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Isomorphic Structure of Cesaro and
Tandori Spaces

Sergey V. Astashkin, Karol Lesnik, and Lech Maligranda

Abstract. 'We investigate the isomorphic structure of the Cesaro spaces and their duals, the Tandori
spaces. The main result states that the Cesaro function space Ceso. and its sequence counterpart
cesoo are isomorphic. This is rather surprising since Cesoo (like Talagrand’s example) has no natural
lattice predual. We prove that ceseo is not isomorphic to £o nor is Cesoo isomorphic to the Tandori
space L, with the norm Iflz = ”.?”Lp where f(t) := ess sup,,|f(s)|. Our investigation also
involves an examination of the Schur and Dunford-Pettis properties of Cesaro and Tandori spaces.
In particular, using results of Bourgain we show that a wide class of Cesaro-Marcinkiewicz and
Cesaro-Lorentz spaces have the latter property.

1 Introduction and Contents

The classical Cesaro spaces most commonly appear as optimal domains of the Cesaro
(Hardy) operator or some of its versions (see [DS07,NP10,LM15b]; see also [ORSP08,
CR16, CRI17], where the vector measures’ point of view is presented). Moreover, they
can coincide with the so-called down spaces, which were introduced and investigated
by Sinnamon [KMS07, MS06, Si94, Si01, Si07], but have their roots in the papers of
Halperin and Lorentz. In comparison to the function case, there is a much richer
literature devoted to Cesaro sequence spaces and their duals (see the classical paper
of Bennett [Be96] and also [CHO01, CMP00, Ja74, KK12, MPS07]). Development of
this topic related to the weighted case, including the so-called blocking technique,
can be found in [GE98]. In this paper we investigate the isomorphic structure of ab-
stract Cesaro spaces CX and their duals, Tandori spaces X, on three separable mea-
sure spaces N, [0, 00) and [0, 1]. For a Banach ideal space X of measurable functions
onl =[0,00) orI = [0,1], CX is defined as the space of all measurable functions
f on I such that C|f| € X, equipped with the norm || f||cx := || C|f]| x, where C de-
notes the Cesaro operator, i.e., (Cf)(x) = %fox f(t)dt for 0 < x € I. For a Ba-
nach ideal sequence space X, one uses the corresponding discrete Cesaro operator
(Cax)p = % Y- Xk> n € N in the definition of the Cesaro space .

The study of abstract Cesaro function spaces, under this name, started in [LM15a],
where a description of their Kothe duals by the so-called Tandori spaces can be
found. It is worth noting here that the results obtained differ substantially in the
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cases I = [0,00) and I = [0,1]. Continuing the same direction of research, the au-
thors examined interpolation properties of these spaces [LM16]. Investigation of the
isomorphic structure of classical Cesaro function spaces Ces, := CL, was initiated
in [AMO09] (see also [AM14]); however, studying classical Cesaro sequence spaces
ces, := Ct, started much earlier (see [MPS07] and the references therein). Among
other things, the existence of an isomorphism between the spaces Ces,[0, c0) and
Ces,[0,1] for all 1 < p < oo has been proved [AM09]. On the other hand, Ces,(I)
and ces,, for any 1 < p < oo are clearly not isomorphic because, in contrast to ces,, the
space Ces, () is not reflexive.

Therefore, the only remaining question (already formulated in [AMO09, AM14])
was whether or not Ces,, is isomorphic to cess. Theorem 5.1, one of the main re-
sults of the present paper, answers this problem in the affirmative. It is instructive
to compare this result with the well-known Pelczynski theorem on the existence of
an isomorphism between the spaces Lo, and £, [Pe58] and also with Leung’s re-
sult that showed, using Pelczynski decomposition method, that the weak L-spaces:
Lp,oo[0,1], Lp [0, 00), and €, o for every 1 < p < oo are all isomorphic [Le93].

On the other hand, we prove that ces., and Ces., (I) are not isomorphic to €., or
to the Tandori space Ly (I) with the norm Il = I 7]z, where

F(1) = esssup|£(5)].

sel, s>t

Moreover, if X is a reflexive symmetric space on [0,1] and the Cesaro operator C is
bounded on X, then CX is not isomorphic to any symmetric space on [0, 1]. The main
tool in proving these results comes from the fact that an arbitrary Cesaro space CX
(and, in particular, ces., and Ces (I)) contains a complemented copy of L;[0, 1], pro-
vided the Cesaro operator C is bounded in X (see Proposition 2.2), but the other ones
do not. We also make use of a characterization due to Hagler—Stegall [HS73] of dual
Banach spaces containing complemented copies of L; [0, 1]; the Cembranos-Mendoza
result [CMO08], stated that the mixed-norm space €. (1) contains a complemented
copy of L;[0, 1], while the space #;(£., ) does not.

In this paper, along with the isomorphic structure of abstract Cesaro and Tandori
spaces we also study their Schur and Dunford-Pettis properties (being isomorphic
invariants). In particular, we are able to find a new rather natural Banach space non-
isomorphic to ¢; with the Schur property, namely, the sequence Tandori space ¢, with
thenorm | (ax) |z = [|(ak) e, where aj := sup, |a;|. Regarding the Dunford-Pettis
property, we note that, generally, it is not easy to determine whether a given space has
this property. We apply here a deep result of Bourgain [Bo81] that shows that ev-
ery £o-sum of L;-spaces has the Dunford-Pettis property. Using this, Bourgain also
deduced that the spaces of vector-valued functions L;(y, C(K)) and C(K, Li(y))
and their duals, where y and K are a o-finite measure and any compact Hausdorff
set, respectively, have the Dunford-Pettis property. Using these facts and a suit-
able description of Cesaro and Tandori spaces obtained in this paper, we will prove
that Ceso, (I), L; (I) and, under some conditions on dilation indices of a function ¢,
Cesaro-Marcinkiewicz spaces CM, [0, 00), their separable parts C(Mj ) (I), Cesaro-

Lorentz spaces CA () as well as Tandori-Lorentz spaces A, (I) (in both cases I =
[0, 00) and I = [0,1]) all enjoy the Dunford-Pettis property. Recall that Kaminska and
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Mastylo [KMO00] proved that ¢, ¢y and €., are the only symmetric sequence spaces
with the Dunford-Pettis property and there exist exactly six non-isomorphic sym-
metric spaces on [0, 00) enjoying the latter property: Ly, Loo, L1 N Loo, L1 + Loo, and
the closures of L; N Lo, in both Lo, and L; + L. The paper is organized as follows.
Following this Introduction, Section 2 collects some necessary preliminaries, first, on
Banach ideal and symmetric spaces and then, on Cesaro and Tandori spaces. Here,
we recall also Theorem 2.1 related to the duality from [LM15a] and prove Proposition
2.2 on the existence of a complemented copy of L;[0,1] in an arbitrary Cesaro space
CX provided the Cesaro operator C is bounded in X. These results are frequently
used throughout the paper.

Section 3 contains results related to studying the Schur and Dunford-Pettis prop-
erties of Tandori and Cesaro sequence spaces. We prove that ¢; has the Schur prop-
erty (Theorem 3.1) and ces., contains a complemented copy of L;[0,1] (Theorem 3.7).
Moreover, we investigate the conditions under which both Cesaro-Marcinkiewicz
and Cesaro-Lorentz sequence spaces as well as their duals have the Dunford-Pettis
property (see Theorems 3.8 and 3.9). Finally, we show that the spaces CX and X
fail to have the Dunford-Pettis property whenever a symmetric sequence space X
is reflexive and the discrete Cesaro operator is bounded in X or in X', respectively
(Theorem 3.11).

Section 4 deals with the Dunford-Pettis property of Cesaro and Tandori func-
tion spaces. It is proved that, under the assumption g, < 1, both Tandori-Lorentz
space A, [0, 00) and Cesaro-Marcinkiewicz space CM,[0, co) have the Dunford-
Pettis property (Theorem 4.1). In particular, two non-isomorphic spaces Cesq, (I)
and L, (I) have the latter property (see Theorem 4.3). A similar result also holds for
the separable parts of the Cesaro-Marcinkiewicz spaces CM,[0, 00) and CM,[0,1]
provided lim,_o+ ¢(t) = 0 and g, < 1or qg < 1, respectively (Theorems 4.6 and 4.8).
Moreover, if X is a reflexive symmetric function space satisfying some conditions,
then CX and X fail to have the Dunford—Pettis property (Theorem 4.9).

Section 5, contains one of the main results of the paper, showing that the spaces
Ceso, and ces,, are isomorphic (Theorem 5.1). This gives a positive answer to the
question posed in [AMO09, Problem 1] and repeated in [AM14, Problem 4]. An in-
teresting consequence of this result is the fact that the space Ceso is isomorphic to
a dual space, although [(Ceso,)']° = (L;)° = {0} (Corollary 5.2) and so there is
no natural candidate for its predual. For ces,., however, the predual is ¢}, because
(81)* = (£)" = cess. Observing that this phenomenon has its counterpart in the
general theory of Banach lattices, we discuss its relation to Lotz’s result [Lo75] and to
Talagrand’s example of a separable Banach lattice being a dual space (and hence hav-
ing the Radon-Nikodym property) such that for each x* € E*, the interval [0, |x*|]
is not weakly compact [Ta81] (see Proposition 5.4). Finally, we prove that Cese, (1)
is isomorphic to the space (®z2; M[0,1]),.., where M[0,1] is the space of regular
Borel measures on [0,1] of finite variation (Theorem 5.5).
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2 Definitions and Basic Facts
2.1 Banach Ideal Spaces and Symmetric Spaces

By L° = L°(I) we denote the set of all equivalence classes of real-valued Lebesgue
measurable functions defined on I = [0,1] or I = [0, 00). A Banach ideal space X =
(X,]]) on I is understood as a Banach space contained in L°(I) that satisfies the
so-called ideal property: if f,g € L°(I),|f] < |g| almost everywhere with respect to
the Lebesgue measure on I and g € X, then f € X and | f| < ||g|. Sometimes we write
| - || x to be sure which norm in the space is considered. If not stated otherwise, we
suppose that a Banach ideal space X contains a function f € X with f(x) > 0 almost
everywhere on I (such a function is called the weak unit in X), which implies that
suppX = I. Similarly we define a Banach ideal sequence space, i.e., on I = N with the
counting measure.

