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NORMAL STRUCTURE FOR BANACH SPACES
WITH SCHAUDER DECOMPOSITION

BY
M. A. KHAMSI

ABSTRACT. We introduce a new constant in Banach spaces which im-
plies, in certain cases, the weak- or weak*-normal structure.

Introduction. M. S. Brodskii and D. P. Mil’man [3] have introduced a geometric
property, called normal structure, for convex subsets of Banach spaces. This property
was introduced into fixed point theory by W. A. Kirk [10]. In this paper we associate
to every Banach space, with Schauder finite decomposition, a constant which may be
easily calculated. This constant allows us to decide, in certain cases, if the Banach
space has weak-normal structure (alternatively weak*-normal structure in the dual
case). For details on normal structure and its generalizations in Banach spaces, we
suggest the survey of S. Swaminathan [17].

The author wishes to thank B. Madary for useful discussions regarding this paper.

Definitions and notations. In this paper X will always denote a real Banach space
with F.D.D. (see definition 6). For terms not explicitly defined reference may be made
to Day’s book [6].

DErINITION 1. A point x of a convex bounded set C is called a non-diametral point
for C if
sup{|lx — y|| : y € C} < diam(C).

DErRINITION 2. A sequence (x,) is called diametral if ¢ = diam(x;) > 0 and

1m0 d(Xn, conv{(x;)) : i < n} =c

It follows that for every x € conv(x,), we have lim ||x,—x|| = c. Every x € conv(x,)
is a diametral point, any subsequence of (x,) is also diametral and is not convergent.

DEeFINITION 3. We say that X has normal structure if every bounded convex subset
K of X, which contains more than one point, has a non-diametral point. Restricting
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K to be weak (respectively weak*) compact, we similarly define weak (respectively
weak*) normal structure.

Let us recall the most useful characterization of normal structure [3].

THEOREM 1. A bounded convex subset K of X contains a non-diametral point if and
only if K does not contain a diametral sequence.

DEFINITION 4. An ultrapower X of X is defined by X = Loo(X)/N with £so(X) =
{(xn € X and sup ||x,|| < 00} and N = {(x,) € Loo(X); limg [|x4]| = 0}, where U is
a free ultrafilter over N. Let (P) be a property on X. We say that X has the property
super-(P) if every ultrapower of X has the property (P).

For more details about ultrapower spaces, we refer to [15].
DEeFINITION 5. A Banach space F is called a spreading model for X, generated by
the bounded sequence (x,) if the following hold: (a) There exists a sequence (e,) such

that F is the closed linear space of {en,;n € N}. (b) There exists a subsequence (y,,)
of (x,) so that (y,,) has no norm convergent subsequence and for all n € N and scalars

(o) 1gi<n, we have
= lim {
F

< ... < my,m —00) .

i=n i=n
E (e E AiYm,
i=1 i=1

Let (P) be a property on X. We say that X has the property M —(P) if every spreading
model for X has the property (P).

For more information about the spreading model we refer to [2,4,7].

DEFINITION 6. A sequence (X,) of finite dimensional subspaces of X is called a
Schauder finite dimensional decomposition (F.D.D) of X, if every x € X has unique
representation of the form x = Xx; with x; € X; for every i € N.

Let x € X, we defined supp(x) to be the set of integers i € N such that x; # 0. Let
A and B be two subsets of N and & € N, we will write A < B(resp. A < B +k) if for
every (a,b) € A X B, we have: a < b (resp. a < b +k). '

For more details about F.D.D. and Schauder bases, we suggest [14].

Examples and basic results.

DEerNITION 7. Let X be a Banach space, with a F.D.D. Define 3,(X), for p € [1,00],
to be the infinimum of the set of numbers X such that

1
(Il +1517) 7" = Xl + 1
for every x and y in X which verify supp(x) < supp(y).

ExampLEs: 1. The space £, , defined in [5], which is simply £, renormed by:

Il = (et llg,+ [l1g)
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where x* and x~ are the positive and negative parts of x in the lattice structure of £,,.
W. Bynum has shown that £, |, using the constant WCS (see definition in [5]) which
seems to be more difficult to compute, has normal structure.

