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ABSTRACT. Accurate knowledge of basal topography is required for numeri-

cal modelling efforts to predict how Earth’s ice sheets will respond to continued

warming. The widely used BedMachine v3 dataset has limitations with respect

to its use in modelling studies, particularly in estimating uncertainties. Ma-

chine learning approaches offer promise in addressing this gap, with quantile

regression forests (QRF) especially suited to geospatial data. Here, we apply a

novel QRF approach to map the basal topography of Greenlands ice sheet us-

ing airborne radio echo sounding (RES) data. Compared to BedMachine, our

model reduces the root-mean-squared-error of ice depth predictions by 18%,

from 232 m to 190 m. It also significantly improves uncertainty calibration:

89.8% of new observations fall within our 90% prediction interval, versus 68%

for BedMachine. The QRF model achieves a lower continuous ranked proba-

bility score (92 m vs. 130 m), indicating improved balance between accuracy

and uncertainty. Our volume estimate for the Greenland ice sheet is 0.7%

higher than BedMachines, though we emphasise differences in the predicted

shape of subglacial features like outlet glacier troughs. This approach offers

a computationally efficient, accessible method for deriving subglacial topogra-

phy from RES data, while providing better-calibrated uncertainty estimates

than existing models.
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1

https://doi.org/10.1017/jog.2025.10071 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10071


Palmer and others: Quantile regression of Greenland’s subglacial topography 2

INTRODUCTION

Ice thickness and bed elevation are fundamental for modelling glacier flow dynamics and ice-sheetclimate

interactions (Durand and others, 2011; Bamber and others, 2013). Measuring these parameters requires

remote-sensing techniques that penetrate ice and can cover extensive areas. Radio-echo sounding (RES)

has been used since the 1950s for subglacial topography detection in Antarctica and Greenland and re-

mains the primary method for mapping ice-sheet basal topography from aircraft (Robin and others, 1969;

Dowdeswell and Evans, 2004; Bingham and Siegert, 2007; Schroeder and others, 2020). RES survey accu-

racy is influenced by factors such as rough topography, subglacial and englacial water, and crevassed ice,

which can scatter or attenuate radar signals (Jordan and others, 2017; Chu and others, 2016; Kendrick

and others, 2018). Additional factors, like radar instrument specifications and survey platform stability,

further affect accuracy (Lapazaran and others, 2016).

Due to the vast size of the ice sheets, RES data are generally collected along flight lines with gaps

of several kilometers, which requires interpolation to generate continuous bed topography maps essen-

tial for modelling ice dynamics and subglacial hydrology (Studinger and others, 2010). Bed topography

significantly influences ice and subglacial water flow, the estimation of total ice volume, and the rate at

which ice is discharged to the surrounding ocean (Bamber and others, 2013). As stated in the most recent

IPCC assessment report, Greenlands ice mass, which accounted for 24.5% of observed sea-level rise from

19012018, will continue to impact sea level due to ongoing ice mass loss (Fox-Kemper and others, 2021).

Accurate bed topography data are needed to model the ice sheet’s response to changes in meltwater in-

put, which is increasing with atmospheric warming. Subglacial topography is crucial for controlling ice

flow and discharge, grounding line position, and ice front dynamics, particularly for marine-terminating

sectors (Durand and others, 2011; Cooper and others, 2019; Van den Broeke and others, 2016). Attributes

of the ice-bed interface such as roughness and the distribution of free water, determine basal traction

and consequently control the rate of movement of ice mass from the accumulation zone to the ablation

zone. (Gudmundsson, 1997; Bingham and Siegert, 2009; Hoffman and others, 2016). Diurnal, seasonal

and longer-term changes in subglacial meltwater storage and distribution further impact basal friction and

ice dynamics (Palmer and others, 2011, 2013, 2015; Chu and others, 2016). Accurate bed topography is

therefore critical to understanding ice sheet responses to meltwater variability and other climate-driven

factors.

