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ALGEBRAS OF ANALYTIC OPERATORS 
ASSOCIATED WITH A PERIODIC FLOW ON A 

VON NEUMANN ALGEBRA 

BARUCH SOLEL 

1. Introduction. Let M be a a-finite von Neumann algebra and {at}teT 
be a a-weakly continuous representation of the unit circle, T, as 
*-automorphisms of M. Let H°°(a) be the set of all x e M such that 

spa(x) Q {n e Z:n â 0}. 

The structure of H°°(a) was studied by several authors (see [2-13] ). 
The main object of this paper is to study the a-weakly closed 

subalgebras of M that contain Hco(a). In [12] this was done for the special 
case where H°°(a) is a nonselfadjoint crossed product. 

Let Mn, for n e Z, be the set of all x e M such that 

SP«(X) = W-

With a projection e in the centre of M0 (the fixed point algebra with 
respect to a) we associate projections {e(n) } ^ = _OQ by defining 

e(n) = I for n i^ 0 and 

e(n) = A{1 - Pm(e):n ^ m ^ - 1 } for n < 0 

(see Section 2 for the definition of fim). We prove (Theorem 3.6) that for 
each a-weakly closed subalgebra B that contains H°°(a) there is a 
projection e in the centre of M0 such that 5 is generated by U {e(n)Mn: 
n e Z} (as a a-weakly closed linear subspace of M). We also show 
(Theorem 3.9) that each such subalgebra is H°°(y) for some periodic flow y 
on M. As a corollary we prove that if s0 is a nest subalgebra associated 
with a nest {0,. . . , P-\, PQ, P\, . . . , / } Q M and B is a a-weakly closed 
subalgebra of M that contains s# then 5 is a nest subalgebra. 

2. Preliminaries. Let M be a a-finite von Neumann algebra acting on a 
Hilbert space H and let { a J / e R be a periodic a-weakly continuous 
representation of R as *-automorphisms of M. We assume that the period 
is 277 and write T for the interval [0, 2m\ identified with the unit circle. For 
each n G Z we define a a-weakly continuous linear map en, on M, by 
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406 BARUCH SOLEL 

e"W = h e ''%(*>W0, x G M, 
where d\i is the normalized Lebesgue measure on T. Let Mn be tn(M). 

Then it is clear that 

Mn = {x G M:a,(jc) = ^"'jc, / G T}. 

Whenever {yt}t^j is a a-weakly continuous representation of T as 
*-automorphisms of M we let sp (x) denote the Arveson's spectrum of 
x G M with respect to {yt} (see [1] ). For a subset S Q Z, My(S) will 
denote the spectral subspace associated with S; i.e., 

M\S) = {x G M:jpy(jc) Q 5 } . 

If S = {/i e Z:w ^ 0} we write H°°(y) for M\S). It is known ( [3] ) that 
H°°(y) is a a-weakly closed subalgebra of M which is a finite maximal 
subdiagonal algebra (with respect to the map 

/

277 

0 ottdfx(t)). 

When y = a we have Mw = M0!( {n}), n G Z and 

jpa(x) = {n G Z:e„(jc) ^ 0} for je G M. 

Since M is T-finite (i.e., there is a faithful expectation e0 from M onto 
M0 such that €0 o at = €0 for all t G T) and a-finite, there exists a faithful 
normal {a,}-invariant state <$> on M. Considering the Gelfand-Naimark-
Segal construction of <j>, we may suppose that M has a separating and 
cyclic vector £0 G H such that ^>(x) = (x£0, £0) *s a n {a/}-invariant state 
on M. 

Remark 2.1. Suppose {y?} /Gx *s a ^-weakly continuous representation as 
above and a G M such that, for each / G T, yt(a) = elt a for some self 
adjoint operator b in the centre of M0 with o(b) Q Z (where o(b) is the 
spectrum of b as an operator). Then 

spy(a) ç a(6). 

In fact, assume that there is some n G spy(a), n <£ a(b). Then 

/ : 0
 e~imei,bdiL(t) = 0 (as « £ a(Z>) ); 

but n e spy{a) hence 

1 = / r ^"^"" (̂o=o. 
The contradiction shows that spy(a) Q o(b). 

For each n G Z define projections ew,/n by 

e„ = sup{w*w:w is a partial isometry in Mn) 

fn = sup{i/w*:w is a partial isometry in Mn). 
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Then, by [11, Lemma 2.2], en a n d / lie in Z(M0) (the centre of M0). The 
following lemma appears in [11]. 

LEMMA 2.2. (1) For every n, m <E Z, MnMm Q Mn+m and 
M*n = M_„. 

(2) L^/ x e M^ <z«<i to x = v|x| Z?e the polar decomposition of x. Then 
v G Mn and \x\ e M0. 

The following result can be found in [13, Proposition 2.3 and Theorem 
2.4]. Although it was assumed there that the algebra M is finite, this 
assumption was not used in the proof of the following proposition. 

PROPOSITION 2.3. Fix n e Z. Then there is a sequence {vnwj}^=i of 
partial isometries in Mn with the following properties: 

0 ) K,mvnj = 0ifm¥*j. 

oo 

(2) 2 v v* = /". 
v / ^^ n,m n,m J n 

m— 1 
oo 

(3) M„ = 2 v„,mM0; 

i.e., each x e M^ can be written as 

oo 

2 v„>mxm /or some xm e M0 
w = l 

where the sum converges in the o-weak operator topology. 

For each p e M* there are sequences {xn}™=l, {yn}T=\ *n ^ 
satisfying 

2 | |x„ | | 2 <<x> and 2 l W I 2 < o o , 

such that 

oo 

p(a) = 2 (axn,yn). 
n=\ 

Let H be the space H ® K (for some separable infinite dimensional 
subspace K with an orthogonal basis {gn}™=\). Write a for the operator 
a ® Ik and then 

p(a) = (ax,y) 

where 
oo oo 

x = ^ xn®gn& H and y = 2 j „ ® g „ e 5 . 
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Let M be [a:a e M} and then M is *-isomorphic to M and £ = £0 ® gj is 
a separating vector for M. 