Since an inclusion of two Banach ideal spaces is continuous, we prefer to write in

this case X = Y rather than X c Y. Moreover, the symbol X 4 Y indicates that
X < Y with the norm of the inclusion operator not bigger than 4, i.e., | f| vy < A| f|x
forall f € X. Also, X = Y (resp. X = Y) means that the spaces X and Y have the same
elements with equivalent (resp. equal) norms. By X ~ Y we denote the fact that the
Banach spaces X and Y are isomorphic.

For a Banach ideal space X = (X, |-||) on I, the Kéthe dual space (or associated
space) X' is the space of all f € L°(I) such that the associated norm

"= su x)g(x)|dx
= sup g

lgllx<1

is finite. The Kothe dual X’ = (X', |- |") is a Banach ideal space. Moreover, X S X
and we have equality X = X" with || f|| = | f]|” if and only if the norm in X has the
Fatou property, meaning that the conditions 0 < f,, ~ f almost everywhere on I and
SUP, x| f | < o0 imply that f < X and [ £,| ~ 1.

For a Banach ideal space X = (X, | -||) on I with the Kéthe dual X’, the following
generalized Holder-Rogers inequality holds: if f € X and g € X/, then fg is integrable
and

eR) [ g dx < flx gl v

A function f in a Banach ideal space X on I is said to have an order continuous
norm in X if for any decreasing sequence of Lebesgue measurable sets A, c I with
m(Nyey An) = 0, where m is the Lebesgue measure, we have || fya,| = 0as n — oo.
The set of all functions in X with order continuous norm is denoted by X 0 I1f X% =X,
then the space X is said to be order continuous. For an order continuous Banach ideal
space X, the Kothe dual X', and the dual space X* coincide. Moreover, a Banach ideal
space X with the Fatou property is reflexive if and only if both X and its K6the dual
X' are order continuous.

For a weight w(x), i.e., a measurable function on I with 0 < w(x) < co almost
everywhere and for a Banach ideal space X on I, the weighted Banach ideal space X (w)
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is defined as the set X(w) = {f € L° : fw € X} with the norm | f|x(w) = [ fw]x. Of
course, X (w) is also a Banach ideal space and [X(w)]" = X'(1/w).

A Banach ideal space X = (X, |- |x) is said to be a symmetric (or rearrangement
invariant) space on I if, from the conditions f € X, g € L°(I), and the equality d (1) =
dg(A) forall A > 0, where d(A) := m({x € I:|f (x)| > A}), A > 0, it follows that g € X
and | x = Il . In particular, | fx = | f*[.x» where

f*(t) =inf{d > 0: ds(A) < t}, t > 0.

For a symmetric function space X on I, its fundamental function ¢y is defined as

ox(t) = lxp,qlx, t>0,

where yg, throughout, will denote the characteristic function of a set E.

Let us recall some classical examples of symmetric spaces. Each increasing concave
function ¢ on I, ¢(0) = 0, generates the Lorentz space A, (resp. Marcinkiewicz space
M,) on I endowed with the norm || f||, = f; f*(s) dg(s), respectively,

(2.2) HfHM(p = stlg) @ ]O‘ f*(s) ds.

In the case when ¢(t) = t/P,1 < p < oo, the Marcinkiewicz space is also called
the weak-L, space (briefly denoted by L, ) and the norm (2.2) is equivalent to the
quasi-norm | f|z, . = sup,. tY/P £*(t). In general, a space M, is not separable (for

ﬁ = 1lim; 0 22 = 0), but the spaces

example, when lim;_, ¢+ =

{feM' lim Mftf*(s)als—o} in the case when I = [0, c0)
¢ t 0 - = >

t—0%,00
and
A ON e ol _
feMy,: 111(1)1 . f*(s)ds =0} in the case when I = [0,1]
t—0+ 0

with the norm (2.2) are the separable symmetric spaces which, in fact, coincide with
the space M{ on I = [0, 00) or I = [0,1], respectively, provided lim,o+ ¢(t) = 0
[KPS82, pp. 115-116].

Let @ be an increasing convex function on [0, co) such that ®(0) = 0. Denote by
Lg the Orlicz space on I [KR61, Ma89] endowed with the Luxemburg-Nakano norm
£l = inf{1 > 0: [, O(|f (x)|/1) dx < 1}.

For a given symmetric space X with the fundamental function ¢ (recall that every

. . . . 2
such a function is equivalent to a concave function), we have A, = X < M, and
(M) = Ay with y(t) = @TZ) t>0.

Similarly one can define Banach ideal and symmetric sequence spaces and all the
above notions. In particular, the fundamental function of a symmetric sequence space
X is the function gx(n) = | Xi_; exllx, 7 € N, where {e, }52, is the canonical basic
sequence of X. Moreover, the Lorentz sequence space A, (resp. Marcinkiewicz sequence
space m,) is defined as the space of all sequences x = (x,);2;, for which the following
norm s finite || x|, = 32, x{ (9(k + 1) — ¢(k)), respectively,

n) &Ko,
(2.3) Hme = sup 9(n) Zxk,
neN 1 5
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where ¢ is an increasing concave function on [0, c0) and (x;) is the decreasing re-
arrangement of the sequence (|x¢|)$2,. In the case when (1) = n'/? for1 < p < oo,
the Marcinkiewicz space m,, is also called the weak-£, space (denoted by ¢, o, for
short) and the norm (2.3) is equivalent to the quasi-norm ||x|[¢, ., = sup;y ke,

The dilation operators a5 (s > 0) defined on L°(I) by o, f (x) = f(x/s) if I = [0, 00)
and o, f(x) = f(x/5) X[0,min(1,s)] (x) if I = [0,1] are bounded in any symmetric space
X on I and ||os]|x—>x < max(1l,s) [BS88, p. 148] and [KPS82, pp. 96-98]. These
operators are also bounded in some Banach ideal spaces that are not symmetric. For
example, if X = L,(x*), then | o[ x_.x = s"/?** (see [Ru80] for more examples). The
Boyd indices of a symmetric space X are defined by

1 = 1 -
ay = lim s lxox By = lim n o x-x
s—0+ Ins s—00 Ins
and we have 0 < ax < x < 1[KPS82, pp. 96-98], [LT79, p. 139].
For every m € N, let 0, and 0y/,, be the dilation operators defined in spaces of
sequences a = (a,) by

m m
Oma = ((Oma)n)ply = (Apmaeny )32y = (avai,...,a1,a2,0,...,as,...),
1 nm o)
ama=(oma))ia=(— > @)
m k=(n-1)m+1 n=
1 m 1 2m 1 nm
:(—Zak,— Z Asevns — Z ak,...),
Mz M g=mn M j=(n-1)m+1

[LT79, p. 131], [KPS82, p. 165]. They are bounded in any symmetric sequence space
and also in some non-symmetric Banach ideal sequence spaces. For example,

Ham ng(na)_,gp(na) < ml/P max(1, m®), Hal/m ng(nu)_,ep(n.,) < m-l/P max(1, m™%).
The lower index p, and upper index q, of an arbitrary positive function ¢ on [0, c0)
are defined as

. Ing(s) . Ing(s) 5 9(st)
(:4)  py = lim ST qp = lim =R where g(s) = sup 0

It is known [KPS82, Ma85, Ma89] that for a concave function ¢ on [0, o), we have
0 < py < gy < 1. Moreover, the estimate

t] t
(2.5) f L ds<C— forallt>0
o ¢(s) o(t)

is equivalent to the condition g, < 1 [KPS82, Lemma 1.4], [Ma85, Theorem 11.8],
[Ma89, Theorem 6.4(a)]. If an increasing concave function ¢ is defined on [0,1]
. . . 0 0 (o] S
(resp. on [1, 00)), then the corresponding indices py, g, (resp. p3’, q;°) are the num-
bers defined as the limits in (2.4), where instead of ¢ we take the function 9°(s) =
Sup0<t3min(l,1/s) ¢(St)/¢(t) (resp. am(s) = Supthax(l,l/s) ¢(St)/¢(t)) Of course,
0< pg, < qg <1(resp. 0 < pg° < gg° <1), and the estimate (2.5) forall 0 < # < 1are
equivalent to the condition ¢, < 1.
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If X,, n = 1,2,..., are Banach spaces and 1 < p < oo, then (©;2; X»)e, is the
Banach space of all sequences {x,}, x, € X, n =1,2,..., such that

= (2 k) < o

with natural modification in the case when p is infinite.
For general properties of Banach ideal and symmetric spaces we refer to [BS88,
KA77,KPS82,LT79, Ma89].