Since its release in 2017, the BedMachine Greenland v3 data have become the most widely-used es-
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timates of sublacial topography in Greenland (Morlighem and others, 2017). Quantifying uncertainty in

these data is important to assign confidence to the outputs of modelling studies that use these data, as well

as to inform future RES data acquisition strategies, although this task has proven challenging (Morlighem

and others, 2013, 2017). The BedMachine data contains uncertainty estimates which are derived via dif-

ferent methods in different regions (Morlighem et al., 2017 supplementary materials). Near the ice margin,

where mass conservation is used, these estimates are obtained through propagation of errors and assume

that the ice flow is in steady-state’. Further inland, where kriging is used, uncertainties are estimated

through proximity to radar observations, reaching several hundreds of metres in many places.

Previous studies have shown that machine learning approaches such as random forests (Breiman, 2001)

have the potential to improve estimates of geophysical parameters. Quantile regression forests (QRFs)

(Meinshausen and Ridgeway, 2006) are an extension of random forests that provide information about the

conditional distribution of the target variable (e.g., ice depth) for a given input (e.g., position in space),

rather than just a prediction of the conditional mean value of the target variable. These decision tree-based

learning algorithms have become widely used in spatial machine learning applications (Prasad and others,

2006; Hengl and others, 2015; Kirkwood and others, 2016), and various investigations have been carried

out into their properties as spatial learning algorithms (Hengl and others, 2018; Møller and others, 2020;

Sekulić and others, 2020). Unlike more traditional methods, QRF does not assume linearity or specific

error distributions, allowing it to provide more flexible and spatially nuanced uncertainty estimates. This

data-driven technique can yield prediction intervals that better reflect the true variability in bed elevation,

especially in regions with sparse observations or complex subglacial terrain, thereby improving confidence

in glaciological modelling.

In this study, we investigate the potential for a QRF approach to (i) improve ice sheet bed elevation

datasets and (ii) to provide a more rigorous quantification of uncertainty. We present a quantile regression

forest to map the basal topography of Greenland’s ice sheet, with estimated uncertainty. Our new method

uses the approach of Møller and others (2020) to provide oblique geographic coordinates i.e. a range of

different compass orientations as input features to the QRF, so that spatial thresholds are not restricted

to align north-south and east-west, leading to more realistic estimates of subglacial topography.
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DATA

We used data assets published by the BedMachine v3 study (Morlighem and others, 2017), as well as ice

velocity rasters from the MEaSUREs project Joughin and others (2015, 2018), and ice surface elevation

data from the Greenland Ice Mapping Project (Howat and others, 2014). To train our quantile regression

forest, we use the same airborne radar observations of ice thickness as were used to develop BedMachine

v3; these primarily come from NASA’s Operation IceBridge, with data processed by the Center for Remote

Sensing of Ice Sheets (CReSIS; Paden and others, 2010 updated 2019) as well as other smaller scale survey

projects (see section 2 of Morlighem and others, 2017). To test the accuracy and calibration of our quantile

regression forest approach, and to provide fair comparison with BedMachine v3, we use circum-Greenland

ice thickness measurements collected during the PROMICE airborne surveys Sørensen and others (2018)

as a test dataset for both BedMachine and our quantile regression forest (Fig. 1).

METHODOLOGY

BedMachine inferred ice thickness using a combination of a mass conservation approach along the periphery

of the ice sheet and ordinary kriging within the interior (Fig. 1; Morlighem and others, 2017). Mass

conservation relies on modelling the transport of ice, and the directions and magnitude of the ice speed are

critical inputs, as they control how the ice is distributed spatially. In regions of slow speed, flow directions

become poorly defined, and the accuracy of mass-conservation inferred ice thickness drops. We find that

mass conservation works well for regions where the ice velocity is greater than 30-40 m yr´1, which is

30% of the ice sheet area. In this new approach, we use a quantile regression forest (Meinshausen and

Ridgeway, 2006) across the entire ice sheet. We model the subglacial bed elevation directly as our target

variable, rather than ice thickness. This has the effect of making predictions from the terminal nodes of

each tree in our quantile regression forest physically horizontal, rather than physically perpendicular to

the surface of the ice, as would be the case when predicting ice thickness. We found this resulted in better

generalisation, accounting for „10 of the overall „40 metre reduction in root-mean-squared-prediction-error

of our regression forest approach compared to BedMachine.