2. The James space J which consists of sequences x = (x,) € ¢ such that

“X” = Sup {(xl’l — Xp )2 + (sz - xﬂs)z teooot (‘Xpn—l - Xpn)z} is finite,

where the supremum is taken for every n and every increasing sequence of integers
(p;)- Recall that J fails normal structure. Nevertheless it is shown in [1] that for every
u and v which verify supp(u) + 1 < supp(v), we have

1/2
(lall? + [1v12) % < e+ v

We deduce that 3,(J) = 1.

REMARK. Sometimes the term (x,, — X,,) is added in the definition of |/x||, and
then we obtain a new space J; which is isomorphic to J. In [9] the author proves
that any weakly-compact convex subset K of J; has the fixed point property, i.e. any
selfmapping T defined on K has a fixed point, provided that T satisfies ||T(x)—T(y)|| =
|x — y|| for every x,y in K. It is not clear whether J; has weak-normal structure.

ProposITION 1. a) Let p € [1,00] and g > p, we have
1S B,(X) S B,(X) < 29I (x).

b) We have B,(£,) = 1 and B,(£,,) = 2'~'/r.

Proor. a) For every pair of scalars («, 3) we have:
(Iad?+ 181) 7 < (jal +181) " < 2074 (ol + | B1) "

from which we obtain our inequalities on 3, and 3,.

b) Let (u,v) € £, be such that supp(x) < supp(v). Then supp(u*) < supp(v*) and
supp(u~) < supp(v~). This implies that (*)||u+v| = (||u|l” + |[v]|")'/, ||u* +v*|P =
llw*||” + ||v*||P and ||u= +v=||” = |lu"||” + ||[v"||". On the other hand we have, by
definition of the norm |- |, |u| +|v| = (|[u*]| + |lu~ )+ ([v*]| +||v_|]). Thus |u| +|v] =
271t P+ I el + Qv 19 7P) = 28 Pl v e v As
the hypothesis on « and v implies that (u+v)* =u*+v*and (v +u)" =u" +v~, we
have (**) |ul + |v| £ 2!'71/P|u +v|. We conclude by (*) and (**) that 8,(¢,) = 1 and
Bi(€,1) =271/ If we take u = e; and v = €3, we obtain 2'"'/2 < 8,(¢, ). O

The following theorem studies the relation between the constant 3, and the Banach-
Mazur distance (for isomorphic Banach spaces X and Y, the Banach-Mazur distance
from X to Y, denoted d(X,Y), is defined to be the infinimum of ||U||||U~"| taken
over all bicontinuous linear operators U from X onto Y).
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THEOREM 2. Let X and Y be two isomorphic Banach spaces. Suppose that X has a
F.D.D. Then Y also has a F.D.D. and we have

Bp(Y) = d(X,Y)By(X).

Proor. Our theorem will be deduced from the following obvious lemma.

LemMa 1. Let (X, || - ||) be as in Theorem 2, and | - | be an equivalent norm on X
such that || - || < [-| = All - [|, then Bp(X, [ - ) = ABp(X, || - D).

Indeed let ¢ > 0 and U : X — Y be an isomorphism such that ||[U~!|| = 1 and
|IU|| = d. where d, = d + ¢. Therefore we have for every x € X

O xllx = MUy = delx]lx-

Let (X;) be the F.D.D. of X, if we put ¥; = U(X;), we obtain a F.D.D. for Y which
satisfies the following property (**) supp(y) = supp(U ~!(y)) for every y in Y. Given
(*) and (**) and the lemma the conclusion of Theorem 2 is deduced.

We obtain the following result as an application of Theorem 2.

COROLLARY 1. (a) Let | - | be an equivalent norm on ¢y, we have 27 < By(co, | - ]).

(b) Let X be a Banach space which contains a subspace isomorphic to cy, then
2P < B,(X).

