
Nagoya Math. J. 214 (2014), 125–168
DOI 10.1215/00277630-2643839

TORIC DEGENERATIONS OF INTEGRABLE SYSTEMS
ON GRASSMANNIANS AND POLYGON SPACES

YUICHI NOHARA and KAZUSHI UEDA

Abstract. We introduce a completely integrable system on the Grassmannian
of 2-planes in an n-space associated with any triangulation of a polygon with
n sides, and we compute the potential function for its Lagrangian torus fiber.
The moment polytopes of this system for different triangulations are related
by an integral piecewise-linear transformation, and the corresponding poten-
tial functions are related by its geometric lift in the sense of Berenstein and
Zelevinsky.

§1. Introduction

Let n be an integer greater than 2, and let r = (r1, . . . , rn) be a sequence

of positive real numbers satisfying

(1.1) ri < r1 + · · ·+ ri−1 + ri+1 + · · ·+ rn

for each i= 1, . . . , n. The polygon space Mr is defined by

Mr =
{
x= (x1, . . . , xn) ∈

n∏
i=1

S2(ri)
∣∣∣ x1 + · · ·+ xn = 0

}/
SO(3),

where S2(ri) ⊂ R3 is the 2-sphere of radius ri centered at the origin and

where SO(3) acts diagonally on
∏n

i=1S
2(ri). A point x ∈Mr is regarded as

a congruence class of a closed spatial polygon with sides x1, . . . , xn. Condi-

tion (1.1) implies that Mr �= ∅ and that dimRMr = 2(n− 3). The variety

Mr is singular if and only if
∑n

i=1 εiri = 0 for some (ε1, . . . , εn) ∈ {±1}n,
and the singular locus of Mr consists of x = (x1, . . . , xn) ∈Mr satisfying
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126 Y. NOHARA AND K. UEDA∑n
i=1 εixi = 0. In particular, the polygon space Mr has at worst isolated

singularities for any r. The polygon space Mr has a natural structure of a

projective (and hence Kähler) variety coming from the identification

Mr
∼= (CP1)n//PGL(2,C).

The geometric invariant theory (GIT) quotient on the right-hand side is

a compactification of the configuration space of n points on CP1, which

has a long history of investigation going back to the nineteenth century.

Furthermore, the Gelfand–MacPherson correspondence (see [GM]) gives an

isomorphism between the polygon space and the symplectic reduction of the

Grassmannian Gr(2, n) of 2-planes in Cn by a maximal torus TU(n) of U(n):

(1.2) Mr
∼=Gr(2, n)//TU(n).

It is also known (see [Fo], [HMM], [J], [MP], [T]) that Mr is symplectomor-

phic to the moduli space of parabolic SU(2)-bundles on CP1 for sufficiently

small r.

Recall that a completely integrable system on a symplectic manifold

(X,ω) of dimension 2N is an N -tuple of functions

Φ = (ϕ1, . . . ,ϕN ) :X −→RN ,

which are functionally independent (i.e., dϕ1, . . . , dϕN are linearly inde-

pendent) on an open dense subset and mutually Poisson commutative;

{ϕi,ϕj}= 0 for any i, j. The Arnold–Liouville theorem states that generic

fibers of Φ are Lagrangian tori if the fibers are compact and connected.

The toric moment map on a toric manifold is an example of a completely

integrable system.

Fix a convex planar polygon P with n sides called the reference polygon.

The set of triangulations of P is in natural one-to-one correspondence with

the set of trivalent trees with n leaves by sending a triangulation to its dual

graph Γ. We often say a triangulation Γ by abuse of notation. The set of

triangulations Γ can naturally be identified with the set of vertices of the

Stasheff associahedron, which in turn is identified with the set of ways to

parenthesize a product of n− 1 elements into binomial operations.

For any triangulation Γ of the reference polygon, Kapovich and Millson

[KM] and Klyachko [Kl] constructed a completely integrable system

ΦΓ :Mr →Rn−3
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TORIC DEGENERATIONS OF INTEGRABLE SYSTEMS ON GRASSMANNIANS 127

called the bending system. For a particular triangulation Γ called the cater-

pillar (see Figure 1), the bending system comes from the Gelfand–Cetlin

system (see [GS]) on the Grassmannian Gr(2, n) through the symplectic

reduction (1.2) above (see [HK]).

The first main result in this article is the following.

Theorem 1.1. For any triangulation Γ of the reference polygon, there

exists a completely integrable system

ΨΓ : Gr(2, n)→R2n−4

which induces the bending system ΦΓ on Mr through the symplectic reduc-

tion (1.2).

Triangulations of the reference polygon are related to toric degenerations

of Gr(2, n) by Speyer and Sturmfels [SS]. On the other hand, the notion of

a toric degeneration of an integrable system is introduced in [NNU1] (see

Definition 6.1). Our second main result is the following.

Theorem 1.2. For any triangulation Γ of the reference polygon, the com-

pletely integrable system ΨΓ on Gr(2, n) admits a toric degeneration.

Since the toric degeneration of Gr(2, n) is TU(n)-invariant for any trian-

gulation Γ, it induces a toric degeneration of Mr. The deformation of ΨΓ

in Theorem 1.2 is TU(n)-invariant, and we obtain the following.

Corollary 1.3. The toric degeneration of ΨΓ : Gr(2, n) → R2n−4 in

Theorem 1.2 induces a toric degeneration of the bending system ΦΓ :Mr →
Rn−3.

Kamiyama and Yoshida [KY] and Howard, Manon, and Millson [HMM]

also study the relation between toric degenerations of polygon spaces and

bending systems from a slightly different point of view.

For a triangulation Γ of the reference polygon, let XΓ be the toric vari-

ety obtained as the central fiber of the corresponding toric degeneration

of Gr(2, n). The image ΔΓ of the toric moment map of XΓ coincides with

the moment polytope of the integrable system ΨΓ : Gr(2, n) → R2n−4 by

Theorem 1.2.

Theorem 1.4. For any pair (Γ,Γ′) of triangulations of the reference poly-
gon, there is a piecewise-linear automorphism

TΓ,Γ′ :R2n−4 →R2n−4
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128 Y. NOHARA AND K. UEDA

of the affine space such that TΓ,Γ′(ΔΓ′) =ΔΓ. The map TΓ,Γ′ is defined over

Z if ΔΓ is an integral polytope.

If two triangulations are related by a single Whitehead move (see Fig-

ure 5), then the corresponding integral piecewise-linear transformation has

the form (. . . , u, u1, u2, u3, u4, . . .) �→ (. . . , u′, u1, u2, u3, u4, . . .), where

u′ = u−min(u1 + u2, u3 + u4) +min(u1 + u4, u2 + u3)

= u+min(u1 − u2, u2 − u1, u3 − u4, u4 − u3)

−min(u1 − u4, u4 − u1, u2 − u3, u3 − u2).

(1.3)

In general, any two triangulations are related by a sequence of Whitehead

moves, and the corresponding integral piecewise-linear transformation is an

iteration of the transformation above.

The potential function is a Floer-theoretic invariant of Lagrangian sub-

manifolds introduced by Fukaya, Oh, Ohta, and Ono [FO+1]. It gives the

“superpotential” of the mirror Landau–Ginzburg model for toric mani-

folds (see [CO], [FO+2], [FO+3]). In [NNU1], the potential function for

a Lagrangian torus fiber of the Gelfand–Cetlin system (see [GS]) is com-

puted by using a toric degeneration. An essential point in the argument

is the fact that the central fiber is a toric Fano variety admitting a small

resolution, which holds also in the present situation, as in the following.

Theorem 1.5. For any triangulation Γ of the reference polygon, the toric

variety XΓ is a Fano variety admitting a small resolution.

As a result, we obtain an explicit description of the potential function for a

Lagrangian torus fiber of the integrable system ΨΓ as a Laurent polynomial

over the Novikov ring, as in the following.

Theorem 1.6. The potential function is given by

(1.4) POΓ =
∑

triangles

(y(b)y(c)
y(a)

+
y(a)y(c)

y(b)
+

y(a)y(b)

y(c)

)
,

where y(a) is a Laurent monomial defined in Section 8 associated with an

edge a of a triangle, and the sum is taken over all triangles in the triangu-

lation Γ.

Recall that the geometric lift (see [BZ]) of a piecewise-linear function is

given by replacing summation, subtraction, and the minimum by multipli-

cation, division, and summation.

https://doi.org/10.1215/00277630-2643839 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2643839


TORIC DEGENERATIONS OF INTEGRABLE SYSTEMS ON GRASSMANNIANS 129

Theorem 1.7. For any pair (Γ,Γ′) of triangulations of the reference poly-
gon, the potential functions POΓ and POΓ′ are related by a subtraction-free

rational change of variables obtained as the geometric lift of the piecewise-

linear transformation TΓ,Γ′ in Theorem 1.4.