The task of mapping Greenland’s subglacial bed topography from point-sampled airborne radar obser-

vations of ice thickness (or equivalently of bed elevation, by subtracting ice thickness from surface elevation)

is inherently a spatial interpolation problem. However, more information is available than just the airborne
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Fig. 1. Ice sheet surface elevation (a), RES observations of ice thickness(b), BedMachine mask (c), BedMachine

sources (d). The PROMICE observations used to test both the QRF and BedMachine predictions are shown in blue

on panel b.

https://doi.org/10.1017/jog.2025.10071 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10071


Palmer and others: Quantile regression of Greenland’s subglacial topography 6

radar observations and their spatial locations; we also have spatially-continuous knowledge of the ice sheet’s

surface in the form of gridded satellite data of surface elevation (Howat and others, 2014) and surface ice

velocity (Joughin and others, 2015). Previous studies have shown that these covariate datasets contain

information about subglacial topography (Smith and others, 2006; Gudmundsson, 2003), so we include

them as input features to our QRF model (Fig. 2). We deduce that the degree to which surface features

are informative of the subsurface will vary across the ice-sheet, and that there may be different interactions

between different surface features at different locations. The desire to accommodate this flexibility, as well

as to handle the scale of data involved (over 30 million airborne radar observations are available), motivates

our investigation of machine learning for subglacial bed elevation prediction in this study.

To implement our quantile regression forest, we used the Ranger package Wright and Ziegler (2017) for

the R language for statistical computing R Core Team (2023). The quantile regression forests algorithm

Meinshausen and Ridgeway (2006) extends the popular ‘random forest’ machine learning algorithm to

enable provision of conditional quantile predictions in addition to the random forest’s typical prediction

of the conditional mean. In a quantile regression forest, conditional quantiles are calculated from the

empirical distribution of target variable observations that, for each tree, fall within the same leaf as the

new prediction candidate. This enables the construction of prediction intervals to communicate prediction

uncertainty; the calibration of which we assess as part of this study.

Data preparation

The collection of ice depth observations over Greenland by airborne radar survey has produced a spatially

biased sample; all points on the map have not had equal probability of being observed, but rather obser-

vations are concentrated in flight lines, the densities of which vary significantly across the map, with some

areas being ‘hot spots’ for observations while others are relatively unobserved. Any attempt to minimise

prediction error equally across all observations is therefore not an attempt to minimise prediction error

equally across the map, which should really be our aim.

To mitigate the effect of this sampling bias in our modelling, we first resampled the radar observations

according to the following scheme: For n desired number of observations to use in modelling (we chose n “

3.7 million in this study; equivalent to 1/10th of all the radar observations, and a good balance between

computational cost and model quality), randomly generate easting and northing coordinates (NSIDC North

pole stereographic, EPSG: 3413) of a location over Greenland, then take the nearest neighbouring radar
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observation to be observation i P r1, ns. Allow the same observation to be used whenever it is nearest to

subsequent randomly generated coordinates (i.e., allow replacement). Following this scheme produces a

resampled set of radar observations in which the probability of each observation being included is inversely

proportional to the spatial sampling intensity of the original survey, as advocated for by De Bruin and others

(2022). This effectively re-weights the observations, by resampling, to have equal representation across the

map. For small n (up to about 10,000) the resultant resampled observation sets appear indistinguishable

from a spatially random sample. For large n (over about 100,000) the influence of flight lines is unavoidable,

but at least observations in sparsely sampled locations are up-weighted, meaning that metrics calculated

against the resampled observation dataset are more representative of the map as a whole, rather than being

biased to over-represent observation hotspots.

Since BedMachine utilised all radar observations that were available to it (i.e., no observations were

held out as a test set for the final BedMachine product), we have a challenge in making a fair comparison

between BedMachine and other approaches. Fortunately, an additional radar observations dataset from

the PROMICE project (Sørensen and others, 2018, shown in blue in Fig. 1b) was not used to produce

BedMachine, and so we utilise it here as our test set for comparing to BedMachine. This is also the

reason we compare against BedMachine, since more recent versions of BedMachine have assimilated the

PROMICE dataset. The PROMICE radar observation dataset is spatially biased in that it was acquired

using flight missions oriented parallel to the ice sheet margin around the periphery of Greenland, with no

observations in the interior. As such, the evaluations we make of our QRF, and of BedMachine, using this

PROMICE dataset are biased towards the performance of the models around the ice periphery (although

as we shall see, this tends to be a difficult area to predict). To provide some reassurance of the performance

of our QRF in the ice interior, we also report metrics from a cross validation scheme, but it is not possible

to compare this with BedMachine; to do so would require running the BedMachine procedure on the same

folds.

