for self-injection of 70 %–80 % of that in the 1-D case.

The rest of the paper is structured as follows. In § 2, we present 2-D kinetic simulations
of autoresonant PBWA, with the simulation set-up explained in § 2.1, the wave excitation
is examined in § 2.2 and accelerated electrons are discussed in § 2.3. Weak nonlinearities
are examined in § 3.1, a Weibel-like instability is identified in § 3.2, and the strongly
nonlinear regime and laser filamentation are studied in § 3.3. The results are summarized
and discussed in § 4.
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Parameter Value

Laser wavelength 800 nm
Laser intensity 8.5 × 1016 W cm−2

Laser spot size 48 μm
Laser duration 4.3 ps
Laser bandwidth (ω1) 0.56 %
Plasma density 7 × 1017 cm−3

Gradient length 16 μm
Rosenbluth–Liu limit 47 GV m−1

Wave breaking 80 GV m−1

TABLE 1. Simulation parameters.

2. Autoresonant PBWA in two dimensions

We consider the most important characteristics of plasma beat-wave acceleration in two
dimensions. We shall find that the early stages of the wave excitation and acceleration
processes do not deviate significantly from corresponding one-dimensional results, while
at later times, the acceleration in two dimensions starts to fall short of that in one
dimension. The detailed analysis of these deviations will be addressed later in § 3.

2.1. Simulation set-up
In our 2-D investigation of the autoresonant PBWA, the two co-propagating laser beams
are chosen to have parallel linear polarization and identical intensities. They have the
shape of a sixth-order super-Gaussian temporal profile ∝ exp[−(t/Tpulse)

6], and ∝
exp[−( y/w0)

6] in the transverse (y) direction, where the width of the laser beam w0 is
set to be 2.4πk−1

pe . Here, kpe = ωpe/c is the plasma wavenumber, ωpe = √
nee2/ε0me is

the electron plasma frequency, ne is the background electron density, −e and me are the
electron charge and mass, and c is the speed of light in vacuum.

The laser and plasma parameters are chosen based on our previous 1-D study to reach
the wave-breaking limit. Namely, the amplitudes of the two lasers (indicated by subscripts
1 and 2) are a1 = a2 = 0.2 in terms of the normalized vector potential a = eA/mec.
The ratio of homogeneous plasma density ne and the critical density ncr is 0.0004,
ncr = ω2

1meε0/e2 is the critical density corresponding to a laser frequency ω1, with ω1 the
central frequency of the beam one (1). Before entering the homogeneous plasma, a linear
density ramp with the gradient length Lrampkpe = 40π is applied. A chirp rate α = −0.0014
is applied to the first laser beam, giving the frequency difference of the two laser beams
�ω = ωpe[1 + α(t − t0)ωpe]. At time t0 = 22.5π/ωpe, the frequency difference between
the two lasers matches the nominal plasma frequency, �ω = ω1 − ω2 = ωpe. Here, the
corresponding laser frequencies are ω1/ωpe = 50 and ω2/ωpe = 49. The laser duration
Tpulseωpe = 64π is chosen to promote the autoresonant growth of the plasma wave until
the wave-breaking limit. Further details on the choice of these parameters are given in
Appendix A. The ions are set to be immobile, as they are not essential for the dynamics
on the time scale of the laser pulse passing by (Mora et al. 1988). The longitudinal
and transverse spatial resolutions are dx = 0.008k−1

pe and dy = 2 dx, respectively. Table 1
shows the experimentally relevant parameters for a standard chirped pulse amplified
800 nm Ti:sapphire laser.
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(a)

(b)

(c)

FIGURE 1. Longitudinal electric field of the plasma wave normalized to the RL field, EL/ERL,
in the 2D simulations, evaluated at tωpe ≈ 250. The duration of the laser pulses is Tpulseωpe ≈
64π. (a) No chirp. (b) With chirp rate α = −0.0014. (c) Electric field at the symmetry axis
(y = 0). The blue (red) line corresponds to simulations without (with) chirp in two dimensions.
Corresponding 1-D simulation data are shown by the light-blue (grey) lines without (with) chirp.
The black dashed line indicates the wave-breaking field.

2.2. Autoresonant plasma wave excitation in two dimensions
First, we consider the growth phase of the autoresonant beat-wave excitation, comparing
1-D and 2-D results. Figure 1 shows the longitudinal electrostatic field EL in the 2-D
simulation at time tωpe ≈ 250. The electric field is normalized to the Rosenbluth–Liu limit
ERL = (16a1a2/3)1/3E0, where E0 = mecωpe/e is the cold, non-relativistic wave-breaking
field. The longitudinal coordinate is the co-moving position ξ = ωpe(x/c − t). Figures 1(a)
and 1(b) correspond to simulations without chirp and with a chirp rate α = −0.0014,
respectively, that was deemed optimal for field enhancement with these parameters. The
field enhancement with respect to the zero chirp case is evident in figure 1(a,b). The
maximum value of the electric field in the chirp case is close to the cold, non-relativistic
wave-breaking threshold E0 that takes the value E0/ERL ≈ 1.67.

Notice that, as clearly visible in figure 1(a), for the case α = 0, the plasma wave
amplitude is larger off-axis than closer to the symmetry axis, in the region ξ ≈ 100–150.
This is caused by the finite size of the laser field in the transverse direction and the related
intensity variation. As a consequence, the growth and saturation time of the plasma wave
excitation varies transversally. Specifically, the saturation time in the standard PBWA
scheme is approximately tsaωpe = 3.68(ωpeτr)

4/7(a1a2)
−2/7 (Forslund et al. 1985), where
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τr is the rise-time of the laser beam’s temporal profile, introduced in § 2.1, leading to
slower saturation of the plasma wave off-axis. Eventually, the RL limit is also reached at
the off-axis regions, as visible in the plot.