If Γ and Γ′ are related by a single Whitehead move, then the correspond-

ing change of variables is given by

y′ = y · y1y4 + y2y3
y1y2 + y3y4

= y ·
y1
y2

+ y2
y1

+ y3
y4

+ y4
y3

y1
y4

+ y4
y1

+ y2
y3

+ y3
y2

,(1.5)

which indeed is a geometric lift of (1.3).

On the other hand, the central fiber of the toric degeneration of a polygon

space may neither be Fano nor admit a small resolution, and one cannot

apply the argument of [NNU1] directly to this case. For example, the moduli

space of pentagons is isomorphic to CP1 × CP1 for a suitable choice of r,

and it degenerates to the Hirzebruch surface of degree 2, which is not Fano.

In this case, we need to consider contributions of sphere bubbles to the

potential function. This case is studied in detail by Auroux [A1], [A2] and

by Fukaya, Oh, Ohta, and Ono [FO+4].

Our article has the following organization. In Section 2, we recall basic

facts on polygon spaces. We study the bending systems in Section 3. The-

orem 1.1 is proved in Section 4, and Theorem 1.4 is a corollary to Propo-

sition 4.10. Section 5 is devoted to a construction of toric degenerations of

Gr(2, n) in stages, which are used to construct a deformation of completely

integrable systems. Theorem 1.2 is proved in Section 6, and Theorem 1.5

is proved in Section 7. In Section 8, we compute the potential functions for

the completely integrable systems on Gr(2, n), and we prove Theorems 1.6

and 1.7.

§2. Polygon spaces and Grassmannians

In this section, we fix notation and recall the relation between polygon

spaces and Grassmannians.

We identify the Lie algebra u(m) (resp., su(m)) of the Lie algebra of the

unitary group U(m) (resp., the special unitary group SU(m)) with the space√
−1u(m) of Hermitian matrices (resp., the space

√
−1su(m) of traceless

Hermitian matrices). The dual space u(m)∗ (resp., su(m)∗) is identified with√
−1u(m) (resp.,

√
−1su(m)) by the invariant inner product 〈x, y〉= tr(xy).

The moment map of the natural U(m)-action on Cm equipped with the
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130 Y. NOHARA AND K. UEDA

standard symplectic structure is given by

(2.1) Cm −→
√
−1u(m), z =

⎛⎜⎝ z1
...

zm

⎞⎟⎠ �−→ 1

2
zz∗ =

1

2
(zizj)i,j .

Recall from Section 1 that the polygon space Mr is defined by

Mr =
{
x= (x1, . . . , xn) ∈

n∏
i=1

S2(ri)
∣∣∣ x1 + · · ·+ xn = 0

}/
SO(3),

where n ≥ 3 and ri < r1 + · · · + ri−1 + ri+1 + · · · + rn for i = 1, . . . , n. To

describe a natural symplectic structure onMr, we identifyR
3 with

√
−1su(2)

by

(2.2)

h : R3 ∼−→
√
−1su(2)

∈ ∈⎛⎝x1

x2

x3

⎞⎠ �→
(

x3 x1 −
√
−1x2

x1 +
√
−1x2 −x3

)
.

Then the SO(3)-action on R3 is induced from the (co)adjoint action of

SU(2), and the sphere S2(ri) is identified with a (co)adjoint orbit Ori

of diag(ri,−ri), which has the canonical Kostant–Kirillov symplectic form

ωOri
. We equip Or1 ×· · ·×Orn with the symplectic form

∑
i pr

∗
iωOri

, where

pri :Or1 × · · · ×Orn →Ori is the ith projection. Then the diagonal SU(2)-

action is Hamiltonian, and its moment map is given by

μ :Or1 × · · · ×Orn −→
√
−1su(2)∗, (x1, . . . , xn) �−→ x1 + · · ·+ xn.

Hence, one has the following.

Proposition 2.1. The polygon space Mr is a symplectic reduction of

Or1 × · · · ×Orn by the diagonal SU(2)-action

Mr =

n∏
i=1

Ori

//
0
SU(2) = μ−1(0)/SU(2).

Let ωMr denote the induced symplectic form on Mr. Identifying the

symplectic reduction with a GIT quotient (
∏n

i=1CP
1)//SL(2,C), we obtain

a compatible complex structure on (Mr, ωMr).
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TORIC DEGENERATIONS OF INTEGRABLE SYSTEMS ON GRASSMANNIANS 131

Next we recall a relation to the Grassmannian Gr(2, n). Let |r|=
∑

i ri.

We consider the natural right U(2)-action on the vector space Cn×2 of n×2

matrices. From (2.1), its moment map is given by

(2.3) μU(2) :C
n×2 →

√
−1u(2),

⎛⎜⎝z1 w1
...

...

zn wn

⎞⎟⎠ �−→ 1

2

n∑
i=1

(
|zi|2 ziwi

ziwi |wi|2
)
.

Then ⎛⎜⎝z1 w1
...

...

zn wn

⎞⎟⎠ ∈ μ−1
U(2)

(
|r| 0

0 |r|

)
if and only if it satisfies

(2.4)
∑
i

|zi|2 =
∑
i

|wi|2 = 2|r|,
∑
i

ziwi = 0.

It follows that Gr(2, n) is a symplectic reduction of Cn×2 by the U(2)-action

Gr(2, n) =Cn×2//|r|U(2) = μ−1
U(2)

(
|r| 0

0 |r|

)/
U(2).

We consider the moment map

(2.5)

μSU(2) :C
2 −→

√
−1su(2), (z,w) �−→ 1

4

(
|z|2 − |w|2 2zw

2zw |w|2 − |z|2
)

of the standard SU(2)-action on C2. Condition (2.4) implies that(
μSU(2)(z1,w1), . . . , μSU(2)(zn,wn)

)
gives a closed n-gon in

√
−1su(2)∼= R3 (i.e., it satisfies

∑
i μSU(2)(zi,wi) =

0). Since μSU(2) : C
2 →

√
−1su(2) is a quotient map by the diagonal S1-

action on C2, the quotient TU(n)\Gr(2, n) can be regarded as a moduli

space of polygons with fixed perimeter |r|, where TU(n) ⊂ U(n) is the max-

imal torus consisting of diagonal matrices. Note that the U(n)-action on

Gr(2, n) has the stabilizer of positive dimension. The moment map μTU(n)
:

Gr(2, n)→Rn of the TU(n)-action on Gr(2, n) is given by

(2.6) μTU(n)
:

⎡⎢⎣z1 w1
...

...

zn wn

⎤⎥⎦ �−→
( |z1|2 + |w1|2

2
, . . . ,

|zn|2 + |wn|2
2

)
.

Since (|zi|2 + |wi|2)/2 = 2‖h−1 ◦ μSU(2)(zi,wi)‖R3 , we have the following.
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132 Y. NOHARA AND K. UEDA

Proposition 2.2 ([HK, (3.9)]). The polygon space Mr is isomorphic to

the symplectic reduction of Gr(2, n) by the TU(n)-action

(2.7) Mr
∼= TU(n)\\2rGr(2, n) = TU(n)\μ−1

T (2r),

where the symplectic structure on Gr(2, n) is the Kostant–Kirillov form on

the (co)adjoint orbit of diag(|r|, |r|,0, . . . ,0) in
√
−1u(n) (∼= u(n)∗).

Propositions 2.1 and 2.2 can be summarized as

Mr = (TU(n)\\2rCn×2)//0 SU(2) = TU(n)\\2r
(
Cn×2//|r|U(2)

)
,

where
∏n

i=1 S
2(ri) = TU(n)\\2rCn×2 and Gr(2, n) =Cn×2//|r|U(2).

§3. Bending Hamiltonians

Fix a convex n-gon P ⊂R2, and call it the reference n-gon. Let e1, . . . , en
denote the sides of P labeled in cyclic order. For an oriented diagonal d of

P , we write the corresponding diagonal of x ∈Mr as d(x). If d connects

the ith vertex and the jth vertex for i < j, then d(x) is given by

d(x) = xi+1 + xi+2 + · · ·+ xj

or

d(x) = xj+1 + · · ·+ xn + x1 + · · ·+ xi,

depending on the orientation of d. We define ϕd :Mr →R to be the length

function

ϕd(x) =
∣∣d(x)∣∣

of the diagonal. Kapovich and Millson [KM] proved that its Hamiltonian

flow folds the polygon along the diagonal d at a constant speed. Thus, ϕd

is called a bending Hamiltonian.

