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ALGEBRAS OF ANALYTIC OPERATORS
ASSOCIATED WITH A PERIODIC FLOW ON A
VON NEUMANN ALGEBRA

BARUCH SOLEL

1. Introduction. Let M be a o-finite von Neumann algebra and {«, },ct
be a o-weakly continuous representation of the unit circle, T, as
*_automorphisms of M. Let H(«) be the set of all x € M such that

spo(x) € {n € Z:n = 0}.

The structure of H*(a) was studied by several authors (see [2-13]).

The main object of this paper is to study the o-weakly closed
subalgebras of M that contain H*(a). In [12] this was done for the special
case where H(«) is a nonselfadjoint crossed product.

Let M,, for n € Z, be the set of all x € M such that

spa(x) = {n}.

With a projection e in the centre of M, (the fixed point algebra with
respect to a) we associate projections {e(n) },- _., by defining

e(ny =Iforn =0 and
e(n) = A{1 — B, (e)n =m= —1}forn <O

(see Section 2 for the definition of B,,). We prove (Theorem 3.6) that for
each o-weakly closed subalgebra B that contains H(«) there is a
projection e in the centre of M, such that B is generated by U {e(n)M,:
n € Z} (as a o-weakly closed linear subspace of M). We also show
(Theorem 3.9) that each such subalgebra is H*°(y) for some periodic flow y
on M. As a corollary we prove that if &7 is a nest subalgebra associated
with anest {0,...,P_4, Py, P|,...,1} © M and B is a o-weakly closed
subalgebra of M that contains &/ then B is a nest subalgebra.

2. Preliminaries. Let M be a o-finite von Neumann algebra acting on a
Hilbert space H and let {a,},cg be a periodic o-weakly continuous
representation of R as *-automorphisms of M. We assume that the period
is 27 and write T for the interval [0, 2#] identified with the unit circle. For
each n € Z we define a o-weakly continuous linear map ¢,, on M, by
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27 )
€,(x) = /0 e Mo, (x)dut), x € M,
where dp is the normalized Lebesgue measure on T. Let M, be ¢,(M).
Then it is clear that
M, = {x € M:a,(x) = ¢"'x,t € T}.

Whenever {y,},cr is a o-weakly continuous representation of T as
*-automorphisms of M we let sp.(x) denote the Arveson’s spectrum of
x € M with respect to {y,} (see [1]). For a subset S € Z, M'(S) will
denote the spectral subspace associated with Sj i.e.,

M'(S) = {x € Msp(x) < S}.

If S = {n € Z:n = 0} we write H(y) for M"(S). It is known ( [3]) that
H™(y) is a o-weakly closed subalgebra of M which is a finite maximal
subdiagonal algebra (with respect to the map

2T
€ = ,/0 a,dp(t) ).
When y = « we have M, = M*({n}),n € Z and
sp(x) = {n € ZLe,(x) # 0} forx € M.

Since M is T-finite (i.e., there is a faithful expectation ¢, from M onto
M, such that ¢ 0 «, = ¢, for all 1 € T) and o-finite, there exists a faithful
normal {a,}-invariant state ¢ on M. Considering the Gelfand-Naimark-
Segal construction of ¢, we may suppose that M has a separating and
cyclic vector §, € H such that ¢(x) = (x§;, &) is an {«, }-invariant state
on M.

Remark 2.1. Suppose {v,},c is a o-weakly continuous representation as
above and a € M such that, for eacht € T, v,(a) = ¢"a for some self
adjoint operator b in the centre of M, with o(b) S Z (where o(b) is the
spectrum of b as an operator). Then

spy(a) < o(b).

In fact, assume that there is some n € sp,(a), n & o(b). Then
/20 e Mdu(t)y = 0 (asn & o(b));
but n € sp (a) hence

2m o
1 = ./0 e "edw(t) = 0.

The contradiction shows that sp.(a) S o(b).

For each n € Z define projections e,, f, by
e, = sup{u*u:u is a partial isometry in M, }

J,, = sup{uu*:u is a partial isometry in M, }.
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Then, by [11, Lemma 2.2}, e, and f,, lie in Z(M,) (the centre of M,). The
following lemma appears in [11].

Lemma 2.2. (1) For every n, m € Z, MM, < M, .  and
M:=M_,.

(2) Let x € M, and let x = v|x| be the polar decomposition of x. Then
v € M, and |x| € M,.

The following result can be found in [13, Proposition 2.3 and Theorem
2.4]. Although it was assumed there that the algebra M is finite, this
assumption was not used in the proof of the following proposition.

PROPOSITION 2.3. Fix n € Z. Then there is a sequence {v,,},"_ of
partial isometries in M, with the following properties:

(1) v¥ v .=0ifm#]

nm’n,j

o0
Q@ 2 Vi =S
m=1

[e¢]

B) M, = 2 v,,My

m=1

i.e., each x € M, can be written as

[ee)

21 VomXm Jor some x, € M,
m=

where the sum converges in the o-weak operator topology.

For each p € M, there are sequences {x,},—,, {(V,}no1 In H
satisfying

2 2
2lx,ll° < oo and X |ly,lI* < oo,

such that

p(a) = gl <axn’ yn>'

Let H be the space H ® K (for some separable infinite dimensional
subspace K with an orthogonal basis {g,},- ). Write @ for the operator
a ® I, and then

p(a) = (ax, y)

where

https://doi.org/10.4153/CJM-1985-024-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-024-3

408 BARUCH SOLEL

Let M be {@:a € M} and then M is *-isomorphic to M and ¢ = §, ® g, is
a separating vector for M.

