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NORMAL STRUCTURE FOR BANACH SPACES 
WITH SCHAUDER DECOMPOSITION 

BY 

M. A. KHAMSI 

ABSTRACT. We introduce a new constant in Banach spaces which im­
plies, in certain cases, the weak- or weak*-normal structure. 

Introduction. M. S. Brodskii and D. P. Mil'man [3] have introduced a geometric 
property, called normal structure, for convex subsets of Banach spaces. This property 
was introduced into fixed point theory by W. A. Kirk [10]. In this paper we associate 
to every Banach space, with Schauder finite decomposition, a constant which may be 
easily calculated. This constant allows us to decide, in certain cases, if the Banach 
space has weak-normal structure (alternatively weak*-normal structure in the dual 
case). For details on normal structure and its generalizations in Banach spaces, we 
suggest the survey of S. Swaminathan [17]. 

The author wishes to thank B. Madary for useful discussions regarding this paper. 

Definitions and notations. In this paper X will always denote a real Banach space 
with F.D.D. (see definition 6). For terms not explicitly defined reference may be made 
to Day's book [6]. 

DEFINITION 1. A point x of a convex bounded set C is called a non-diametral point 

for C if 

sup{||x — y\\ : y € C} < diam(C). 

DEFINITION 2. A sequence (xn) is called diametral if c = diam(xz) > 0 and 

lim„_oo d(xn,conv{(xi)) : / < n} — c 

It follows that for every x G conv(x„), we have lim \xn— x|| = c. Every x G conv(jcn) 
is a diametral point, any subsequence of (xn) is also diametral and is not convergent. 

DEFINITION 3. We say that X has normal structure if every bounded convex subset 
K of X, which contains more than one point, has a non-diametral point. Restricting 

Received by the editors December 3, 1987 and, in revised form, June 30 1988. 
AMS Subject Classifications (1980): Primary 46B20, Secondary 47H10. 
Key words: Normal structure, Schauder decomposition, fixed point property. 
© Canadian Mathematical Society 1988. 

344 

https://doi.org/10.4153/CMB-1989-050-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-050-7


BANACH SPACES WITH SCHAUDER DECOMPOSITION 345 

K to be weak (respectively weak*) compact, we similarly define weak (respectively 

weak*) normal structure. 

Let us recall the most useful characterization of normal structure [3]. 

THEOREM 1. A bounded convex subset K ofX contains a non-diametral point if and 

only if K does not contain a diametral sequence. 

DEFINITION 4. An ultrapower X of X is defined by X — £oo(X)/lA£ with ^oo(X) = 

{(xn G X and sup ||x„|| < oo} and fA£ = {(xn) G ^oo(X); lim^y \\xn\\ = 0}, where 11 is 

a free ultrafilter over N. Let (P) be a property on X. We say that X has the property 

super-(P) if every ultrapower ofX has the property (P). 

For more details about ultrapower spaces, we refer to [15]. 

DEFINITION 5. A Banach space F is called a spreading model for X, generated by 

the bounded sequence (xn) if the following hold: (a) There exists a sequence (e„) such 

that F is the closed linear space of {en;n EN}, (b) There exists a subsequence (ym) 

of(xn) so that (ym) has no norm convergent subsequence and for all n G N and scalar s 

(ai)\^i^n> we have 

1 i—n 

1 /=! 
= lim I 

\F I 

1 '~n 1 

1=1 1 

Let (P) be a property onX. We say that X has the property M — (P) if every spreading 

model for X has the property (P). 

For more information about the spreading model we refer to [2,4,7]. 

DEFINITION 6. A sequence (Xn) of finite dimensional subspaces of X is called a 

Schauder finite dimensional decomposition (F.D.D) ofX, if every x EX has unique 

representation of the form x — JJCJ with JC/ G X/ for every i G N. 

Let x G X, we defined supp(x) to be the set of integers / G N such that xt ^ 0. Let 

A and B be two subsets of N and k G N, we will write A < £(resp. A<B+k)if for 

every (a, b) G A x B, we have: a < b (resp. a <b + k). 

For more details about F.D.D. and Schauder bases, we suggest [14]. 

Examples and basic results. 

DEFINITION 7. LetX be a Banach space, with a F.D.D. Define /3p(X),for p G [1, oo], 

to be the infinimum of the set of numbers A such that 

{\\x\\" + \\y\\"ylpû\\\x+y\\ 

for every x and y in X which verify supp(x) < supp(j). 