Figure 1(c) shows the electric field variation along the symmetry axis, i.e. EL(ξ, y = 0).
The blue (red) line corresponds to the case without (with) chirp in two dimensions. For
reference, we also present the 1-D simulation results, shown by the light-blue (grey) line
without (with) chirp. The no-chirp results in one dimension and two dimensions overlap,
and show that the RL value is indeed the limit of the achieved electric field; the maximum
of the blue curves is at EL/ERL = 1. When the optimal chirp value of α = −0.0014 is
employed, the autoresonant growth of the plasma wave is achieved and EL/ERL = 1 is
exceeded, but the overlap of the 2-D and 1-D results (red and grey, respectively) extends
only for ξ � 125. Below this value, the 2-D results start to deviate from the 1-D ones. The
reasons for this are discussed in detail in § 3.

2.3. Energetic electron dynamics
After concluding that autoresonant plasma wave excitation is possible in two dimensions,
we will now turn to the electron acceleration aspect of the process. Figure 2(a,b) show the
electron phase space in terms of the co-moving coordinate ξ and the kinetic energy reached
by the electrons Ukin (the data are integrated over the transverse coordinate). Self-injected
electrons can be effectively accelerated by the electric field structure of the plasma wave
and, as expected, electrons can reach higher energies – in this case, 200 eV at tωpe ≈
750 – when a finite chirp of α = −0.0014 is employed, allowing for autoresonant field
growth; compare figure 2(b) with figure 2(a), where α = 0. Notice that in the chirped case,
electrons are mainly accelerated in the region of 100 < ξ < 150, while in the region of
50 < ξ < 100, we observe energetic particles but at lower energies. This was also observed
in the analogous 1-D kinetic simulation (Luo et al. 2024), and can be understood in the
following way. Because of autoresonance, the plasma wake field grows with decreasing
ξ . In the fluid model for the parameters chosen here (see Appendix A), it can become
larger than E0, but in kinetic simulation, once it reaches E0, it starts to trap very efficiently
particles that in turn stop the autoresonance. As a result, the field is highest in the range of
100 < ξ < 150 with value slightly below E0. This is clearly visible in figure 1(c) for both
the 2-D and 1-D chirped simulations (grey and red curves), the decrease of the field for
ξ < 100 being more pronounced in the 2-D case.

We now focus on the region ξ > 100. To assess the efficiency of the acceleration
process, we track the kinetic energy of electrons reaching the highest energies (note that
the acceleration starts at slightly different times in the various simulations). In figure 2(c),
we compare the temporal evolution to estimate the acceleration efficiency corresponding
to the acceleration of relativistic electrons by a constant electric field at the RL limit, ERL
(dotted line), and at the wave breaking value, E0 (dashed line). As expected, we find that in
the no-chirp cases, the kinetic energy mostly increases with a steepness dictated by the RL
field limit. The 1-D simulation (light blue) stably accelerates at this rate up to the end of the
considered time range, while we observe a reducing slope in two dimensions (dark blue).
In the simulations with chirp, the electron energy initially increases closely following the
wave-breaking field estimate. At later times, the slope changes slightly in one dimension
and more significantly in the 2-D simulation. The 1-D and 2-D autoresonant results (grey
and red line, respectively) quite closely follow each other up to tωpe ≈ 450, indicating a
similar performance in the early stage of the acceleration.

Two reasons can be responsible for the difference between the autoresonant simulations
and the estimate indicated by the dashed line. First, the maximum electric field might
not be sustained at the constant level of E0 and, second, the particles are not necessarily
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(a)

(b)

(c)

(d)

FIGURE 2. Kinetic energy spectrum of electrons as a function of the co-moving coordinate
ξ , integrated over y, at tωpe ≈ 750 are plotted (a) without chirp and (b) with chirp rate α =
−0.0014. (c) Time traces of the highest electron kinetic energy for a variety of cases. The red
(α = −0.0014) line and blue (α = 0) line are in two dimensions, the grey (α = −0.0014) line
and light blue (α = 0) line are in one dimension. The black dashed and dotted lines indicate
the kinetic energies of an electron that was accelerated by a constant electric fields at the
wave-breaking (E0) and the RL limit (ERL). (d) Temporal evolution of the maximum electric field
EL,max is shown in magenta (right axis). If an electron was accelerated with this time-varying
field, it would reach energies as shown by the green curve (left axis). For reference, the dashed
and the red lines of panel (c) are repeated.

positioned to be optimally accelerated by the maximum electric field. We find that the first
effect is the one mainly at play. Indeed, the kinetic energy of the most energetic particle
from the simulations Ukin,sim as function of time should follow Ukin,max defined by

Ukin,max(t) =
∫ t

t0

eEL,max(t′)c dt′, (2.1)

where EL,max is the maximum instantaneous electric field. In figure 2(d), the time evolution
of EL,max is shown (magenta, right axis) along with the corresponding Ukin,max (green)
and Ukin,sim (red). While EL,max remains in the vicinity of E0, it is somewhat lower
most of the time. Thus, the expected particle energy (green curve) departs downward
from the theoretical upper bound (dashed). The actual electron energy (red curve),
closely follows Ukin,max until tωpe ≈ 400, and then starts to deviate. This marks the
beginning of a 2-D effect of the system that is strong enough to degrade the efficiency
of acceleration. The responsible physical processes are to be detailed in § 3. We note that
while the simulations presented here do not include a plasma–vacuum interface, additional
simulations confirmed that, while the lower energy part of the electron distribution is
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FIGURE 3. Colour plot: the high-energy electron distribution (NHE,y( y, t), integrating in ξ
over the box length) is plotted. Red curve (right axis) shows NHE(t) (integrating over the
y-axis). High-energy electrons are defined, for the plot, as those in the uppermost 10 %
of the instantaneous energy range are considered. The two vertical dashed lines mark the
times considered in figure 4, when the energetic electrons are localized on-axis and off-axis,
respectively.

pulled back by space charge forces at such a boundary, it has a negligible effect on the
most energetic electron population.