Replacing M by M and H by H we assume that M has a separating
vector £ € H and each £ € M, is of the form Wy for some x, y € H. Also
¢(a) = (aé, &) is a faithful normal {e, }-invariant state on M.

The following result appears in [11, Theorem 2.4).

PropPOSITION 2.4. (1) H®(a) = {x € M:¢,(x) = 0 for each n < 0}
(2) H(a) is the o-weakly closed subalgebra of M which is generated by
M, and all partial isometries in M, (n € Z, n > 0).

With the partial isometries {v,,:n € Z, m = 1} defined as in

Proposition 2.3, we can define maps {f,}, <7z on M by the formula

[ee)
B}](T) = 2 vn,mTv:,m‘

m=1

Let us denote the orthogonal projection onto the subspace [M,£] (the
closure, in H, of {a§:a € M,} )by E,, n € L.

n’

LEMMA 2.4. (1) B, is a well defined homomorphism from M, onto f, M,
(2) For a projection Q € M),

B,(Q) = V{uQu*:u is a partial isometry in M, },

hence B,(Q) is a projection.
(3) For eachn,m € L, T € M,

Bn+m(f—mT) = Bnﬁm(T) =fr118n+m(T)‘

(4) B, is a *-isomorphism from e, M|, onto f, M,

(5) For T € My, T € M if and only if B,(T) = f,T for eachn € L. If T
is a projection then T € M’ if and only if B,(T) = T for each n € ZL.

6) If T € Myand X2,%°_ _ . B, (T) is a well defined bounded operator in
M then 2,07  _ B, (T) € M’ (where the sum converges in the strong
operator topology.)

(7) For eachn € Z, B,(E,) = E,,

(8) Suppose Q, and Q, are projections in M{, and Q, ~ Q, (with respect to
the equivalence relation in My), then

B,(Q)) ~ B,(Q,) for each n € Z.

Proof. (1) Fix T € M. Since the range projections of {v,,}, — are
mutually orthogonal, B,(T) is a linear bounded operator. Now fix a
unitary operator u € M, and m = 1. Then

uv, , = 2 v, X; forsome x; € M, and,
J
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,,,) r(Sa)

Tvn jvn ]'xjxl vnt

Ilj(2 vnr r) 1 Hl

Tv*

ﬂ m n, m

H

I

J

<

I
= M

*
vn‘_[T juvn m-n, ﬂlu

I

= B, (Duv, v u*

n.m-n,m

Summing over all m = 1 we have
u, (Tyu* = B,(T)f,
Since, clearly B,(T) = B,(T)f,
B.(T) € Myf,, n < L.
To show that 8, is multiplicative let S, T lie in M. Then

B}:(S)Bn(T) = (Evn,mSV:,m)<2 vn,ij:,j)
m J
Z Vn nm anv'T,j

= E Vn‘mSTv;rk,m = B"(ST).
m

Linearity of B, is obvious. The fact that B, (M) = f,M; will follow from
(3), since

B.B_(T) = },B(T) = f, T = T for each T € f, M.
This, in fact, shows that

B.(f-Mp) = My,

(2) This is proved in [13, Lemma 3.1(1) ].

(3) This is proved in [13, Lemma 3.1(2) ] for the case where T € Mjis a
projection. The linearity and continuity, in the strong operator topology,
of B, proves it for any T € M,

(4) Since B_,B,(e,T) = f_,e,T = ¢,T (note thate, = f_,.n € Z), B, is
one-to-one on e, M. The rest follows from (1) (with the observation that

Bn(ean) = Bn(fAnM(’)) = f;1M6’

as noted above).
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(5) If T € M’ then obviously B,(T) = f, T. Conversely, if 8,(T) = f,T
for each n € Z, then, for each m = 1,

_ _ * _ *
VamT = Ty = VouVimVum L = TV m?

nm"nm’n.m nm”n,m’ n,m
— — *
- (vn,mT Tvn,m)vn,mvn,m
— * *
- (vn,mTVn,m Tvn,mvn,m)vn,m

= Bn(T)vn,m - Tfnvn,m = 0.

Since M, together with {v, .}, >, ,cz span M, T € M'.
(6) Let S be >, B,(T) then

m=—00

Bn(S) = 2 BnIBm(T) = 2 fn:Bn+m(T) =f"S.

m= —00 m= —00

Hence, by (5), S € M.
(7) Recall that E, is the projection onto [M,£]. Hence, form = 1,n € Z,
Eyvk, is the projection onto [v, My and B,(E,) is the projection

Vam n,m

onto

nm

Em[vn,m‘}‘logl = [Mng]

Hence B,(E,) = E,.
(8) Suppose W is a partial isometry in M such that WW* = Q, and
W*W = Q,. Then

B.(W)B,(W*) = B,(Qy) and B, (W*)B, (W) = B,(Q)).
Since B8,(W) € M and B, (W*) = B, (W)*,

B.(Q1) ~ B,(Qy)-

The following notations and definitions will be used later:

1. A projection Q € M is said to be a wandering projection if,
for each n € Z, 0B,(Q) = 0 (note that this implies that, for n # m,
B, (0)B,,(Q) = 0). The set of all the wandering projections in M will be
denoted by #,.

