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Large Sieve Inequalities via Subharmonic
Methods and the Mahler Measure of the
Fekete Polynomials

T. Erdélyi and D. S. Lubinsky

Abstract. 'We investigate large sieve inequalities such as

1 m X C 2T X

— Z P(log |P(e7)]) < —/ P (log[e\P(e‘T)H) dr,
m s 2w 0

where v is convex and increasing, P is a polynomial or an exponential of a potential, and the constant
C depends on the degree of P, and the distribution of the points 0 < 7 < 7 < -+ < 7y < 27. The
method allows greater generality and is in some ways simpler than earlier ones. We apply our results
to estimate the Mahler measure of Fekete polynomials.

1 Results
The large sieve of number theory [14, p. 559] asserts that if

is a trigonometric polyonomial of degree < #,

0<<n< <1 <27,

and
d:=min{m — 71,73 — T2y« oy T — T—1, 27 — (Ty — T1) },
then
m n 2
1 Pi7f2<(—+6’1)/ P dr.
(1) ;Hen_m PN dr

There are numerous extensions of this to L, norms, or involving 1/)(|P(e”) |P), where
1) is a convex function and p > 0 [8, 12]. There are versions that estimate Riemann
sums, for example,

e . 1 [ .
) D IPE™)P (7 = 751) SCE/O |P(e7) |,

j=1
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with C independent of n, P, {7, 72, ..., T }- These are often called forward Marcin-
kiewicz—Zygmund inequalities. Converse Marcinkiewicz—Zygmund inequalities pro-
vide estimates for the integrals above in terms of the sums on the left-hand side

[11,13,16].
A particularly interesting case is that of the Ly norm. A result of the first author
asserts that if {z),2,,...,2,} are the n-th roots of unity and P is a polynomial of

degree < #, then

(3) [T 1PE)I™ < 2My(P),
j=1

where

1 27 .
My(P) := exp( e / log |P(e")] dt)
0

is the Mahler measure of P.

The focus of this paper is to show that methods of subharmonic function theory
provide a simple and direct way to generalize previous results. We also extend (3)
to points other than the roots of unity. Given ¢ > 0, K € [0,00), and a positive
measure v of compact support and total mass at most « > 0 on the plane, we define
the associated exponential of its potential by

P(z) = cexp(/log |z — | dz/(t)) .

We say that this is an exponential of a potential of mass < k, and that its degree is < k.
The set of all such functions is denoted by IP,.. Note that if P is a polynomial of degree
< n, then |P| € P,. More generally, the generalized polynomials studied by several
authors [3,7] also lie in P, for an appropriate k. We prove the following.

Theorem 1.1  Letvy: R — [0, 00) be nondecreasing and convex. Let m > 1, k > 0,
a>0,and0 <7 <1 <--- <7y <27 Letw; > 0,1 < j < m, with

m
Z wj = 1.
j=1
Let pu,, denote the corresponding Riemann—Stieltjes measure, defined for 8 € [0,2m] by

o ([0,0]) = ) w;.

jiri<0

Let

(4) A= sup{‘um([o,e])—%‘ NS [0,27r]}

denote the discrepancy of ji,,. Then for P € Py,

- , 8 17 ,
(5) ;ij(logP(e’”)) < (1 + E“A) > /0 ¥(log[e“P(e)]) db.
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Example 1 Let us choose all equal weights,

wi=—, 1<j<m.