Feature engineering

The target variable, y, for our QRF is subglacial bed elevation. We wish to make predictions of y as a

function of inputs x. These inputs consist of the spatial coordinates of each observed location (i.e., easting

and northing in EPSG:3413) along with their corresponding values of satellite-observed covariates, which

in this study are surface elevation, ice flow speed and ice flow angle. Thus in raw form (without feature
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Fig. 2. Covariates used in the QRF: ice flow speed (a), ice flow angle (b) surface roughness (c) and roughness

bandpass (d).
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engineering) our input xraw would be five dimensional: easting, northing, elevation, flow speed and flow

angle would be our features.

However, in this study, we make three key feature engineering decisions to produce xeng upon which

our QRF is constructed:

1. We rotate our spatial axes to add new compass orientations in addition to easting and northing. In

total, we provide 16 equal-angled rotations about the compass as our spatial input features. This allows

our QRF to perform spatial interpolation that is more smooth and less ‘blocky’ than if the decision

trees were forced to make partitions on easting and northing only.

2. We take the sine and cosine of the ice flow angle raster, so that the ‘circular’ nature of this variable is

better represented (otherwise, 5 degrees and 355 degrees appear to be 350 degrees apart, when in reality

they are only 10 degrees apart).

3. We filter the surface elevation raster to generate two derived features (although many more are possible);

A) a simple surface roughness measure as the standard deviation of 5x5 window passed across the raster,

and B) a simple bandpass of surface elevation for which we first subtract the mean of a 5x5 window

(leaving only residual high frequency information) and then take the mean of this residual in a 5x5

window.

The benefits of feature engineering to tailor the inputs, x, towards the machine learning task at hand (to

learn fpxq such that y “ fpxq) are well documented, (e.g. Kuhn and Johnson (2019)). Feature engineering

helps guide a machine learning model by shaping its assumptions about how input variables relate to

the target outcome. In Bayesian terms, it can be seen as helping to represent our prior belief about the

possible relationships between the input variables xraw and the predicted outcome y. The features we have

engineered to include in this study are by no means exhaustive and there are many more that could be

tried. We suggest that the engineering, or learning, of optimal features for this task would be a worthwhile

focus for a future research project.

Hyperparameter tuning

With our observations resampled to compensate for the spatial sampling bias of flight lines (Bartlett and

others, 2020), and with our features engineered to include additional compass orientations and derivatives

of our satellite observed covariates, we proceeded to find suitable hyperparameters for the construction of
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our quantile regression forest. Hyperparameters are a priori configuration values that influence how the

QRF model learns from the training data. Our aim is to balance the trade-off between overfitting the

data (i.e., spuriously fitting to noise) and underfitting the data (i.e, failing to fit to all of the signal). To

assess our performance in this task, we use a k-fold cross-validation procedure (where k“ 6), such that we

split the training data (our radar observations excluding the PROMICE dataset) into six folds, and then

train 6 QRFs, with the same hyperparameter values, each on a different set of 5 of the folds, so that their

performance can be tested on the fold they did not see during training (see Appendix: Cross validation

by field season). In this way, as we repeat the procedure using different hyperparameter values, we can

assess the ability of the QRF algorithm with different hyperparameter values to make good predictions of

subglacial bed elevation at locations it has not observed during training.

Typically, a k-fold cross validation procedure would split the data into k folds at random (Kohavi and

others, 1995). However, to do so in our case would result in having observations from different folds side-

by-side together in the same flight lines. Tuning hyperparameters on such folds would result in optimising

for interpolation along flight lines, rather than between flight lines. Since large swathes of the map lie

between flight lines (Fig. 1b), it makes sense to prioritise between-flight-line predictive performance, as

this is more representative of the challenge of mapping Greenland’s subglacial bed topography as a whole.