Replacing M by M and H by H we assume that M has a separating 
vector ^ G i / and each £ e M* is of the form w for some x,y e / / . Also 
</>(#) = (a£, £) is a faithful normal {a,}-invariant state on M. 

The following result appears in [11, Theorem 2.4]. 

PROPOSITION 2.4. (1) //°°(a) = {x e M:€^(X) = 0/or eac/z n < 0} 
(2) H°°(a) is the o-weakly closed subalgebra of M which is generated by 

M0 and all partial isometries in Mn (n e Z, n > 0). 

With the partial isometries {vnm:n e Z, m è 1} defined as in 
Proposition 2.3, we can define maps {/?„}„ e z o n ^ o by the formula 

oo 

A,(r) = 2 vm7v*m. 
m = l 

Let us denote the orthogonal projection onto the subspace [Mn!~] (the 
closure, in / / , of {a£:a e Mn) ) by £„, n e Z. 

LEMMA 2.4. (1) /?w w 0 we// defined homomorphism from M'0 ontofnM'0. 
(2) For (3 projection Q e MQ, 

fin(Q) = V{uQu*\u is a partial isometry in Mn}, 

hence Pn(Q) is a projection. 
(3) For £<2c/z «, m G Z, 7" G MQ, 

Pn+mif-mT) = j8„j8„,(D =fnHn + m(T). 

(4) /}w zs a *-isomorphism from enM'§ onto fnM'0. 
(5) For T ^ M'^T ^ M if and only if Pn(T) = fj for each n eZ.IfT 

is a projection then T e M if and only if fin(T) = T for each n e Z. 
(6)IfT G MQ tfftd 2 ï ^ = -00 Pm(T) *s a well defined bounded operator in 

Mf
0 then 2 ^=-00 fim(T) e M (where the sum converges in the strong 

operator topology.) 
(7) For each n e Z, jB„(£0) = £„. 
(8) Suppose Qx and Q2 are projections in M'0 and Qx ~ Q2 (with respect to 

the equivalence relation in MQ), then 

fi„(Qi) ~ P„(QJfor each n e Z 

Proof. (1) Fix T e MQ. Since the range projections of { v ^ w } ^ = 1 are 
mutually orthogonal, fin(T) is a linear bounded operator. Now fix a 
unitary operator u e M0 and m ^ 1. Then 

wvn,w = 2 V/*/' ^or some Xj G M0 and, 
7 
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= 2 V„jTv*jV„tJXjXfv*j 
•J 

= 2 vB jrv*y(2 vn<rxr)xfv*j 
i,j r 

= 2 vnjTvnJuvnMvlmu* 
j 

= P,AT)UVn,mK,mU*-

Summing over all m = 1 we have 

u/3„(T)u* = jS„(r)/„. 

Since, clearly 0„(T) = fin(T)f„, 

P„(T) 6 M'Jn, n e Z 

To show that /?w is multiplicative let S, T lie in M'0. Then 

Hn(S)Hn(T) = ( 2 v „ , m 5 v * m ) ( 2 v^.JV*,.) 

= / j v Sv* v Tv* 
^•J vn,rrrJ n,m n,j n,j 
m J 

= 2 vnmSTv*m = p„(ST). 
m 

Linearity of fin is obvious. The fact that fin(M'0) = f„M'0 will follow from 
(3), since 

M-nCn = MT) =fj= T for each T e f„M'0. 

This, in fact, shows that 

P„(f-nM'o) = M'0. 

(2) This is proved in [13, Lemma 3.1(1) ]. 
(3) This is proved in [13, Lemma 3.1(2) ] for the case where T e M'0 is a 

projection. The linearity and continuity, in the strong operator topology, 
of Pn proves it for any T e M'0. 

(4) Since P-nPn{enT) =f-nej = enT(note that en = / _ „ , n e Z), ft, is 
one-to-one on £„MQ. The rest follows from (1) (with the observation that 

Pn(enM'0) = f3n(f„nM'0) = M , 

as noted above). 
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(5) If T G M' then obviously fin(T) = fj. Conversely, if Pn(T) = fnT 
for each n G Z, then, for each m è l, 

v T — Tv = v v* v T — Tv v* v 
yn,m± x yn,m yn,myn,mn,m* M y n,my n,my n,m 

n,m n.m 

m 

= (v T — Tv Yv* v 
\ n,m n,m' n,m \ 

= (v TV* — Tv v* v̂ 
V n,m n,m n,m n,m> n 

= PAT)vn,m ~ Tf„vn,m = ° -

Since M0 together with {v„m}mg, „ e Z span M, T e M'. 
(6) Let S be 2 ~ — c o iS^r ) then 

oo oo 

/ W = 2 Mmcn= 2 fj„+mcn = fns. 
m— —oo m = — oo 

Hence, by (5), S G M'. 
(7) Recall that Ew is the projection onto [M^]. Hence, for m â 1, n G Z, 

v„m£0v*m is the projection onto [v„mM0£] and fîn(E0) is the projection 
onto 

Hence /?„(£0) = £„• 
(8) Suppose Jf is a partial isometry in M'0 such that WW* = g , and 

W*W = g2 . Then 

/?„(W0ft,(W*) = j8„(ô,) and j8„(^*)ft,(W0 = j8„(Ô2)-

Since j8„(»0 G M o a n d P„(W*) = P„(W)*, 

Hn(Q\) ~ &(&). 
The following notations and definitions will be used later: 
1. A projection Q G M'0 is said to be a wandering projection if, 

for each « G Z, Qfin(Q) = 0 (note that this implies that, for n ¥= my 

Pn(Q)Pm(Q) = 0). The set of all the wandering projections in M'0 will be 
denoted by ^ . 