Next, we consider the transverse distribution of high-energy particles. Figure 3 shows
the transverse distribution of the most energetic electrons as a function of time. At
each time, electrons in the uppermost 10 % of the currently spanned energy range are
identified and their transverse distribution is colour plotted. The transverse integral of
this colour plot is shown as a red curve (right axis). More specifically, defining the
‘high-energy’ electron density by nHE(ξ, y, t) = ∫ Ukin,max(t)

0.9Ukin,max(t)
fe(Ukin, ξ, y, t) dUkin, with the

electron distribution function fe, the colour plot shows NHE,y( y, t) = ∫
dξ nHE(ξ, y, t)/ne,

with the nominal electron density ne, while the red line is NHE(t) = ∫
dy NHE,y( y, t); note

that here, the y coordinate is normalized to k−1
pe (similarly to ξ ). When interpreting this

image, we must keep in mind that the considered energy range corresponds to continuously
increasing energies, since Ukin,max = Ukin,max(t). The highest number of energetic electrons
is reached at tωpe � 400, then it rapidly drops and stays around 20 %. After this time, the
electron energy keeps increasing but for a smaller population than at earlier times. Up to
tωpe = 350, the fast electrons are mostly localized at the centre, while we observe a rapid
widening of the transverse distribution after that. Even later, at approximately tωpe = 550,
the most energetic electrons are found off-axis. Note that the highest energy electrons have
been continuously accelerated, while those that fail to be accelerated to 90 % of the highest
energy are not present in this visualization.

We now consider two snapshots, at the times indicated by the white dashed vertical
lines in figure 3, and we show in figure 4 the logarithm of the relative number of energetic
electrons as function of ξ and y. At tωpe = 350, shown in figure 4(a), the maximum
kinetic energy is Ukin,max = 86 MeV and, as expected, the energetic electron bunches
are close to the symmetry axis. At the later time, tωpe = 550, shown in figure 4(b), the
distribution peaks off-axis and the instantaneous maximum energy is Ukin,max = 160 MeV.
The bunches are localized at the minimum of the electric field where the acceleration is
the strongest, indicated by the red curves in the same figures. At the end of the simulation,
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(a)

(b)

FIGURE 4. Spatial distribution of nHE(ξ, y) at (a) tωpe ≈ 350 and (b) tωpe ≈ 550. These
times are marked with dashed lines in figure 3. The longitudinal electric field at the axis,
EL(ξ, y = 0)/E0, is indicated by the red curves (right axes).

the cumulative charge can be estimated to be 15 pC, assuming that the electron bunch is
axisymmetric within a region of length 15 μm and a transverse extent 24 μm, given a laser
wavelength of 800 nm.

We may quantify the angular spread of the electron beam by θ̄ = [
∫

d3p( py/px)
2fe(p)

/
∫

d3pfe(p)]1/2, with the integrals covering only the uppermost 10 % of the electron
energies. We find that, in spite of the rich transverse dynamics, θ̄ only reaches values of
∼0.02 throughout the simulation. In the following section, we will delve into the reasons
for the transverse dynamics, which shall also shed light on why the acceleration efficiency
is reduced when moving from one to two dimensions.

3. Phases of intensifying nonlinear effects

The regime explored in this work corresponds to the beat-wave autoresonance excitation
of very large amplitude plasma waves and significant particle trapping, resulting in a
number of 2-D nonlinear processes that affect the evolution of the plasma wave. It is
interesting, however, that even in these extreme conditions, the nonlinearities do not
destroy the laser–plasma coupling and the particle acceleration, but only partially degrade
the process. Here, we review these effects, putting the focus on strong nonlinear effects
appearing late in time, which impact the temporal coherence of the plasma wave. The
understanding of these processes can provide guidance for future experiments, where they
may be reduced or eliminated through appropriate schemes.

3.1. The weakly nonlinear stage
In the early phase of the evolution of the plasma wave – apart from a downward shift
of its wavenumber as the plasma wave amplitude increases – the wavenumber spectrum is
affected by forward Raman scattering at a slight angle with respect to the laser propagation.
This leads to the appearance of a double signal in the electromagnetic spectrum, mainly
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around kL/kpe = 50 (Forslund et al. 1985), and a broadening of both the electromagnetic
and the electron plasma wave spectrum in the transverse direction. Moreover, Stokes and
anti-Stokes scattering results in harmonics of the electromagnetic wave. In Appendix B.1,
we plot the Fourier spectrum of the waves, and all these components are clearly visible.
At this stage, the only new effect compared with the 1-D case, discussed by Luo et al.
(2024), is the transverse broadening and the double signal around ks/kpe = 50, while the
Stokes and anti-Stokes components and the longitudinal widening were already present
in the 1-D simulations. Overall, the autoresonant excitation and the particle acceleration
appear robust with respect to the presence of the transverse Raman scattering.

Another 2-D effect that can be identified is due to the transverse variation of the laser
intensity and the corresponding nonlinear correction to the wavelength. This leads to the
formation of slightly curved plasma wave fronts, while the plasma wave structure remains
coherent, as was also observed in some stimulated Raman scattering simulations (Rose &
Yin 2008; Yin et al. 2008; Masson-Laborde et al. 2010). More details on this wavefront
bowing are given in Appendix B.2. Similarly to the mentioned parametric wave coupling
processes, the wavefront bowing effect has no appreciable negative effect on the efficiency
of the autoresonant PBWA.

3.2. Transverse magnetic field growth due to a Weibel-like instability
We now focus our attention on processes that become important around the time the
acceleration efficiency starts to degrade compared with the 1-D simulations. The first of
these effects is the growth of a Weibel-like instability (Fried 1959; Weibel 1959), which
provides a seed for subsequent plasma wave filamentation (Masson-Laborde et al. 2010).