We say that two diagonals d and d′ are noncrossing if they do not intersect

in the interior of P .

Theorem 3.1 ([KM, Section 3], [Kl, Section 2.1]). If diagonals d and d′

are noncrossing, then ϕd and ϕd′ are Poisson commutative. Furthermore,

each choice of (n − 3) mutually noncrossing diagonals gives a completely

integrable system on Mr, and the functions ϕd give action variables.
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Figure 1: The caterpillar.

Note that such a choice of (n − 3) diagonals defines a triangulation of

the reference n-gon P . Here we consider only triangulations whose vertices

coincide with those of P . Let Γ denote the dual graph of a given triangula-

tion. The graph Γ is a trivalent tree with n leaves labeled by sides e1, . . . , en
of P and (n− 3) interior edges labeled by the diagonals d1, . . . , dn−3. We

often say a triangulation Γ by abuse of notation. We write the completely

integrable system given by Γ as

ΦΓ = (ϕd1 , . . . ,ϕdn−3) :Mr −→Rn−3,

and we call it the bending system associated to Γ. The image

ΔΓ(r) := ΦΓ(Mr)⊂Rn−3

is the convex polytope defined by triangle inequalities.

Example 3.2. The triangulation given by dα = e1 + · · · + eα+1 (α =

1, . . . , n − 3) is called the caterpillar (see Figure 1). Let (u1, . . . , un−3) be

the coordinates on Rn−3 corresponding to the bending Hamiltonians ϕdα .

The image ΔΓ(r) is a polytope defined by triangle inequalities

|r1 − r2| ≤ u1 ≤ r1 + r2,

|u1 − r3| ≤ u2 ≤ u1 + r3,

...(3.1)

|un−4 − rn−2| ≤ un−3 ≤ un−4 + rn−2,

|rn−1 − rn| ≤ un−3 ≤ rn−1 + rn.

Example 3.3. Suppose that n= 5, and consider a triangulation given by

d1 = e1 + e2, d2 = e1 + e2 + e3. If all side lengths r1, . . . , r4 are close, then

Mr is isomorphic to CP2 blown up at four distinct points (see [Kl, Example

10.4] or [HK, (6.3)]), and the image ΔΓ(r) is a heptagon shown in Figure 2.
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134 Y. NOHARA AND K. UEDA

Figure 2: The image of the bending system in Example 3.3.

Figure 3: Two triangulations in Example 3.4.

Example 3.4. Let n= 5, and assume that r1 > r2 > 0 and that

r1 + r2 <min(−r3 + r4 + r5, r3 − r4 + r5, r3 + r4 − r5).

In this case, Mr is isomorphic to CP1 × CP1 (see [HK, (6.2)] or [Fo, Sec-

tion 5]). We consider two triangulations Γ1 and Γ2 shown in Figure 3. The

images ΔΓ1(r) and ΔΓ2(r) of the corresponding bending systems are shown

in Figure 4. Note that ΔΓ1(r) is the moment polytope of the standard

moment map on CP1×CP1, while ΔΓ2(r) is that of the Hirzebruch surface

F2 = P(OP1 ⊕ OP1(2)) of degree 2. Note that F2 is symplectomorphic to

CP1 ×CP1 (but not isomorphic as complex manifolds).

As we have seen in Example 3.4, the bending system, and hence the

corresponding image ΔΓ(r), depends on the choice of a triangulation Γ.

We compare the polytopes ΔΓi(r) for different triangulations Γ1 and Γ2.

Recall that a Whitehead move (for triangulations) replaces a diagonal of a
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Figure 4: The images ΔΓ1(r) and ΔΓ2(r) in Example 3.4.

Figure 5: A Whitehead move.

quadrilateral with the other one (see Figure 5). Since triangulations can be

transformed into each other by sequences of Whitehead moves, it suffices

to consider the case where Γ1 and Γ2 can be transformed to each other

by a single Whitehead move. Suppose that Γ1 is transformed into Γ2 by

a Whitehead move in a quadrilateral with sides a1, a2, a3, a4 replacing a

diagonal d=±(a1 + a2) with d′ =±(a2 + a3). Note that ai is either a side

ej of P or a diagonal dα contained in both of Γ1 and Γ2. Let u, u′, and
ui be the coordinates corresponding to d, d′, and ai, respectively, where we

assume that ui = rj is a constant if ai is a side ej of P .

Proposition 3.5. Under the above situation, the piecewise-linear trans-

formation

u′ = u−min(u1 + u2, u3 + u4) +min(u1 + u4, u2 + u3)

= u+min(u1 − u2, u2 − u1, u3 − u4, u4 − u3)

−min(u1 − u4, u4 − u1, u2 − u3, u3 − u2)

(3.2)
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136 Y. NOHARA AND K. UEDA

gives a bijection ΔΓ1(r) → ΔΓ2(r). In particular, this map preserves the

area of ΔΓi(r) and the number of integral points in ΔΓi(r) in the case

where ΔΓi(r) is an integral polytope (i.e., r ∈ (Z>0)
n).

Proof. Since the triangle inequalities for u are

max
(
|u1 − u2|, |u3 − u4|

)
≤ u≤min(u1 + u2, u3 + u4),

the length of the range of u for fixed u1, . . . , u4 is

min(u1 + u2, u3 + u4)−max
(
|u1 − u2|, |u3 − u4|

)
.

Since min{ai | i ∈ I}+min{bj | j ∈ J}=min{ai + bj | i ∈ I, j ∈ J}, we have

min(u1 + u2, u3 + u4)−max
(
|u1 − u2|, |u3 − u4|

)
=min(u1 + u2, u3 + u4) +min(u1 − u2, u2 − u1, u3 − u4, u4 − u3)(3.3)

=min{2ui, u1 + u2 + u3 + u4 − 2uj | 1≤ i, j ≤ 4}.

Similarly, the length of the range of u′ is

min(u1 + u4, u2 + u3) +min(u1 − u4, u4 − u1, u2 − u3, u3 − u2)

=min{2ui, u1 + u2 + u3 + u4 − 2uj | 1≤ i, j ≤ 4},

which is identical to (3.3). Hence, (3.2) gives an area-preserving transfor-

mation. Moreover, if u1, . . . , u4 ∈ Z, then (3.2) is defined over Z, and hence

the number of integral u is also preserved.

Example 3.6. Let Γ1 and Γ2 be the triangulation in Example 3.4. Now

Γ1 can be transformed into Γ2 by a two-step Whitehead move shown in

Figure 6. Let uα and u′α (α= 1,2) be the coordinates corresponding to dα

Figure 6: Whitehead moves sending Γ1 to Γ2.
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and d′α, respectively. The piecewise-linear map corresponding to the first

Whitehead move is given by

(u1, u
′
2) =

(
u1, u2 +max

(
|u1 − r1|, |r4 − r5|

)
−max

(
|u1 − r4|, r5 − r1

))
.

Since

max
(
|u1 − r1|, |r4 − r5|

)
= u1 − r1, max

(
|u1 − r4|, r5 − r1

)
= r5 − r1

on r3 − r2 < u1 < r3 + r2, the above map is given by

(u1, u
′
2) = (u1, u2 + u1 − r5)

on ΔΓ1(r) (see Figure 7).

Figure 7: The first piecewise-linear transformation in Example 3.6.

Figure 8: The second piecewise-linear transformation in Example 3.6.
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The piecewise-linear transformation for the second Whitehead move is

(u′1, u
′
2) =

(
u1 +max

(
|u′2 − r3|, (r1 − r2)

)
−max

(
|u′2 − r1|, r3 − r2

)
, u′2
)
,

which coincides with

(u′1, u
′
2) =

(
u1 −min(u′2 − r2, r3 − r1), u

′
2

)
on the image of ΔΓ1(r) (see Figure 8).

§4. Completely integrable systems on Gr(2, n)

Hausmann and Knutson [HK] proved that the Gelfand–Cetlin system

(see [GS]) on Gr(2, n) induces the bending system on Mr under the sym-

plectic reduction in the case where the triangulation is the caterpillar. In

this section, we construct a completely integrable system on Gr(2, n) that

induces the bending systems for each triangulation Γ.

Fix a triangulation Γ of the reference n-gon P . For each side ei (i =

1, . . . , n) and diagonal dα (α = 1, . . . , n − 3), we associate a subgroup of

U(n) as follows. For a side ei, we associate a subgroup isomorphic to S1

given by

S1
i = S1

ei =

⎛⎝1i−1

S1

1n−i

⎞⎠⊂ U(n).

For a diagonal dα =
∑

i∈Iα ei, the corresponding subgroupUα = Udα
∼= U(|Iα|)

is defined by

Udα =
{
(gij) ∈ U(n) | (gij)i,j∈Iα ∈ U

(
|Iα|
)
and gij = δij for (i, j) /∈ I2α

}
.