2. For Q G <?, we let a(Ô) be 2 " = o A,(Ô). 
3. A closed subspace ^ of H is called invariant if for each « G H°°(a) 

and x e J , ax G 1 Let us denote by ^ 2 the s e t of all orthogonal 
projections whose range is an invariant subspace. Note that 

0>2 = {P G M'0:/ïn(P) ^ P for each n ^ 0}. 

(Since [M„P(tf) ] = fin(P)(H) for each « G Z and U Mn span 

fl°°(a)). 
4. For P G ^ 2 let 8(P) be P - K{)8w(P):n > 0}. 

The following lemma can be found in [13]. 
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LEMMA 2.5. If P e 0>2 then 8(P) e @x, 

P = a(S(P))+ A0mlJJP) and 

A V 0m(P) G M'. 

3. Subalgebras of M Let # be the collection of all a-weakly closed 
subalgebras of M that contain 7. For each y G i / and 5 G f we define 

^ = {fl G M:fl[5y] ç [By] }. 

Then i?^ is a a-weakly closed subalgebra of M that contains 2?. In 
particular B G *K 

LEMMA 3.1. For each B G tfandy G 7/, 

[^] = \Byy\ 

Proof. Since 5 c By, [By] Q [By]. For the other inclusion, suppose a is 
in By. Then, since y G [2?y], #y G [By]; hence [ i ^ j ] Ç [2?y]. 

LEMMA 3.2. Suppose B, C lie in tfand B ¥= C. Then there is some y G H 
such that B ¥* C . 

Proof. Since B ¥= C we can assume that there is some a G B, a £ C. 
(The case B c C can be handled similarly.) Since C is a-weakly closed 
there is some p G M* such that p(c) = 0 for each c G C and p(a) ^ 0. 
Since M has a separating vector, there are vectors x, y G H such that 
p(b) = (by, x) for all b G M. Hence x is orthogonal to [Cy] but not to 
[By]. Since 

[Cyy] = [Çy] * [f?y] = [2?v^], 

LEMMA 3.3. For each B ^ % B = n {By:y G # } . 

Proof. Clearly B is contained in the algebra on the right (which we now 
denote by B). For each z G H, B Q B Q BZ and, by Lemma 3.1, 
[Bz] = [Bzz]. Hence, for each z G H, [BZ] = [Bz] and, therefore, 

Bz = {a G M:a[Bz] Q [Bz] } = {a G M:a[Bz] Q [Bz] } = Bz. 

By the previous lemma B = B. 

Suppose Jt is an invariant subspace of H and P is the orthogonal 
projection onto^#. Then we let B(J?) be the algebra 

{a G M'.aJt Q J?} = {a Œ M.aP = PaP}. 

Clearly H°°(a) Q B(Jt) for each invariant subspace^. 
For a projection Q G M'0 we let c(Q) be the central support of Q. 
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LEMMA 3.4. Let Jt^ i = 1, 2, be an invariant subspace in H with 
corresponding projection Pi £ 0>2

 sucn that 

c(8(Px)) = c(S(P2)). 

Then B(J/X) = B(Jt2). 

Proof. By symmetry it suffices to show that each a e B(Jtx) lies in 
B(J?2). Let Qt denote S(Pt), i = 1, 2. Let {qy}y^r t>e a maximal orthogonal 
family of subprojections of Q2 in MQ with the property that qy is 
equivalent to a subprojection of Qx (to be denoted py) for each y e T . Let 
q be 2 y e r # r Then, by the maximality of {gY}yGr> n o subprojection of 
Q2 — q (in MQ) is equivalent to a subprojection of Qx. This implies that 

c(Qz ~ q)c{Qx) = 0. 

But 

c(Q2 - q) ^ c(Q2) = c(g,) ; 

thus 

Q2 = q = 2 ? r 

By Lemma 2.5, P2
 = a((?2) + ^ where R is some projection in M'. 

Hence 

^ 2 = 2 a(?y) + R. 

In order to show that a e B(J?2) it will suffice to show that, for each 
y <E T, a maps o(qy)(H) into itself. 

Now fix y G T and let v e MQ be a partial isometry in MQ such that 
vv* = qy and v*v = p ^ Qx. Let i?(v) be the partial isometry 
2^=-ooAz( v ) e ^ ' ( s e e Lemma 2.4(6)). The initial projection of 

&(y) i s 2 ~ = - 0 0 ^ ( ^ 7 ) a n d i t s f i n a l projection is S m ^ - o A i ^ ) -
Now fix n ^ 0, and then 

aPn(qy) = aR(v)R(v)*Pn(qy) 

= R(v)aR(vy/3n(qy) = R(y)aPn(py)R(v)*. 

Since a maps a(/?y) into P l 5 

tfa(/?y) = Pxao(py) 

= PxaR(yyR(y)o{py) 

v m = —00 ' 

But 
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Py là 8(PX) = Px - V{Hm(Px):m > 0}; 

thus (Sm(py)Px = 0 for each m < 0 and we have 

ao(py) = o(py)ao(py). 

Therefore, 

a/in(qy) = R(v)o(py)afln(py)R(v*) 

= R(v)o(py)aR(vrR(v)(3n(py)R(vr 

= iî(v)a(/7y)/î(v)*ûi?(v)i8n(/iy)/î(v)* 

= o(qy)aPn(qy). 

Thus 

o(qy)ao(qy) = tfa(#y) 

and this implies that a lies in B(J?2)-

For a projection e in Z(M0) and n > 0 we write e( — n) for the 
projection A{1 — /?_m(e):l ^ m ^ «} . 

PROPOSITION 3.5. Let Jf be an invariant subspace with P the orthogonal 
projection onto it. Let e be c(8(P) ). Then 

B(Jt) = {a G Af:e_„0) G e( — n)M_n for each n > 0}. 