2. For Q € 2, we let 6(Q) be 2,,° , B,(Q).

3. A closed subspace # of H is called invariant if for each a € H*(«a)
and x € A, ax € M. Let us denote by %, the set of all orthogonal
projections whose range is an invariant subspace. Note that

P, = {P € My:B,(P) = P for each n = 0}.
(Since [M,P(H)] = B,(P)H) for each n € Z and k>)0 M, span
h=

H(a)).
4. For P € &, let 8(P) be P — V{B,(P):n > 0}.

The following lemma can be found in [13].
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LEMMA 2.5. If P € P, then 8(P) € 2,
P =0((P)) + />\0 \é B,,(P) and

ANV B (P)eE M.

n>0 m=n

3. Subalgebras of M. Let % be the collection of all o-weakly closed
subalgebras of M that contain /. For eachy € H and B € % we define

B, = {a € M:a[By] C [By]}.

Then B, is a o-weakly closed subalgebra of M that contains B. In
particular B, € €.

LeEmMMA 3.1. For each B € %¥andy € H,

[By] = [B, ]

Proof. Since B € B,, [By] € [B, y]. For the other inclusion, suppose a is
in B,. Then, since y € [By], ay € [By]; hence [B,y] < [By].

LeMMA 3.2. Suppose B, C lie in ¥and B # C. Then there is somey € H
such that B, # C,.

Proof. Since B # C we can assume that there is some ¢ € B, a ¢ C.
(The case B C C can be handled similarly.) Since C is o-weakly closed
there is some p € M, such that p(¢) = 0 for each ¢ € C and p(a) # 0.
Since M has a separating vector, there are vectors x, y € H such that
p(b) = (by, x) for all b € M. Hence x is orthogonal to [Cy] but not to

[By]. Since
[C,y] = [Cy] # [By] = [B,y],
B, # C,.

LEMMA 3.3. For each B € 4, B = N {B,)y € H}.

Proof. Clearly B is contained in the algebra on the right (which we now
denote by B). For each z € H, B € B C B, and, by Lemma 3.1,
[Bz] = [B,z]. Hence, for each z € H, [Bz] = [Bz] and, therefore,

B, = {a € M:a[Bz] € [Bz]} = {a € M:a[Bz] C [Bz]} = B,.
By the previous lemma B = B.

Suppose # is an invariant subspace of H and P is the orthogonal
projection onto .#. Then we let B(#) be the algebra

{a € Mia#t € M} = {a € M:aP = PaP}.

Clearly H(a) € B(#) for each invariant subspace .Z.
For a projection Q € M we let ¢(Q) be the central support of Q.
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LEMMA 3.4. Let M, i = 1, 2, be an invariant subspace in H with
corresponding projection P, € P, such that

c(8(Py)) = c(8(Py)).
Then B(M\) = B(M,).

Proof. By symmetry it suffices to show that each a € B(#)) lies in
B(AM,). Let Q; denote 8(B), i = 1,2. Let {q,},er be a maximal orthogonal
family of subprojections of Q, in M with the property that ¢, is
equivalent to a subprojection of Q, (to be denoted p,) for each y € I'. Let
q be Zyerqy. Then, by the maximality of {g,},er, no subprojection of
Q, — ¢ (in Mp) is equivalent to a subprojection of Q,. This implies that

¢(Qy — ¢)(Q)) = 0.

But
c(Q) = q) = c(Qy) = c(Q)s
thus
0, = q = 24,
By Lemma 2.5, P, = o(Q,) + R where R is some projection in M’.
Hence

P, = Xolg) + R

yerl'

In order to show that a € B(4#,) it will suffice to show that, for each
y € I, a maps o(g,)(H) into itself.
Now fix y € T and let v € M|, be a partial isometry in M{ such that
w* = g, and v*v = p, = Q,. Let R(v) be the partial isometry
e —ooB,(v) € M’ (see Lemma 2.4(6)). The initial projection of

R(v)is 22 B.( p,) and its final projection is oo —ooBm(4y)-
Now fix n = 0, and then

aB,(qy) = aR()R()*B,(q,)
= R(v)aR(v)*B,(q,) = R(v)aB,(p)R()*.
Since a maps o(p,) into P,
as(p,) = Pjao(p,)
= P1aR(v)*R(v)o(p,)
- Pl(m 2 B,n(pY))ao(py).

But
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py = 8(P)) = P, — V{B,(P)):m > 0};
thus B,,(p,)P, = 0 for each m < 0 and we have

ao(p,) = o(p,ao(p,).

Therefore,
aB,(4,) = R(M)o(p,)aB,(p)R(*)
= R(v)o(p,)aR(v)*R(v)B,(p,)R(v)*

R(v)o(p)R(v)*aR(v)B,(p,)R(v)*
= a(¢,)aB,(4,).

I

Thus
o(q,)as(q,) = ao(q,)
and this implies that a lies in B(4,).

For a projection e in Z(M,) and n > 0 we write e(—n) for the
projection A{1 — B_,(e):1 = m = n}.

ProposITION 3.5. Let A be an invariant subspace with P the orthogonal
projection onto it. Let e be ¢(6(P)). Then

B() = {a € M:e_,(a) € e(—n)M_,, for each n > 0}.

Proof. Let M), be the invariant subspace 23020 B, (e)E, (H). Then the
projection P, onto .4, is

-n

2 BiE, = 2 B,(eEy)

n=0
and
8(P0) == eEo.