Proor. Let us first show how (b) can be deduced from (a). Let (e;) be the basis of cg.
Then (e;) converges weakly to 0 in X. By a classical argument, for ¢ > O there exists in
X a sequence (u;) of blocks such that d([u;],co) = 1+¢, where [1;] is the closed linear
span of {u;; i € N}. Therefore by (a) we deduce that 21/r < Bp(co) = (1+6)B,([ui]). As
(u;) are successive blocks in X, we have: §,([4;]) < Bp(X). This gives the conclusion of
(b), since ¢ is arbitrary. Let us complete the proof by proving (a). In [8] it is shown that
if || - || is an equivalent norm on cy, then given e > 0, there exists # and v in ¢y which
satisfy supp(u) < supp(v) and Max(|e|, |7]) < ||aw+7Yv|| = Max(|el, |Y])(1 +€) for all
scalars o and 7. The definition of 8, implies (||ul|” + ||[v||")'/? < B,(co, || - [D||u+ V|-
Therefore we obtain 2'/7(1 + €)™ < B(co, Il - 1I)- As € is arbitrary, the conclusion of
(a) holds. ]

Main result.

THEOREM 3. Let X be a Banach space, with a finite codimensional subspace Y such
that B,(Y) < 21/p for some p € [1,00]. Then X has weak-normal structure.

Proor. Suppose that X fails weak-normal structure. Then there exists a weakly
convergent diametral sequence (x,). Since diametral property is invariant by transla-
tion, we may suppose that (x,) converges weakly to 0. Our hypothesis on Y implies
that there exists Z, a finite dimensional subspace of X, such that X = Y @Z. Therefore
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Xn = yn+2z, with y, €Y and z, € Z for every n € N. Since (x,) converges weakly to
0, we deduce that both (y,) and (z,) converge weakly to 0. Using the fact that Z has a
finite dimension, (z,) converges (in norm) to 0 in X. Therefore there exists a sequence
(up) of successive blocks and a subsequence (y,,) such that lim ||y, — u,|| = 0. The
deﬁpition of 8,(Y) implies that

(fttnst |17 + all?) 7 < By [ttnsr — ]

But lim ||u,|| = lim||yn,|| = lm|xm,, — zs,]| = lim|x,,| = dim(x;) = ¢ and
Iim ||tpe) — ]| = 1M ||ym,,, — Ym, || = lim|[|xp,., — X, || = diam(x;) = ¢. We de-
duce that 2!/7 < Bp(Y) since ¢ > 0. This yields a contradiction to our hypothesis on
Y. O

CoROLLARY 2. Let X be a Banach space isomorphic to £,. Assume that d(X, {,) <
2P, then X has normal structure.

Proor. Since X is reflexive, the weak-normal structure and normal structure are
the same. Theorem 2 implies that 3,(X) = d(X, £,)83,(£,). Since Bp(£p) = 1 we obtain
B,(X) < d(X, ,) <2'/P. The conclusion follows from Theorem 2.

REMARK. Let us note that the number 2'/7 is optimum in the sense that for every
p €11,00][ there exists X, such that d(X,, £,) = 2'/7 and X, fails normal structure.
Indeed let € > 0 and define an equivalent norm |- |, on £, by |x|. = Max(|[x||,, €|jx||1).
Consider the space X, = (Ep,| -|o)- Tt is clear that d(X,, £,) = Max(1,€). Let us notice
that if 2!/7 2 ¢ then the canonical basis of £, is diametral. The desired space is X,i/r.

The next result gives a partial positive answer to T. Landes’ problem [12].

ProposiTION 2. Let (X;) be a sequence of Banach spaces such that

B = sup Bi(X;) < 2.
ieN

Then X = ®,X; has weak-normal structure.

Proor. Suppose that X fails weak-normal structure. Then there exists a weakly
convergent diametral sequence (x,) in X. We may suppose, with loss of generality,
that (x,) converges weakly to 0. By definition of X we have x, = Zx;(n). Since (x,)
converges weakly to 0., we deduce that (x;(n)) converges weakly to 0 in X; for every
i € N. By passing to a subsequence, we may assume that (x;(n)) is 2 sequence of
blocks, related to the F.D.D. of X;, for every i € N. Our hypothesis on (X;) implies
that

lxi(n + Dlx, + ||x:(m)||lx, = Bljxi(n+ 1) — xi(n)||x. for every i € N.