Proof. Let ~#0 be the invariant subspace 2 ^ = o fin(
e)En(H)- Then the 

projection P0 onto ^ 0 is 

OO CX) 

w = 0 «=0 

and 

«(P0) = ^ 0 -

If z is a nonzero projection in Z(M0) then z i; = z£ ¥= 0 and z£ G £ 0 (as 
z G M0). Hence zE0 ¥= 0 for each nonzero projection z e Z(M0). This 
implies that cCE0)

 = ^ a n d t r i a t 

c ( ^ 0 ) = ec(E0) = e. 

Therefore 

c(fi(P0) ) = c(8(P) ) 

and, by the previous lemma, B(Jt) = B(Jt^. 
For t G T let Wt be the linear operator that maps .x£(jt e M) into 

a,(.x)£. Since 

(at(x% at{x)i) = (at(x*x)Z9 f> 

= <|)(a/(x*x)) = <>(x*x) = (xf, x£), 
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Wt can be extended to a unitary operator on H. For n G Z, X G MW and 
a G M, 

= ^j8w(e)a- , (*)E G ^[/},7(e)M„£] 

= Wta/3n(e)En(H). 

I f a e £ ( ^ 0 ) t h e n 

at(a)Pn(e)x£ G ^P 0 ( t f ) for all « G Z, i G M„, * G T. 

Hence 

at(a)P0(H) Q WtP0(H)7 t G T. 

But 

»%(*)*€ = «,(&(*)*)€ 

= j8„(e)a,(jc)£ G P 0 (# ) for « ^ 0, x G Mn, ; G T. 

Hence 

at(a)P0(H) ç ^ P 0 ( # ) Ç pQ(H). 

Therefore at{B(Ji^) ) = B{Jt0). Since 

c„(5(^o) ) - #<^o)> f o r a11 " G z U s i n ê t7> Theorem 1] we have 

B(J?0) = {a G M:e„(a) G £Ç#0) for each n G Z}. 

For each n G Z we denote the set {« G M,2:<S G B{Ji^) } by Lw. Then 

B(J?0) = {a G M:e„(tf) G L„ for each « G Z}. 

Since #°°(a) Ç B(JifQ), Ln = Mw for n è 0. 
Now fix « > 0. We claim that L_„ = e( — n)M_n. Suppose 

x G e{ — n)M_n, then 

OO 

x = 2 v_w /-*/ for some x- G M0. 

Then, for m ^ 0, 
oo 

P-n(Pm(e))x = 2 v_nj/3m(^)vl„7v_w.xz 

oo 

= 2 v_„/m(e)v=i„i7v_„yx/-
7 = 1 
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OO 

(*) = 2 v^jvilUjBm(e)Xj = xflje). 

Hence, for each y e Mm, 

x/3m(e)y£ = 0-„(fim(e) )xyè e 0_„Pm(e)Em_„(H) 

£ Pm-n(e)Em_n(H). 

Thus x maps 2 ^ = H Pm(e)Em(H) m t o ^ 0 - F ° r ^ = m < « and 

^ m ( e M = (1 - Pm-n{e))xpm(e)yï 

= (1 - Pm-n(e)Wm-n(e)xPm(e)yè = 0. 

(The first equality holds because x G e( — n)M_n.) Hence 

This proves that e( — n)M_n Q L_n. 
Now suppose x G L_w. Since x G M_^, 

^ m ( e M e pm_n(e)Em_n(H) 

for each m i^ 0 and y G Mm. Hence, for 0 = m < n, 

x/ije) = x & » / m = 0 

(since for each y = 1, 

XPm(e)vm,jVmJ = (*&,(«>„,,;>*,,• = 0). 

But (*) implies that 

P-nPm(e)x = x(3m(e) = 0. 

Thus 

x e (1 - p_„(fim(e)))M_„ = (1 -f-Jm-„(e))M_„ 

= (1 - / ? „ , _ » )M_„. 

Since this holds for each 0 = ra < «, * G e( — n)M_n. 

For a projection <? G Z(M0) let us denote by i?(e) the set 

{a G M:e_n(a) G e( — n)M_n for each « > 0}. 

THEOREM 3.6. For each o-weakly closed subalgebra B of M that contains 
H°°(a) there is a projection e G Z(M0) such that B = B(e). Conversely, for 
each projection e G Z(M0), B(e) is a o-weakly closed subalgebra of M that 
contains H°°(a). 

Proof Suppose B is a a-weakly closed subalgebra of M that contains 
H°°(a). By Lemma 3.3 we can write B as Pi {B \y G H). Hence 
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B = {a G M:a[By] Q [By] for each^ G H}. 

Since [By] is an invariant subspace of H (as H°°(a) Q B), it follows from 
Proposition 3.5 that 

2?v = i?(e(^) ) for some projection e(y) G Z(M0). 

Thus, clearly, B = B(e) where e = V{e(y)\y G H}. 
For the converse just note that the set B(e) was shown, in the proof of 

Proposition 3.5, to be B(J?0) for some invariant subspace Jf0. Therefore 
B(e) is a a-weakly closed subalgebra of M that contains H°°(a). 

Recall that Wv t G T is the unitary operator defined by 

Wtai = at(a% a G M 

and £„ is the orthogonal projection onto [MJ-]. It is easy to check that the 
spectral decomposition of Wt is given by: 

oo 

Wt = 2 e""£„, t G T. 
« = —OO 

Let us now fix a projection e G Z(M0) and define, for each n G Z, 

• « - 1 

/* 2 &(e) /i > 0 

c„ = \0 n = 0 
- l 

-/„ 2 &(<?)( = -&(<?_„)) « < 0 . 
k = n 

For r E T let the operator Ut be 2 ^ L - o o QXP0tcn)^n- Then £/, is a 
unitary operator and the map f —> i/, is continuous in the strong operator 
topology. We now let yt be the *-automorphism of M implemented by Ut 

(i.e., yt(a) = UtaUf, a G M). The map 

t -* yt(a) 

is continuous in the a-weak operator topology and 

yt+s = Y ^ f o r * > ^ G T 

Our next object is to show that the algebra B(e) is H°°(y). This will prove 
that every a-weakly closed subalgebra of M that contains H°°(a) is H°°(y) 
for some flow y as described above. 