In figure 5, the longitudinally averaged transverse magnetic field B̄z is shown as a
function of the transverse coordinate y, normalized as H̄z = eB̄z/meω1. The times shown
illustrate the development of transverse magnetic field filaments (time increases from
panel a to panel g). The average in the longitudinal direction is performed over the ξ -range
indicated by the dashed rectangle in figure 6(a). In this region, the plasma wave has a
significant amplitude, but wave breaking has not yet been reached, and only a few particles
are trapped. Indeed, the ξ − px phase space (not shown here) has a very regular structure
with longitudinal velocity up to � c. Stronger particle acceleration is instead observed
in the range 100 < ξ < 150, leading to a more disordered magnetic field structure. In
the early stages shown in figure 5(a,b), the magnetic field starts growing at the edges of
the laser beams (y ∼ ±2.4π) because of the large-scale current generated by the density
and velocity perturbation in the plasma wave (with a homogeneous component plus one
varying in the longitudinal direction with wavenumber ∼ 2kpe), as discussed by Gorbunov,
Mora & Antonsen (1996, 1997) and Sheng, Meyer-ter Vehn & Pukhov (1998). The plasma
current comes from the collective electron motion induced by the longitudinal electric
field of the plasma wave. Note that in the central region of the laser beams, no magnetic
field is generated, as the displacement current compensates for the plasma current. Some
filaments start to appear in the central region and become more pronounced by the time
shown in figure 5(c). As expected for a Weibel-like instability, the filaments grow with a
typical wavenumber of the order of kpe. Both wavelength and field amplitude increase with
time (figure 5d–g) up to saturation, happening at ωpet � 430.

To understand the origin of these magnetic field filaments, figure 6(a) shows
the magnetic field Hz = eBz/(meω1) as a function of ξ and y at time tωpe ≈ 350
(corresponding to the longitudinally averaged result of figure 5c). The transverse limits
of the dashed magenta rectangle are located at y = ±π (y is normalized by the plasma
wavenumber kpe) and are chosen such that the rectangle covers the flat-top region of the
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

FIGURE 5. Longitudinally averaged transverse profiles of the z-component of the magnetic
field, taken at different times, normalized as H̄z = eB̄z/meω1. The averaging is performed over
the same ξ -range as covered by the dashed rectangle in figure 6(a).

transverse profile of the laser beams. Inside this marked area, magnetic field filaments are
clearly visible, as highlighted by figure 6(b) which shows a zoom-in on the same data.

To identify the drive of the instability and estimate its growth rate, we define the
longitudinal and transverse thermal speeds vtx and vty, respectively, as follows: v2

tj(ξ, y) =
n−1

∫
(vj − Vj)

2f (ξ, y, v) d3v, where n = ∫
f (ξ, y, v) d3v, Vj = n−1

∫
vjf (ξ, y, v) d3v and

j = {x, y}. These definitions allow us to introduce an effective temperature anisotropy
parameter A(ξ, y) = (v2

tx/v
2
ty) − 1, adapting previous definitions (Ruyer et al. 2015; Silva

et al. 2020; Silva, Afeyan & Silva 2021) to our conditions. Its values are plotted in
figure 6(c) at tωpe ≈ 350. Since most of the acceleration happens longitudinally, the
longitudinal spread of the distribution function and hence the thermal speed is higher than
the transverse one, yielding values A > 0. Significant values of A up to ≈ 3 are reached
in patches, as shown in figure 6(c). The anisotropy in the distribution makes the plasma
unstable to a Weibel-like instability, leading to the growth of the magnetic filaments.1

1Notice that the distribution function of the electrons is not a simple beam-type distribution, and the growth rate
associated with the magnetic field growth is not consistent with a flow-driven plasma instability.
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(a)

(b)

(c)

FIGURE 6. (a) Spatial variation of the magnetic field Hz = eBz/(meω1) at time tωpe ≈ 350. The
filamentation of the magnetic field is clearly visible inside the magenta dashed box, where the
plasma wave is driven to significant amplitudes while wave breaking is not reached. (b) Zoom-in
of the magnetic field, taken from the region highlighted in panel (a). (c) Temperature anisotropy
A in the same region as panel (b). Note that for the visibility, the range of A is capped at 1, while
A can reach values of ≈ 3 but only in very restricted regions.

The time evolution of the maximum value of |Hz| and the magnetic energy content inside
the marked rectangular region of figure 6(a), EBz = ∫ ∫ |eBz/(meω1)|2 dξ dy, are shown in
figure 7, with solid and dash-dotted lines, respectively. We choose to focus only on the
magnetic field inside the marked region, where the Weibel-like instability is the dominant
effect that generates the magnetic filaments. We hence neglect the field growing at the
intensity gradients of the laser beams and the more complex structures in the rear region
(100 < ξ < 140), where efficient acceleration occurs near the axis, modifying the plasma
wave structures and the phase space in a non-trivial way. This allows us to identify the
typical growth of the field generated by the Weibel-like instability, as discussed below.