If z is a nonzero projection in Z(M,) then 22§ =z§{ # 0 and z§ € E; (as
z € M,). Hence zE, # 0 for each nonzero projection z € Z(M,). This
implies that ¢(E,) = [ and that

c(eEy) = ec(Ey) = e.
Therefore
c(8(Py)) = c(8(P))

and, by the previous lemma, B(/#) = B(A4).
For t+ € T let W, be the linear operator that maps x§(x € M) into
a,(x)¢. Since

<az(x)£, a((x)£> = <at(X*x)£’ g)
=¢(a,(x*x) ) = Pp(x*x) = (x£, x£),
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W, can be extended to a unitary operator on H. Forn € Z, x € M, and
a e M,

o, (a)B, (e)xé

Il

al (aBn (e )a — ,(X) )g
WaB,(e)a_(x)¢ € WalB,(e)M,£]
I/I{aan(e)En(I{)'

I

Il

If a € B(A#,) then

a,(a)B,(e)xé € WPy(H) foralln € Z, x € M, t € T.
Hence

a(a)P(H) € WPy(H),t € T.
But

Wi, (e)x§ = a,(B,(e)x)é

= B,(e),(x) € Py(H)forn =20, x € M, t € T.

Hence

a,(a)P(H) € WP(H) S Py(H).
Therefore o, (B(A#;) ) = B(A#,). Since

€, = /:;W e Mo du(r),

€,(B(My)) S B(A#,y), for all n € Z. Using [7, Theorem 1] we have
B#y) = {a € M:,(a) € B(#,) for each n € Z}.

For each n € Z we denote the set {a € M,:a € B(#4)) } by L,. Then
B(#y) = {a € M:,(a) € L, for eachn € Z}.

Since H(a) S B(A#,), L, = M, forn = 0.
Now fix n > 0. We claim that L _, = e(—n)M_,. Suppose
x € e(—n)M_,, then

—n

X = v

M3

—n,%; forsome x; € M,

j=1

Then, for m = 0,

[ee)

Bow(Bu(e))x = 2 v_, BuleW:, v_,x

ij=1

[o.e]
= jgl Vo yiBm(eW®, v _ X
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(*) = VoV Bu(e)x; = xB,,(e).

j=1

Hence, for eachy € M,,

xﬁm(e)}’§ = B~n(Bm(e) )X)’g € B—nﬁm(e)Em*n(H)
= Bm‘n(e)Em—n(H)'

Thus x maps B.(e)E, (H) into A, For 0 = m < n and

yEM,
xB(e)yé = (1 — B, ,(€))xB,,(e)yé
= (I = B,—n(€))B,—(e)xB,,(e)yé = 0.
(The first equality holds because x € e(—n)M
xMy S M.

This proves that e(—n)M _, © L_,.
Now suppose x € L_,. Since x € M

xB,,(e)y¢ € B,,_,(e)E,, _,(H)
for eachm = 0 and y € M,,. Hence, for 0 = m < n,
xB,(e) = xB,(e)f, =
(since for each j = 1,
me(e)Vm,jv;Z,j = (me(e)Vm,j)V;knvj = 0).
But (*) implies that
B_Bu(e)x = xB,,(e) = 0.
Thus
x€ (1= B Bu@NM_, = (0 = [ B, ()M_,
= (1= B, )M,

Since this holds for each0 = m < n, x € e(—n)M_,,

m=n

) Hence

—n

—n

For a projection e € Z(M,) let us denote by B(e) the set
{a € M:e_,(a) € e(—n)M _, for each n > 0}.

THEOREM 3.6. For each o-weakly closed subalgebra B of M that contains
H°(a) there is a projection e € Z(M,) such that B = B(e). Conversely, for
each projection e € Z(M,), B(e) is a a-weakly closed subalgebra of M that
contains H®(a).

Proof. Suppose B is a o-weakly closed subalgebra of M that contains
H*(a). By Lemma 3.3 we can write B as N {B,:y € H}. Hence

https://doi.org/10.4153/CJM-1985-024-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-024-3

416 BARUCH SOLEL

B = {a € M:a[By] C [By] foreachy € H}.
Since [By] is an invariant subspace of H (as H(a) € B), it follows from
Proposition 3.5 that

B, = B(e(y) ) for some projection e(y) € Z(M,).

Thus, clearly, B = B(e) where e = V{e(y)y € H}.

For the converse just note that the set B(e) was shown, in the proof of
Proposition 3.5, to be B(4,) for some invariant subspace .#,. Therefore
B(e) is a o-weakly closed subalgebra of M that contains H™(a).

Recall that W, ¢ € T is the unitary operator defined by

Wat = aa)g,a e M
and E, is the orthogonal projection onto [M,§]. It is easy to check that the
spectral decomposition of W, is given by:

® .
W= X ¢"E, teT
n=—00
Let us now fix a projection e € Z(M,) and define, for each n € Z,
n—1

£, 2 Bule) n>0
k=0
c, =140 n=20

-1
“y Z BuleX= —B(c)) n<0.

For 1 € T let the operator U, be 2> _ exp(itc,)E,. Then U, is a
unitary operator and the map ¢ — U, is continuous in the strong operator
topology. We now let y, be the *-automorphism of M implemented by U,
(ie., v,(a) = UaU}, a € M). The map

t—y,(a)
is continuous in the og-weak operator topology and
Yoy = YY, fort, s € T.

Our next object is to show that the algebra B(e) is H*(y). This will prove
that every o-weakly closed subalgebra of M that contains H(a) is H*(Y)
for some flow y as described above.

LEmMMA 3.7. For each n, k € Z,

JosiduCnsk = FosiCn + JrsiBulcr).