2.2 Cesaro and Tandori Spaces

The Cesaro and Copson operators C and C* are defined, respectively, as
1 X
Cf(x):ff f()dt, 0<xel,
x Jo
. f(®)
- [ IO <o
f(x) In[x,00) t x

By fwe will understand the decreasing majorant of a given function f, i.e., f(x) =
esSsup,.; 1, |f(t)|. For a Banach ideal space X on I we define the abstract Cesaro
space CX = CX(I) as

(2.6) CX = {f e L°(I): C|f| € X} with the norm | f] cx = |C|f]| x>
and the abstract Tandori space X = X(I) as
2.7) X = {f e L°(I): f € X} with the norm | |z = | f] x.

In particular, if X = L,,1 < p < oo, we come to classical Cesaro spaces Ces, = CL,,
which were investigated in [AMO08, AM09, AM13, AM14]. Note that the case when
p = 1is not interesting here because it is easy to see that Ces;[0,00) = {0} and
Ces1[0,1] = Li(In 1). The space Ceso, [0, 1] appeared already in 1948 and is known as
the Korenblyum-Krein-Levin space [KKL48,LZ66, Wn99].

Itis clear that X > X and X & CX, provided C isbounded on X with A = | C|| x_ x.
Moreover, if X is a symmetric space on I, then for every 0 < a < b, b € I we have

(2.8) I xXta.6115 = 1 X(a01 1 x = [ X10,671x = @x(D).

In the sequence case, the discrete Cesaro and Copson operators Cy4 and C are de-
fined by (Cqa)n = = Yiy ax and (Cia), = ¥32,, %> n € N, and also the decreasing
majorant @ = (a,) of a given sequence a = (a,) is defined by @, = supy ks, [ax|-
Then the corresponding abstract Cesdro sequence space CX and abstract Tandori se-
quence space X are defined as in (2.6) and (2.7). Again a lot of information is known
about classical Cesaro sequence spaces ces, = C€,,1 < p < oo ([AMO08, AMI3,
MPS07] and references given therein).

Abstract Cesaro and Copson spaces were investigated in [LM15a, LM15b], where
the following results on their Kéthe duality were proved [LM15a, Theorems 3, 5, 6].
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Theorem 2.1 (i) If X is a Banach ideal space on I = [0, 00) such that the Cesdro
operator C and the dilation operator o for some T € (0,1) are bounded on X, then
(CX)' =X

(i) If X is a symmetric space on [0,1] with the Fatou property such that the operators
C,C*:X — X are bounded, then (CX)' = X' (w; ), where wy(x) = =, x€[0,1).

(iii) If X is a Banach ideal sequence space such that the dilation operator 03 is bounded
on X', then (CX)" = X'. Moreover, in the extreme case when X = Lo (I), the
above duality results hold with the equality of norms.

The corresponding results on the Kéthe duality of the classical spaces Ces, (1) for
1 < p < oo were proved in [AMO09] (see also [KK12]) showing a surprising difference
among them in the cases I = [0, 00) and I = [0,1]. Much earlier, the identifications
(Cesoo[0,1])" = L,[0,1] and (Ces’,[0,1])* = L,[0,1] were obtained by Luxemburg
and Zaanen [LZ66] and by Tandori [Ta55], respectively. A simple proof of the latter
results both for I = [0,1] and I = [0, oco) was given in [LM15a]. Moreover, according
to Theorem 7 from [LM15al, if w is a weight on I such that W(x) = [;" w(t) dt < oo
for any x € I, then setting v(x) = x/W(x) we obtain

(Cesea(1))' = [C(Law ()] = Li(w).

A close identification for weighted Cesaro sequence spaces follows from a result by
Alexiewicz [Al57], who showed that for a weight w = (w,,) with w,, > 0,w; > 0, we
have

— n

(2.9) (h(w)) =ceseo (V) = C(Leo(v)), wherev(n) = ST

In particular, using the Fatou property of the space ¢;(w), from (2.9) we infer

(2.10) (cesea(v))" = (&1(w))" = &1(w).

In [LMI5a, Theorem 1(d)], it was shown that if a Banach ideal space X has the
Fatou property, then the Cesaro and Tandori function spaces CX and X also have
it. Moreover, if a space X is order continuous, then the Cesaro function space CX is
order continuous as well [LM16, Lemma 1]. However, the Tandori function space Xis
never order continuous [LM15a, Theorem 1(e)], which implies immediately that this
space contains an isomorphic copy of £...

Next, we repeatedly make use of the following fact.

Proposition 2.2 If X is a Banach ideal function space on 1 = [0,1] or I = [0, 00) such
that the operator C is bounded on X, then CX contains a complemented copy of L1[0,1].
Moreover, if X[0,a] € X for 0 < a <1, then X # {0} and X contains a complemented

copy of Lo [0,1].

Proof Suppose that I = [0,1]. Since supp X = I and the operator C is bounded on X,
then y7,17 € X forany 0 < a < L. In fact, let fo € X with fo(x) > 0 almost everywhere
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on I. Then fox[0,q] € X and [ fo(t) dt = ¢ > 0. Therefore, from the estimate
1 rx 1 rx
Clhantoa) @2+ [ hOxoa®dez - [ oo dt xpan (),

1 a
- ;./o fo(t)dt - xran)(x) 2 cxrany(x), 0<x<1,

and from the boundedness of C on X it follows that y[,,;; € X. Now for 0 <a <b <1,
one has

Ut =+ [ Ot xpan @)+ - [ (0 dtxang ()
b
<= [t () + xpa (] = <1 e Ko (9,
U@ =~ [ U Wlan@de= = [T Wlandt o)

1 b
> = [CUOldt xpn () = 1 lngas Ao (o):
Thus,
D
A flnfan) < It lex < 2 1f 1oy

where d = | x[p,17]x and D = | x[a,17| x are finite. Therefore, CX|4,5) = Li1[a, b] with
equivalence of norms and, since L;[a, b] ~ L;[0,1] and the projection P: f + f x[a,5]
is bounded in CX, the first claim of the proposition is proved if I = [0,1]. The case
when I = [0, 00) can be treated in the same way, only the norm | x(4,17] x should be
replaced with |+ X[p,00) (x) [ x-

Regarding the space X, we note that under the conditions imposed on X by (2.8),

we have fx14.61 < | flro[a,6]* X[ab] = | fl[a,6] - 0,57 and conversely

fXrap] 2 fX1a6] " X[0,a] = | flLe[a6] * X[0,a]5

whence [ x(o,a]lx | fllz..(a.) < 1f X1a,011 % < [ X70.67x | f 111 1a,5)- Thus, the image of
the same projection Pf = fy[4,p] is isomorphic to L. [0,1]. Since P is bounded, the
proof is complete. ]

3 On the Schur and Dunford-Pettis Properties of Cesaro and
Tandori Sequence Spaces

A Banach space X is said to have the Dunford-Pettis property if, for all sequences
X, = 0in X and x* 5 0in X*, we have (x*,x,) — 0asn — oo or, equiva-
lently, if any weakly compact operator T: X — Y, where Y is an arbitrary Banach
space, is completely continuous, i.e., from x, X 0, it follows that T(x,) converges
to 0 in the norm of Y. Examples of spaces satisfying the Dunford-Pettis property
are €1, Cg, €oo> L1(¢), Loo () for every o-finite measure y and C(K), C(K)* = M(K)
for an arbitrary compact Hausdorff space K [AKO06, pp. 116-117], [Li04, pp. 57-67]).
It is well known that infinite-dimensional reflexive spaces fail to have the Dunford-
Pettis property. Moreover, if a dual space X* has the Dunford-Pettis property, then
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so does X (the reverse implication is not true) and complemented subspaces of spaces
with the Dunford—-Pettis property also have it.

Recall that a Banach space X has the Schur property if for any sequence x,, = 0in X
we have |x,| — 0 as n — oo or, equivalently, if every weakly compact operator from
X to arbitrary Banach space Y is compact. Of course, spaces with the Schur property
have also the Dunford—Pettis property. Even though it has been known [Ba32, pp. 137-
139] that the space ¢; has the Schur property, only a few natural infinite-dimensional
spaces enjoying it were found. See [Di80] and [Wn93] for a survey of results related to
the Dunford-Pettis property and the Schur property, respectively, (see also [CG94]).

We start with proving the Schur property of the space #;. Note that £; is not iso-
morphic to &1. In fact, { e, } is a normalized, unconditional basis in ¢;. On the other
hand, ¢, has a unique unconditional structure, i.e., each normalized unconditional
basis in ¢ is equivalent to {en} [LT77, Theorem 2.b.9]. Therefore, if we assume that
¢, is isomorphic to #;, then {1e,} would be equlvalent to {e, }. But it is not the case,

since we have both | ¥ _ L +en|z ~Inkand | YK enlle, =k k eN.
Theorem 3.1 'The space €, has the Schur property.