Then by definition of the norm of X, we get

IXnsillx + lxallx = Bllxner — xallx-
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Since (x,) is diametral and convergent weakly to O (this implies that O € conv(x;) and
therefore lim ||x,|| = diam(x;)), we get 2 = 3. This is a contradiction. o

Our last theorem concerns the M -(normal structure)-property (see definition 5).

THEOREM 4. Let X be a reflexive Banach space. Assume that (3,(X) < 2/p, for some
p € [1,00[. Then X has M -(weak-normal structure).

Proor. Let (x,) be a bounded sequence and F be the spreading model generated
by (x,). Since X is reflexive we may suppose that (x,) is weakly convergent to x. First
case: x = 0. By a classical argument, there exists a sequence (u;) of successive blocks
and a subsequence (x,(;) such that lim ||u; — x,G;)|| = 0. This implies that the spreading
model generated by (u;) is F. Since (x,) converges weakly to 0, the sequence (e;) is a
Schauder basis of F, (see [7]). Let u and v be in F which satisfy: supp(u) < supp(v).

We write
u= Zcie,« and v = Z bie;.

iSa a<ish

Therefore
lutv]|F = lim {|| Zciun, +ijumj||x m <. <n,<m<...<mp,n — oo} .

Hence (||ull + |[v||2)!/? < B,(X)||u + v||r, which implies that 3,(F) < 8,(X). The
hypothesis on 8,(X) implies that F has weak-normal structure. Second case: x # 0. It
is shown in [7] that in this case F is isometric to a subspace of G with G = Fy ® R,
where F is the spreading model generated by the sequence (x, — x). The first case
implies that (3,(Fo) < 2!/P and by Theorem 3 we deduce that G has weak-normal
structure. Since F is isometric to a subspace of G, we conclude that F has weak
normal structure.

COROLLARY 3. The M -(normal structure) is not a self dual property.

Proor. Indeedlet X = £, | with p €]1, 0o[. We have shown that 3,(X) = 2!/4 where
q is the conjugate to p (i.e. 1/p +1/g = 1). By Theorem 4, X has M -weak-normal
structure. Since X is superreflexive, X has M-(normal structure) whereas X* = £,
fails to have normal structure.

ReEmARK. We don’t know if £, has super-normal structure.

The constant 5, and weak*-normal structure. Let X be a Banach space with
a shrinking Schauder basis (x;). Recall that X* has a basis (x) which is boundedly
complete ((x;") are the biorthogonal functionals associated to the basis (x;)). Let Y be
a Banach space, isomorphic to X*. In this paper, the weak*-topology considered on Y
is the weak*-topology defined by the couple (X, X*). This implies, in particular, that
if (y;) converges weak* to O (in Y), then there exists a sequence (u;) of successive
blocks and a subsequence (y,;)) such that lim;_ ||yne) — ui|| = 0. The same proof,
as in Theorem 3, gives us the following result:
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THEOREM 5. Let X be a Banach space with a shrinking basis. Assume that 3,(X*) <
217 Then X* has weak*-normal structure.

An application of Theorem 4 is Lim’s theorem [13] which says that £, has weak*-
normal structure. Let us recall that P. Soardi [16] proved that if X is a Banach space
whith satisfies d(X, £,) < 2, then X has the weak*-fixed point property, i.e., any
weak*-compact convex subset K of X and any selfmapping T defined on K has a
fixed point, provided that T satisfies |T(x) — T(y)|| = |lx — y|| for every x,y in K.
Kirk [11] asked whether X has weak*-normal structure.

COROLLARY 4. Let Y be a Banach space which is isomorphic to £,. Assume that
d(Y, L)) <2. Then Y has weak*-normal structure.

Remark. Here, we consider on Y, isomorphic to £;, the weak*-topology given
by the couple (c,, £1). Recall that there exists a Banach space X such that X* is
linearly isometric to £; and fails the weak*-fixed point property and therefore cannot
have weak*-normal structure (in this case the weak*-topology is related to the couple
(X,X™)). The space X is the Banach space ¢ which consists of all convergent sequences.
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