In order to achieve this, we create our six folds for cross-validation by splitting the observations by the

years in which they were collected; the aircraft in different years flew different routes, and so this results

in six folds of distinct flight lines. The folds are assembled by years as follows: Fold 1 - years 1993 to 2001,

Fold 2 - years 2002 to 2010, Fold 3 - years 2011 to 2012, Fold 4 - years 2013 to 2014, Fold 5 - years 2015

to 2017, Fold 6 - years 2018 to 2019. Splitting the data in this way produces 6 folds with close-to-equal

number of observations.

By manually tuning hyperparameters to minimize the root-mean-squared error of predictions in cross-

validation, we arrived at the following hyperparameters for our QRF: max.depth = 0 (unlimited), min.node.size

= 9, splitrule = "variance", replace = TRUE, sample.fraction = 0.95, mtry = 5 (default for our number

of inputs). We do not limit the maximum depth of the trees, but instead specify a minimum node size of

9 observations. Each tree is grown on a 95% random subsample of the data, sampling with replacement.

Trees are grown using the typical ‘variance’ split rule, such that the intra-node variance of the resultant

partitions is minimised. We do not change the ’mtry’ hyperparameter, which controls how many variables

are considered for each decision split in a tree. By default, it is set to the square root of the total number
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of input features, rounded to the nearest integer. Since our model has 22 input features, this results in an

’mtry’ value of 5. For the cross-validated hyperparameter tuning, we grew 20 trees per forest, this achieved

a cross-validated R2 of 0.97 and root-mean-squared-error of 172 metres — these cross-validation metrics

are of interest mainly in the context of comparison with results for the PROMICE test set, which we report

in the results section.

For the final forest trained on all folds of radar observations (but excluding the PROMICE dataset

which we reserved for testing only), we grew 100 trees using the hyperparameters described above.

RESULTS AND DISCUSSION

Test metrics

Our quantile regression forest (QRF) model outperforms BedMachine in both deterministic and probabilis-

tic predictions when tested on the circum-Greenland PROMICE dataset, unseen by either method during

training (Fig. 3). In terms of ice thickness (surface elevation minus predicted bed elevation), the QRF

achieves a root-mean-squared error (RMSE) of 190 meters, representing a 18% reduction compared to Bed-

Machine’s 232 meters. This improvement, though modest, is significant in terms of increasing prediction

accuracy, particularly when applied across large-scale ice-sheet models where even small gains can lead to

more accurate estimates of ice-sheet volume and sea-level rise projections.

Additionally, the QRF model exhibits a higher R2 value of 0.83 compared to BedMachine’s 0.79 when

compared with the PROMICE data, representing an increased correlation between observed and predicted

ice thickness values. This modest improvement in deterministic performance translates into better fidelity

in capturing subglacial features, which has implications for understanding Greenland’s ice dynamics using

numerical modelling (Fig. 4).

Predictive performance insights

Examining scatter plots of predicted versus observed ice thickness (Fig. 3), the QRF model reveals a

more consistent performance across all observed depths compared to BedMachine, which demonstrates a

tendency to under-predict ice thickness in shallow-ice regions. Notably, BedMachine often predicts zero or

near-zero ice thickness in regions where the radar observations suggest depths of up to 500 meters (Fig.

4). This systematic underprediction, particularly along the shallow periphery, could have profound effects

on estimates of ice-sheet dynamics and mass loss, which rely on accurate thickness measurements in these
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Fig. 3. QRF predictions versus observations (a), BedMachine predictions versus observations (b), QRF calibration

(c), BedMachine calibration(d).
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Fig. 4. QRF predicted bed elevation (a), BedMachine minus QRF (difference) (b), Bed Machine uncertainty (c),

QRF uncertainty (d).
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Fig. 5. Comparison of bed elevations predicated by BedMachine v3 (a) and our new QRF model (b) for the region

near Kangerlussuaq Glacier in East Greenland.
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crucial areas. In contrast, the QRF model provides a more balanced prediction distribution, with residuals

scattered symmetrically around the diagonal for all observed ice depths.