The general trends of EBz and |Hz|max are similar, and reflect the observations from
figure 5. A first early rapid increase and saturation is observed at tωpe ≈ 190. This initial
phase of magnetic field generation is caused by the development of the self-generated
quasi-static magnetic field as stated by Gorbunov et al. (1996, 1997) and Sheng et al.
(1998). This is followed by another significant growth until tωpe ≈ 400, after which
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FIGURE 7. Maximum of the z-component of the magnetic field (solid black curve, 10|Hz|max)
and energy contained in the z-component of the magnetic field (black dash-dotted, EBz); both
within the region indicated by the dashed magenta rectangle in figure 6(a). The solid magenta
line indicates an exponential growth with the estimated growth rate of the Weibel-like instability.
The red dashed line is the quasi-longitudinal electric field energy Ein and the blue dotted line is
the electric field energy scattered outside the quasi-longitudinal wavenumber region Eout.

the magnetic field saturates around a higher level, with some oscillations. This second
growth phase corresponds to the Weibel-like instability. The maximum growth rate of
this Weibel-like instability, γwb, in terms of the anisotropy parameter above defined, is
approximately given by (Okada, Yabe & Niu 1978; Satou & Okada 1997; Sugie, Ogawa &
Okada 2006; Okada & Ogawa 2007; Zhou et al. 2022)

γwb/ωpe =
√

8
27π

vtyA3/2

A + 1
. (3.1)

Considering values extracted from the simulation for the transverse thermal speed vty ≈
0.1c and temperature anisotropy A ≈ 2.5 – where the latter is close to the upper end
of the observed range of A values – yields a growth rate γwb/ωpe ≈ 0.035. Such an
exponential growth, ∝ exp(γwbt), is indicated by the magenta line in figure 7, showing
a satisfactory agreement with the growth of |Hz|max (solid black curve). We note that
a similar comparison between the magnetic field growth and the predicted temperature
anisotropy-driven Weibel growth rate at a lower laser intensity, a = 0.12, showed similarly
good agreement.

In the weakly nonlinear stage, discussed in detail in Appendix B.1, we already observed
that forward/side Raman scattering and wave bending will tend to deform the plasma
wave wavefront and introduce a transverse component to its wavenumber. The Weibel-like
instability also affects the transverse wavenumber of the plasma wave, kLy. To quantify the
effect of the Weibel-like instability on the transverse wavenumber of the plasma wave kLy,
we can take advantage of the fact that it will induce shorter transverse lengths (larger kLy)
than that already identified in the weakly nonlinear stage. The longitudinal wavenumber
kLx instead is given by the matching condition, roughly kLx ∼ kpe, so we may consider a kLx
range that provides a comfortable margin around this,2 such as kLx ∈ [0.5, 1.5]kpe.

The characteristic transverse broadening of the wavenumber spectrum due to the
Raman process can be estimated as δkLy =

√
k2

pe − k2
np, where knp is the nonlinear plasma

wavenumber introduced in Appendix B.1 and discussed in figure 12 of Luo et al.

2The harmonics of the plasma wave are not considered here, since they are negligible in our simulations.
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(2024): knp ≈ kpe − 3kpe(EL/E0)
2/16. If |kLy| < δkLy, we expect Raman scattering and

wavenumber nonlinearity to dominate, with a corresponding ‘quasi-longitudinal’ electric
energy content Ein. If |kLy| > δkLy, we expect additional processes, such as the Weibel-like
instability to dominate, with electric energy content Eout. More specifically,

Ein =
∫ 1.5kpe

0.5kpe

dkLx

∫
|kLy|<δkLy

dkLy|EL(kLx, kLy)|2,

Eout =
∫ 1.5kpe

0.5kpe

dkLx

∫
|kLy|>δkLy

dkLy|EL(kLx, kLy)|2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

Optimally, the energy is mostly contained in the quasi-longitudinal field, while non-ideal
2-D effects may scatter energy outside this region, and the ratio Eout/Ein thus quantifies
the importance of these 2-D effects that reduce the transverse coherence of the plasma
wave. In figure 7, the electric energies Ein and Eout are also shown by red dashed and blue
dotted lines, respectively. Most of the energy is contained in the quasi-longitudinal field
that saturates around tωpe ≈ 190. The energy scattered outside this wavenumber region
is approximately following the same trends as the EBz and |Hz|max curves, with a first
saturation around tωpe ≈ 190. A more pronounced growth phase occurs during tωpe ≈
300–400, when the magnetic fields grow due to the Weibel-like instability, followed by
a second saturation. It is noteworthy that around the time of the onset of the Weibel-like
instability, Ein also starts to decrease, indicating a reduced coherence of the plasma wave,
even if the ratio Ein/Eout is always larger than one.

3.3. Strong nonlinearity and plasma wave filamentation
We have established the influence of Weibel-like instability on the transverse dynamics
of the plasma waves: it gives rise to transverse magnetic perturbations and a scattering
of electric field energy beyond that caused by Raman scattering, potentially leading to a
reduction in the coherence of plasma waves. However, the direct impact of Weibel-like
instability on the laser evolution in the plasma remains negligible as the instability quickly
saturates. In this section, we explore how the later-stage evolution of the laser propagation
in the strong-nonlinear phase, where density modulations and filamentation arise.

Figure 8 shows the wavenumber spectra of the electric field of the plasma wave EL (left
column) and that of the electromagnetic wave Es (right column) at different time instances,
with the corresponding wavenumbers denoted by kL and ks, respectively. Here, we focus
on times tωpe ≥ 350. At early times (tωpe = 350), the main mode spectrum of the plasma
wave assumes an arc shape between the circle given by mode matching (dashed line)
and that with the nonlinear shift accounted for (solid line). By the time tωpe = 630, the
arc-shaped spectrum is not clearly seen any longer and a stronger transverse broadening is
observed. In addition, in the vicinity of ks,x ≈ 50 of the electromagnetic wave, the slightly
downshifted and upshifted components start to evolve differently, the downshifted one
spreading more in the transverse direction. The Stokes/anti-Stokes scattering is barely
affected.