LEMMA 3.7. For eac/z «, k G Z, 

Jn + kfncn + k = fn + kCn + fn + k&n(Ck)' 

Proof. If /i = 0 or /c = 0 the equality above follows trivially. If « > 0 
and fc > 0, 
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fn + kfnCn + k = fn + kfn ^ &i(e) 
i = 0 

n-\ k-\ 

fn + kfn 2 &(e) + fn + kfn 2 &, + / (*) 
/=0 ; = 0 

k-\ 

fn + kfnCn + fn + k 2 # , ( & ( * ) ) 
i=0 

= fn + kcn + fn + kPn(ck)-

If « > 0, fc < 0 and « + fc > 0, 

fn + kfnCn + k ^ fn + kfn 2J /?/(<?) 
i = 0 

n-\ - 1 

= fn + kfn 2 ft(e) -fn + kfn 2 &, + ,•(<?) 
i=0 / = * 

-1 

= fn + kCn ~ fn + kPn\ 2 & ( * ) ) 

=*/» + **„ ~ fn + kPnifkWni^ ft(*)) 

= fn + kcn ~ /„ + *&,( 2 fkPi(e)) 
i = k 

k-\ 

= fn+kc„ -f„+kP„(fik( .2 ft(C))) 

— fn + kCn + fn + kPn(
Ck)' 

The other possible choices for « and A: can be handled similarly. 

LEMMA 3.8. For each t e T and n e Z, 

Y,(a) = exp(//cjûf. 

Pro©/. F i x / G T , « G Z , f l G M „ and A: G Z. Then 

ï r («) £* = UtaJJîEk = Utaexp(-itck)Ek. 

Since a lies in Mw, 

oo 

a = 2 v«,/<3/ (f° r some a- G M0) and 
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acxp(-itck)Ek Q Ek + n. 

Thus 

yt(
a)Ek = e x p ( z ï c „ + ^ 2 vnj-aj)exp(-itck)Ek 

= exp(/fcw+*)2 vnjexv(-itck)vn*vnjajEk 

j 

= exp(itcn + k )0n (exp( - itck ) )aEk 

= exp(itcn+kfn)Pn(exp(-itck))fn+ kaEk. 

By the previous lemma we now have 

yt(a)Ek = exp(z7/w +^cw)exp(/7/w +^/în(^))exp(-/^w(^)/w +^)û^ 

= mp(}tfn+kcn)aEk = e*p(itcn)aEk. 

Since this holds for each k e Z and 2 ^ L - o o ^ = ^ w e a r e done. 

THEOREM 3.9. Le/ e be a projection in Z(M0) and yt be the flow associ­
ated with e, as defined in the discussion preceding Lemma 3.7. Then 
//°°(y) = B(e), where B(e) is the algebra 

{a e M:e_n(a) e e{ — n)M_nfor each n > 0). 

{Recall that 

e(-n) = A{1 - j8_*(e):l ^ k ^ n}.) 

Hence every o-weakly closed subalgebra of M that contains H°°(a) is H°°(y) 
for some flow y associated with a projection e e Z(M0). 

Proof Since for n ^ 0, cn = 0 it follows from Remark 2.1 that 

H°°(a) Q H°°(y). 

As H°°(y) is a a-weakly closed subalgebra of M, H°°(y) = B(f) for some 
projection/ e Z(M0). We can also conclude from the proof of Theorem 
3.6 (the fact that B(e) is determined by en(B(e) ), n < 0) that in order to 
prove that B(e) = B(f) it suffices to show that for each n > 0, 

€_„(*(*) X= B<e) n M - « ) e 4 u a l s <-„(*( / ) X= #°°(r) n M_„). 

For a e M_„ n i?(e), aftk(e) = 0 for each 0 < k ^ «; hence 

c-na = 2 f„n/ik_n(e)a = 0 and 
A: = 0 

y,(û) = exp(itc_n)a = a. 

Thus 
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spy(a) = {0} and a e M_n n H°°(y). 

Suppose that B(e) n M_„ is strictly smaller than 

tf°°(Y) n M_M = B(f) n M _ „ . 

Then, if we let f( — n) be 

A{1 - £ _ , ( / ) : l S f c ^ a } 

(and, hence, M_„ n B(f) = f( — n)M_n), we have 

f( — n) ^ e( — n) and f( — n) ¥* e( — n). 

Therefore there is some a e (f(~n) — e( — n))M_n and it satisfies: 
e( — n)a = 0 and a e 2?(/) (i.e., spy(a) Q Z + ) . Since e( — n)a = Owe 
have, for / G T, 

Y,(tf) = exp(//c_„)û = exp(itcn — ite( — n))a 

n 

= cxp(it(-fn 2 p_k(e) - e{-n)))a 
k = \ 

= expyity- 2 P-k(e) ~ e(-n)JJa. 

But clearly 

n 

- 2 P-k(e) - e(-n) Si -I. 
k=\ 

Hence it follows from Remark 2.1 that 

spy(a) ç {n e Z:« S - 1 } 

contradicting our assumption that a e /?( / ) = H°°(y). This contradiction 
completes the proof that 

B(e) H M_„ = H°°(y) n M_„. 

Since this holds for each « G Z, B(e) = H°°(y). 

COROLLARY 3.10. Suppose M is a o-finite von Neumann algebra and 
Jf'= {0, . . . , P_x < P0 < Px < P2, . . ., 1} is a nest of projections in M 
with 

A{Pn:n G Z} = 0 andV{Pn:n e Z} = /. 