1
m

Then (i, is counting measure,
1, ..
Hm([0,0]) = E#{] 17 € (0,01}

If we take ¢(t) = max{0,t},and o = 1, and use the notation log" t = max{0, logt},
we obtain

1’” ) 1 2 )
6 = log' P(e') < (1 + 8kA)— log™ [eP(e)] d6.
(6) m;og (e>f<+n)27r/o og' [eP(")]

This result is new. Previous inequalities have been limited to sums involving
P(P(e'i)P) for some p > 0. If welet p > 0, 1(t) = e, and a = %, then (5)
becomes

1 m ) e 2 )
1Ti\P < i¢ P .
(7) — ]E_l P('7) 1+ Sp/sA)Zﬁ /0 P(e”)f db

This choice of « is not optimal. The optimal choice is

)

a = 4k l—1+ 1+

2prA

but one needs further information on the size of pxA to exploit this. For example, if

prA < 1, the optimal choice is of order , / %, and choosing this «v in (5), we obtain

1 & ) 1 [
- TP < - i0\p
(8) ijlP(e P < (1+Cy/prA) 27r/o P(e)P a9,

where C is an absolute constant.
For well-distributed {71, 75,..., 7y}, A is of order % In particular, when these
points are equally spaced and include 27, but not 0, so that

i
szﬂ, 1<j<m
m

we have A = %T, and (7) becomes

| AN 16mpry e [T
- 1TV < . 160\ p .
(9) ;1 P(e™)P < (1+ -~ )27r/0 P(e'”)? do
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Example 2 Another important choice of the weights w; is

where now we assume 75 = 0 and 7,, = 27. For this case (5) becomes an estimate
for Riemann sums,

2T

(10) %Z(Tj—fj,l)w(logp(eifj)) < (1+§m) % W (logl(e* P(e?)]) df.
j=1 0

The discrepancy A in this case is

Tj_ijl

A = sup 5
i s

J

Remarks

(a) In many ways, the approach of this paper is simpler than that in [12] where
Dirichlet kernels were used, or that of [8], where Carleson measures were used. The
main idea is to use the Poisson integral inequality for subharmonic functions.

(b) We can reformulate (5) as

2 ) 8 1 2 )
/0 z/J(log|P(elT)|)d,um(T)§(l-l—aliA)E /0 b(log[e*P(e?)]) df.

In fact this estimate holds for any probability measure x,,, on [0, 27], not just the
pure jump measures above.
(c) The one severe restriction above is that 1) is nonnegative.

In particular, this excludes 1/(x) = x. For that case, we prove two different results.

Theorem 1.2 Assume that m, K, {T1,T2,...,Tm} and {wy, wy, ..., wy,} are as in
Theorem 1.1. Let

(11) Qz) =[] lz—¢€m[".
j=1
Then for P € Py,

m . 1 2 .
(12) > wjlogP(e) < E/ log P(¢") df + i log || Q| (o) =1)-
j=1 0

Remarks 1f we choose all w; = L, this yields

m . 1 2 )
(13) [[PeEm < \|Q\|fw(|2|:1)exp(g/ logP(e’a)dG).
0

=1
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If we take {€'™,¢/™, ... €™} to be the m-th roots of unity, then Q(z) = |z — 1|'/™
and (13) becomes

m ) 1 27 )
iTi\1/m < K/m i0
(14) ]I_l1 P(e™)Vm <2 exp( > / log P(e )d@) )

0

In the case Kk = m = n, this gives the first author’s inequality (3). In general, however,
it is not easy to bound ||Q||;__(z/=1). Using an alternative method, we can avoid the
term involving Q when the spacing between successive 7; is O(k ™).

Theorem 1.3  Assume that m, k. and {1y, T2, ..., Tm} areasin Theorem 1.1. Let 1y :=
T — 27 and Ty := 71 + 2m. Let

0 :=max{T| — To, T2 — Tly-+sTm — Tm—1}

Let A > 0. There exists B> 0 such that if x > 1 and § < Ak™!, then forall P € P,

m L . 2m )
(15) > log () < / log P(e"") df + B.
= 0

One application of Theorem 1.2 is to the estimation of Mahler measure. Recall
that for a bounded measurable function Q on [0, 27r], its Mahler measure is

1 2T "
M, = — 1 ! .
(@ = exp( 5= [ toglate”) )
It is well known that My(Q) = lim,_.o+ M,(Q), where for p > 0,

1

2T ) 1/
M,(Q) == ||Q|l, ::(%/0 \Q(e’(’)|1’d0) p.