EXAMPLES: 1. The space tp^q defined in [5], which is simply lp renormed by: 

| r | _ /||r+||<7 . ||r-||<7 \Xlq 

\x\ - ill* ll*p + F IIV 
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where x+ and x~ are the positive and negative parts of x in the lattice structure of £p. 
W. Bynum has shown that lPi\, using the constant WCS (see definition in [5]) which 
seems to be more difficult to compute, has normal structure. 

2. The James space / which consists of sequences i = (x„) G Co such that 

||*|| = sup {(xPi -xP{)
2 + (xP2 -xPi)

2 + • • • + (xPn_{ -xPnf) is finite, 

where the supremum is taken for every n and every increasing sequence of integers 
(pi). Recall that / fails normal structure. Nevertheless it is shown in [1] that for every 
u and v which verify supp(w) + 1 < supp(v), we have 

( N | 2
 + | | v | | 2 ) l / 2 ^ | | M + v||. 

We deduce that f}2{J) = 1. 

REMARK. Sometimes the term (xPm — xP]) is added in the definition of \\x\\, and 
then we obtain a new space J\ which is isomorphic to / . In [9] the author proves 
that any weakly-compact convex subset K of J\ has the fixed point property, i.e. any 
selfmapping T defined on K has a fixed point, provided that T satisfies ||7(JC)—T(y)\\ ^ 
||* — y\\ for every *,y in K. It is not clear whether J\ has weak-normal structure. 

PROPOSITION 1. a) Let p G [1, oo] and q > p, we have 

1 è (3q(X) ^ (3P(X) ^ 2<*-')/*%(X). 

b) We have (3P(£P) = 1 and fr (£„,,) = 2x~xlp. 

PROOF, a) For every pair of scalars (a, (3) we have: 

(M* + W)Uq ^ ( l «r + \P\p)l,P ^ 2^-p)l^(\a\q + \P\q)l~q 

from which we obtain our inequalities on (3p and (5q. 
b) Let (w, v) G tp be such that supp(w) < supp(v). Then supp(w+) < supp(v+) and 

supp(w") < supp(v-). This implies that (*)||w + v|| = Cll"!!̂  + N h ^ , \\u+ + v+||" -
\\u+\\p + \\v+\\p and \\u~ + v~\\p = \\u~\\p + \\v~\\p. On the other hand we have, by 
definition of the norm | • |, \u\ + |v| = (||w+|| + ||M~||) + (||v+|| + ||v~||). Thus \u\ + |v| ^ 
21"1//7[(||w+||/? + ||v+||01//7 + (||M-||" + ||v-p)1/ /7] = 2l-l/p(\\u+ + v+|| + ||M" + v-||). As 
the hypothesis on u and v implies that (u + v)+ = u+ + v+ and (v + u)~ = u~ + v~, we 
have (**) \u\ + |v| ^ 2x~xlp\u + v|. We conclude by (*) and (**) that /3P(£P) = 1 and 
P\(£p,i) ^ 2x~xlp. If we take u = ex and v = e2, we obtain 21"1/2 ^ (3i(lPii). D 

The following theorem studies the relation between the constant (3P and the Banach-
Mazur distance (for isomorphic Banach spaces X and Y, the Banach-Mazur distance 
from X to Y, denoted d(X,Y), is defined to be the infinimum of \\U\\ \\U~X\\ taken 
over all bicontinuous linear operators U from X onto Y). 
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THEOREM 2. Let X and Y be two isomorphic Banach spaces. Suppose that X has a 
F.D.D. Then Y also has a FDD. and we have 

PP(X)£d(XJ)l3p(X). 

PROOF. Our theorem will be deduced from the following obvious lemma. 

LEMMA 1. Let (X, || • ||) be as in Theorem 2, and \ • \ be an equivalent norm on X 
such that || • || è | • | ^ A|| • ||, then (3P(X, | • |) ^ X0p(Xy || • ||). 

Indeed let e > 0 and U : X —> Y be an isomorphism such that | |£/ -1 | | = 1 and 
\\U\\ — dt where de ^ d + e. Therefore we have for every x G X 

(*) \\X\\X^\\U(X)\\Y £de\\x\\x. 

Let (Xi) be the F.D.D. of X, if we put Yt = U(Xi), we obtain a F.D.D. for Y which 
satisfies the following property (**) supp(j) = supp(U~l(y)) for every y in Y. Given 
(*) and (**) and the lemma the conclusion of Theorem 2 is deduced. 

We obtain the following result as an application of Theorem 2. 