These improvements in prediction accuracy are particularly relevant in regions of Greenland where

the bedrock topography is complex, and ice dynamics are heavily influenced by subglacial features. Since

BedMachine uses methods that have a tendency to smooth out important subglacial features, the QRF

model’s approach of using high-resolution satellite-derived surface and velocity data allows it to capture

individual topographic features in finer detail. as can be seen in Fig. 5. This advantage is crucial for

predicting the movement of subglacial water and ice flow, as accurate topographic representation can

impact our understanding of ice discharge and basal hydrology, both of which are important for predicting

sea-level rise.

Uncertainty quantification and practical relevance

A key strength of the QRF model lies in its ability to produce well-calibrated prediction intervals. Bed-

Machine, on the other hand, exhibits underdispersed prediction intervals, with its 90% prediction interval

capturing only 66.8% of test observations, indicating an apparent miscalibration in its predictions when

compared with the PROMICE data (Fig 3d). This is problematic for practical applications, as models used

to predict the response of ice sheets to climate change require not only accurate boundary conditions but

also a robust representation of uncertainty. In contrast, the QRF model captures 89.8% of test observations

within its 90% prediction interval, making it a more reliable tool for assessing uncertainties in ice-sheet

behavior.

The continuous ranked probability score (CRPS) measures the difference between the predicted and

observed cumulative distributions (Hersbach, 2000). The CRPS is widely used in probabilistic model

evaluation owing to it being a proper scoring rule; one that rewards not only accuracy but also well-

calibrated and sharp quantification of uncertainty (Gneiting and Raftery, 2007), with the CRPS’ ultimate

minimal value of zero only being achieved for a perfect deterministic prediction. The lower CRPS of

our QRF model (92 metres compared to 130 metres for BedMachine) further highlights its advantage in

balancing accuracy and uncertainty. This improved performance is especially valuable for quantifying the

uncertainty in projections of sea level rise arising from the subglacial topography.
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Mapping subglacial topography

The map generated by the QRF model (Fig. 4a) displays a more detailed and nuanced subglacial landscape

compared to those produced by BedMachine (Fig. 5). The QRF model reveals a rich diversity of subglacial

features, such as river channels, highlands, and lowland plains, particularly in Greenland’s interior, where

BedMachine uses kriging to interpolate ice thickness observations - sometimes over distances in excess

of many kilometres. The use of satellite-derived ice surface and velocity data potentially enables the

QRF to predict bed elevation with greater precision in regions where BedMachine relies solely on spatial

interpolation of sparsely-sampled ice thickness measurements.

The differences between the two models’ predictions are most pronounced at the ice-sheet periphery,

where BedMachine relies on mass conservation for grounded ice and gravity inversion for fjord bathymetry.

These methods, while useful, impose strict assumptions that may smooth out ravines and other important

subglacial structures. In contrast, the QRF model offers more flexible predictions, which reveal deeper

ice and lower bed elevations in subglacial ravines around Greenlands margins (Fig. 5). These features

are important because they play a critical role in controlling ice flow, basal water distribution, and ice

discharge into the ocean, factors that ultimately influence the rate of ice loss from Greenland.

In some regions, such as the southwest of the GrIS, BedMachine predicts deeper ice in subglacial ravines

than the QRF model, but this appears to be the exception rather than the rule. Notably, large differences

in estimated bed elevation exist between the QRF and BedMachine at floating ice shelves in northern

Greenland due to the fact that the QRF is not able to represent the correct ice/sea/bed configuration.

Such discrepancies highlight a limitation in the approach used here. Future work is needed to refine our

approach in regions where the ice is floating or otherwise decoupled from the bedrock.

Ice volume estimates

One of the most significant applications of improved bed elevation estimates is in calculating total ice volume

and, by extension, potential future sea-level rise contributions. While our QRF model does not explicitly

model spatial dependence between locations, its structure inherently captures some spatial relationships

through the arrangement of regression tree nodes. This allows for realistic estimates of total ice volume

and uncertainty, a feature that is vital for large-scale models predicting Greenlands contribution to future

sea-level rise. Our estimated ice volume is (3.011 ˘ 0.004) x 106 km3, while the bedmachine estimate is

(2.99 ˘ 0.02) x 106 km3. This makes Our QRF estimate of the total Greenland ice sheet volume to be
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0.7% greater than that estimated by BedMachine, though we place more importance in the differences the

shape of the bed features, especially near the ice margin.