Proof First, using (2.9) and the fact that ?, has an order continuous norm [LM16]
we obtain (£;)* = (£1)" = ceso. Now let \|x(”)|\~ < 1with x(") - 0 weakly in £ as
n — oo. By the Banach-Alaoglu theorem the closed unit ball Bin ceso is W -compact
and metrizable, so, in particular, it is a w”*-complete metric space. For any € > 0 we put
B = Nusmif € B:|(f,x(")| < &}. Then the sets B, are w*-closed, B, ¢ B, c -+, and
B = U;;_; Bu. Thus, by the Baire theorem, there are N, m; € N, g = (gx) € Bp,, and
d0>0suchthat U:={f = (fx) € B:|fx — gkl < 86,1 < k < N} c B,,. Consequently,
U c B,, for each m > m;. Fix N; > N such that

lej:l |gxl <

(3.1) N,

Clearly, the weak convergence of {x("™)} implies the coordinate convergence, so that
there is m, € N such that for n > m,

(3.2) 2 X I < e

For every n € N, there is f(") € B such that ||x(”))([1\,hoo)\|e1 = (f("),x(”)X[Nl,oo)).
Without loss of generality, we may assume that supp f(") c [N}, 00). Setting

¢ = gxpwy + (1-e) f,

we will show that g(") € U for all n € N. Since g,E") = grforeachl < k < N, itis
enough to check only that || g(") | s < 1. We have

Clel(j) ifj <N,
Clg™|(j) = %Zf:1|gk| ifN<j<Ny,
S gkl + - T LMD ifj2 N
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Consequently, from (3.1) it follows that C|g(™)|(j) < 1foreach j € N, i.e., g € U and
therefore g(") € By, if m > my. Finally, applying (3.2), for n > mq := max{m;, m,},
we get

I 1l + 1= amemlln <+ | 22 474"
_ L (=) 3 £ 0 o) _ L Sh
_s+‘1_s((1 s)k;:\]l fi +Zx ) l_sgxk gk‘

1 — n n
S“;L; Ve +

— 1 g0 [l s

1 1 2¢
=&+ :Kgn»x"” + :Hx(n)X[I,N) Il gllcesos < &+ 1=

which shows that lim,, o, [ x(") |z = 0, as desired. [ |
Corollary 3.2  The space ces’, has the Dunford-Pettis property.

Proof From (2.10) we have (ces?,)* = (ces?,)’ = #; and by the fact that a Banach
space has the Dunford-Pettis property whenever its dual space has it, the result fol-
lows from Theorem 3.1. u

Although the spaces ¢, and £, are not isomorphic, & is isomorphic to a subspace
of £, and so ¢; can be treated as an extension of ¢; preserving the Schur property.

Theorem 3.3  The basic sequence {27 i } 5, is equivalent in the space £, to the canon-
ical €1-basis.

Proof We prove thatforalln e Nand¢; >0,i=0,1,...,n,

Since [ en [z = m, for every m € N, the right-hand side inequality is obvious. Thus, it
is enough to check only the opposite inequality. If ¢; > 0, then

(iciZ*"ezi)N=(c0,%,0,1—2,0,0,0,c—3,...,@ 0,..., 22,0
i=0

~

8 an-1’ 2n
:(CO,Q,Q,Q,E,E,E,E,W,Cn—l,in,, En n )N
274747878788 an-17 g0’ " gn’ on?
2( 2222222_)%—1,&,.&70)
27474788788 2n-17 on an’ n

SO

N | =

HZCZ €yi - H(ZCZ e2) H 2c0+%zn:c,-2 Zn:c,-. [ |
& i=1 i=0

Since the space #; is order continuous, then from (2.9) it follows that (¢)* =
(£1)" = cesoo. Therefore, taking into account that the space cese. has the Fatou prop-
erty, we obtain the following.
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Corollary 3.4  The basic sequence {2'e,i } 32, is equivalent in the space ceso, to the
canonical cy-basis and €. is embedded into cesq.

Corollary 3.5 The space £, is isomorphic to the space (B, €% )¢, Therefore, the
space ceso, is isomorphic to the space (@2, €% )¢ and contains a complemented sub-
space isomorphic to L,[0,1].

Proof Let us define the linear operator T from &; to (D°2, €2 )e, as follows: if ¢ =
(cx)2, € &y, then Tc = (d(M)2 | where

A" = (@), d" = (- 1+2") g j=1,2,..,2"
Assuming that ¢, > 0,k =1,2,..., by Theorem 3.3, we obtain
d(”)

oo oo 2"
lellg = | el 7 =1 2 2 7oz eonl

(<2 Z max_ A" = 2| Tc| g, e, -
n—o =Lz 2o e =1, il

SHZ max d() 27" egunt

On the other hand, by the definition of the norm in E and Theorem 3.3, we have
n d (n)

co 2
j (n) 5=
L i BN d™ 27 ey
el = |5 % g el 251 5 o, 1
NERS FIONLNT
>3 2 s, 4 = o 1 elloz,
n=0/""""

[ €2

n=0 oo

and therefore T is an isomorphism from ¢; onto (& )e,. Since (€1)" = cesoo, by
duality, we deduce that ces., is isomorphic to the space (B, Efn Ve

To get the last result of the corollary, we note that (@;2, €% )¢, is a complemented
subspace of (@°, €2)e, and hence of ;. Thus, applying the Hagler—Stegall theorem
[HS73, Theorem 1], we conclude that the dual space, i.e., ces, contains a comple-
mented subspace isomorphic to L;[0,1]. [ |

Remark 1 Bourgain [B8], p. 19] proved that an arbitrary ¢;-sum of finite-dimen-
sional Banach spaces has the Schur property (see also [CI90, pp. 60-61] for a simpler
proof). Hence, from Corollary 3.5 we can infer that £, has the Schur property and
thereby we get another proof of Theorem 3.1.

From Corollary 3.5 and the fact that €., is a prime space [AK06, Theorem 5.6.5]
and [LT77, Theorem 2.a.7]) we have the following.

Corollary 3.6  The spaces ceso, and €, are not isomorphic.

The fact that the space ces,, contains a complemented subspace isomorphic to
L,[0,1] will be a crucial tool in proving the existence of an isomorphism between
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Ceso spaces of functions and sequences. So, it is worth giving its direct proof with-
out referring to the general theorem of Hagler-Stegall [HS73, Theorem 1], especially,
because the following proof is interesting on its own.

Theorem 3.7  The space ceso contains a complemented subspace isomorphic to

Ly[0,1].

Proof Thanks to Corollary 3.5, it is sufficient to prove that in the space (B2, €2 )¢._
there is a complemented subspace isomorphic to L;[0,1]. Denote the collection of

dyadic intervals of [0,1] by B} = [ ]‘2:1 , 2%) ,wherek =1,...,2" andn =0,1,2,---and

define a sequence of operators H,: L' — €2 by

Hy {fB’; f() dt}il.

Then |H, | = 1for each n. Moreover, put H: f — @52 ,H, f. Then H maps L;[0,1] into
the space (@2, £ )¢ with |H| = 1. Moreover, let us show that H is an isometry
between the spaces L1[0,1] and H(L[0,1]). In fact, denoting by { h }, the Haar basis,
for a given f € L;[0,1] and any ¢ > 0, one can find a function g = Y, axhy such
that g — f| < e. Then, for n large enough, there holds |H,g| = |g|, which, in
consequence, gives |H, f| > |Hng| — € > | f|| - 2¢ and proves our claim.

To see that H(L,[0,1]) is complemented in (@22, £>" ). a little more work is
required. For a given n we set T,: (@°2, €2 ), = L1[0,1] by

o
Ty x Z Z"x,’;XBﬁ,
k=1
where x,, = (xfj)i":l and x = @, x,. Of course, | T, | =1 for each n. Let # be a free
ultrafilter. Then for a given x € (@22, €2 )¢ we define the functional R, on C[0,1]
by the formula R, (g) = lim,(T,x, g) for g € C[0,1]. Since |T,| = L,n € N, we get
IR« =1.

Recalling that the space C[0,1]* consists of all regular Borel measures on [0,1]
with finite variation, denote by Q the Lebesgue projection that maps any such measure
into its absolutely continuous part. Now one can verify that P: x — H(Q(R,)) is the
required projection from (22, €2 ),.. onto H(L;[0,1]). In fact, since { T, (Hf)}%2,
is a uniformly integrable martingale associated with a function f € L;[0,1], there
holds T,,(Hf) — f in L;[0,1]-norm. In consequence,

Ruf(g) =lim(T,Hf, g) = lim (T,Hf,g) = (f.g) forgeCl0.1].
Therefore, Q(Ryy) = f, which proves our claim. [ |

The second named author learned yet another original proof of the above theorem
from Professor Yves Raynaud. Namely, it is possible to construct a projection from
(@2, €"),.. onto the space, say M, of all bounded dyadic martingales in L, and
then, in the second step, from M onto L;.

Now we investigate the conditions under which Cesaro and Tandori sequence spa-
ces have or do not have the Dunford-Pettis property.
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Observe that under the assumption of nontriviality of indices of a function ¢, that
is, when 0 < p, < q, <1, in the case when I = [0, 00), we have CA, = L (¢(t)/t)
with equivalent norms [DS07, Theorem 4.4] and [LM15a, Theorem 8]). And hence,
by Theorem 2.1 (i), the corresponding Tandori space My, = Lo, (9), so they both have
the Dunford-Pettis property. An inspection of the proof of [LM15a, Theorem 8] com-
bined with duality (see Theorem 2.1 (iii)) shows that for the respective sequence spaces
the following result holds.

Theorem 3.8 Let ¢ be an increasing concave function on [0, 00).

(i) Ifpy >0, then CAy = &1(¢(n)/n) and therefore has the Dunford-Pettis property.
(i) Ifqy <1 then my = £ (9(n)) and therefore has the Dunford-Pettis property.

In the proof of a similar result related to the spaces 71; and Cm,, we will make
use of a suitable isomorphic description of these spaces and the well-known results of
Bourgain mentioned in the introduction [Bo81].

Theorem 3.9  For an arbitrary increasing concave function ¢ on [0, co) the spaces 1;
and Cm, have the Dunford-Pettis property.

Proof At first, in the case when lim;_.., ¢(t) < oo we have A, = £o,, whence ;1\; =
0, and the result follows. So, let lim;_,c, ¢(#) = co. Moreover, the function ¢(t) is
strictly increasing and, without loss of generality, we can assume that ¢(1) = 1. Let us
define the increasing sequence {ny } 2, where n; =1, as follows

o = supli > ng o o(i) —p(ng) <28), k=12,....
Then, since (#1541 +1) — ¢(nx) > 25 and, by subadditivity of ¢,
@(nka +1) = p(nx) < (1) =1,
we have
(3.3) 2K < o(npa) —o(ne) <28, k=1,2,...