COROLLARY 1. (a) Let \-\ be an equivalent norm on CQ, we have 2xlp ^ (3p(co, | • |). 
(b) Let X be a Banach space which contains a subspace isomorphic to CQ, then 
2l'P ^ pp(X). 

PROOF. Let us first show how (b) can be deduced from (a). Let (et) be the basis of CQ. 

Then (e,-) converges weakly to 0 in X. By a classical argument, for e > 0 there exists in 
X a sequence («/) of blocks such that dflw/], Co) = 1 +e, where [«,] is the closed linear 
span of {ut\ i G N}. Therefore by (a) we deduce that 2xip ^ f3p(c0) ^ (l+e)/^([w/]). As 
(ui) are successive blocks in X, we have: j5p([ui\) ̂  (3P(X). This gives the conclusion of 
(b), since e is arbitrary. Let us complete the proof by proving (a). In [8] it is shown that 
if || • || is an equivalent norm on Co, then given e > 0, there exists u and v in Co which 
satisfy supp(w) < supp(v) and Max(|a|, |l |) = ||aw + 7v|| ^ Max(|a|, |7|)(1 +e) for all 
scalars a and 7. The definition of (3P implies (\\u\\p + Hvl^)1^ ^ PP(c0, \\ • ||)||w + v||. 
Therefore we obtain 21//7(1 +e)_ 1 ^ /3(co, || • ||). As e is arbitrary, the conclusion of 
(a) holds. • 

Main result. 

THEOREM 3. Let X be a Banach space, with a finite codimensional subspace Y such 
that f3p(Y) < 2xlp for some p G [1, oo]. Then X has weak-normal structure. 

PROOF. Suppose that X fails weak-normal structure. Then there exists a weakly 
convergent diametral sequence (xn). Since diametral property is invariant by transla­
tion, we may suppose that (xn) converges weakly to 0. Our hypothesis on Y implies 
that there exists Z, a finite dimensional subspace of X, such that X = Y ©Z. Therefore 
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*n — yn + Zn with y „ 6 y and zn G Z for every n G N. Since (x„) converges weakly to 
0, we deduce that both (yn) and (zn) converge weakly to 0. Using the fact that Z has a 
finite dimension, (zn) converges (in norm) to 0 in X. Therefore there exists a sequence 
(un) of successive blocks and a subsequence (ymJ such that lim \\ymn — un\\ = 0. The 
definition of /3P(Y) implies that 

(ll^iir + ll^in17^^^)!!^!-^!!. 

But lim||ww|| = lim||;ymJ| = lim \\xmn — zmJ| = lim ||jcmJ| = dim(X) = c and 
lim||wn+i - un\\ = lim||jW|l+1 - ymn\\ = \\m\\xmn+l - xmn\\ = diamfc) = c. We de­
duce that 2{lp ^ (3P(Y) since c > 0. This yields a contradiction to our hypothesis on 
Y. • 

COROLLARY 2. Let X be a Banach space isomorphic to £p. Assume that d(X, £p) < 
2xlp, then X has normal structure. 

PROOF. Since X is reflexive, the weak-normal structure and normal structure are 
the same. Theorem 2 implies that f3p(X) ^ d(X, lp)/3p(lp). Since (3p(lp) = 1 we obtain 
pp(X) ^ d(X, tp) < 2llp. The conclusion follows from Theorem 2. 

REMARK. Let us note that the number 2llp is optimum in the sense that for every 
p G]l,oo[ there exists Xp such that d(Xp,tp) = 2llp and Xp fails normal structure. 
Indeed let e > 0 and define an equivalent norm | • |e on tp by |jc|e = Max(||jc||p, C||A:||I). 

Consider the space Xe = (£p, \ • |e). It is clear that d{Xei £p) = Max(l, e). Let us notice 
that if 2llp ^ e then the canonical basis of £p is diametral. The desired space is X2UP-

The next result gives a partial positive answer to T. Landes' problem [12]. 

PROPOSITION 2. Let (X;) be a sequence of Banach spaces such that 

P = sup0l(Xi)<2. 

Then X = (E>iX/ has weak-normal structure. 

PROOF. Suppose that X fails weak-normal structure. Then there exists a weakly 
convergent diametral sequence (xn) in X. We may suppose, with loss of generality, 
that (xn) converges weakly to 0. By definition of X we have xn = 5JC;(/?). Since (xn) 
converges weakly to 0., we deduce that (xi(n)) converges weakly to 0 in Xt for every 
/ G N. By passing to a subsequence, we may assume that (Xi(n)) is a sequence of 
blocks, related to the F.D.D. of X;, for every / G N. Our hypothesis on (X/) implies 
that 

\\xi(n + 1)||X; + \\xi(n)\\x. ^ p\\xi(n + 1) - Xi(n)\\Xi for every / G N. 