Remark 4.1. The noncrossing condition for dα, dβ is equivalent to that

Iα and Iβ satisfy Iα ⊃ Iβ , Iα ⊂ Iβ , or Iα ∩ Iβ = ∅. Hence, each pair G1,G2 ∈
{U1, . . . ,Un−3, S

1
1 , . . . , S

1
n} of subgroups satisfies G1 ⊂G2, G1 ⊃G2, or G1 ∩

G2 = {1} in U(n).

Recall that the moment map μU(n) : Gr(2, n)→ u(n)∗ ∼=
√
−1u(n) of the

U(n)-action is given by⎡⎢⎣z1 w1
...

...

zn wn

⎤⎥⎦ �−→ 1

2

⎛⎜⎝z1 w1
...

...

zn wn

⎞⎟⎠(z1 . . . zn
w1 . . . wn

)
=
(zizj +wiwj

2

)
i,j
.
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Then the moment maps for S1
ei and Udα are given by

ψei : Gr(2, n)−→R, ψei(z,w) =
|zi|2 + |wi|2

2

and

μUα : Gr(2, n)→
√
−1u

(
|Iα|
)
, μUα(z,w) =

(zizj +wiwj

2

)
i,j∈Iα

,

respectively. Note that μU(n) embeds Gr(2, n) into
√
−1u(n) as the adjoint

orbit of diag(|r|, |r|,0, . . . ,0). In particular, μU(n)(z,w) has rank 2 for any

[z,w] ∈Gr(2, n), and hence the rank of μUα(z,w) is atmost 2. Let λα,1(z,w)≥
λα,2(z,w)≥ 0 be the first and second eigenvalues of μUα(z,w).

Recall that the moment map is a Poisson morphism, as in the following.

Proposition 4.2 ([Ko]). Let G be a compact Lie group acting on a sym-

plectic manifold (X,ω) with a moment map μ :X → g∗. For f1, f2 ∈C∞(g∗),
we have

{μ∗f1, μ
∗f2}X = μ∗{f1, f2}g∗ ,

where { , }g∗ is the natural Poisson structure on g∗.

This immediately yields the following.

Corollary 4.3. Let G be a compact Lie group acting on a symplectic

manifold (X,ω) with a moment map μ : X → g∗, and let f1, f2 ∈ C∞(g∗)
be smooth functions on g∗. If either f1 or f2 is Ad∗(G)-invariant (i.e., if

it is constant on each coadjoint orbit), then μ∗f1 and μ∗f2 are Poisson

commutative:

{μ∗f1, μ
∗f2}X = 0.

We also have the following.

Lemma 4.4. Let (X,ω) be a symplectic manifold, and assume that two

Lie groups G1, G2 act on (X,ω) in Hamiltonian fashion with moment maps

μi :X → g∗i , i= 1,2. If G1 and G2 satisfy either G1 ⊂G2 or G1 ∩G2 = {1}
in the group of symplectomorphisms, then

{μ∗
1f1, μ

∗
2f2}X = 0

for Ad∗(Gi)-invariant functions fi ∈C∞(g∗i )
Gi , i= 1,2.
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Proof. We first assume that G1 ⊂ G2. Then μ1 is a composition of μ2 :

X → g∗2 and the natural projection p : g∗2 → g∗1. From Proposition 4.2, we

have

{μ∗
1f1, μ

∗
2f2}X = {μ∗

2p
∗f1, μ

∗
2f2}X = μ∗

2{p∗f1, f2}g∗2 = 0.

Next, we consider the second case. Then the moment map of the action of

G=G1 ×G2 is given by

μ= (μ1, μ2) :X −→ g∗1 ⊕ g∗2,

and we have μi = pi ◦ μ, where pi : g
∗
1 ⊕ g∗2 → g∗i is the ith projection. Since

μ∗
i fi = μ∗(p∗i fi) and p∗i fi ∈C∞(g∗1⊕g∗2)

G, the Poisson commutativity follows

from the argument in the first case.

This shows the following.

Proposition 4.5. The functions ψei , i= 1, . . . , n and λα,j , α= 1, . . . , n−
3, j = 1,2, are mutually Poisson commutative.

Proof. This follows from Remark 4.1, Proposition 4.2, Lemma 4.4, and

the fact that λα,j and ψei are pullbacks of invariant functions.

Since the number #{λα,j ,ψei} = 3n − 6 of functions we have obtained

is larger than (1/2)dimRGr(2, n) = 2n− 4, these functions cannot be func-

tionally independent. In fact, there is one linear relation for each triangle in

the triangulation. For example, for a triangle whose edges are three diag-

onals, say, d1, d2, and d3 = d1 + d2, U1 × U2 is a subgroup of U3, and the

moment map μU3 has the form

μU3 =

(
μU1 ∗
∗ μU2

)
.

Hence, we have

λ3,1 + λ3,2 = trμU3

= trμU1 + trμU2

= λ1,1 + λ1,2 + λ2,1 + λ2,2.

Set ψdα = λα,2 for each diagonal dα. We claim that

ΨΓ := (ψd1 ,ψd2 , . . . ,ψdn−3 ,ψe1 , . . . ,ψen−1) : Gr(2, n)−→R2n−4

is a completely integrable system on Gr(2, n).
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Proposition 4.6. We have that (ψd1 ,ψd2 , . . . ,ψdn−3) induces the bending

system ΦΓ on Mr by the symplectic reduction (2.7) up to sign and additive

constants.

Proof. Note that the set of nonzero eigenvalues of AB for not necessarily

square matrices A and B is bijective with the set of nonzero eigenvalues of

BA. It follows that the first and second eigenvalues λα,1, λα,2 of

μUα(z,w) =
1

2
(zi,wi)i∈Iα(zi,wi)

∗
i∈Iα ∈

√
−1u

(
|Iα|
)

coincide with those of

(4.1)
1

2
(zi,wi)

∗
i∈Iα(zi,wi)i∈Iα =

1

2

∑
i∈Iα

(
|zi|2 ziwi

ziwi |wi|2
)
∈
√
−1u(2).

Since (4.1) is TU(n)-invariant, its eigenvalues λα,j descend to functions on

Mr. Recall from Section 2 that sides of the polygon are given by

μSU(2)(zi,wi) =
1

2

(
(|zi|2 − |wi|2)/2 ziwi

ziwi (|wi|2 − |zi|2)/2

)
,

considered as an element of R3 by the isomorphism h : R3 ∼−→ su(2). Then

(4.1) can be written as

∑
i∈Iα

μSU(2)(zi,wi) +
1

4

∑
i∈Iα

(
|zi|2 + |wi|2 0

0 |zi|2 + |wi|2
)
,

whose second term is a constant
∑

i∈Iα diag(ri, ri) on the level set μ−1
TU(n)

(2r),

while the first term
∑

i∈Iα μSU(2)(zi,wi), which is the αth diagonal, has

eigenvalues ±ϕα. Hence, we have

λα,2 =−ϕα +
∑
i∈Iα

ri

on Mr.

The next lemma completes the proof of Theorem 1.1.

Lemma 4.7. The functions in ΨΓ are functionally independent.
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Proof. For a function f , let ξf denote its Hamiltonian vector field. From

Proposition 4.6 and the fact that the bending Hamiltonians are function-

ally independent, ξψd1
, . . . , ξψdn−3

are linearly independent and transverse to

TU(n)-orbits on an open dense subset of a level set μ−1
TU(n)

(r)⊂Gr(2, n) for

generic r. On the other hand, ξψe1
, . . . , ξψen−1

give basis of tangent spaces

of TU(n)-orbits, and thus {ξψdα
, ξψei

}α,i are linearly independent on an open

dense subset.

Remark 4.8. From the facts that the bending Hamiltonians ϕα are action

variables and ψei are moment maps of S1-actions, the functions (ψdα ,ψei)α,i
are also action variables.

Recall that lengths of sides and diagonals of the polygon are given by

ri = ψei/2 and ϕdα =
∑

i∈Iα ψei/2− ψdα . Let (ue1 , . . . , uen−1 , ud1 , . . . , udn−3)

be the coordinates on R2n−4 corresponding to ψei and ψdα , and define other

coordinates corresponding to length functions for a ∈ {e1, . . . , en, d1, . . . ,
dn−3} by

(4.2) u(a) =

⎧⎪⎨⎪⎩
1
2uei , a= ei (i= 1, . . . , n− 1),

|r| − 1
2

∑n−1
i=1 uei , a= en,

−udα + 1
2

∑
i∈Iα uei , a= dα.