Therefore, by (3.3) and [GHS96, Proposition 2.1] (see also [GP03, Lemma 3.2]), for
every x = (x,)pe; € Ay we have

Ixl :i (p(n+1) — (n)) = iz Z(p(n+1) - g(n))

X (9(nks1) = <P(nk))<22 sup max |x;|

k=1 jzk MiSisnin

<>2 Z max |x,|—z max |x1|22k
k=1

i MS i

8

= i= PR <i<njy 1 1i<isnjg
e .

< J =

—21212 Jmax [xi| = 2lxle,

where |x|g = X35 2/ MaX, <i<n;,, |%il-
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Conversely, again, by (3.3),

||x\\e=21§}§§2|xi|+z2j max  |x;] <2|x]e., +4) X [9(n)) - 9(n1)]

nj<i<njig

=2 =2

e #4305 Slotn+1) - o(m)] < (=2— +4)
<2|x|le, +4 Xalo(n+1) —@(n)] <| ——— +4) x|+
j=2n=nj ¢(2) -1 Ao

These inequalities show that ’/i; is isomorphic to the space (Dyey £7F )¢, , where my =

nk+1 — N, k € N. Hence, applying [Bo81, Corollary 7], we obtain that the space ;\; has
the Dunford-Pettis property.

Regarding Cm,, we first note that in the case when lim;_o ¢(t)/t > 0, the latter
space coincides with ¢; and hence has the Dunford—-Pettis property. If

lim ¢(t)/t=0,

t—oo

then from Theorem 2.1 (iii) and the first part of the proof it follows that
Cmy) = Ay = (@ €7%),,,
(Cmg) =Ty = (@ €)e

where y(t) = t/¢(t). Combining this with the fact that Cm,, has the Fatou property,
we infer Cmg ~ [(@ken€ot)e,]” = (Bren €1 )e..» Hence, from Bourgain’s result
[Bo8l, Theorem 1] it follows that Cr,, has the Dunford-Pettis property. ]

Corollary 3.10  For any increasing concave function ¢ on [0, c0) the space C(my)
has the Dunford-Pettis property.

Proof Since the space C (mg) is order continuous, by Theorem 2.1 (iii), we have

[COmg))* = [C(mE)) =2y,
where y(t) = t/¢(t). Now the desired result follows from the preceding theorem. M

Now we show that in the case of reflexive spaces the situation is completely differ-
ent.

Theorem 3.11 Let X be a reflexive symmetric sequence space.

(i)  If the operator Cy is bounded on X, then CX does not have the Dunford-Pettis
property.

(ii) If the operator Cy is bounded on X', then X does not have the Dunford-Pettis
property.

Proof (i) Since X is reflexive, it follows that C;: CX — X is a weakly compact oper-
ator. Therefore, it is sufficient to show that C; is not a Dunford-Pettis operator.
Consider the sequence x,, = ¢x-(n)e,, where {e, } is the canonical basis in X and
@x is the fundamental function of X’. Let us show that x,, - 0 weakly in CX.
Since the space X has an order continuous norm, CX also has order continuous
norm and, by Theorem 2.1 (iii), we obtain (CX)* = (CX)" = X’. Therefore, by the
definition of X/, it is sufficient to prove that

(3.4) (y,x0) = ox(n) y, > 0asn > oo
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for each non-increasing positive sequence y = (y,) € X'. Observe that X' c m,_,,
where m,,_, is the Marcinkiewicz space with the fundamental function ¢ x-. Moreover,
by reflexivity of X, X’ = (X’)?, and thus

X' emd, = {(0) lim gxi(n)z; =0},

Clearly, this embedding implies (3.4) and hence x,, - 0 weakly in CX.
On the other hand, Cye, = Y12, ex/k for every n € N. Since X is a symmetric
space, we have

n

ex
D

on+k-1

Sl - 20 -

> L - .
2nlli 2n 20x(n)

Cge =HE 7H >
| Caenlx on+k-1lx

Hence, |Cyx4||x > 1/2 for all n, and the proof is completed

(ii) Since X' is reflexive and C; is bounded on X’, from Theorem 3.11 (i) it follows
that C(X") does not have the Dunford-Pettis property. By duality, Theorem 2.1 (iii)
and the fact that C(X") is order continuous, we obtain X = (CX’)" = (CX')*. Thus,
X is the dual space to a space without the Dunford-Pettis property. So, X also fails to
have it. ]

4 On the Dunford—Pettis Property of Cesaro and Tandori Function
Spaces

As mentioned above, under the assumption of nontriviality of indices of a function
@, the spaces CA, and AA/I;, are some weighted L;-spaces and L -spaces, respectively,
and so they both have the Dunford-Pettis property (see [DS07, Theorem 4.4], [LM15a,
Theorem 8]). Similarly, as in Theorem 3.8, we are able to prove the latter property also
for their counterparts, 7\; and CM,,.

Theorem 4.1 Let ¢ be an increasing concave function on [0, c0).

(i)  The space A,[0,00) is isomorphic to the space (@nen Loo[0,1])e, and has the
Dunford-Pettis property.

(ii) Ifqy <1, then the space CM, |0, co) is isomorphic to the space (@ ey L1[0,1]) ..
and has the Dunford-Pettis property.

First, we prove the following auxiliary result.

Proposition 4.2 Let w be a locally integrable function on [0,00),w(t) > 0 almost
everywhere, such that [;° w(t)dt = co. For1 < p < oo, we consider the weighted
Ly-space with the norm | f|| 1wy = (fy [f(£)[Pw(t) dt)/?. Then the space Ij;(\vT) is
isomorphic to the space (@ ez Lo [0,1])¢,, and the constant of isomorphism depends
only on w.

Proof Without loss of generality, we can assume that fol w(t)dt = ﬁ, where a > 1.
Thanks to the assumptions, there is an increasing sequence {ty }xez such that to =
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1,t, > 0asn — —oo,t, = +o00 as 1 — +o0o and
7981
f w(t)dt=a" forallneZ.
ty

Then, applying once more [GHS96, Proposition 2.1] (see also [GP03, Lemma 3.2]),

for every f € L,(w) we have

1= [T W =3 [ essuplf)lFw(e) de

nez
< Y esssup|f(s)[fa" = ) sup esssup |f(s)[Pa”
neZ S2ta neZ k>n tp<s<try
<C(a) 2 I MtwtanlT 0" = C(a) | flGs
nez
where )
n . P
Ifle = (X a" If Xtenrm 2.
nez

and C(a) is some constant depending only on a (and hence on w). On the other
hand,

1115 =0 X @™ 1 il =0 X [ esssup [£)Pwie) d

neZ neZ by 1 t,<s<tu41
<ay [ esssup |f(5) P (1) dt = al .
nez

Since the space Lo [a, b] is 1somorph1c to the space Lo [0,1] for every 0 < a < b < oo,
the result follows. ]

Proof of Theorem 4.1 (i) It is clear that 7\; = Ijm Therefore, from Proposi-
tion 4.2 it follows that A, = (@, Leo[0,1])¢, and, by Bourgain’s result [Bo8l, Corol-
lary 7], 1’\\; has the Dunford-Pettis property.

(ii) Since g, < 1, then the operator C is bounded in M,[0, co) [KPS82, Theorem
6.6, p. 138] and hence, by Theorem 2.1 (i), the K6the dual of the space CM,, coincides
with the space Ay, where y(t) = t/g(t), t > 0. Therefore, applying Proposition 4.2,
we are able to get the result, arguing in the same way as in the concluding part of the
proof of Theorem 3.8. u

Theorem 4.3  The spaces Cesoo(I) and Ly(I), where I = [0,00) or [0,1], have the
Dunford-Pettis property and they are not isomorphic.

Proof At first, let I = [0, o). Since L; = A, where ¢;(¢) = , and Ceseo = CLoo =
CM,,, where ¢o(t) = 1, by Theorem 4.1, the spaces L; and Ces,, have the Dunford-
Pettis property.

Let us show that L; and Ces., are not isomorphic. By Theorem 4.1, the space L;
is isomorphic to the space (D ,eny Loo[0,1]) ¢, and therefore, according to Petczyniski’s
result on isomorphism between Lo, and £, ([Pe58]; see also [AKO06, Theorem 4.3.10]),
L, is isomorphic also to (@,cy €oo )¢,. Since the latter space fails to contain a com-
plemented subspace isomorphic to L;[0,1] [CMO08, Proposition 3], then L; also does
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not. On the other hand, the space Ces., contains such a complemented subspace (see
Proposition 2.2), and the result follows.

It is easy to see that the assertion of Proposition 4.2 holds also for weighted
L,-spaces on [0,1] (with the same proof). Therefore, L;[0,1] =~ (®,en Loo[0,1])e,
and, since (Ceswo[0,1])" = L1[0,1], then Ceso[0,1] = (@ ey L1[0,1])¢.. Thus, the
result can be proved in the same way as in the case of [0, o0). ]

A similar result can also be deduced from Theorem 4.1 for the separable part of a
Marcinkiewicz space M| 2, (see also Corollary 3.10). In fact, since the space C(M 2,) on
[0, o) is order continuous and the condition Mg = qp < 1implies the boundedness
of the operator C on M{, by Theorem 2.1 (i), we have [C(MJ)]* = [C(MJ)]’ = Ay.
As a result, applying Theorem 4.1 (i), we get that C (Mg) has the Dunford-Pettis
property. However, we prefer to give the more direct proof of the latter fact (with-
out exploiting Bourgain’s results [Bo81]) by using the following property of separable
Ceséaro—Marcinkiewicz spaces.