Let s/ be the associated nest subalgebra of M (i.e., J / = M Pi Alg Jf). 
Then every o-weakly closed subalgebra of M that contains s/ is also a nest 
subalgebra of M. 
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Proof. We will use the characterization of nest subalgebras as algebras 
of the form H°°(y) for an inner flow y. (For details see [3].) We define a 
spectral measure P on R by P(t, oo) = P ^ (where [t] denotes the integral 
part of t), and, for t G T let Vt be the unitary operator / R eltsdP(s). We 
now let at be the *-automorphism on M that is implemented by Vt\ i.e., 

at(x) = VtxVf, x G M, t G T. 

The map t —» at is a homomorphism of T into the group of inner 
*-automorphisms on M. By [3, Corollary 2.14 and Theorem 4.2.3] 
J / = H°°(a). As in the discussion preceding Lemma 3.7 we associate with a 
unitary operators [Wt\t G T} and projections {En\n G Z} such that the 
spectral decomposition of Wt is given by 

00 

Wt= 2 e " % ( 6 T . 
« = - c o 

We have 

at{x) = WpcW*, x G M, f G T; 

hence, for r G T, P^^f G M'. 
Now let B be a a-weakly closed subalgebra of M that contains stf. We 

know that B = H°°(y) and yt(x) = UtxU*, x G M, r G T is a flow 
associated with some projection e G Z(M0) as in the discussion preceding 
Lemma 3.7. Hence 

oo 

rç= 2 ^ „ 
« = —oo 

where cn are the elements of Z(M0) associated with the projection e. 
Now let Qj be Py - P._x for ally G Z and then 

oo 

^ = 2 e'""ôm and 
m= —oo 

oo 

m,j= — oo 

oo / oo \ 

= 2 M 2 ô„+m£m). 
«— — oo ^m=—oo ' 

Since, for each t G T, J/P*7 G M', the projection 2 m = - o o Qn+mEm ( t o 

be denoted by Gn) also lies in M' for each n G Z. We have, for each 
«, m G Z, 
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GnEm — Qn + m^m ~ Qn + nfin — ^nQn + m 

= (Qn + nfin)* = ^rtfin = ^mQn + m' 

Fix now n G Z and let T™ be 2£L-«> JtCjfjQj+n> x G T 

oo 

J- t
 ut — 4u e J Jj + ntej + m + n^m6 

J,m= —oo 

oo 

— y pitfj + mCmJtfj + mPm(Cj)ft f F f p'^fm+fm 
— Zu e J e {xJmjrj+njmr,mjm+je J . j,m= — oo 

Since M0 = stf n jtf* = {Py.j G Z}', gy- G M(> for each y G Z. We have, 
therefore, 

oo 

1 t ut — <*-* e ym+j + n^nJm+j 
j,m = — oo 

oo 

= 2a pm(e n)Qmjrj^rnEmjmjrj 
mj= — oo 

m,j= — oo 

2 Gj+Me'^E^Jfj) 
= —oo 

OO / OO \ 

2 G,+II( 2 M&fjEo)). 
= —no ^ m = — o n ' j=— oo vm=—oo 

But 2 m = - o o Pm(eitCjfjEo) l i e s i n M ' ( s e e Lemma 2.4 (6) ). Hence 

r^f /* G M' for each « G Z a n d / e T . 

Let us denote by i^ the projection 2 j ^ - o o fjQj+w Then it is easy to 
check that 

T(nYT{n) = T{n)T{nY = / ^ for „ e Z j , e T. 

Hence 

Fn = T^T^* = (T\n)U*)(T\n)Uf)* G M'. 

Since, for j , n G Z, f. and g-+/I lie in M, F„ G M n M'. For each 
« G Z, 

oo 

F„^Qn and 2 Ô„ = /. 
n= —oo 

Thus V{Fn:n G Z} = / and we can find a sequence {Fn:n G Z} of 
projections in M n M' such that FF = 0 for n ¥= m, *2 Fn = I and 
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F ^ F 
x n — x n' 

We now set 
oo 

T,= 2 T\n)Fn. 
n= —oo 

Then 

oo oo 

TtU*= 2 T(^FnU*= 2 F„r<n ) t /fG M', for each? e T. 
« = —oo « = —CO 

Also, for t e T, 

CO 

TtTf = 2 T{"]FnFmT{^Y 

n,m= —oo 

CO OO 

= 2 2?>JF„7f)* = 2 F„7f>2f>* 

= 2 F„F„ = 2 F„ = I. 
n=—oo n——oo 

Similarly TfTt = I for each t <E T. Hence {7 .̂7 e T} is a unitary group of 
operators (TtTs = Tt+S for each /, s e T since it holds for {T^} for 
each « G Z). Also, for r G T, X G M, 

yt(x) = t/r x *y? = T;X T;* 

(as 7J17* G M'). 
Since {7J:/ E T} ç M this implies that H°°(y) is a nest subalgebra of M. 

In fact, let 2 ^ = - c o eltmQm ^ e t n e spectral decomposition of JÇ and let^P„ 
be the projection 2 W ^ « £?m(G ^ 0 - Then 5 = M n alg .yT where <yT is 
the nest {0, 1} U {£)„:« e Z}. 

Let us denote by f(a) the projection F{/W:w > 0} and by e(a) the 
projection V{en:n > 0} = V{fn\n < 0} (cf. [11, Proposition 2.7] ). Note 
that 

(1 - / ( a ) ) J Ï ° ° ( a ) = (1 -f(a))MQ and 

tf°»(l - e(a)) = M0(l - e(a) ). 

LEMMA 3.11. For projections e,f in Z(M0)9 B(e) = U ( / ) if and only if 

(e - ef) V ( / - * / ) ^ 1 - / (a) . 