In figure 8(c), the temporal evolution of the wavenumber spectrum ks,x of the two
dominant laser beams is shown for the purely longitudinal mode (ks,y = 0). The two
vertical red lines indicate the maximum bandwidth of the first, chirped, laser beam –
located at ks,x/kpe = 50 – that can be estimated as �ω/ωpe ≈ |α|Tpulse = 0.28. Without the
interaction of the lasers and the autoresonant creation of the plasma wave, the wavenumber
spectrum of this chirped pulse would be nearly constant within this region. Instead, one
observes that the signal in the vicinity of ks,x ≈ 50 becomes very weak, leaving two bands
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(a)

(b)

(c)

(i) (ii)

(i) (ii)

FIGURE 8. (a,b) Wavenumber spectra of the longitudinal electric field of the (a i,b i) plasma
wave EL and the (a ii,b ii) electromagnetic wave Es at different times. The green curves
correspond to the solutions of (a i,b i) (B1) and (a ii,b ii) (B2). In panel (a i,b i), the solid (dashed)
curves include (do not include) corrections for the nonlinear wavenumber shift. In panel (a ii,b ii),
different green curves represent different scattering order. (c) Temporal evolution of the purely
longitudinal (ks,y = 0) wavenumber component of the main modes of the two laser beams.
Vertical red lines indicate the maximum bandwidth of the first laser beam �ω/ωpe ≈ 0.28.

on the sides, partly related to laser depletion due to the plasma wave excitation, also present
in one dimension and observed in our previous simulations, and partly related to scattering
from ks,y = 0 (plotted) to ks,y 	= 0, as evident in figure 8(b ii).

With the onset of autoresonance, considerable pump depletion, on account of the
plasma wave excitation, is expected to take place. In terms of frequency, the width of
the depleted gap can be estimated by �ωeff/ωpe ≈ 3[1 − (ERL/E0)

2]/16 ≈ 0.1. This is
approximately a third of the overall bandwidth of the chirped beam, consistent with the
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(a)

(b)

(c)

FIGURE 9. At tωpe ≈ 550, (a) the electric field of the plasma wave EL, over the range ξ ∈
[100, 250], (b) EL in the range ξ ∈ [150, 200] and (c) the electric field of the electromagnetic
wave ã, normalized by the initial total laser amplitude a1 + a2 in the range ξ ∈ [150, 200].

observation. This also allows us to estimate the length over which autoresonance occurs,
LAR ≈ �ωeff/ωpe/|α| = 75. This distance LAR is indeed representative of the spatial extent
over which effective autoresonance takes place; see the ξ ≈ 125–200 range of figure 1(c).

Figure 9(a–c) captures snapshots of the plasma wave and the electromagnetic field,
respectively, at time tωpe ≈ 550, the time moment between those in figures 8(a) and
8(b). In figure 9(a), the electric field carried by the plasma wave EL over the range
of ξ ∈ [100, 250] is shown, where the transverse modulation is observed, particularly
occurring over the range of ξ ∈ [150, 200], as exhibited in figure 9(b). The transverse
regions where the beating patterns of the laser are weak, such as the gap at |y| ≈ 4
in figure 9(c),3 are correlated with a reduced plasma wave amplitude; see the reduced
amplitude transverse bands in figure 9(b).

At this stage of the evolution, we conjecture that the appearance of transverse structure
of the plasma wave and of the laser pulses will self-sustain and enhance the transverse
modulation. To justify this, we performed an almost identical simulation, adding a
co-propagating probe laser with a linear polarization orthogonal to that of the dominant
laser pulses, having only 5 % of their amplitudes; we denote the normalized electric field
of this probe beam by ãp and its initial value by ap with ap = 5 %a1,2.

3Note that the laser width shown in the figure gives w0 = 2.4π.
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(a)

(b)

FIGURE 10. A low power (ap = 5 %a1,2) probe laser with orthogonal polarization to the lasers
that create the plasma wave co-propagates together with the two dominant laser beams. At the
time tωpe = 550 restricted to one plasma oscillation in ξ , (a) the plasma wave density profile
and, in panel (b), blue (red) corresponds to large negative (positive) values of the probe laser
field, and for the purpose of visibility, values of the probe field less in magnitude than the initial
peak probe field are set to zero. The black and white contours correspond to refractive index
values of ηr = 0.9998 and ηr = 0.9996. See text for details.

The density perturbation of the plasma wave (δne + ne)/ne is shown in figure 10(a),
along with the electric field of the probe laser in figure 10(b), at the same time instance
as in figure 9. To emphasize the impact of the density perturbation on the laser field,
in figure 10(b), we only plot the fields of the probe laser whenever |ãp|/ap ≥ 1 (these
appear as blue and red spikes). The density perturbation modifies the index of refraction
ηr, thereby affecting the transverse propagation of the electromagnetic wave. We may
approximate the index of refraction by

ηr ≈ 1 − ω2
pe

2ω2
0

δne + ne

neγ
, (3.3)

with the Lorentz factor γ being comparable in magnitude to γ⊥ = (1 + a2)1/2. To show
the spatial variation of the refractive index, we draw the contours ηr = 0.9996 (white)
and nr = 0.9998 (black), calculated with the density variation shown in figure 10(a).
As a result of the spatial variation of ηr, the laser beams undergo fragmentation,
with the various segments exhibiting different characteristics. Specifically, the intensity
of the beamlets follow closely the density contours. Both the laser beams and the
plasma have developed transverse modulation – a feature not present at earlier stages –
marking the transition into the strongly nonlinear stage of the process. The evolution
of the plasma wave in this stage have now a non-negligible impact on particle
acceleration. The resulting reduced acceleration efficiency is apparent in figure 2(c), and
a non-trivial transverse re-arrangement of the acceleration process is reflected in figures 3
and 4(b).
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4. Discussion and conclusions

We have investigated autoresonant plasma beat-wave excitation in two dimensions with
the PIC simulation SMILEI. Primary laser and plasma parameters for the 2-D study
correspond to those used in a 1-D simulation where large wave amplitudes and significant
self-injection of electrons were observed. A number of 2-D features arise that were not
previously seen using either simplified fluid models or 1-D kinetic simulations. For the
case studied here, these effects occur after the peak electric field is reached and at wave
amplitudes beyond the RL limit. That is, autoresonance works in two dimensions in that
the peak field exceeded the RL limit, but at the same time, 2-D phenomena limit this field
to a few oscillations beyond where it obtains its peak value.