Proof. If n = 0 or k = 0 the equality above follows trivially. If n > 0
and k > 0,
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ntk—1

IosiBuCnric = Fasids §o Bi(e)

n—1

- n+kf 2 B(e) +fn+kf 2 Bn+1(e)

kﬁ

1
= fuvihien + foii 20 B, (B(e))

= Jn+kCn +fn+an(ck)-
Ifn>0,k<Oandn + k>0,

n+k—1

Jasidnlnsic = Sus il §0 Bi(e)
n—1 -1
= Jusiln é} Bi(e) = futitn ;k By+i(e)
-1
= Jn+kCn _fn+k18n('2 IBz(e))
i=k
-1
= Jn+kCn _fn+an(fk)Bn(_2 Bl-(e))
i=k
= Jn+kn n+kB (2 f;’cﬁ (e))

= Jn+kln — fn+kﬁn(:8k(:k§;l Bi(e)>)

= Jn+kCn +fn+k:Bn(ck)-
The other possible choices for n and k can be handled similarly.

LeEMMA 3.8. For eacht € Tandn € Z,
v,(a) = exp(itc,)a.
Proof. Fixt € T,n € Z,a € M, and k € Z. Then
Y(@)Ey = UaUrE, = Ua exp(—itcy)Ey.
Since a lies in M,,

[ee)

a= 2 v, 4; (for some a; € M) and
j=1
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a exp(—itc, )E, € E; .
Thus

oo
v, (a)E), exp(itcn+k)( _21 vn’jaj)exp(—itck)Ek
=

= exp(itcn+k)Z Vo, jEXP(— it )V, ¥V, j4Ey
J

exp(itc, o . )B,(exp(—itc; ) YaE,
exp(ite, 4 1 f B (exp(—ite)) ) f+ 1aEy
By the previous lemma we now have
Yi(@)E = exp(itfy 1 ¢, )exp(itf, kB, (ci) Yexp(—itB,(c;) f+ A,
= exp(itf, ¢, )aE, = exp(itc,)aE,.

Since this holds for each k € Z and 23> _ E, = I, we are done.

I

THEOREM 3.9. Let e be a projection in Z(M,) and vy, be the flow associ-
ated with e, as defined in the discussion preceding Lemma 3.7. Then
H®(y) = B(e), where B(e) is the algebra

{a € M:e_,(a) € e(—n)M_,, for each n > 0}.
(Recall that
e(—n) = A{l — B_,(e):] =k = n})

Hence every a-weakly closed subalgebra of M that contains H (a) is H™ (y)
Jor some flow y associated with a projection e € Z(M,).

Proof. Since for n = 0, ¢, = 0 it follows from Remark 2.1 that
H@) © H™(y).

As H*(y) is a o-weakly closed subalgebra of M, H(y) = B(f) for some

projection f € Z(M,). We can also conclude from the proof of Theorem

3.6 (the fact that B(e) is determined by ¢,(B(e) ), n < 0) that in order to

prove that B(e) = B(f) it suffices to show that for each n > 0,

e_(B(e) )= B(e) N M_,) equals e_,(B(f) (= H®(Y) N M_,).
Fora € M_, N B(e), aB;(e) = 0 for each 0 < k = n; hence

n—1

¢ ,a= 2 f_,Bi_,(e)a =0 and
k=0

= exp(itc_,)a = a.

=

—~
N}

N
|
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sp/(a) = {0} and a € M_, N H(y).
Suppose that B(e) N M _,, is strictly smaller than
H™(5) 0 M_, = B(/) N M_,
Then, if we let f(—n) be
A1 = B (/)] =k = n)
(and, hence, M_, N B(f) = f(—n)M_,), we have
f(—=n) 2 e(—n) and f(—n) # e(—n).

Therefore there is some a € (f(—n) — e(—n))M_, and it satisfies:
e(—n)a = 0 and a € B(f) (ie., spy(a) € Z,). Since e(—n)a = 0 we
have, fort € T,

v,(a) = exp(itc_,)a = exp(itc, — ite(—n))a

= exp(it(—f, 2 B_ile) — e(—n)))a
k=1

= exp(z’t(—ké1 B_,(e) — e(—n)))a.

But clearly
n
— 2 Byle) —e(—n) = —1I.
k=1

Hence it follows from Remark 2.1 that
spfa) € {n € Z:n = —1}

contradicting our assumption that a € B(f) = H*(y). This contradiction
completes the proof that

Ble) N M_, = H(y) " M_,.
Since this holds for each n € Z, B(e) = H®(®y).

CoroLLARY 3.10. Suppose M is a o-finite von Neumann algebra and
N ={0,...,P_| < Py< P, <P,,...,1}is a nest of projections in M
with

N{P,n € Z} = 0and V{P,;:n € L} = I.
Let o/ be the associated nest subalgebra of M (i.e., &/ = M N Alg A).

Then every o-weakly closed subalgebra of M that contains &/ is also a nest
subalgebra of M.
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Proof. We will use the characterization of nest subalgebras as algebras
of the form H™(y) for an inner flow y. (For details see [3].) We define a
spectral measure P on R by P(z, co) = P, (where [7] denotes the integral
part of ¢), and, for t € T let V, be the unitary operator fR ¢“dP(s). We
now let a, be the *-automorphism on M that is implemented by V}; i.e.,

a(x) = VxV}, xe Mt eT.