As we have seen, our QRF appears to be well calibrated when assessed against held-out test observations,

i.e. a 90% prediction interval provided by the QRF will contain the true bed elevation in (close to) 90% of

cases, and likewise for other prediction intervals. However, being able to reasonably quantify ice-thickness

prediction uncertainty at individual locations does not necessarily mean that one can also reasonably

quantify the uncertainty in an estimate of the total ice volume. If prediction errors are modelled entirely

independently at each location, then when summed together to obtain a total, the errors will cancel out,

resulting in a spuriously overconfident estimate of the total (Wadoux and Heuvelink, 2023). Conversely, if

prediction errors have an unrealistically strong spatial dependence, they may not cancel out enough when

summed together, potentially resulting in an unrealistically under-confident estimate of the total. While

our QRF does not explicitly model spatial dependence, spatial dependence is implicitly captured in the

structure of the quantile regression trees: Each tree has a number of terminal nodes, which each contain

a set of training observations. The within-node spatial dependence is not modelled; we can ‘simulate’

observations from a node simply by sampling at random from the observed values it contains, this equates to

an uncorrelated error distribution, like nugget variance in traditional geostatistics. The spatial dependence

between nodes is however captured by the arrangement of their boundaries; regression trees will produce

smaller terminal nodes where the ‘length scale’ of observations is shorter, i.e., where there is more high-

frequency information to capture. Conversely, where the ‘length scale’ of observations is large, terminal

nodes can also be large.

While a single decision tree can only crudely approximate the spatial dependence between observations,

when combined together in the QRF, the quality of this approximation improves. We can think of the

distribution of observations within each node of each tree as a nugget-effect-like independent noise (the data

distribution), that each tree estimates. This is our aleatoric uncertainty (data uncertainty representing the

inherent randomness in the observations, e.g. including measurement error). Meanwhile, the ensemble of

mean values predicted by each tree throughout the feature space approximates a distribution over functions

representing our epistemic uncertainty (reducible uncertainty representing our lack of knowledge). By

treating our QRF as an approximate Bayesian model (with the ensemble of regression trees representing

the ‘poor man’s posterior’ as described on p.272 of Hastie and others, 2009), we can ‘simulate’ different

maps of bed elevation from the ensemble, by first sampling one tree from our ensemble of trees (i.e, sampling

https://doi.org/10.1017/jog.2025.10071 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10071


Palmer and others: Quantile regression of Greenland’s subglacial topography 18

a configuration of parameters from the parameter distribution which our forest approximates) and then,

at each location of the map, sampling one value from the relevant within-node empirical distribution of

training observations (i.e, sampling from the data distribution).

Comparing the spatial autocorrelation properties of these ’simulated’ maps to the spatial autocorrelation

properties of held out test data (at the same locations) using variograms reveals them to be largely similar

(Fig. 6), although there is a (somewhat rare) tendency for the regression trees to exhibit too much spatial

variability at ranges of about 5 km. Despite this elevated 5 km spatial variability for some of the trees, the

average of the forest as a whole (and therefore the overall spatial autocorrelation properties of our output

bed map) matches quite well the spatial autocorrelation properties of the PROMICE test set (shown as

the red line in Fig. 6h). The exaggerated 5 km spatial variability of some of the trees is unlikely to affect

estimates of the total volume of ice, because for each tree this small-scale variability cancels out when

summing over the full 250 km extent of Greenland. We therefore propose that it is reasonable to use the

QRF to estimate total ice volume over Greenland.

Future work

There are several aspects of the work that warrant further investigation. Geophysical covariate observations

such as gravitational field strength, could be used in the model. This may lead to improved predictions of

bed elevations in areas of floating ice. Additionally, it would be worth attempting to optimise the input

features, including exploring the sensitivity of the predicted bed elevation to the hyperparameters used e.g.

the number of compass orientations. Future work is needed to explore the suitability of this approach for

estimating bed elevations for the Antarctic ice sheets and Arctic ice caps. We suggest the next steps are

to focus on quantifying the differences between BedMachine and the QRF at the outlet glaciers that drain

the ice sheet interior, as estimates of ice sheet mass balance are sensitive to the geometry of these outlet

glaciers.