It is a simple consequence of Jensen’s formula that if

Qz) =c[]z—2)

k=1
is a polynomial, then

Mp(Q) = |¢| Hmax{l, | 2|}
k=1

The construction of polynomials with suitably restricted coefficients and maximal
Mahler measure has interested many authors. The Littlewood polynomials,

Li={p:p@ =Y a, ar e {-1,1}},
k=0
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which have coefficients &1, and the unimodular polynomials,

Ky:={p:pla) = Zakz", | =1},
k=0

are two of the most important classes considered. Beller and Newman [1] con-
structed unimodular polynomials of degree n whose Mahler measure is at least
V/n — c/logn. Here we show that for Littlewood polynomials, we can achieve al-
most %\/E by considering the Fekete polynomials.

For a prime number p, the p-th Fekete polynomial is

p—1
k
fo(2) = ;(E)Zk’
where

r 1 ifx* = k (mod p) has a non-zero solution x,
(—) ={0 ifp dividesk,

—1 otherwise.
Since f, has constant coefficient 0, it is not a Littlewood polynomial, but

8p(2) = fp(2)/z

is a Littlewood polynomial which has the same Mahler measure as f,. Fekete poly-
nomials are examined in detail in [2, pp. 37-42].

Theorem 1.4  Lete > 0. For large enough prime p, we have

(16) My(fy) = Mo(gy) > (5 —¢) VP

Remarks From Jensen’s inequality, Mo(f,) < ||fpll2 = v/p — I. However 1 — ¢
in Theorem 1.4 cannot be replaced by 1 — ¢. Indeed if p is prime, and we write

p = 4m + 1, then g, is self-reciprocal, that is, zpflgp ( %) = g,(2), and hence

(p—3)/2
gp(eZi’) = (P21 Z arcos((2k+ 1)), ax € {—2,2}.
k=0

A result of Littlewood [10, Theorem 2] implies that

2m
Malfy) = Milgy) < o= [ Il < (1 -2 yp 1
0

for some absolute constant £y > 0. It is an interesting question whether there is a
sequence of Littlewood polynomials (f,) with f, € L, such that, for an arbitrary
¢ > 0 and 7 large enough, My(f,,) > (1 — €)/n.

The results are proved in the next section.
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2 Proofs

We assume the notation of Theorem 1.1. We let

(17) r:1+g,
K

and define the Poisson kernel for the ball |z| < r (f- [15, p. 8]),

2_&

r2 — 2rscos(t — 0) + 52’

P,(se reit) =
where0 <s<randt,0 € R.

Proof of Theorem 1.1

Step 1: The Basic Inequality Let P € IP,)\ {0}, so that for some ¢ > 0 and some
measure v with total mass < x and compact support,

log P(z) = logc + /log |z — t| dv(t).

As log P is subharmonic, and as v is convex and increasing, ¥ (logP) is subhar-
monic [15, Theorem 2.6.3, p. 43]. Then we have, for |z| < r, the inequality [15,
Theorem 2.4.1, p. 35]

2
Y(log P(z)) < L / Y(log P(re"))P,(z, re") dt.
21 Jo

Choosing z = ¢/, multiplying by w i, and summing over j gives

m 2
(18) ijw(logp(e”f))—% / (log P(re")) di
0

j=1

1 2 .
< —/ P (log P(re'"))H(¢) dt,
21 Jo
where
m 2T
o ) ity 1 ir it T
H(t) .—ZWJT,(e ,re) — 1 P, re )d(um(T) 27r>'

j=1 0

Here we have used the elementary property of the Poisson kernel, that it integrates to
1 over any circle with center 0 inside its ball of definition.

