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REAL HYPERSURFACES OF A COMPLEX

PROJECTIVE SPACE

M., KIMURA

We study real hypersurfaces M of a complex projective space
and show that a condition on the derivative of the Ricci Tensor
of M implies M is locally homogeneous with two or three

principal curvatures.
0. Introduction.

Let Pn(ﬁ) be an #n-dimensional complex projective space with

Fubini-Study metric of constant holomorphic sectional curvature 4.

We consider a real hypersurface M of e . Let (¢,€,n,9) be an

almost contact metric structure induced from the complex structure on
P'(T) (51) . If the Ricci transformation of M satisfies

(0.1) SX = aX + bn(X)g .

where a and b are constant, we call M a pseudo-Einstein hyper-

surface [3]. Pseudo-Einstein real hypersurfaces in PYe)  are completely
classified by Kon [ 3] (see [4]). This result shows that if the Ricci
tensor of M has a nice form, then M is determined (see [5]). 1In

this paper, we consider the following problem: If the derivative of the

Ricci tensor of M has a nice form, what can we say about M?
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We have the following

THEOREM 1. Let M be a real hypersurface of P'(¢) . If the

Riceil transformation S of M satisfies
(0.2) (VXS')_Y = e{g(¢4X, Y)E + n(Y)eAX} ,

where ¢ 1is a non-zero constant, and A denotes the shape operator
(81). Then M is locally congruent to a homogeneous hypersurface with
two or three distinct principal curvatures.

We note that pseudo-Einstein hypersurfaces satisfy (0.2). Moreover,

THEOREM 2. There are no real hypersurfaces with parallel Riccei

tensor on which § 1is principal.

1. Preliminaries.

Let M be a real hypersurface of Pn(¢) . In a neighbourhood of
each point, we choose a unit normal vector field N 1in Pn(@) . The

Riemannian connections V in P'(€) and V in M are related by the

following formulas for arbitrary vector fields X and Y on M :

(1.1) VrY =V, + g(Ax, YN,
(1.2) VXN = - AX ,

where g denotes the Riemannian metric on M induced from the Fubini-
Study metric 5- on PY¢) ana 4 is the shape operator of M in Pnff).

An eigenvector X of the shape operator A 1is called a principa:

curvature vector. Also an eigenvalue A of A 1is called a principal

curvature,
It is known that M has an almost contact metric structure

induced from the complex structure J on Pn(@), (see [6]1), that is,
we define a tensor field ¢ of type (1.1), a vector field £ and a

I-form n on M by

gl(éx, Y) = g(Jx, ¥) and g(&, X) = n(X) = g(JX, ).
Then we have

(1.3) ¢2X = -X+ n(X)g, g(g, €) =1, ¢¢ =0 .
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From (1.1), we easily have

(1.4) (VX¢)Y = n(Y)JAX - g(AX, Y)E ,

(1.5) VXE = 04X .

‘ = 7
Let ' R and R be the curvature tensors of P (€) and M
respectively. Since the curvature tensor R has a nice form, we have

the following Gauss and Codazzi equations.

(1.6) g(R(X, Y)Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W)

+ g(oY, Z)g(sX, W) - g(eX, Z)g(4Y, Z)

2g9(6X, Y)g(¢2, W) + g(AY, Z)g(AX, W)

g(AX, Z)g(AY, W)

and

(1.7) (VXA)Y - (VYA)X =n(X)¢Y - n(Y)$x - 2g(¢X, Y)e.
Using (1.3), (1.5), (1.6) and (1.7), we get

(1.8) SX = (2n+1)X - 3n(X)E + haAX - A% |

(1.9) (V,8)Y = -3{g(¢AX, Y)E + n(Y)$AX} + (Xn)AY + (h - A) (V. A)Y
- (VXA)AY s
where h = trace A and S denotes the Ricci tensor on M .
2. Proof of Theorems.

First, we determine the hypersurface M satisfying (0.2). Using

(1.9), we see that (0.2) is equivalent to
(2.1) {e+3) In(W)g(¢AX, Y) + n(Y)Ig(9AX, W)} - (Xh)g(AY, W)

+ g((4 - h)(VXA)Y + (VXA)AY, W) =20.
Contraction with respect to Y and W , together with (1.3), yields
(2.2) -(Xh)h + trace(VXA)(ZA -h)=0.

2
It follows that h2 - trace A is constant. Next, using (1.7), we

see that (2.1) becomes
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(2.3)  (c+3) n(WIg(eAX, Y) + n(Y)g(¢AX, W)} - (Xh)g(AY, W)
+ gU(VA)X + n(X)eY - n(Y)eX - 2g(¢x, Y)E, (A - RIW)

+ g((v, A)X + n(X)$AY - n(AY)¢X - 2g(¢X, AY)E, W) = 0.
A

Contraction with respect to X and ¥ vyields
(2.4) (c+3)g(dAE, Y) - (AY)h + trace(A - h)(vYA) + n((A - h)¢Y)
+ 2g(¢Y, (A - h)E) + trace(VAyA) + 3n(eAY) =0 .

since ¢ and ¢4 are skew-symmetric. (1.3) and commutativity of

contraction and covariant differentiation imply

(2.5) -cgl(Ag, ¢Y) + trace(VYA)A -h trace(VYA) = 0,
and
(2.6) -cg(AE, ¢Y) + %Y(trace a2 - h2)= 0.

so that g(Af, ¢Y) = 0 . Consequently, £ is principal. Let Af = uk.
Then Lemma 2.4 of [5] implies u is locally constant. If we replace
Y by £ , (2.1) becomes

(2.7) (c+3)0AX ~ (Xh)AE + (4 - h + u)(vXA)g =0 .

by (1.3). From (1.5), we have (VXA)E = VX(AE) - AVXE = (u - A)AX .
Then (2.7) gives

(2.8) {(A-h+u)luy-A4) +(c+ 3)}4X - w(Xh)g =0 .

Since A¢(TxM) is orthogonal to & , both first term and second term
are zero, so that u(Xh) =0 .

Let X be a principal vector with principal curvature A , which
is orthogonal to £ . Then Lemma 2.2 of [5] implies that ¢X is a
principal vector with principal curvature (Ap + 2)/(2Xx - p) , and 2)
- u# 0 . Hence (2.8) gives

Au + 2 _ _Apt g -
(2.9) A{ (ZA — h + u)lp o u) +e+3Y=0.

If w=0,then #£0 , 46X =226x and Ok - 1) +2%(c+3) =0 .

Let Ao be the restriction of A4 to the orthogonal complement
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gl (= ¢1;ﬁ0 of £ . Then AO has at most two distinct eigenvalues, so

that M has at most three distinct principal curvalures., From the proof
of Theorem 4 of [ 1], M is a homogeneous hypersurface with 2 or 3

distinct principal curvatures.

If w# 0 , then h 1is constant. From (2.9), AO has at most

three distinct constant eigenvalues so that M has at most four distinct
constant principal curvatures, Since £ 1is principal, Theorem 1 and
Theorem 4 in [?] implies that M is a homogeneous hypersurface with 2

or 3 distinct principal curvatures. Thus Theorem 1 is proved.

The same argument implies that if M has parallel Ricci tensor
and & 1is principal, then M is a homogeneous hypersurface with 2 or
3 distinct principal survatures. But there is no homogeneous hyper-

surface with parallel Ricci tensor. Hence Theorem 2 is proved.
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