Proposition 4.4  Suppose that ¢ is an increasing concave function on [0, oo ) such that
lim o+ (t) = 0 and g, < 1. Let X = C(MJ) on [0,00) and let I, := [a, by] be a
sequence of intervals from [0, 0o ) such that either

(4.1 bi>ai>by>a,>--->0 and b,—-0"asn—> oo
or
(4.2) a<by<ay<by<--- and a,— ooasn — oo.

Then there are a subsequence of positive integers {ny } 32, ny < ny < --- and a constant
C > 0 such that for every sequence {x, } c X satisfying the condition supp x,, ¢ I, n =
L,2,..., we have

m
(4.3) max [xu, |x <[ D xn,x <C max |x,[x, m=12,....
=L...,m k=1 k=1,...,m

Proof Since a given sequence {x, } under consideration consists of pairwise disjoint
functions, the left inequality in (4.3) holds for an arbitrary subsequence {n}32,. So,
we need only to prove the reverse inequality. Obviously, we may assume that x,, > 0

almost everywhere. Since g, < 1, then lim;_,¢+ ﬁ = 0. Therefore, in the case (4.1),

applying the diagonal procedure, from any given sequence {1, } we can extract a sub-
sequence of intervals (which we will denote still by I,, = [a,, b, ]) such that

(4.4) S y(bi) < y(an), where y(t) = t/q(t).

k=n+1

We claim that the corresponding sequence of functions (still denoting them by {x, }
and assuming that supp x,, c I,,) satisfies the right-hand inequality in (4.3). For any
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meNand t € (0, 00), we have

L (@) ds= z S 5 Kt ()

2i=m—j+2

1 m
; Z:; Lm i xm_j+1(5) dsx[llmfjuabm—jﬂ](t)

Z f %i(8) dsX (b jenram;1 (1)

j=li=m—j+1

= h(t) + f2(1) + f3(8),

\*\»—A

where ay = 0o, and

JTOEED WD W IO Y S}

]21m]+2

m—j+1
[a S 1(5) Xt} (£

m—j+1

f(1) = Z [ ) e (0

Since By = gy < 1, the operator C is bounded in Mg [KPS82, Theorem 6.6], and

hence, by Theorem 2.1 (i), (CX)* = (CX)" = X’ = A, with equivalent norms. Thus,
by (2.1) and (2.8), for arbitrary 0 < a < b < co and x € X,

b
(4.5) f [x(s)l ds < Cillx| x| xga.e1 |75 = Cillx[xw (b).
Hence, by (4.4),
fi(t) < *Z Z Y (0i)%i % Xamsam] (1)
j=2i=m—j+2
C &
< T ZV/(am ]+1)X[“m —j+1>Am— ] (t) maX Hxl ”X

~.
I
[N}

..........

(t) ZX [@m—js1>0m—j] (t) max il x < ﬁ maX i | x

whence, since q, <1, by (2.5), it follows that

<P(t)

(4.6) | fill ag, <

—ds max |xi]x < CiCy _max_ [l2: ] x-

..........

Similarly, since y increases, we have

fa(t) < 72;1//(bm ) [xmjer ] x - X[bm—jr1-am- ,](t)
J
G
T X xifx,

,,,,, (t)
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and again

(4.7) ||f2HM <C1C2 max x| x-

.....

Finally, using (4.5) once more, we have

C &
£ < SO sl K ) (O
=1
2l i 1(6) max x| max x|
(t) X [am- —j+1bm— ;+1 ’’’’’ illx < (t) il X>

whence again

(4.8) If3llm, < CiCy  max i x-

.....

Thus, from (4.5)-(4.8) it follows that

.....

m
|2kl < ik, + ol + 1 fslg, < € max [xi]x,
k=1

where the constant C := 3C;C, depends only on the function ¢.

Regarding the case (4.2), we note that condition g, < 1 implies lim;_, ﬁ =
Hence, from any given sequence of intervals we can select a subsequence of intervals
(denoted still by I,, = [ay, by, ]) such that

k-1

(4.9) S y(bi) <yl(ak),k=2,3,....
i=1

For arbitrary m € N and t > 0, we have

[ (Zxk(s)) ds-%z

k=1

(21/ (s)ds+fatxk(s)ds)x[ak,bk](t)

1 m
;ZZ [ 56 st ®
=gi(t) + &(t) + g3(1),
where a,,,1 = o0, and
1 m k 1

2@ =1 55 [ 5(ds Kapara (9

tk211

=13 [ 56 (0,

~

m

3(t) = %k (5) ds - X[ap.b,1(1)-
f(t) = [uk () A5 K] (1)

=1
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First, applying (4.5) and (4.9) we obtain

C k-1
ai(t) < 71 Y2 w(b)|xilx - Xap,ara (2)
k=2 i=1
C m
< 71 22 ¥(aK) * Xapaa) (1) - max [xifx
k= i
C &
< ] (£) - max lxfx < xix-
o(1) o Mowarn) (1) 0 S

Next, similarly,

82(1) < Il/(bk Ikl - Xibrsar (£ )—ﬁ max |xix,

.....

N\G N\O

G
&(1) < Il/(l‘)kaHX Xawbe] (1) < o(0) i, il x-

As a result, usmg (2.5), we have

.....

where the constant C := 3C,C, depends only on the function ¢. ]

Corollary 4.5 Let ¢ satisfy all the conditions of Proposition 4.4 and let X = C(Mg)
on [0,00). Suppose that I,, := [a,,b,],n = 1,2,..., be a sequence of intervals from
[0, 00) such that either by > a1 > by > a, > -+ > 0and b, -~ 0" asn - oo or
a1 <by<ay<by<---anda, - oo asn — oo. Then every semi-normalized sequence
{fu} © X such that supp f, c In,n = 1,2,... contains a subsequence { f,, } that is
equivalent in X to the canonical basis in co.

Proof At first, applying Proposition 4.4, we find a subsequence of positive integers
{ni}z2,,m < ny <---and a constant C > 0 such that for every sequence {x,} c X
with suppx, c I,,,n =1,2,..., we have

max Hx,,kHX<Hank <C max [%n,llx, m=12,....
In particular, setting x,, = ¢ f, if g < n < g1, k =1,2,..., where (¢x ) isan arbitrary
sequence from co, and assuming that D™ < | f,|x < D,n=1,2,... forall m € N, we
obtain

D’lkmax lck| < H chf,,k S CD 1  max |ckl-

..........

Since (c) € o, then the series Y77, ¢k f,,k converges in X and we have

D7 (el || Y ekt
k=1

L <CD(E0) e .

Theorem 4.6  Let ¢ be an increasing concave function on [0, 00) such that

tlil})q+ @(t)=0 and g, <1

https://doi.org/10.4153/CJM-2017-055-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-055-8

522 S. V. Astashkin, K. Lesnik, and L. Maligranda
Then the space X = C(Mg) on [0, 00) has the Dunford-Pettis property.

Proof Assuming to the contrary that X does not have the Dunford-Pettis property,
we can find sequences {u,} c X such that ||u,|x = 1, u, — 0 weakly in X, and
{va} © X* = X' = A, such that |[v,|x = L,v, — 0 weakly in X’ satisfying the
condition

(4.10) (up,vp) = /(;ooun(t)vn(t) dt >4,

for some & > 0 and all n € N. It is easy to see that u, x[,,;) - 0 weakly in X for every
0 <a<b<oo Infact ifv e X', then (unx[a,6],V) = (Un> V)[ap]) = 0as n — oo,
because of v y[4,5] € X'. Moreover (see Proposition 2.2),

Xlrap):={u e X:suppuc[a,b]} = Li[a,b]

with equlvalence of norms, and therefore u, x[4,,) — 0 weakly in Ll[a b]. Setting
an(u) = ]u u(t)v,(t)dt,n € N, we see that a,, € (L1[a,b])* = Leo[a,b] = X'/ M,
where M = {v e X" : (u,v) =0 forallu € L;[a, b]}. Then

(Loo[a, b])* = (X'/M)* = {F € (X')":F(v) = 0 for all v € M},

and therefore (Loo[a,b])* c (X')*. Hence, from the fact that v, - 0 weakly in X',
it follows that a, — 0 weakly in Lo,[a,b]. Since L;[a,b] has the Dunford-Pettis
property, as a result we have

an(Un Xap]) = [ (v (t)dt >0 asn — oo,

for every 0 < a < b < oco. Thus, taking into account (4.10), we can select subsequences
of {u,} and {v,} (we will denote them still by {u, } and {v, }) such that at least one
of the following conditions holds

o there exists a sequence {b, }:2; with b; > b, > ---,lim,,c b, = 0 and

by
f U, (t)vn(t) dt > %, neN;
0

* there exists a sequence {a, }o2; with a; < a; <---,lim, 0 a, = 00 and

[ un(t)va(t) dt > %, neN.