Step 2: Estimating J{ We integrate this relation by parts, and note that both

1m(0,0] =0 and p,[0,27] = 1.
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This gives
2m
0 it it T
(0 = = [ (5206 5) (nll0.7) = ) d.

and hence

2m ) ) )
(19) |H@)| < A/ — P (7, re")| dr.

0 87_
Now

9
or

so a substitution s = t — 7 and 27-periodicity give

2T o ) ) T
(20) / — P (7, re") dT:/
0 87— -

= —2/0 %T,(eis,r) ds

= [P (™, r) — P.(1,7)] = 2

(r> — 1)2rsin(t — 7)

P, re") = ,
o ) (r2 — 2rcos(t — 1) + 1)2

9
Os

P, (e, 1’)‘ ds

8r
—1

Combining (18)—(20), gives

8r
r2—1

@1 > wib(logP(e™)) < (1+A

j=1

1 2 .
)Z /0 W (log P(re)) dt.

Step 3: Return to the Unit Circle Next, we estimate the integral on the right-hand
side in terms of an integral over the unit circle. Let us assume that v has total mass
ML k). Let S(z) = |z|AP(§), so thatlog S(z) = logc+ [log|r — tz| dv(t), a function
subharmonic in C. Then the same is true of ¥ (log S), so its integrals over circles with
centre 0 increase with the radius [15, Theorem 2.6.8, p. 46]. In particular, recalling
our choice (17) of r,

1 2w ) 1 2 )
o /O Y(log S(e')) dh < o /0 ¥ (log S(re'?)) db,

and a substitution § — —0 gives

1 [ 0 1 [ "
J— g < 1
27r/0 Y(log P(re")) do < 271_/0 Y(Alogr +logP(e)) df

2T

< S Y(klogr +log P(e)) do
21 Jo
1 2T ”

< — Y(a +log P(e"7)) db.
2w Jy
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Then (21) becomes

1 2T

ijw(logP(eiTi))§<l+A 8 )— 0 »(log[e*P(e)]) do

‘ rr—1/2rw
j=1

2T

1 )
< (1+8A§>E 0 B(log[e*P(e?)]) db. -

Proof of Theorem 1.2 Write log P(z) = logc + [ log |z — t| dv(t), so (recall (11)),
m ) m )
(22) > wjlogP(e") = logc + / (Z wijlogle™ — t|) dv(t)
j=1 j=1
=logc+ /log Q@) dv(t).
Now as all zeros of Q are on the unit circle,

8(u) := log Qu) — 108 [| Q|| L. jz1=1) — log |ul

is harmonic in the exterior {u : |u| > 1} of the unit ball, with finite limit at oo, and
with g(u) < 0 for |u| = 1. By the maximum principle for subharmonic functions,

gu) <0, |ul > 1.
We deduce that for |u| > 1,1log Q(u) < log||Q|l1(jzj=1) + log" |u|. Moreover, inside
the unit ball, we can regard Q as the absolute value of a function analytic there (with

any choice of branches). So the last inequality holds for all # € €. Then, assuming
(as above) that v has total mass A\ < &,

(23) /log Q()dv(t) < Mog||Ql|1.. (jz/=1) +/log+ |t] dv(t)
1 2m "
ZMOgHQHLm(\z\:nJr/(E/O log |’ —t|d9) dv(t)

< klog||Q] + L /2W(/log|eie — 1 du(t)) de
=~ Loo(]2|=1) o o .