Theorem 4.9. LetΔΓ be the polytope inR2n−4 defined by triangle inequal-

ities

(4.3)
∣∣u(a)− u(b)

∣∣≤ u(c)≤ u(a) + u(b)

for each triangle in Γ with sides a, b, c. Then ΔΓ is the moment polytope of

the integrable system: ΔΓ =ΨΓ(Gr(2, n)).

Proof. Note that there exists a polygon with prescribed side and diagonal

lengths if they satisfy triangle inequalities. Since the quotient Gr(2, n)/TU(n)

can be regarded as a moduli space of polygons with fixed perimeter, the

induced map ΨΓ : Gr(2, n)/TU(n) →ΔΓ is surjective, which proves the the-

orem.

The image ΔΓ(r) of the polygon space Mr is a subset of ΔΓ defined by

(u(e1), . . . , u(en)) = r. Furthermore, we have the following.

Proposition 4.10. Let Γ1 and Γ2 be two triangulations which are trans-

formed into each other by a Whitehead move replacing d with d′. Then
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ΔΓ1 is transformed into ΔΓ2 by a piecewise-linear transformation (1.3) with

respect to (u(ei), u(dα))i,α. This map is defined over Z with respect to the

coordinates (uei , udα)i,α if |r| ∈ Z. Hence, the volume and the number of inte-

gral points in the case where ΔΓ is integral are independent of the choice

of Γ.

Proof. It is obvious that the piecewise-linear map given by (1.3) sends

ΔΓ1 to ΔΓ2 , preserving the volumes. We need to show that this map is

defined over Z, since the transformation (4.2) is not defined over Z.

Let a1, . . . , a4 ∈ {e1, . . . , en, d1, . . . , dn−3} be the sides of the quadrilateral

having d and d′ as its diagonals, and take Ia1 , . . . , Ia4 ⊂ {1, . . . , n} such that∑
i∈Iak

ei = ±ak and Ia1 � · · · � Ia4 = {1, . . . , n}. We set Id = Ia1 ∪ Ia2 and

Id′ = Ia1 ∪ Ia4 so that ∑
i∈Id

ei =±d,
∑
i∈Id′

ei =±d′.

Define v(a) =
∑

j∈Ia uej/2 =
∑

i∈Ia u(ei) for each a= a1, . . . , a4, d, d
′. Then

u(a)± v(a) have integral coefficients with respect to uei and udα . We also

note that

v(a1) + · · ·+ v(a4) =
n∑

i=1

u(ei) = |r|.

Then we have

min
(
u(a1) + u(a2), u(a3) + u(a4)

)
=min

(
u(a1) + v(a1) + u(a2) + v(a2), u(a3)− v(a3) + u(a4)− v(a4) + |r|

)
− v(a1)− v(a2),

and the first term in the right-hand side is defined over Z. Similarly, we

have

min
(
u(a1) + u(a4), u(a2) + u(a3)

)
=min

(
u(a1) + v(a1) + u(a4) + v(a4), u(a2)− v(a2) + u(a3)− v(a3) + |r|

)
− v(a1)− v(a4).

Thus, (1.3) can be written as

u(d′) + v(a1) + v(a4) = u(d) + v(a1) + v(a2) + g(u)

for some g(u) ∈ Z[uei , udα ]. Since v(a1) + v(a2) = v(d) and v(a1) + v(a4) =

v(d′), the above coordinate change is defined over Z.
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Example 4.11 (see [HK]). Suppose that Γ is the caterpillar given by dα =

e1 + e2 + · · ·+ eα+1, α = 1, . . . , n− 3. Then the subgroups Udα
∼= U(α+ 1)

satisfy

Udn−3 ⊃ Udn−4 ⊃ · · · ⊃ Ud1 ⊃ S1
e1 .

The first and the second eigenvalues of the moment map μUα are given by

(4.4) λ
(α+1)
1 := λα,1 =−ψdα +

α+1∑
i=1

ψei , λ
(α+1)
2 := λα,2 = ψdα .

We also consider the action of U−en
∼= U(n − 1) corresponding to I−en =

{1,2, . . . , n− 1}. The eigenvalues of the corresponding moment map μU−en

give functions of eigenvalues λ
(n−1)
1 ≥ λ

(n−1)
2 ≥ 0. Since λ

(n−1)
1 = |r| is con-

stant and

λ
(n−1)
2 =

n−1∑
i=1

ψei − |r|,

ΨΓ is equivalent to the Gelfand–Cetlin system (λ
(k)
j )j,k : Gr(2, n)→ R2n−4,

where we set λ
(1)
1 = ψe1 . It is easy to check that the triangle inequalities are

equivalent to the inequalities for Gelfand–Cetlin patterns

|r| λ
(n−1)
2

≥ ≥ ≥

λ
(n−2)
1 λ

(n−2)
2

≥ ≥ ≥
· · · · · ·

≥ ≥ ≥(4.5)

λ
(3)
1 λ

(3)
2 0

≥ ≥ ≥ ≥

λ
(2)
1 λ

(2)
2

≥ ≥

λ
(1)
1
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§5. Degenerations of Grassmannians in stages

Recall that the Plücker embedding Gr(2, n) ↪→ P(
∧2

Cn) is given by⎡⎢⎣z1 w1
...

...

zn wn

⎤⎥⎦ �−→ [Zij ; 1≤ i < j ≤ n], Zij = det

(
zi wi

zj wj

)
,

and that the image is defined by the Plücker relations

pijkl(Z) = ZijZkl −ZikZjl +ZilZjk = 0, i < j < k < l.

Toric degenerations of Gr(2, n) are given by deforming the Plücker relations

into binomials. Speyer and Sturmfels [SS] proved that each toric degenera-

tion of Gr(2, n) corresponds to a triangulation of the reference polygon P . In

this section, we construct a multiparameter deformation of Gr(2, n) which

is an extension of the 1-parameter family in [SS].

Fix a triangulation of the reference n-gon P , and let Γ be its dual graph.

We choose a numbering and orientations of the diagonals dα =
∑

i∈Iα ei
in such a way that either Iα ⊃ Iβ or Iα ∩ Iβ = ∅ is satisfied if α < β. In

particular, we assume that |I1| = n− 2 and Iα ⊂ I1 for all α ≥ 2. For two

leaves i, j of Γ, let γ(i, j) be the unique path in Γ connecting i and j (see

Figure 9). We introduce a parameter tα for each diagonal dα. We define a

weight wΓ
ij = (wΓ

ij,1, . . . ,w
Γ
ij,n−3) of Zij by

wΓ
ij,α =

{
1
2 if γ(i, j) intersects dα,

0 otherwise,

and we set

tw
Γ
ij =

n−3∏
α=1

t
wΓ

ij,α
α =

∏
α

√
tα,

Figure 9: A path γ(i, j) connecting the ith and jth leaves.
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where the product on the right-hand side is taken over all α ∈ {1, . . . , n− 3}
such that dα crosses γ(i, j). For a polynomial p(Zij), we define wΓ

α(p) to be

the maximum of weights of monomials in p with respect to tα, and we set

p̃(Zij , tα) =
∏
α

tw
Γ
α(p)

α · p(t−wΓ
ijZij).

Then p̃ is a polynomial in Zij and tα for each Plücker relation p= pijkl. The

degeneration fΓ :XΓ →Cn−3 of Gr(2, n) corresponding to Γ is given by

XΓ =
{
(Z, t) ∈ P(

∧2
Cn)×Cn−3

∣∣ p̃ijkl(Z, t) = 0, i < j < k < l
}
.

The restriction p̃ijkl(Z,0) to t1 = · · ·= tn−3 = 0 is a binomial, and hence the

central fiber XΓ,0 = f−1
Γ (0, . . . ,0) is a toric variety (see [SS, Section 4] or

[HMM, Section 4]). We will see in the next section that ΔΓ =ΨΓ(Gr(2, n))

is the moment polytope of XΓ,0.

Remark 5.1. The restriction of XΓ to the diagonal t1 = · · ·= tn−3 = t is

the family constructed in [SS] and [HMM].

Example 5.2. Let n = 5, and consider the triangulation given by d1 =

e1 + e2 and d2 = e1 + e2 + e3. Then the defining equations of XΓ are given

by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t1Z12Z34 −Z13Z24 +Z14Z23 = 0,

t1Z12Z35 −Z13Z25 +Z15Z23 = 0,

t1t2Z12Z45 −Z14Z25 +Z15Z24 = 0,

t2Z13Z45 −Z14Z35 +Z15Z34 = 0,

t2Z23Z45 −Z24Z35 +Z25Z34 = 0.