Since [ [un(t)va(t)|dt < oo for every n € N, passing to further subsequences, we
can find a sequence of intervals I, = [a,, b, ], n = 1,2,... such that either b; > a; >
by>ay > -, lim, e by, =0,0ra; < by <a, <by<---,lim,_ o a, = oo, for which

)
(4.11) f un(t)va(1)dt> S, men.
I
Now we set f, = t, - x1,»n = 1,2,.... From (4.11) it follows that {f,,} is a semi-

normalized sequence in X. So applying Corollary 4.5, we can extract a subsequence
(denoted still by {f,, }), which is equivalent in X to the canonical basis in co. There-
fore, f, — 0 weakly in the closed linear span [f,] (and in X). Clearly, 8,(f) :=
Jo" f(t)va(t) dt is a bounded linear functional on [f,]. As above, [f,]** ¢ (X')*.
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Therefore, since v,, — 0 weakly in X', we have 6,, - 0 weakly in [ f, ]*. Noting that the
subspace [ f,] is isomorphic to ¢y, which has the Dunford-Pettis property, we obtain

f un (D) (£)dt = 0,(f2) = 0 asn — oo,
I
which contradicts (4.11). Thus, the proof is complete. ]

As we know, the condition 0 < p, < g, < 1 guarantees that CA, on [0, 00) is a
weighted L;-space up to equivalence of norms (see [DS07, Theorem 4.4], [LM15a]).
It turns out that a similar result holds also for the Cesaro-Lorentz spaces on [0,1].

Theorem 4.7  Let ¢ be an increasing concave function on [0,1] such that 0 < pg, <
g% <1. Then CA[0,1] = Ly(w), with w(t) = [~ £ ds,

t+s

Proof By duality and Fubini’s theorem, we have

floa, = swp [ ClfiG)lg(ldr= s [le(ol( + [ If(e)de)a

Hg”A' <1 ”gHA’ <1

- s [l [ B ax) ars [poima,

lglar, <

where h;(x) = < x[¢,1(x). Then

lhala, = [ o ds= [ 8 s

and consequently the above inequality means that L;(w) & CAy. In view of the
conditions imposed on the indices pg and q(q’,, the operators C and C* are bounded in
A, (see [KPS82, Chapter II, §8.6]). Therefore, the reverse inclusion is equivalent by

duality (see 'Iheorem 2.1 (ii)) to the following one: Lo (1/w)—M,(v), where y(t) =
and v(t) = 1. Thus, it is enough to check that w € My (v), i.e.,

1 LS
Wl = s s [ oy () dx < .

First notice that w is decreasing, so we have w = w. We divide the function v - w into
two parts, namely,

<p(t)

v(t)w(t) = Q Xo,1/21 () + L)( (/2,11 () = wo () +wi(t).

Thus, we need only to Check that wo and w; belong to the space M.
By Fubini’s theorem, we have

w¥(t)dt = RRASUFAW
k L )
=f07x( Ox%(ss)dt)ds+[lix(fois%dt)ds

1-x 1
:f (p(s)ln ds+/ (p’(s)lnlds.
0 1-x N
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Then, since 0 < x < 1/2, the second summand can be estimated thanks to monotonic-
ity and subadditivity of the concave function ¢ as follows:

/:x ¢'(s)In % ds<In2 /1—1x ¢'(s)ds =In2[p(1) - p(1-x)] < In2¢(x).

While for the first one, integrating by parts we get

I-x X+s 1 ) x
[0 (p(s)lanS—(p(l—x)lnm—slirgq)(s)ln
1-x
+xf Mds
o (s+x)s
1-x
<o)X vx [ _9(s)
1-x 0

(s+x)s

+5S

Since 0 < x < 1/2, then by concavity of ¢, we get ¢(1) % < 2¢(1)x < 2¢(x). More-
over, for some 0 < a <1,A>1,and all 0 < x <1, ¢ > 0 we have ¢(tx) < At®¢(x) and
consequently, putting s = tx, we obtain

= og(s) 1 p(tx) F(x)
fo (s+x)sds'§/o e’ *f e’
</)(x) t! 9(x)

AT f 1+t =B ’

X

Thus, for 0 < x < 1/2,

fox(wo)*(t) dt < zfox(wx(o,l,z])*(t)dt < Zfoxw*(t)dt
<2(2+B+1n2) ¢(x),

whence wy € M.
Let us consider now wy. For 1/2 < t <1 we have

wi(t) = % fol_t ?'(s) ds < I%t Ll_t¢'(s) ds = zgo(l— )

t+s —-t
( ) is increasing, we conclude that w; () < 2("(0 0<t<lIn
consequence, from (2 5) and the condition qw =1- p(p <1, it follows that

[Oxwf(t)dtngoxq)(tt)dtzzfoxw(l)d 2Cm—2C¢(x),

which finishes the proof. u

Since the function £3=2

Of course, from Theorem 4.7 it follows that the space CA,[0,1] has the Dunford-
Pettis property whenever 0 < pg < qg < L Let us prove an analogous result for
separable Cesaro—Marcinkiewicz spaces.

Theorem 4.8  Let ¢ be an increasing concave function on [0,1] such that

. 0
tlil}]l+ ¢(t)=0 and q, <L

Then the space C(My)[0,1] has the Dunford-Pettis property.
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Proof Foreveryk=2,3,..., weset

Xi = CMyl iy, 1 = {f € CM, :supp f ¢ [0’1_ %] }

Since CM g is an order continuous space, the union Uy, Xj is dense in it. Moreover,
from the definition of Cesaro spaces, it follows that, for every k = 2,3,..., Xj can be
regarded as a complemented subspace of the space CM;])1 [0, 00), where ¢, is a con-
cave extension of the function ¢ to the semi-axis [0, co) such that q,, < 1. (Notice that
CX[0,1] is not a restriction of CX[0, o) to the interval [0,1]. More precisely, simi-
larly to [AM09, Remark 5], one can check that CX[0, c0)|,1] = CX[0,1] N L;[0,1]).
Therefore, an inspection of the proof of Theorem 4.1 shows that

Xj =~ (EBNLl[O’l])ew,

whence the space (32, Xk )e.. is isomorphic to the latter £.,—sum as well. Thus,
(D72, Xk )e.. has the Dunford-Pettis property. Finally, applying [Bo8l, Proposi-
tion 2], we conclude that CM(?, also possesses the latter property, and the proof is
complete. ]

Remark 2 The assertion of Theorem 4.8 cannot be deduced from Theorem 4.1 (i),
using Bourgain’s results as above, because of the difference in the duality results for
Cesaro spaces for the cases of [0,1] and [0, 00) (see Theorem 2.1). We would like
to mention here also that we could not identify conditions under which the space
CM,[0,1] has the Dunford-Pettis property.

Now we present some negative results related to the Dunford-Pettis property of
Cesaro and Tandori function spaces.

Theorem 4.9  Let X be a reflexive symmetric function space on I such that the operator

C is bounded on X.

(i) IfI=[0,00), then the spaces CX and X' do not have the Dunford-Pettis property.

(ii) IfI=10,1], X has the Fatou property, and the operator C* is bounded on X, then
the spaces CX and X' do not have the Dunford-Pettis property.

Proof (i) The proof is rather similar to the proof in the sequence case (Theorem 3.7).
Again it is sufficient to prove that the operator C: CX — X is not a Dunford-Pettis
operator. Let us show that x,, = m)([o,l/n] ,n=12,...,isaweakly null sequence

in CX. Since X is order continuous, it follows thilt CX is also order continuous and
by Theorem 2.1 (i) we obtain (CX)* = (CX)" = X’. Thus, we need only to check that

1 1/n
(4.12) (y,x,,):mfo y(t)dt >0 asn— oo,

for every decreasing positive function y € X’. Again X' ¢ M,, ,, where M,_, is the
Marcinkiewicz function space with the fundamental function ¢ . By reflexivity of X
we have X’ = (X")°, and thus

, ¢
X'CM(?,X, c {z:z(t) :ltiﬁngq)xit(t)/0 z*(s)ds:O}.
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But ¢x(t) = t/¢x:(t) and (4.12) follows from the above embedding. On the other
hand, Cx, > x, and so ||Cx,| x > ||x4||x = 1. This means that CX does not have the
Dunford-Pettis property. Moreover, since X’ = (CX)" = (CX)*, X’ fails to have the
latter property as well.

(ii) The only difference of this case from the case of [0, c0) is the fact that now

(CX)* = (CX)" = X'(1/(1-t)). However, “near zero’, the latter space coincides
with the space X’ without a weight. Thus, we can repeat the same proof asin (i). M

As we know [DS07, Theorem 4.4] and Theorem 4.7, the Cesaro-Lorentz spaces
may coincide with weighted L;-spaces and therefore may be isomorphic to the sym-
metric space L;. At the same time, this is not the case for Cesaro spaces CX when X
is reflexive.

Corollary 4.10 If X is a reflexive symmetric function space on [0,1] such that the
operator C is bounded on X, then CX is not isomorphic to any symmetric space on
[0, 1].

Proof Suppose CX is isomorphic to some symmetric space Y on [0,1]. Hence, by
Proposition 2.2, Y contains a complemented copy of L;[0,1]. On the other hand, as
Kalton proved [Ka93, Theorem 7.4], every separable symmetric space on [0,1] that
contains a complemented subspace isomorphic to L;[0,1] is isomorphic to L;[0,1]
itself. Therefore, we conclude that Y is isomorphic to L;[0,1]. On the other hand,
CX ~ Y cannot be isomorphic to L;[0, 1], because by Theorem 4.9 that space fails to
have the Dunford-Pettis property. ]

5 Isomorphism Between Ces., and ces.,

In [AMO09, Theorem 9] (see also [AM14, Theorem 7.2]) it was proved that the spaces
Cesoo[0,1] and Ceso, [0, 00) are isomorphic and there the question was raised if the
spaces Ceso, and ces, are isomorphic [AM09, Problem 1], [AM14, Problem 4]. The
following theorem answers this question in the affirmative.