CONCLUSIONS

The QRF model offers significant advancements over the widely-used BedMachine data in predicting Green-

land’s subglacial topography and ice thickness. The QRF model provides improvements to both determinis-

tic accuracy and probabilistic predictions, achieving a 18% reduction in RMSE and a better representation

of uncertainty, as demonstrated by its superior R2 and continuous-ranked-probability score (CRPS). These
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Fig. 6. Three example QRF ‘simulated’ ice thickness maps (a-c), Semivariograms of QRF ‘simulations’ (blue) vs

held-out test observations (red)(d), and a histogram of QRF ‘simulated’ ice volumes (e). The vertical dashed red

line shows the mean ice volume (3.011 ś 0.004) x 106 km3. BedMachine’s estimate is (2.99 ś 0.02) x 106 km3.
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improvements, while modest, hold substantial practical relevance for understanding ice dynamics in a

warming climate and predicting future sea-level rise.

Our results indicate that the QRF model provides a more balanced and consistent prediction of ice

thickness than BedMachine, which has a tendency to underpredict the width and depth of subglacial

troughs at the ice sheet margin. This is crucial for studies of ice sheet mass balance because the cross-

sectional area of these outlet glacier troughs determines the estimated rate of mass loss to the surrounding

ocean.

One of the key contributions of the QRF model is its ability to produce well-calibrated uncertainty

estimates, which are more reliable than those from BedMachine. The QRF model’s prediction intervals

captured 89.8% of test observations within a 90% confidence interval, a stark contrast to BedMachine’s un-

derdispersed intervals, which only captured 66.8%. This is crucial for decision-makers who rely on accurate

risk assessments in scenarios where ice-sheet behavior is difficult to predict. For example, policymakers fo-

cused on sea-level rise adaptation would benefit from models that can account for the inherent uncertainty

in ice-thickness predictions while minimizing errors in those predictions (Siegert and Pearson, 2021). These

more robust uncertainty estimates are also useful for identifying priority areas for future RES surveys to

target.

In terms of mapping subglacial topography, the QRF model unveils a richer and more detailed landscape

than BedMachine, especially in regions where traditional methods like mass conservation and gravity

inversion tend to over-smooth high-relief subglacial features. The model’s ability to preserve the linearity

of crucial features of the sublglacial landscape, such as ravines and channels, enhances our understanding

of how these features influence ice flow and the routing of basal water.

Despite its strengths, the QRF model does have limitations, particularly in accounting for spatial

dependence across locations. However, its structured ensemble approach partially captures these spatial

relationships, leading to realistic estimates of total ice volume. This feature holds promise for improving

future ice-sheet models that require robust volume predictions and well-calibrated uncertainty estimates.

We suggest that the optimization of input features would be a worthwhile focus for a future research

project.

Overall, we have demonstrated that a QRF approach represents a computationally low-cost option

for estimating ice sheet basal topography, offering both improved accuracy and more robust uncertainty

quantification when compared with BedMachine in grounded-ice areas.
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Fig. 7. Our six cross-validation folds (a-f). The folds were created by grouping observations by years of collection

in order to produce six folds of approximately equal size with minimal overlap in flight lines, so that cross-validation

reveals our QRF’s ability to make reasonable predictions in the spaces between flight lines.

APPENDIX: CROSS-VALIDATION BY FIELD SEASON

To evaluate the ability of our QRF to make reasonable predictions in the (sometimes large) spaces between

radar observation flight lines, and in order to tune its hyperparameters towards this purpose, we split our

training data into six different folds according to their years of collection: 1993-2001 fold one, 2002-2010

fold two, 2011:2012 fold three, 2013:2014 fold four, 2015:2017 fold five, 2018:2019 fold six. These groupings

produce folds of approximately equal size, and with little overlap between their respective flight lines (Fig.

7).
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