To see the degeneration in more detail, we introduce the following nota-

tion. For an m-gon P ′ with sides labeled by 1, . . . ,m, we define

G̃rP ′ =Cm×2//0 SU(2)

to be a cone over the Grassmannian

GrP ′ =Cm×2//|r|U(2),

so that GrP ′ = G̃rP ′//|r|S
1 ∼= Gr(2,m), and we write elements of GrP ′ or

G̃rP ′ as ⎡⎢⎣z
P ′
1 wP ′

1
...

...

zP
′

m wP ′
m

⎤⎥⎦ .
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Let G̃rP ′ ↪→ VP ′ :=
∧2

Cm, and let GrP ′ ↪→ P(VP ′) be the Plücker embed-

dings given by

ZP ′
ij = det

(
zP

′
i wP ′

i

zP
′

j wP ′
j

)
.

Note that if P ′ is a triangle, then G̃rP ′ = VP ′ =
∧2

C3 ∼=C3 and GrP ′ ∼= P2.

For a triangulation Γ′ of P ′, let XΓ′ → Cm−3 and X̃Γ′ → Cm−3 denote the

corresponding toric degenerations of GrP ′ and G̃rP ′ , respectively.

We fix a diagonal d= dα in Γ, and we consider a 1-parameter subfamily

f ′
Γ :X′

Γ →C of fΓ :XΓ →Cn−3 defined by tβ = 1 for all β �= α. Suppose that

the diagonal d connects the pth vertex and the qth vertex (p < q), and set

I+ = {p+ 1, p+ 2, . . . , q},

I− = {1, . . . , p, q+ 1, . . . , n}= {1, . . . , n} \ I+.

Then d+ =
∑

i∈I+ ei or d− =
∑

i∈I− ei = −d+ coincides with d, and Ud+ ∩
Ud− = {1} in U(n). The defining equations of X′

Γ are

tZijZkl −ZikZjl +ZilZjk = 0, i, j ∈ I± and k, l ∈ I∓,

ZijZkl −ZikZjl + tZilZjk = 0, i, l ∈ I− and j, k ∈ I+,

ZijZkl −ZikZjl +ZilZjk = 0, otherwise.

(5.1)

Then it is easy to see the following.

Lemma 5.3. The family X′
Γ →C is (Ud+ ×Ud−)-invariant. In particular,

X′
Γ admits a natural Udβ -action if Udβ ⊂ Ud+ ×Ud− .

We study the central fiber of f ′
Γ : X′

Γ → C. Let P = P+ ∪d P− be the

subdivision of the reference polygon by the diagonal d, where P± is a polygon

whose sides are ei (i ∈ I±) and d = dα. Each P± has a triangulation Γ±
induced from Γ as in Figure 10. We write elements of G̃rP+ as

[
z
P+

i w
P+

i

z
P+
α w

P+
α

]
i∈I+

=

⎡⎢⎢⎢⎢⎣
z
P+

p+1 w
P+

p+1
...

...

z
P+
q w

P+
q

z
P+
α w

P+
α

⎤⎥⎥⎥⎥⎦ ,
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Figure 10: A subdivision of a polygon and the induced trees.

and similarly for G̃rP− . We introduce two groups S1
0 and S1

dα
isomorphic to

S1, and we define an S1
0 × S1

dα
-action on G̃rP+ × G̃rP− by

(s0, sα) ·

⎛⎝[zP+

i w
P+

i

z
P+
α w

P+
α

]
i∈I+

,

[
z
P−
i w

P−
i

z
P−
α w

P−
α

]
i∈I−

⎞⎠
=

⎛⎝[s0zP+

i s0w
P+

i

sαz
P+
α sαw

P+
α

]
i∈I+

,

[
s0z

P−
i s0w

P−
i

s−1
α z

P−
α s−1

α w
P−
α

]
i∈I−

⎞⎠
(5.2)

for (s0, sα) ∈ S1
0 × S1

dα
. Let C∗

0 × C∗
dα

be the complexification of S1
0 × S1

dα
,

which acts on G̃rP+ × G̃rP− in an obvious way.

Proposition 5.4. The central fiber X ′
Γ,0 = (f ′

Γ)
−1(0) is isomorphic to

the GIT quotient

G̃rP+ × G̃rP−//(2,0)C
∗
0 ×C∗

dα ,

where the polarization is chosen in such a way that the weights of the actions

of C∗
0×C∗

dα
are (2,0). Moreover, the subfamily XΓ|tα=0 of XΓ is induced from

the degenerations XΓ± of GrP± defined by Γ±:

(5.3) XΓ|tα=0
∼= X̃Γ+ × X̃Γ−//(2,0)C

∗
0 ×C∗

dα .

Proof. First note from (5.1) that the defining equations for X ′
Γ,0 are

−ZikZjl +ZilZjk = 0, i, j ∈ I± and k, l ∈ I∓,

ZijZkl −ZikZjl = 0, i, l ∈ I− and j, k ∈ I+,

ZijZkl −ZikZjl +ZilZjk = 0, otherwise.

(5.4)
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On the other hand, the C∗
0 ×C∗

dα
-action on the Plücker coordinates on VP±

is given by

Z
P±
ij �→ s20Z

P±
ij , Z

P±
iα �→ s0s

±1
α Z

P±
iα (i, j ∈ I±),

so that the ring C[Z
P+

ij ,Z
P+

iα ,Z
P−
ij ,Z

P−
iα ]C

∗
dα of C∗

dα
-invariants is generated

by Z
P±
ij (i, j ∈ I±) and Z

P+

iα Z
P−
jα (i ∈ I+, j ∈ I−). Hence, the map C[Zij ]→

C[Z
P+

ij ,Z
P+

iα ,Z
P−
ij ,Z

P−
iα ] given by

(5.5) Zij =

{
Z

P±
ij , i, j ∈ I±,

Z
P+

iα Z
P−
jα , i ∈ I+ and j ∈ I−

is a surjection to the invariant ring C[Z
P+

ij ,Z
P+

iα ,Z
P−
ij ,Z

P−
iα ]C

∗
dα , and defines

an embedding

(5.6) G̃rP+ × G̃rP−//0C
∗
dα ↪→

∧2
Cn,

of the GIT quotient. It is easy to see that the defining equations for the image

of the embedding (5.6) coincide with (5.4), so that G̃rP+ × G̃rP−//0C
∗
dα

is

isomorphic to the cone X̃ ′
Γ,0 ⊂

∧2
Cn over X ′

Γ,0. Under this identification,

the C∗-action defining the projection X̃ ′
Γ,0 →X ′

Γ,0 coincides with the C∗
0-

action, and hence we have

X ′
Γ,0

∼= (G̃rP+ × G̃rP−//0C
∗
dα)//2C

∗
0.

It is easy to see that the map (5.5) extends to an isomorphism

(X̃Γ+ × X̃Γ−//0C
∗
dα)//2C

∗
0 −→XΓ|tα=0 ,

and Proposition 5.4 is proved.

Remark 5.5. From the proof, there is a C∗
0-action on X̃ ′

Γ,0
∼= G̃rP+ ×

G̃rP−//0C
∗
dα

such that the coordinates Zij have weights 1; X̃ ′
Γ,0//2C

∗
0 and

X̃ ′
Γ,0//1C

∗
0 are isomorphic as algebraic varieties (without polarizations). We

will write (G̃rP+ × G̃rP−//0C
∗
dα
)//1C

∗
0 as G̃rP+ × G̃rP−//(1,0)C

∗
0×C∗

dα
for sim-

plicity.

We now define a degeneration of Gr(2, n) in stages as follows. For α =

1, . . . , n− 3, let f
(α)
Γ :X

(α)
Γ →C be a subfamily of XΓ defined by

t1 = · · ·= tα−1 = 0, tα+1 = · · ·= tn−3 = 1,
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and write its fibers as X
(α)
Γ,t = (f

(α)
Γ )−1(t). Then X

(α)
Γ (α= 1, . . . , n− 3) gives

a sequence of families such that X
(1)
Γ,1 =Gr(2, n), X

(n−3)
Γ,0 =XΓ,0, and X

(α)
Γ,0 =

X
(α+1)
Γ,1 for each α. Furthermore, from the choice of the numbering of the

diagonals, X
(α)
Γ admits actions of Udβ for all β ≥ α. Let

P = P
(α)
1 ∪ · · · ∪ P

(α)
α+1

be the subdivision of P given by the diagonals d1, . . . , dα, and let Γ
(α)
m be the

triangulation of P
(α)
m induced from Γ. For each diagonal dβ , we introduce

S1
dβ

∼= S1 and its complexification C∗
dβ
, and we extend (5.2) to a C∗

0×C∗
d1
×

· · ·×C∗
dα
-action on G̃r

P
(α)
1

×· · ·× G̃r
P

(α)
α+1

in an obvious manner. Namely, C∗
0

acts diagonally on the coordinates having a side e1, . . . , en of P in its index,

while C∗
dβ

acts antidiagonally on the coordinates indexed the diagonal dβ .