Theorem 5.1 The spaces Cess, and ces, are isomorphic.

Proof At first, we recall that, by Corollary 3.5, cesoo = (B2, €2 )¢ and, by The-
orem 4.1, Ceseo =~ (Dneny L1[0,1])e,.. Therefore, ceseo = ceSoo ® CeSoo and Ceseo =
Cesoo @ Cesoo, which shows that we can apply Pelczyniski decomposition argument,
see [Pe60, Proposition 4] or [AK06, Theorem 2.2.3]. In other words, the proof will
be completed once we check that ces is isomorphic to a complemented subspace of
Ceso, and vice versa.

Clearly, for every n = 0,1,2, ... the space £2" can be complementedly embedded
into the space L; [0, 1]. Therefore, the fact that ces is isomorphic to a complemented
subspace of Cesc, follows at once from the above isomorphic representations of these
spaces.

Just a little more effort is required for the proof of the reverse statement. Let us
represent the set Nu {0} as a union of infinite increasing pairwise disjoint sequences
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(ak)%2,, k =1,2,.... Then we can write
o oo aﬁ

(5.1) CESeo ~ ( D(P & )gm)l
k=1 n=0 had

Since n < ak, where k = 1,2,... and n = 0,1,2,... are arbitrary, the space £2" can
be considered as a complemented subspace of the space €faﬁ. Let P¥ be a respective
projection and P = @52, P¥. Noting that Py ( (52, €fa": Je) = (D5 2", we
see that by Theorem 3.7, L;[0,1] is complemented in Pk( (P2, Zf"ﬁ )e..) and hencein

ak
the space (©:°, €7 " )¢... Finally, from (5.1) it follows that Cese, = (D en L1[0,1]) e,
is isomorphic to a complemented subspace of ces., and the proof is complete. ]

Corollary 5.2 The space Cesq (I), where I = [0, 00) or [0,1], is isomorphic to a dual
space.

Proof By (2.9) and Theorem 5.1 we have (£;)* = (£;)" = cesoo ~ CeSoo. [ |

In contrast to the latter result, order continuous Cesaro spaces fail to be isomorphic
to the dual ones.

Proposition 5.3 If X is a symmetric function space on I = [0,1] or I = [0, 00) such
that X is order continuous and C is bounded on X, then CX is not isomorphic to a dual
space.

Proof Suppose that CX is isomorphic to a dual space. By Proposition 2.2, CX con-
tains a complemented subspace isomorphic to L;[0,1]. Therefore, applying the Hag-
ler-Stegall theorem [HS73, Theorem 1], we see that CX also contains a subspace iso-
morphic to C[0,1]*. However, it is impossible, since, by [LM15b, Lemma 1], CX is
separable. ]

Let us comment on the latter results. Suppose that X is an ideal Banach function
space with the Fatou property such that the separable part of its Kéthe dual (X’)° has
the same support as X itself. Then an easy argument shows that

[(X)°] =[(X)"] =X" =X,

i.e., X is a dual space. So the space (X’) is a natural candidate for being the predual
of a dual ideal Banach space X. Moreover, as we have seen, separable CX spaces are
not isomorphic to dual ones similarly to L; and both of them have Kéthe dual with-
out nontrivial absolutely continuous elements. Hence, the following conjecture may
arise: an ideal Banach space whose Kothe dual has trivial subspace of order contin-
uous elements is not isomorphic to a dual space. This statement, however, is false;
by Corollary 5.2, the Cesaro space Ceseo, satisfying [(Cess)']° = (L;)° = {0}, is
a dual space. In contrast to that, the symmetric space X = L; + Lo, on [0, 00), for
which we also have (X')? = (L; N Lo)? = {0}, is not isomorphic to a dual space
[AM17, Theorem 4].

It is interesting to observe that the above phenomenon has its counterpart in the
general theory of Banach lattices. Let E be a separable Banach lattice satisfying the
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Radon-Nikodym property (RNP). Then the set F of all x* € E*, such that the inter-
val [0, |x*|] is weakly compact, is a Banach lattice. Lotz showed (in an unpublished
preprint [Lo75]) that if F is big enough, i.e., the topology o (E, F) is Hausdorff, then
E = F*. Hence, F is a natural candidate as the predual of E. Talagrand, however,
motivated by above results, constructed a separable Banach lattice being a dual space
(and hence with RNP) such that for each x* € E*, x* > 0, the interval [0, x*] is not
weakly compact [Ta8l].

To see that the space Ces., may be regarded as a natural “function” counterpart
of Talagrand’s example (which seems to be rather artificial) we present the following
simple assertion.

Proposition 5.4  Let X be an ideal Banach space on [0,1],x¢ € X, xo > 0. Then the
interval [0, xo ] is weakly compact in X if and only if xo € X°.

Proof First let [0, xo] be weakly compact in X. On the contrary, assume that x, ¢
X°. Then there is a sequence of sets {A,}7>,, A} 2 Ay 2 A3 2,2, A, = @, and
£ > 0 such that

(5.2) |0 xa,llx > e

Since, by hypothesis, xo x4, € [0,xo], we can find a subsequence {xoxa4,, };2, such
that xo x4, — y weakly in X. Then, by [KA77, Lemma 10.4.1], we get that

|xoxa,, [x >0 ask—oo.

This contradicts (5.2).

Conversely, let xo € X°. Clearly, we have [0,x0] ¢ X°. Therefore, by [KA77,
Lemma 10.4.2], the interval [0, x,] is weakly compact in X?, i.e., with respect to the
topology generated in X° by the space (X°)* = X’. Since X* = X' @ X/, where X!
consists of all singular functionals f such that f | xo = 0 [KA77, Theorem 10.3.6], we
get that [0, xo ] is weakly compact in X as well. [ |

Remark 3 In particular, from Proposition 5.4, it follows that Lotz’s result cannot
be applied to Cese,. In fact, (Cesoo)* = L; @ S, where S is the space of singular func-
tionals, and, since singular functionals are not comparable with regular ones, each
interval [0, |x*|] c CesZ, is either non-weakly compact or is of the form [0, |s|] with
s € S. Therefore, the set F of all x* € (Ceso)* with the weakly compact interval
[0,]x*|] is contained in S and the topology ¢(Ces, F) fails to be Hausdorff, because
singular functionals vanish on absolutely continuous elements.

One more interesting observation comes from the above considerations.

Remark 4  The space (Dje; L1[0,1]),.. is isomorphic to a dual space, but its unit
sphere does not contain extreme points.

Since Cese (I) ~ X*, where X is a Banach space, and it contains a complemented
subspace isomorphic to L;[0,1], then, according to the above-mentioned Hagler-
Stegall result, Ceso.(I) contains a complemented subspace isomorphic to C[0,1]%,
i.e., to the space MJ[0,1] of all regular Borel measures on [0, 1] of finite variation. We
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would like to conclude this paper by presenting the following stronger result, which
was noticed by Michal Wojciechowski and is included here with his kind permission.

Theorem 5.5 The spaces Ceseo (I), where I = [0,1] or [0, 00), is isomorphic to the
space (Do M[0,1])e...

Proof At first, by Miljutin’s theorem [AKO06, p. 94], we know that C[0,1] ~ C(T),
where T is the unit circle. Since also M[0,1] ~ M(T) and L;[0,1] ~ L;(T), we can
regard all spaces on T instead of [0,1].

By Theorem 4.1, it is sufficient to prove that the spaces

(& L(T)),_ and (&M(T)),_

are isomorphic. Since both spaces are isomorphic to their squares, we may again ap-
ply the Pelczynski decomposition argument. Clearly, (D52, L1(T))e,.. is isomorphic
to a complemented subspace of (D, M(T))e... So we only need to check that, con-
versely, (Bz2; M(T))e.. is isomorphic to a complemented subspace of

(§1L1(T))[m'

Let {K,, } 72, be the Fejer kernel and let {N; } {°, be a sequence of pairwise disjoint
infinite subsets of positive integers such that .72, N; = N. For every i = 1,2,...,
define the operator K': M(T) — (52, Li(T))e,.. as follows:

K'(p) := (Ky * 4)nen, for every p e M(T).
Then |K'| = 1, and if N; = {n;};zl, ni < ni <. then K, *pu — pasj— oo
J

weakly* in M(T) for each i = 1,2,.... Hence, K := @, K' is an injective operator
from (@2, M(T)),.. into the space
® Li(T)), =((D Ly(T .
(Sl 1( ))ew (g(ngf, 1( ))em)gm

Denoting by Y the image of K, we prove that it is complemented in the latter space.

Let U be a free ultrafilter. For a given {fi} € (®52; L1(T)),.. andanyi =1,2,...
define the functional g} € C(T)* by (g7F, g) := limy(f,:» ), g € C(T). Since [{fx }|| =

]
supyey | fellL, < oo, then g is a well-defined linear and bounded functional. There-
fore, by the Riesz representation theorem, for every i = 1,2,..., there is a measure
pi € M(T) such that (g}, g) = (ui, g) for each g € C(T). Setting P({ fi }) = {ui}, we
see that P is a linear bounded operator from (D72, L1(T)),.. into (Do, M(T)),... It
remains only to show that the composition KP is a projection from (©32; L1(T)),..
onto Y. In fact, suppose that {fr} c Y. Then f,; = K,i * y;,i,j = 1,2,..., where
] J

{ui} € (B2, M(T)),,, and we have

i ( fos> 8) = (Ko g, &) = Hm(ps, Ko+ g) = lim (pis Ko+ ) = {p 8,
for every g € C(T). Thus, KP{fi} = {fx} if { fk} € Y, and the proof is complete. W
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