The map ¢ — «a, is a homomorphism of T into the group of inner
*-automorphisms on M. By [3, Corollary 2.14 and Theorem 4.2.3]
& = H*(a). As in the discussion preceding Lemma 3.7 we associate with a
unitary operators {W:t € T} and projections {E,:n € Z} such that the
spectral decomposition of W, is given by

o0

W= ¢"E, teT.

t
n=—00

We have
a(x) = WxWr,x € Mt €T,

hence, fort € T, WiFe M.

Now let B be a o-weakly closed subalgebra of M that contains «Z We
know that B = H™(y) and v,(x) = UxU¥, x € M, t € T is a flow
associated with some projection e € Z(M,) as in the discussion preceding
Lemma 3.7. Hence

[ee]

(J[ — E eit(',,En

n=—oo

where ¢, are the elements of Z(M,)) associated with the projection e.
Now let Q; be P, — P, for all j € Z and then

[ee)

itm
V= > e Q,, and
m=—0o0
00
* itm =ity
VtWt— 2 e m€ Ej
m,j=—o00
(e (e
_ itn
- 2 e ( 2 Qn+mEm)'
n=—o00 m= —o0o

Since, for each ¢ € T, V,W} € M, the projection 2,%_ _ . Q4 mE,, (t0
be denoted by G,) also lies in M’ for each n € Z. We have, for each
nm € Z,
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GnEm = Qn+mEm = Qn+mGn = GnQn+m
= (Qn+mGn)* = EmGn = Ean+m'

Fix now n € Z and let T{" be 22 _ ¢ifQ it €T

[ee)

(n) _ itc —ite
Tt Ut*—‘ 2 € j+mfj+mQj+m+nEme "

J,m=—00

(e )
= h eitfj+’"c"‘eitfj+mﬁm(9)Qm+j+nmemfm+je—ilf'"+/(.”’.
J,m=—00
Since My = & N * = {P;yj € L}, Q; € M; for each j € Z. We have,
therefore,

o]

TVUr= X &b, B f

Jm=—00

= 2 By (eitc")Qm + j+nEmf m+j

m,j=—00

= 2 G Bu(e"DE,B,(f)

m,j=—00
- 2 60 2 pem)
j=—00 m= —oo
But 2%°___ B,.(e" JiEo) lies in M’ (see Lemma 2.4 (6) ). Hence

T"WU*e M’ for eachn € Zandt € T.
Let us denote by F, the projection Eﬁ_oo ijj+n. Then it is easy to
check that
T T = TWT™" — F forn € Z,1 € T.
Hence
E, =TT = (TUs(T{"Up)* € M.
Since, for j, n € Z,fj and Q, 4, lie in M, F, € M N M. For each
n €7,

[e¢]

F,zQ, and X Q,=1

n=-—o00

Thus V{F;:n € Z} = I and we can find a sequence {Fn3f € Z; of
projections in M N M’ such that F,F,, = 0 forn # m, 2 F, = I and
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F,=F,
We now set

[e0]
T= > TWE.

n=—00

[ee]

(e 0]
TU*= X TWEU*= X FT"WUre M, foreacht € T.

-t
n=—00 n=—00o

Also, fort € T,

(o]
ITr= X TVFF,T""
nm=—00
o0 oo
- 3 1PRr - 3 RreTY
n=—0o n=—0co

o0 _ (o] -
= X FF,= X F, =1
n=—00 n=—00

Similarly T#7, = I for each ¢+ € T. Hence {7:t € T} is a unitary group of
operators (TT = T,,, for each 7, s € T since it holds for {T'"} for
eachn € Z). Also, fort € T, x € M,

() = U X Ut =T, X T

(as TUF € M).
Since {T;:t € T} C M this implies that H*(y) is a nest subalgebra of M.
In fact, let Em_ oo ”’"Q be the spectral decomposition of 7, and let P,

be the projection Em <, 0,(€ M). Then B = M N alg ¥ where./V‘ 1s
the nest {0, I} U {Q,:n € Z}.

Let us denote by f(a) the projection V{f,:n > 0} and by e(a) the
projection V{e,:n > 0} = V{f,:n < 0} (cf. [11, Proposition 2.7] ). Note
that

(1 = f(@)H®(a) = (1 — f(a))M, and
H¥a)(1 — e(a)) = My(1 — e(a)).

LemMA 3.11. For projections e, f in Z(M,), B(e) = B(f) if and only if
(e—=eNHV—e)=1-flao).

In particular, B(e) = H*(«a) if and only if e = f(«) and B(e) = M if and
onlyife =1 — f(a).
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Proof. Since
B(eVf)=B() N B(f) and (e —e)V(f—¢)=1-f(0)

ifandonlyifeVf—e=1~-f(a)andeVf—f=1 — f(a), we can
replace e by e V f, hence assume that e = f. We now have to show B(e) =
B(f)ifand onlyif e — f = 1 — f(a) (where e = f).