Then Proposition 5.4 implies the following.

Corollary 5.6. The central fiber X
(α)
Γ,0 ⊂ P(

∧2
Cn) of the αth stage X

(α)
Γ

is isomorphic to

G̃r
P

(α)
1

× · · · × G̃r
P

(α)
α+1

//(1,0,...,0)C
∗
0 ×C∗

d1 × · · · ×C∗
dα ,

where the weight of the C∗
0×C∗

d1
×· · ·×C∗

dα
-action is (1,0, . . . ,0). Moreover,

the (α+ 1)st stage of the degeneration is given by

X
(α+1)
Γ

∼= X̃
(1)

Γ
(α)
1

× G̃r
P

(α)
2

× · · · × G̃r
P

(α)
α+1

//(1,0,...,0)C
∗
0 ×C∗

d1 × · · · ×C∗
dα ,

where we assume that dα+1 is a diagonal of P
(α)
1 , and X

(1)

Γ
(α)
1

is the first stage

of the degeneration of Gr
P

(α)
1

corresponding to dα+1.

Now let us look at the last stage α = n − 3 of the degeneration. The

reference polygon is divided as

P = P
(n−3)
1 ∪ · · · ∪ P

(n−3)
n−2 ,

where all P
(n−3)
m (1≤m≤ n− 2) are triangles, and we have

G̃r
P

(n−3)
m

= V
P

(n−3)
m

= SpecC[ZP
(n−3)
m

ab ]∼=
∧2

C3,

where a, b ∈ {e1, . . . , en, d1, . . . , dn−3} are edges in the triangle P
(n−3)
m .
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Corollary 5.7 ([HMM, Theorem 1.8]). The central fiber XΓ :=XΓ,0 of

XΓ is a toric variety given by

V
P

(n−3)
1

× · · · × V
P

(n−3)
n−2

//(1,0,...,0)C
∗
0 ×C∗

d1 × · · · ×C∗
dn−3

∼= (
∧2

C3)n−2//(C∗)n−2.

The cone

V
P

(n−3)
1

× · · · × V
P

(n−3)
n−2

//(0,...,0)C
∗
d1 × · · · ×C∗

dn−3

= Spec
(
C[ZP

(n−3)
m

ab ]
C∗
d1

×···×C∗
dn−3
)

over XΓ is embedded into the affine space
∧2

Cn by the surjection

C[Zij ]→C[ZP
(n−3)
m

ab ]
C∗
d1

×···×C∗
dn−3 , Zij �→

∏
((a,b),m)

ZP
(n−3)
m

ab ,

where the product on the right-hand side runs over triples ((a, b),m) of edges

(a, b) of a triangle P
(n−3)
m in the triangulation P = P

(n−3)
1 ∪ · · · ∪ P

(n−3)
n−2

crossed by the path γ(i, j) connecting the ith and the jth leaves as in

Figure 9.

Defining equations for the image of the embedding XΓ ↪→ P(
∧2

Cn) come

from those of the embedding

VPa × VPb

//
0
C∗
dα ↪→

∧2
C4,

where Pa = P
(n−3)
a and Pb = P

(n−3)
b are two triangles sharing a diagonal

d= dα. Let a1 and a2 (resp., b1 and b2) be the remaining edges of Pa (resp.,

Pb). Let Pc = P
(n−2)
c = Pa ∪ Pb be a quadrilateral obtained as the union of

Pa and Pb. Then the inclusion is defined by the homomorphism

ZPc
a1b1

= ZPa
a1d

ZPb
b1d

,

ZPc
a1b2

= ZPa
a1d

ZPb
b2d

,

ZPc
a2b1

= ZPa
a2d

ZPb
b1d

,

ZPc
a2b2

= ZPa
a2d

ZPb
b2d

,

ZPc
a1a2 = ZPa

a1a2 ,
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ZPc
b1b2

= ZPb
b1b2

,

so that the defining equation of the image is given by

ZPc
a1b1

ZPc
a2b2

= ZPc
a1b2

ZPc
a2b1

.

It follows that the singular locus of VPa × VPb

//
0
C∗
dα

is given by

ZPc
a1b1

= ZPc
a1b2

= ZPc
a2b1

= ZPc
a2b2

= 0;

that is,

(5.7) ZPa
a1d

= ZPa
a2d

= 0 or ZPb
db1

= ZPb
db2

= 0,

with ZPa
a1a2 and ZPb

b1b2
arbitrary. This gives a codimension 3 singularity in XΓ.

Since XΓ is a toric variety obtained as the quotient of an affine space by

torus action, a singular point of XΓ comes from a point on the affine space

V
P

(n−3)
1

×· · ·×V
P

(n−3)
n−2

where the torus action has a nontrivial stabilizer. Such

a point is contained in one of the loci defined by (5.7), and one obtains the

following.

Proposition 5.8. The singular locus Sing(XΓ) of XΓ is the union

Sing(XΓ)A =
n−3⋃
α=1

Sing(XΓ)α,

where

Sing(XΓ)α = {ZPa
a1dα

= ZPa
a2dα

= 0 or ZPb
b1dα

= ZPb
b2dα

= 0}.

§6. Toric degeneration of the integrable system

The following definition is introduced in [NNU1, Definition 1.1].

Definition 6.1. Let Φ :X → RN be a completely integrable system on

a projective Kähler manifold (X,ω). A toric degeneration of Φ consists of

a flat family f : X→B of algebraic varieties over a complex manifold B, a

Kähler form ω̃ on the smooth locus of X, a piecewise-smooth path γ : [0,1]→
B, a continuous map Φ̃ : X|γ([0,1]) →RN on X|γ([0,1]) = f−1(γ([0,1])), and a

flow φt on X|γ([0,1]) which covers the path γ and is defined away from the

union
⋃

t∈[0,1] Sing(Xt) of the singular loci of the fibers Xt = f−1(γ(t)) such

that
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• for each t ∈ [0,1], the restriction Φt = Φ̃|Xt is a completely integrable

system on the Kähler variety (Xt, ωt = ω̃|Xt), whose image Φt(Xt) is a

convex polytope Δ independent of t;

• (X1, ω1) is isomorphic to (X,ω) as a Kähler manifold;

• Φ1 coincides with Φ under the above isomorphism X1
∼=X ;

• (X0, ω0) is a toric variety with a torus-invariant Kähler form;

• Φ0 :X0 → RN is the moment map for the torus action on X0 (hence, Δ

is a moment polytope of X0); and

• for each t, there is an open dense subset X◦
t ⊂Xt such that the flow φt

sends X◦
t′ to another fiber X◦

t′−t, preserving the symplectic structures and

the completely integrable systems:

(X◦
t′ , ωt′)

Φt′

φt
(X◦

t′−t, ωt′−t)

Φt′−t

Δ

In this section we construct a toric degeneration of ΨΓ : Gr(2, n)→R2n−4.

We consider the family fΓ :XΓ →Cn−3 constructed in Section 5, and we let

γ be a piecewise-linear path connecting the vertices

(1, . . . ,1), (0,1, . . . ,1), . . . , (0, . . . ,0,1), (0, . . . ,0).

Then the restriction of XΓ to γ is the degeneration in stages. We take a

Kähler form ω̃r on XΓ such that the restriction ωr,t = ω̃r|XΓ,t
to each fiber

of fΓ is the constant multiple |r| · ωFS|XΓ,t
of the Fubini–Study form ωFS

on P(
∧2

Cn). For each stage f
(α)
Γ : X

(α)
Γ → C of the degeneration, we define

a map

Ψ̃
(α)
Γ :X

(α)
Γ −→R2n−4

as follows. Recall that P
(α−1)
1 , . . . , P

(α−1)
α are subpolygons obtained by cut-

ting P along the diagonals d1, . . . , dα−1 and that Γ
(α−1)
m is the triangulation

of P
(α−1)
m induced from Γ. From Corollary 5.6, we have

X
(α)
Γ

∼= X̃
(1)

Γ
(α−1)
1

× G̃r
P

(α−1)
2

× · · · × G̃r
P

(α−1)
α

//C∗
0 ×C∗

d1 × · · · ×C∗
dα−1

,

where we assume that dα is a diagonal in P
(α−1)
1 . The actions of Udβ for

β ≥ α and S1
ei are induced from those on X̃

(1)