Then by definition of the norm of X, we get 

\\Xn+\\\x + \\xn\\x = P\\xn+\ - Xn\\X. 
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Since (xn) is diametral and convergent weakly to 0 (this implies that 0 G conv (jt,) and 
therefore lim ||JCW|| = diam(*/)), we get 2 ^ / 3 . This is a contradiction. D 

Our last theorem concerns the M-(normal structure)-property (see definition 5). 

THEOREM 4. Let X be a reflexive Banach space. Assume that f3p(X) < 2xlp,for some 
p E [1, oo[. Then X has M -(weak-normal structure). 

PROOF. Let (xn) be a bounded sequence and F be the spreading model generated 
by (xn). Since X is reflexive we may suppose that (xn) is weakly convergent to x. First 
case: x = 0. By a classical argument, there exists a sequence (w/) of successive blocks 
and a subsequence fe(/)) such that lim \\ut — xn<j)\\ — 0. This implies that the spreading 
model generated by (u{) is F. Since (xn) converges weakly to 0, the sequence (ei) is a 
Schauder basis of F, (see [7]). Let u and v be in F which satisfy: supp(w) < supp(v). 
We write 

u = 2_.ciei a nd v = 2_] biei-

Therefore 

||M+V||F = lim 11| ^C|Mni+^2bjUmj\\x : nx < . . . < na < m{ < . . . < mh,nx —• ooj . 

Hence (\\u\\p
F + \\v\\p

F)xlp ^ PP(X)\\u + v||F, which implies that pp(F) ^ f3p(X). The 
hypothesis on (3P(X) implies that F has weak-normal structure. Second case: x ^ 0. It 
is shown in [7] that in this case F is isometric to a subspace of G with G = Fo 0 R, 
where Fo is the spreading model generated by the sequence (xn — x). The first case 
implies that (3p(Fo) < 2xlp and by Theorem 3 we deduce that G has weak-normal 
structure. Since F is isometric to a subspace of G, we conclude that F has weak 
normal structure. 

COROLLARY 3. The M-(normal structure) is not a self dual property. 

PROOF. Indeed letX = tPi\ with/? e] l , oo[. We have shown that j3x(X) = 2xlq where 
q is the conjugate to p (i.e. \/p + \/q — 1). By Theorem 4, X has M-weak-normal 
structure. Since X is superreflexive, X has M-(normal structure) whereas X* = £qjOQ 

fails to have normal structure. 

REMARK. We don't know if £Pj\ has super-normal structure. 

The constant (3P and weak*-normal structure. Let X be a Banach space with 
a shrinking Schauder basis (xt). Recall that X* has a basis (x*) which is boundedly 
complete ((jcf) are the biorthogonal functional associated to the basis (*/)). Let F be 
a Banach space, isomorphic to X*. In this paper, the weak*-topology considered on Y 
is the weak*-topology defined by the couple (X,X*). This implies, in particular, that 
if (j/) converges weak* to 0 (in Y), then there exists a sequence (w/) of successive 
blocks and a subsequence (yn(i)) such that lim^oo \\yn(o — w/|| = 0. The same proof, 
as in Theorem 3, gives us the following result: 
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THEOREM 5. Let X be a Banach space with a shrinking basis. Assume that f3p(X*) < 
2xlp. Then X* has weak*-normal structure. 

An application of Theorem 4 is Lim's theorem [13] which says that t\ has weak*-
normal structure. Let us recall that P. Soardi [16] proved that if X is a Banach space 
whith satisfies d(X,£{) < 2, then X has the weak*-fixed point property, i.e., any 
weak*-compact convex subset K of X and any selfmapping T defined on K has a 
fixed point, provided that T satisfies \\T(x) — T(y)\\ ^ ||JC — y\\ for every x,_y in K. 
Kirk [11] asked whether X has weak*-normal structure. 

COROLLARY 4. Let Y be a Banach space which is isomorphic to l\. Assume that 
d(Y, £\) < 2. Then Y has weak*-normal structure. 

REMARK. Here, we consider on F, isomorphic to £\, the weak*-topology given 
by the couple (c0,£\). Recall that there exists a Banach space X such that X* is 
linearly isometric to £\ and fails the weak*-fixed point property and therefore cannot 
have weak*-normal structure (in this case the weak*-topology is related to the couple 
(X,X*)). The space X is the Banach space c which consists of all convergent sequences. 
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