In particular, B(e) = H°°(a) if and only if e = f(ot) and B(e) = M if and 
only if e = 1 — f(a). 
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Proof. Since 

B(e V/) = B(e) n B(f) and (e - ef) V ( / - * / ) Si 1 - /(a) 

if and only if e M f - e ^ 1 - /(a) and e M f - f ^ 1 - /(a), we can 
replace e by e V/, hence assume that e ^ /. We now have to show B(e) = 
5 ( / ) if and only if e - f ^ 1 - / ( a ) (where g ^ / ) . 

From the definition of 5(e) (and B(f) ) it follows that B(e) = B(f) if 
and only if, for each n > 0, 

(1) /_„(A{1 - / ? _ m ( * ) : l ^ m ^ « } ) 

= /_„(A{l - P-Jfy.l **m£n}). 

Suppose now that e — f ^ 1 — f(a), then for each m > 0, 

e - / ë 1 - / m = 1 -<•_„,. 

Hence, for m > 0, fi-m(e — f) = 0 and (1) follows for each « > 0. 
For the other direction, suppose that (1) holds for each n > 0 and that 

e — / ^ 1 — f(a). Then there is a positive integery such that (e — f)f ¥= 
0 and (e - f)fm = 0 for each 0 < m < j . Since (e - f)fm = 0, 

P-m(? -f) = 0 forO < m < j . 

Hence 

A{1 ~ P-m(f):l ^m<j) 

= / _ , ( l - J8_,((/)XA{1 - fi-Je):\ ^m<j}) 

and (1) implies that 

f-j{\ - 0_,.(OXA{1 - j8_m(e):l =i m < ; } ) 

= / _ , ( l - y8_y(/))(A{l - j8_w(<0:l ^ m < y } ) . 

Therefore 

j 8 _ , ( e - / ) = 0_,.(l -f)-p.j{\ - e) 

s 1 - A{1 - j8_m(e):l ê m < y } 

= F{/8_m(e):l ^ / « < . / } . 

But 

/?_/<> ~fW-m(e) = p_j[(e - f)fij-Je) ] 

^ /?_,[ (e - / ) y ; _ j = o 

(as (e - / ) / „ , = 0 for 0 < m < j) for 0 < m < j . Thus 

P-j(e - / ) = 0 and #«> - / ) = /8,CB_/e - / ) ) = 0, 

contradicting our assumption. Hence it follows from (1) that 
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e - / S 1 -f(a). 

The last assertion of the lemma follows from the fact that H°°(a) = 
B(I) and M = 5(0). 

COROLLARY 3.12. Let e be a projection in Z(M0). Then B(e) is a maximal 
o-weakly closed subalgebra of M if and only if ef(a)M() is a factor (or 
ef(a)M0 = {0} ). 

In particular, H°°(a) is a maximal o-weakly closed subalgebra of M if and 
only iff(a)M0 is a factor. 

Proof Suppose ef(a)M() is a factor or ef(a) = 0. Then each projection 
z e Z(M0) that satisfies z ^ ef(a) is either 0 or ef(a). Hence, for each 
such z, B(z) = M (if z = 0) or B(z) = B(e) (if z = ef(a\ as 

e - z = e(\ -f(a))£ 1 - f{a)). 

If there is some projection / E Z(M0) such that B(f) 2 B(e) then 
B(f) = B(ff(a) ) (by the previous lemma) and 

B(fef(a)) = B(f) U B(e) = B(f) 2 B(e). 

But/^/(a) ^ <?/(a); hence B(f) = B{e) or 5(/) = M. 
Now suppose that B(e) is a maximal a-weakly closed subalgebra of M. 

If ef(a)MQ is not a factor and ef(a) ¥= 0 then there is some projection 
q ^ ef(a) in Z(M0) such that q =£ 0 and g ^ <?/(«)• It follows that 

(? ^ 1 - f(a) and e - ^ ^ 1 - / ( « ) . 

Hence (by the previous lemma) B(q) ¥= M and B(q) ¥= B(e). Since B(e) is 
a maximal a-weakly closed subalgebra this cannot occur and, hence, 
ef(a)M0 is a factor or ef(a) = 0. 

The last assertion follows immediately. 

For analytic crossed products it was proved in [4] that the maximality of 
H°° is equivalent to M0 being a factor. The next corollary also extends a 
result that was known for analytic crossed products (see [5] ). 

COROLLARY 3.13. The following conditions are equivalent: 
(1) For each o-weakly closed subalgebra B of M that contains H°°(a) there 

is a projection q e Z(M0) such that 

B = qM + (1 - q)H°°(a). 

(2)f(a)e(a)Z(M0) Q Z(M\ 

Proof. (1) implies (2): Let e be a projection in f(a)e(a)Z(M0) and 
suppose that j > 0 is such that 

P^m(e) ^ e for each 0 ^ m < j . 

Let p be the projection e/?,-(l — e). Then p satisfies the following 
properties: 
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(i) For each m e Z, 

Pj + m(P)Pm(P) = 0. 

(ii) For each 0 < m < j and n e Z, 

f„Pn-M = 0. 
In particular P_m(p) = 0. 

(iii) For each w e Z, 

£«(/>) =/m+y 

Indeed, to prove (i) note that 

0/+m(/>) = Pj+m(e) a n d 

/U/>) ^ j8mG8,(l - e ) ) S j8 w + / l - e). 

We assumed that fi_m(e) = e for 0 < m < j . Hence 

fm-jfi-j(.e) = /?m_,06_m(e)) g 0m_,(e) S <? for 0 < m < j 

and it follows that 

fm-jP-j(p) =fm-j/3-j(e)(\ - e) = 0. 

Thus 

fmP =fJjP = Pj(fm-jP-j(p)) = 0 

and consequently 

p.Jp) ^ /?_m(l - /m) = 0. 