As in one dimension, electrons are self-injected into the developing plasma wave
structure and are accelerated, most efficiently along the axis of the laser beams. Various
scattering processes – Raman side scattering or near-forward Raman scattering along
with Stokes and anti-Stokes scattering – excite harmonics and circular patterns in
wavenumber space, although these do not have much effect on the acceleration dynamics
of self-injected electrons. This is related to the relatively low value of the density chosen
in this paper, ne/ncr = 0.0004. As discussed explicitly by Luo et al. (2024), Stokes and
anti-Stokes scattering, present both in one and two dimensions, do not significantly affect
the laser beating at this density. Similarly, the near-forward Raman scattering observed in
our 2-D PIC simulations does not have a significant impact on the plasma wave.

The phase fronts of the plasma wave develop curvature – a wavefront bowing (Rose &
Yin 2008; Yin et al. 2008; Masson-Laborde et al. 2010) – due to the transverse variation
of laser intensity and corresponding variation in the plasma wave excitation. This is seen
to change the transverse location of the peak field and the energy spectrum of electrons.
Magnetic fields are self-generated by the large-scale currents driven by the density and
velocity perturbation in the plasma wave (Gorbunov et al. 1996, 1997; Sheng et al.
1998). A Weibel-like instability (Weibel 1959) arising from velocity space anisotropy
generates transverse magnetic field perturbations. The electric field, which is initially
quasi-longitudinal, scatters in the transverse direction and the acceleration efficiency of
the most energetic electrons starts to deviate from that seen in one dimension. Finally,
we observe transverse filamentation and, as a consequence, the acceleration efficiency is
further reduced; in this regime, the most energetic electrons are found off-axis.

Novel schemes to avoid diffractive and dephasing limits such as those based on Bessel
beams (Caizergues et al. 2020; Ponomareva & Shevchenko 2023) place requirements
on chirped pulses; their compatibility with autoresonant excitation is a topic for future
study. Transverse effects originating from the defocusing of the laser beams may reduce
acceleration efficiency, which motivates further studies using a plasma channel to guide
the laser beams. In conclusion, this initial study of kinetic effects in autoresonant plasma
beat-wave excitation indicates that 2-D effects can become important and thus the design
of any accelerator scheme based on this will require 2-D analysis and optimization. The
computational expense of 2-D studies supports the development of reduced models of
the 2-D problem, even if some of the phenomena described in this paper, such as the
Weibel-like instability – related to a complex evolution of the electron phase space – might
be challenging to model and require further kinetic studies.
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Appendix A. Precise control of the 1-D autoresonant PBWA

In our previous paper (Luo et al. 2024), we have identified laser and plasma parameters
that lead to an effective acceleration of self-injected electrons. These parameters are
summarized in table 2 and the acceleration is not sensitive to small variations around
these values. A sensitive parameter is the laser duration for which we found a constraint,
as indicated in the last column, Tpulse � 100π/ωpe. To clearly identify the regime of
autoresonant PBWA of interest for us, we conducted 1-D kinetic simulations where we
varied the laser duration as a key control parameter. The other parameters were chosen
as follows: normalized laser electric field a1 = a2 = 0.2, a homogeneous plasma density
of ne/ncr = 0.0004, following a short linear density ramp, a chirp of rate α = −0.0014 is
applied to the first laser beam (a1) and the frequency difference between the two lasers �ω
meets the resonant frequency ωpe at t0 = 22.5π.

In figure 11(a), the amplitude of the plasma wave normalized by the RL limit, EL/ERL,
is shown as a function of laser duration Tpulseωpe, comparing 1-D kinetic simulation results
(red up-triangles) and a fluid model (red curve). The two horizontal dashed black lines
represent the RL limit ERL and the wave-breaking limit E0, respectively. An increase in the
laser duration leads to higher amplitude plasma waves. Below the wave-breaking limit,
the kinetic simulation results follow the predictions of the fluid model with reasonable
agreement. However, while the electric field in the kinetic simulations represents a real
upper bound for the kinetic results, which is where they saturate for Tpulseωpe � 200, the
fluid predictions keep increasing with Tpulse.

In figure 11(b), we show the energy gradient (in units of MeV/(xkpe)) experienced by
the most energetic accelerated particles over the acceleration length of Lkpe ≈ 500, again,
with a comparison of kinetic simulation results (blue down-triangles) and a fluid estimate
(blue curve). The latter is calculated as ELmec2/E0, where EL can be obtained from the
fluid model. The kinetic simulation results cannot exceed the wave-breaking estimate, i.e.
� 0.5. Hence, by varying the laser duration for fixed optimal laser parameters, the plasma
wave amplitude and the energy gradient experienced by the accelerated particles can be
well controlled. Thus, a control of the electron energization is possible, at least until the
onset of multiple-dimensional effects.

Appendix B. Processes in the linear and weak nonlinear phases
B.1. Side-scattering or near-forward Raman scattering

In figure 12(a i,b i,c i), we observe that a distinct signal of the plasma wave emerges
during the initial linear stage, characterized by wavenumbers kL,x ≈ kpe and kL,y ≈ 0, as

https://doi.org/10.1017/S0022377824001582 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001582


Autoresonant plasma wave excitation in 2-D PIC simulations 19

a1 = a2 ne/ncr α t0 Tpulseωpe

∼0.2 ∼0.0004 ∼ − 0.0014 22.5π � 100π

TABLE 2. The optimal laser and plasma parameters in the homogeneous plasma to drive
autoresonant PBWA.