In the second line we used a well-known identity [15, Exercise 2.2, p. 29], and in the
last line we used the fact that the sup norm of Q on the unit circle is larger than 1.
This is true because

1L i0 S L[ i i
E/o log Q(e )dHZjZ_;WjE/O log e — €Y df = 0,
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while log Q < 0 in a neighborhood of each 7;, so that log Q(e'?) > 0 on a set of § of
positive measure. Substituting (23) into (22) gives

i . 1 [ ,
> wjlogP(e") < klog||QllL.. (z1—1) + E/ log [P(e)| do. |
j=1 0
Proof of Theorem 1.3 Note first that our choice of 79, 7,,,41 gives

m

Tiy] — Tj—
Z APARSND el V'S
2

j=1

It suffices to prove that for every a € C,

m . ) 27 )
(24) Z % log | —a| < / log |e" — a|dt + Bk ™!
=1 0

=2rlog" |a| + Bk,

for we can integrate this against the measure dv(a) that appears in the representation
of P € P,. Since
log|e’™ — a| =log|e™ —a~'| +log|a]

for 7 € R and |a] < 1, we can assume that |a| > 1. Moreover, it is sufficient to
prove (24) in the case |a| > 1+ . Indeed the case |a| € [1,1+ k'] follows easily
from the case |a] = 1+ x! and the fact that the left-hand and right-hand sides in
(24) increase as we increase |a|, while keeping arg(a) fixed. We may also assume that
a € [1+ k! 00) (simply rotate the unit circle). To prove (24), we use the integral
form of the error for the trapezoidal rule [6, p. 288, (4.3.16)]: if [’/ exists and is
integrable in [«, 3],

B8 _ B8
/ £t dt 5To‘<f(a) A6 = 5 / £ — (8 — 1) d.

From this we deduce that if f/ does not change sign on [«, 3], then

B _ )2
@) | [ soa- "0 ron| < C5 ) - )

Moreover, if f’/ changes sign at most twice, then

(26)

7 f— o 2 /
[ s =22 e+ 16| <35 - ) ma |70,
Now let f(¢) := log|e' — a|. Then

asint d —2a% + (1 +a*)acost
-  an = )
1+ a? —2acost (1+ a2 —2acost)?

@) =
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Elementary calculus shows that | f/| achieves its maximum on [0, 27] when cost =
a?—1

11?;2- Then | sint| = - Hence,asa > 1+ Kk Land k > 1,
27 f/Ol<@—a ) <k, teR
Also, since f’’ has at most two zeros in the period, the total variation V™ ' on [0, 27]
satisfies
(28) VT f' < 6 max |f'| < 6k.
[0,27]

Now we apply (25)—(28) to the interval [a, 3] = [7j_1, 7j] and sum over j. We also
use our conventions on 7y,;; and 7,,,. Then

2 mo_
’ A f(f)df—z%f(ﬂ)

1
E(SZngf/ +66%° Kk < 9A%KT,

j=1

y (/ fwyde = TINS5 + £ |

1 J

J

IN

so we have (24) with B = 9A2. []

Proof of Theorem 1.4 We begin by recalling two facts about zeros of Littlewood
and unimodular polynomials:

(I)  There exists ¢ > 0 such that every unimodular polynomial of degree < » has
at most c+/n real zeros [4].

(II)  There exists ¢ > 0 such that every Littlewood polynomial of degree < n has at
most clog” 1/ loglog n zeros at 1 [5].

Now suppose that 1 is a zero of f, with multiplicity m = m(p). By (I) or (I), m =
O(p'/?). Let hy(2) = (z — 1)™ and F,(2) = f,(2)/hu(2). Note that all coefficients of
F, are integers (as 1/h,,(z) has Maclaurin series with integer coefficients), so F,(1) is
anon-zero integer. Also h,, is monic and has all zeros on the unit circle, so its Mahler
measure is 1. Then as Mahler measure is multiplicative,

My(fp) = Mo(F,)Mo(hy,) = Mo(F,).

Letz, = exp( %) . The special case (3) of Theorem 1.2 gives

p—1
Moty 2 5 (IR TT 1E )
k=1

p—1 f(k)
SRI(F=
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Itis known [2, § 5] thatfor1 < k< p—1,

Then

Since m = O(p'/?), the bound (16) follows for large p.

= ()

1 PN (1em
MO(E)ZZ(@”) :E\/‘I_)p (2 )/P.
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