Property (ii) follows by applying fin to /?_w(/?) = 0. Property (iii) is an 
immediate consequence of the fact that p ^ fj. 

Consider now the algebra B(l — p). By (1) there is a projection 
q e Z(M0) such that 

5(1 - /?) = qM + (1 - q)H°°(a). 

This implies that for each « > 0, 

?/_„ = / - „ ( A { l - jB_M(l -/ ,):<) < m =i »}) . 

But then 

<?/_„ = £_„(/; )(A{1 - / _ „ + j8_M(/>):0 < m < « } ) . 

By (ii) f_„p_Jtp) = 0 for 0 < m < n Si y. Hence 

? / - „ = 0-„Q>) for n^j 

(in fact, for 0 ë « < y, qf_n = fi_n(p) = 0 by (ii) ). 
If « > j then 
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qf_n ë j8_B(/>Xl - / - „ + > + P-n+jiP)) = « 

(applying (i) and (iii) ). It follows that, for n > j , 

f_nP_j(p)=f_J_jq = 0 
and consequently 

P-j(p)^ 1 - / _ „ and 

p=fjP = Pjtfjip)) ^ p_j(\ - / _ „ > =i i -./;._„ 

for each n > j . 

Hence/? ^ 1 — e(a). But/? ^ e ^ e(a) and thus 

0 =p = ePj(l - e) 

and, by applying fi_p 

P-j(e)(l - O = 0. 

Hence /?_.-(e) = e. By induction we find that for each projection 
e G e(a)f(a)Z(M0) and each y > 0, j6_y(e) ^ e. 

Fix now a projection e G e(a)f(a)Z(M0) and suppose that y > 0 is such 
that for each 0 ^ m < y', fim(e) = e. We will show that fiAe) = e and this 
induction argument will imply that ftn(e) ^ e for each n e Z and, hence, 
that *? lies in Z(M) (by Lemma 2.4(5) ). 

Let/? be the projection ep_j(\ — e). Then for « > 0, 

P-„{p)nkp^f_j 

(since p ^ e ^ e(a)f(a) ) . Also 

0,.(/>) = j8y(e)(l - e) =S 1 - e § 1 - /> and 

fjp = Pjifi-jip)) ^ fij(p) ^ 1 - / > . 

Hence^/7 = 0 and consequently /}•(/?) = 0. Consider now the algebra 
5(1 — /?). Then there is a projection # G Z(M0) such that 

5(1 - p) = qM + (1 - q)H°°(a). 

Hence, for « > 0. 

qf-„ = j8_„(/>XA{l - / _ O T + P-m(p):0 < m < n) ) . 

For n = j , 

0-„{p) = P-j(p) = 0, 

hence qf-j = 0. For n ¥= j 

qf-n£P-„(p)£f-j. 

Thus 
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lf~n = if-J-j = if-j = 0-

This implies that 

B(\ - p) = qM + (1 - q)H°°(a) = //°°(a) 

and, by Lemma 3.11, 

P S 1 - / («)• 

But/? ^ e = /(<*) and consequently/? = 0. Since/? = e/J-yO — e), 

0 = j8y(e)(l - e) and £,•(£?) ^ e. 

This completes the proof that 

e(a)f(a)Z(M0) Q Z(M). 

(2) implies (1): Suppose that 

e(a)f(a)Z(M0) Q Z(M). 

Let e be a projection in Z(M0) and write e = /?! + p2 + /?3 where 

/?! = ee(a)f(a),p2 = ee(a)(l - / ( a ) ) and /?3 = e(l - e(a)). 

Then £(1 - /?2) is H°°(a) (by Lemma 3.11). We now show that £(1 - px) 
and B(\ — p3) have the property described in (1). 

For each n > 0,f_np3 = 0 hence fin{p3) = 0. But then, for m G Z and 
n > 0, 

Hence 

Pm(P3)Pn(P3) = 0 for « ^ m in Z. 

For each « > 0 let z{ — n) be the projection in Z(M0) that satisfies 

5(1 -p3) HM_n =z(-n)M_n. 

Then 

z ( - i f ) = P-n(p3)(A{l - / _ „ + 0_„,(/>3):O < m < «} ) . 

Since y8_„(/>3)/?_m(/?3) whenever n ¥= m, 

z(-n) = jB_„(/>3XA{l - / _ m : 0 < m < n) ) and 

z ( - « ) z ( - 7 ) = 0 if « * . / . 

Let g3 be 2 ^ i z ( - « ) . If 0 < w < « then 

z ( - » ) S 1 - / _ m . 

If m > « > 0 then 
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f-J-„(p3) = 0 
(because fm/3m+n(p3) = 0 for m e Z, n > 0) and consequently/_mz(-/7) 
= 0. We see, therefore, that 

z( — n)f_m = 0 for all n # m, «, m > 0. 

It follows from this that 

q^f-m = z( — m) for each m > 0. 

Hence 

5(1 - />3) = </3M + (1 - q3)H°°(a). 

Now consider the algebra B(\ — px) and write z( — n) for 

j8_B(/»,)(A{l - / _ m + /J_m(ft):0 < m < » } ) 

(such that 5(1 - ft) n M_„ = z ( - « ) M _ „ ) for each n > 0. But 

/>, e e(a)f(a)Z(M0) Q Z(M). 

Hence 

1 - ft G Z(M) and 

fi_m(l - f t ) = / _ m ( l - f t ) , m e Z. 

Consequently 

z ( - « ) = / _ „ f t ( A { l - / _ m ( l - f t ) : 0 < m < n) = /_„/>,. 

Therefore 

5(1 - <?) = K{5(1 - ft):/ = 1, 2, 3} 

= (q3 + ft)M + (1 - ft - ft)#°°(«). 

Since any a-weakly closed subalgebra of M that contains H°°(a) is 
B(\ — e) for some projection e e Z(Af0), (1) follows. 
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