(a)

(b)

FIGURE 11. Comparisons of 1-D PIC and 1-D fluid models for the autoresonant excitation with
parameters in table 2. (a) EL/ERL. The red up-triangles represent the kinetic results, while the red
line plots the results of the fluid model, as a function of laser duration Tpulseωpe; (b) the maximum
energy gradient in units of the normalized distance xkpe, MeV/(xkpe), over the acceleration
length Lkpe ≈ 500. The blue down triangles represent the kinetic results and the blue line is
an estimation based on the fluid model.

depicted in figure 12(a i). Later, when autoresonance becomes significant, figure 12(b i),
the amplitude of the plasma wave intensifies, accompanied by a reduction in wavenumber,
approximately kL,x < kpe. Additionally, non-zero components of kL,y become apparent,
along with a weak harmonic signal, roughly kL,x ≈ 2kpe. The arc-shaped signal of the
dominant wavenumber is a result of side-scattering or near-forward Raman scattering of
the laser beams.

The plasma wavenumber matching condition during Raman scattering is given by

(kL,x − δkL − k0)
2 + k2

L,y = (k0 − ωpe/c)2. (B1)

Here, δkL represents the nonlinear wavenumber shift. Drawing on insights from Sprangle,
Esarey & Ting (1990a,b) and Esarey et al. (2009), we can approximate the nonlinear
plasma wavelength as λnL = λp(1 + 3(EL/E0)

2/16), where λp is the linear plasma
wavelength. As a result, the nonlinear plasma wavenumber can be computed as kLp =
2π/λLp ≈ kpe + δkL, with δkL/kpe = −3(EL/E0)

2/16. The matching condition, (B1), is
indicated in figure 12 without nonlinear wavenumber shift (dashed green curve), and with
the above estimate of the wavenumber shift (solid curve), where, to provide an upper
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(a)

(b)

(c)

(i) (ii)

(i) (ii)

(i) (ii)

FIGURE 12. Fourier spectra of the wavenumber carried by the longitudinal electric field EL
(a i,b i,c i) and the electromagnetic wave Es (a ii,b ii,c ii) are depicted at various moments,
satisfying the temporal constraint tωpe ≤ 350. The green lines correspond to the solutions of
(a i,b i,c i) (B1) and(a ii,b ii,c ii) (B2). In panels (a i,b i,c i), the solid line takes into account the
nonlinear wavelength shift due to the relativistic effect, while the dotted line neglects this effect.

bound, EL was set to be the highest electric field observed in the simulation EL,max to
estimate δkL. These two curves provide a reasonably accurate bound of the spectral features
seen in the simulation.

The wavenumber spectrum of the electromagnetic wave is presented in figure 12(a ii,
b ii,c ii) for the same time instances. Initially, in figure 12(a ii), the signal of the two
dominant laser beams is evident. As time progresses, in addition to these two components,
other harmonics resulting from Stokes or anti-Stokes scattering become visible, as shown
in figures 12(b ii) and 12(c ii). Analogously to (B1), these arc-shaped signals of different
components can be described by a matching condition of these scattering processes

k2
s,x + k2

s,y = (k0 ± nωpe/c)2. (B2)

Here, n denotes the scattering order, and (B2) is plotted in figure 12(a ii,b ii,c ii) using
green lines. The solutions of (B2) with n = −2, −1, 0 and 1 are represented by the solid,
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(a)

(b)

FIGURE 13. (a) Plasma electric field EL normalized by the RL limit and (b) electromagnetic
wave ã normalized by the initial laser amplitude a1 + a2 at the time moment tωpe ≈ 350.

dashed, dotted and dash-dotted lines, respectively, closely agreeing with the spectrum seen
in the simulation. It is worth noting that the spectral feature of the first laser beam, i.e.
ks,x ≈ 50kpe, gradually splits into two pieces, from figure 12(a ii) to figure 12(c ii). Over
the time range shown here, these two parts in the vicinity of ks,x ≈ 50 remain nearly
symmetrical. This peculiar feature, which later becomes asymmetric is further discussed
in § 3.3.

As discussed by Rose & Yin (2008) and Yin et al. (2008), the trapped particle
modulational instability (TPMI) emerges as an alternative mechanism to cause plasma
wave filamentation. This instability, whenever important, induces another wavenumber
shift in addition to that caused by the relativistic nonlinearity, and its growth rate is
proportional to this shift (Dewar, Kruer & Manheimer 1972; Rose 2004). In the cases
considered here, however, the wavenumber spectrum can be well described with the
nonlinear shift alone (see the discussion concerning figure 12), indicating that TPMI plays
a negligible role.

B.2. Wavefront bowing of the plasma wave
Wavefront bowing emerges as a 2-D effect related to the transverse variation of
nonlinear wavenumber shift. In figures 13(a) and 13(b), the longitudinal electric field
EL corresponding to the plasma wave, and the electric field ãs of the laser beams are
presented, respectively, at the time moment of tωpe ≈ 350, corresponding to the time of
figures 12(c i) and 12(c ii). In figure 13(a), significant wavefront bowing is observed within
the range of ξ ∈ [150, 180]. The primary reason for this is the transverse dependence of
the laser amplitude. The higher plasma wave amplitude on the middle of the laser beams
corresponds to a longer wavelength; thus the wave front in this region lags behind that at
the edges of the laser beam. Notably, the beating pattern of the two laser beams, shown in
figure 13(b), remains regular, indicating that the influence of the density perturbation on
the laser propagation remains negligible at these early times.

In conclusion, during the linear and weak-nonlinear phases, tωpe ≤ 350, the structure of
the autoresonant plasma wave remains stable and regular, as supported by figure 1, despite
the observed wavefront bowing in figure 13. Consequently, the acceleration process of
energetic electrons in two dimensions remains similar to that in the 1-D case, as depicted
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in figure 2(c). At this time, the majority of these particles are concentrated centrally in the
transverse direction, as evident in figures 3 and 4(a).
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