From the definition of B(e) (and B(f)) it follows that B(e) = B(f) if
and only if, for each n > 0,

(D [ (A{1 = B_,(e):]1 =m =n})
— [ A1 = B ()1 = m = n)).
Suppose now that e — f = 1 — f(a), then for each m > 0,
e—f=1—f,=1—e_,
Hence, for m > 0, B_, (e — f) = 0 and (1) follows for each n > 0.
For the other direction, suppose that (1) holds for each n > 0 and that

e — [ £ 1 — f(a). Then there is a positive integer j such that (e — f)f; #
0 and (e — f)f,, = 0 for each 0 < m <. Since (e — f)f,, = 0,

B_ e —f)=0 for0<m<j.
Hence
A{1 = B, (/)1 =m <}
=f (1 = B ;,((DHNA{1 = B_,(e):1 =m <j})
and (1) implies that
foi (1 = B_j(e))A{l = B_,(e):1 =m <j})
= fo,(1 = B (AL — B_ (el = m < j}).
Therefore
.B—j(e - = )8—1(1 -N- B—j(l —e)
=1-— Al — B_,(e):1 =m <}
= V{B_,(e)1 =m <j}.
But
B_je = NIB_,(e) = B_;l(e = /)Bi—(e)]
=Bl = Nfi-nl =0
(as (e — f)f,, = 0for 0 < m < j)for 0 < m < j. Thus
Bje—f)=0 and fe —f) = B(B_jle —f)) =0,

contradicting our assumption. Hence it follows from (1) that
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e—f=1- f(a).
The last assertion of the lemma follows from the fact that H*(a) =
B(I) and M = B(0).
COROLLARY 3.12. Let e be a projection in Z(M,). Then B(e) is a maximal
o-weakly closed subalgebra of M if and only if ef ()M, is a factor (or

ef ()M, = {0} ).
In particular, H*(a) is a maximal o-weakly closed subalgebra of M if and

only if f(a)M, is a factor.
Proof. Suppose ef (a)M, is a factor or ef (a) = 0. Then each projection
z € Z(M,) that satisfies z = ef (a) is either 0 or ef (a). Hence, for each
such z, B(z) = M (if z = 0) or B(z) = B(e) (if z = ¢f(a), as
e—z=¢e(l —f(@)=1—-f(a)).
If there is some projection f € Z(M;) such that B(f) 2 B(e) then
B(f) = B(ff(a)) (by the previous lemma) and

B(fef(@)) = B(f) U B(e) = B(f) 2 Be).
But fef (a) = ef (a); hence B(f) = B(e) or B(f) = M.

Now suppose that B(e) is a maximal o-weakly closed subalgebra of M.
If ef ()M, is not a factor and ef(a) # O then there is some projection

q = ef () in Z(M,) such that ¢ # 0 and ¢ # ef(a). It follows that

g1 —f@ande — g% 1 — f(a)

Hence (by the previous lemma) B(q) # M and B(q) # B(e). Since B(e) is
a maximal o-weakly closed subalgebra this cannot occur and, hence,
ef ()M, is a factor or ef (a) = 0.

The last assertion follows immediately.

For analytic crossed products it was proved in [4] that the maximality of
H™ is equivalent to M|, being a factor. The next corollary also extends a
result that was known for analytic crossed products (see [5] ).

COROLLARY 3.13. The following conditions are equivalent:
(1) For each o-weakly closed subalgebra B of M that contains H («) there
is a projection q € Z(M,) such that

B = gM + (1 — @)H™(a).
(2) f(@e(@)Z(My) < Z(M).

Proof. (1) implies (2): Let e be a projection in f(a)e(a)Z(M,) and
suppose that j > 0 is such that

B_,(e) =e foreach0 = m <.

Let p be the projection eB;(1 — e). Then p satisfies the following
properties:
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(1) For each m € Z,

Bj+m(p)ﬁm(p) = 0.
(i) Foreach0 <m < jand n € Z,

fnﬂn~m(}7) = 0.

In particular 8_,(p) = 0.
(iii) For each m € Z,

Bn(p) = fm+j'
Indeed, to prove (i) note that
:8]'+m(p) = Bj+m(e) and
Bn(p) = B,(B(1 —e)) = B, (1 — e).
We assumed that §_, (e) = e for 0 < m < j. Hence
fm—jﬁ—j(e) = Bm—j(B—m(e)) = :Bm—j(e) Se for0<m<j
and it follows that
fm—j.B—j(P) =fm—j18—j(e)(l —e)=0.
Thus
and consequently
B—-m(P) = :B—m(l _fm) = 0.

Property (ii) follows by applying B8, to 8_,(p) = 0. Property (iii) is an
immediate consequence of the fact that p = j;

Consider now the algebra B(1 — p). By (1) there is a projection
q € Z(M,) such that

B(1 —p) =gM + (1 = ¢)H™(a).
This implies that for each n > 0,

qf ., =f_,N{1 — B_,(1 —p)0<m= n}).
But then

af—n = B_u(PXIN{1 = f_py + B_,(p):0 < m < n}).
By (ii) f_,B_,(p) = 0for 0 < m < n = j. Hence

qf—n = B_(p) forn=j

(in fact, for 0 = n < j, qf_, = B_,(p) = 0 by (i) ).
If n > j then
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C]f," é B—,;(P)(l _f—n+j + B—n+j(p)) = 0
(applying (i) and (iii) ). It follows that, for n > j,
f*anj(p) = /;nf—jq = O
and consequently
B~1(P) é 1 _f—n and
p=fp=BBip) =SB0 ~f)=1—f,
for each n > j.
Hence p = 1 — e(a). But p = e = e(a) and thus
0=p=cB(l —e)
and, by applying 8_,
B(e)1 — ) = 0.

Hence B_;(e) = e. By induction we find that for each projection
e € e(a)f(a)Z(M) and eachj > 0, B_,(e) = e.

Fix now a projection e € e(a)f(a)Z(M,) and suppose that j > 0 is such
that for each 0 = m <, B,,(e) = e. We will show that B;(¢e) = e and this
induction argument will imply that §8,(e) = e for each n € Z and, hence,
that e lies in Z(M) (by Lemma 2.4(5) ).

Let p be the projection eﬁ,j(l — e). Then for n > 0,

B*n(p) ép éf—]

(since p = e = e(a)f(a)). Also
B(p) =Be)l—e)=1—e=1-p and
fip =BB_(p)) = Bi(p)=1—p.

Hence ]j-p = 0 and consequently B_;(p) = 0. Consider now the algebra
B(1 — p). Then there is a projection ¢ € Z(M,) such that

B(1 = p) = gM + (1 — g)H™(a).
Hence, for n > 0.
qf - = B p)A{1 — f_,, + B_,(p)0 <m<n}).
Forn = j,
,8—,,(]7) = ij(P) = 0’
hence gf_; = 0. Forn # j
qf—n = B—n(p) éffj
Thus
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af w=af S, =q/ ;=0

This implies that
B(1 —p) = gM + (I = )H™(@) = H(a)

and, by Lemma 3.11,
p=1-f(o).

But p = e = f(a) and consequently p = 0. Since p = eB,j(l —e),
0 = Bi(e)1 —e) and ,Bj(e) =e

This completes the proof that
e(0)f()Z(My) S Z(M).

(2) implies (1): Suppose that

e()f()Z(My) < Z(M).

Let e be a projection in Z(M,)) and write e = p; + p, + p; where
p1 = ee(@)f(a), py = ee(a)(1 — f(a)) and p; = e(l — e(a)).

Then B(1 — p,) is H(a) (by Lemma 3.11). We now show that B(1 — p;)
and B(1 — p;) have the property described in (1).

For eachn > 0, f_, p; = 0 hence B,(p;) = 0. But then, for m € Z and
n>0,

SnBm+n(P3) = Bu(B,(p3)) = 0.

Hence
Bu(pBu(p3) = 0 forn # min Z.

For each n > 0 let z(—n) be the projection in Z(M,) that satisfies
Bl —pyNnM_, =z(—n)M_,.

Then
z2(=n) = B_(p)(A{1 — f_,, + B_,i(P3):0 < m < n}).

Since B_,(p3)B_,(p3) whenever n # m,
2(—=n) = B_,(p)A{l = f_,;0 <m <n}) and
z(—n)z(—j) =0 ifn #* j.

Let ¢; be 2°%, z(—n). If 0 < m < n then
z2(—n)=1—-f_,.

If m > n > 0 then

https://doi.org/10.4153/CJM-1985-024-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-024-3

428 BARUCH SOLEL

f—mB-n(p3) =0

(because f,,B,,+ (p3) = 0 form € Z, n > 0) and consequently f_, z(—n)
= (0. We see, therefore, that

z2(—=n)f_,, =0 foralln # m,n,m > 0.
It follows from this that
¢3f_,n = z(—m) for each m > 0.
Hence
B(1 = py) = ¢sM + (1 — g3)H (o).
Now consider the algebra B(1 — p,) and write z(—n) for
Bo(p)ALL = f_, + B_(p):0 < m < n})
(such that B(1 — p)) " M_, = z(—n)M_,) for each n > 0. But
p1 € e(@f(@Z(My) S Z(M).
Hence
1 —p € ZM) and
B = p) =f_ (1 = p),meL
Consequently
z2(=n) = f_,p(A{1 — f_,(1 — p):0 <m<n}=f_p,.
Therefore
B(l —e) = V{B( — pp):i = 1,2, 3}
= (g3 + pOM + (1 = g3 — pH™(a).

Since any o-weakly closed subalgebra of M that contains H™(a) is
B(1 — e) for some projection e € Z(M,), (1) follows.

REFERENCES

1. W. B. Arveson, On groups of automorphisms of operator algebras, J. Funct. Anal. 15
(1974), 217-243.

2. S. Kawamura and J. Tomijama, On subdiagonal algebras associated with flows in operator
algebra, J. Math. Soc. Japan 29 (1977), 73-90.

3. R. 1. Loebl and P.S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct.
Anal. 29 (1978), 214-252.

4. M. McAsey, P.S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (Invariant
subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), 381-409.

S. Nonselfadjoint crossed products II, J. Math. Soc. Japan 33 (1981), 485-495.
6. Nonselfadjoint crossed products I1I (Infinite algebras), Preprint.
7. K.-S. Saito, The Hardy spaces associated with a periodic flow on a von Neumann algebra,

Tohoku Math. J. 29 (1977), 69-75.

https://doi.org/10.4153/CJM-1985-024-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-024-3

ANALYTIC OPERATORS 429

8. Invariant subspaces for finite maximal subdiagonal algebras, Pacific J. of Math. 93
(1981), 431-434.
9. Invariant subspaces and cocycles in nonselfadjoint crossed products, J. Funct. Anal.
45 (1982), 177-193.
10. Nonselfadjoint subalgebras by compact abelian actions on finite von Neumann
algebras, Tohoku Math. J. 34 (1982), 485-494.
11. Spectral resolutions of invariant subspaces by compact abelian group actions on von

Neumann algebras, Preprint.
12. B. Solel, The invariant subspace structure of nonselfadjoint crossed products, Trans. Amer.
Math. Soc. 279 (1983), 825-840.
Invariant subspaces for algebras of analytic operators associated with a periodic flow
on a finite von Neumann algebra, J. Funct. Anal. 58 (1984), 1-19.

13.

Dalhousie University,
Halifax, Nova Scotia

https://doi.org/10.4153/CJM-1985-024-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-024-3