Γ
(α−1)
1

or G̃r
P

(α−1)
m

for some m.
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We define

λ̃β,j :X
(α)
Γ −→R, j = 1,2

to be the first and second eigenvalues of the values of the moment map of

the Udβ -action, which is a natural extension of λβ,j . We also extend the

moment map ψei of the S1
i -action to

ψ̃ei :X
(α)
Γ −→R

for i= 1, . . . , n. The space X
(α)
Γ has an action of another torus S1

d1
×· · ·×S1

dα
,

where S1
dγ

(1≤ γ ≤ α) acts diagonally on Plücker coordinates ZP
(α−1)
m

adγ
having

dγ in their indices. In other words, the weight of a (Plücker) coordinate Zij

of P(
∧2

Cn) with respect to the S1
dγ
-action is 1 if the path γ(i, j) from i to

j crosses dγ , and 0 otherwise. Let

μ̃S1
γ
:X

(α)
Γ −→R

be the moment map of the S1
dγ
-action, and set ν̃γ = |r| − μ̃S1

γ
. We define

Ψ̃
(α)
Γ :X

(α)
Γ →R2n−4 by

Ψ̃
(α)
Γ = (ν̃1, . . . , ν̃α−1, λ̃α,2, . . . , λ̃n−3,2, ψ̃e1 , . . . , ψ̃en−1),

and Ψ
(α)
Γ,t = Ψ̃

(α)
Γ |

X
(α)
Γ,t

. Then Ψ
(1)
Γ,1 = ΨΓ on X

(1)
Γ,1 = Gr(2, n) from the con-

struction.

We define φ
(α)
t on X

(α)
Γ to be the gradient-Hamiltonian flow of f

(α)
Γ intro-

duced by Ruan [R1]. Regarding f
(α)
Γ :X

(α)
Γ →C as a holomorphic function,

the normalized gradient-Hamiltonian vector field is defined by

ξ(α) :=− ∇(�f (α)
Γ )

|∇(�f (α)
Γ )|2

=
ξ	f

(α)
Γ

|ξ	f
(α)
Γ

|2 ,

where ∇(�f (α)
Γ ) is the gradient vector field of the real part of f

(α)
Γ , and

ξ	f
(α)
Γ

is the Hamiltonian vector field of the imaginary part of f
(α)
Γ . It is

shown in [R1] that ξ(α) is defined on the smooth locus of fibers X
(α)
Γ,t , and

its flow φ
(α)
t = exp tξ(α) gives a symplectomorphism

φ
(α)
1−t : (W

(α)
Γ,1 , ωr,1)−→ (W

(α)
Γ,t , ωr,t)

for some open subsets W
(α)
Γ,t ⊂X

(α)
Γ,t .
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Remark 6.2. The authors do not know whether φ
(α)
1−t can be extended

to X
(α)
Γ,1 →X

(α)
Γ,t . Note that the total space of the family is not smooth in

general, and hence we cannot apply the analysis in [R2].

We begin with the proof of Theorem 1.2 for the first stage.

Lemma 6.3. We have that Ψ
(1)
Γ,t :X

(1)
Γ,t →R2n−4 is a completely integrable

system for each t. The gradient-Hamiltonian flow φ
(1)
t is defined on an open

dense subset W
(1)
Γ,t ⊂ X

(1)
Γ,t and gives a symplectomorphism preserving the

completely integrable systems; that is,

(W
(1)
Γ,t , ωr,t)

Ψ
(1)
Γ,t

φ
(1)

t−t′
(W

(1)
Γ,t′ , ωr,t′)

Ψ
(1)

Γ,t′

R2n−4

commutes. Furthermore, Ψ
(1)
Γ,0 coincides with Ψ

(2)
Γ,1 on X

(1)
Γ,0 =X

(2)
Γ,1.

Proof. Poisson commutativity follows from the same argument as in the

proof of Proposition 4.5. The fact that f
(1)
Γ is invariant under the actions

of Udβ and S1
ei implies that φ

(1)
t preserves the completely integrable system

just as in [NNU1, Section 7]. Since X
(1)
Γ,t is smooth for t �= 0, φ

(1)
1−t is defined

on X
(1)
Γ,1, and

φ
(1)
1−t :X

(1)
Γ,1 −→X

(1)
Γ,t

is a symplectomorphism satisfying Ψ
(1)
Γ,1 = φ

(1)
1−t

∗
Ψ

(1)
Γ,t. Hence, the functions

in Ψ
(1)
Γ,t are functionally independent on an open dense subset of X

(1)
Γ,t .

For t = 0, there is an open subset W
(1)
Γ,1 ⊂X

(1)
Γ,1 on which φ

(1)
1 is defined

and gives a symplectomorphism

(6.1) φ
(1)
1 :W

(1)
Γ,1 −→X

(1)
Γ,0 \ Sing(X

(1)
Γ,0).

From Ψ
(1)
Γ,1 = φ

(1)
1

∗
Ψ

(1)
Γ,0 and the fact that Ψ

(1)
Γ,1 is functionally independent,

Ψ
(1)
Γ,0 is also functionally independent. For each t, set W

(1)
Γ,t = φ

(1)
1−t(W

(1)
Γ,1). To

show that W
(1)
Γ,t is dense in X

(1)
Γ,t , we consider the inverse image Int(X

(1)
Γ,t ) =
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(Ψ
(1)
Γ,t)

−1(Int(ΔΓ)) of the interior of ΔΓ. Note that

Int(X
(1)
Γ,t )

∼= T 2n−4 × Int(ΔΓ)

is a dense subset in X
(1)
Γ,t on which Ψ

(1)
Γ,t defines a free T 2n−4-action. We

also note that Int(X
(1)
Γ,0) is contained in the smooth locus of X

(1)
Γ,0. Since

φ
(1)
t preserves the Hamiltonian torus actions, we have a symplectomorphism

φ
(1)
t : Int(X

(1)
Γ,t )→ Int(X

(1)
Γ,0). Hence, we have Int(X

(1)
Γ,t )⊂W

(1)
Γ,t , which shows

that W
(1)
Γ,t is dense in X

(1)
Γ,t .

Finally, we show that λ̃1,2 coincides with ν̃1 on X
(1)
Γ,0 = X

(2)
Γ,1. Let P =

P
(1)
1 ∪d1 P

(1)
2 be the subdivision of P given by d1 =

∑
i∈I1 ei such that P

(1)
2

is a triangle. Then X
(1)
Γ,0 is written as

X
(1)
Γ,0

∼= G̃r
P

(1)
1

× V
P

(1)
2

//(1,0)C
∗
0 ×C∗

d1 .

From the construction, λ̃1,2, . . . , λ̃n−3,2 and ψ̃ei (i ∈ I1) are induced from the

completely integrable system Ψ
Γ
(1)
1

on Gr
P

(1)
1

, while ψ̃ei (i /∈ I1) are induced

from a natural T 2-action on V
P

(1)
2

∼= C3. Note that Ud1 × S1
d1

∼= U(n− 2)×
U(1) is a subgroup of U(n− 1) which naturally acts on Gr

P
(1)
1

=Gr(2, n−
1). Since Gr

P
(1)
1

is symplectically identified with the (co)adjoint orbit of

diag(|r|, |r|,0, . . . ,0), values of the moment map μU(n−1) on Gr
P

(1)
1

have

constant eigenvalues |r|, |r|,0, . . . ,0. Then the eigenvalues of μUd1
satisfy

|r| ≥ λ̃1,1 ≥ |r| ≥ λ̃1,2 ≥ 0.

Thus, we have

2|r|= trμU(n−1) = trμUd1
+ μ̃S1

d1
= |r|+ λ̃1,2 + μ̃S1

d1

or, equivalently,

μ̃S1
d1

=−λ̃1,2 + |r|,

as desired.

The next proposition completes the proof of Theorem 1.2.
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Proposition 6.4. For each t, Ψ
(α)
Γ,t :X

(α)
Γ,t →R2n−4 is a completely inte-

grable system. The gradient-Hamiltonian flow φ
(α)
t is defined on an open

dense subset W
(α)
Γ,t ⊂X

(α)
Γ,t and preserves the completely integrable systems.

Furthermore, Ψ
(α)
Γ,0 coincides with Ψ

(α+1)
Γ,1 on X

(α)
Γ,0 =X

(α+1)
Γ,1 .

Proof. We prove the proposition by induction on α. The case α = 1 is

proved in Lemma 6.3. Assume that the statement of the proposition holds for

Ψ
(α−1)
Γ,t . The same argument as in the proof of Lemma 6.3 shows that there

exists an open subset W
(α)
Γ,t ⊂X

(α)
Γ,t on which the gradient-Hamiltonian flow

is defined and that φ
(α)
t−t′ :W

(α)
Γ,t →W

(α)
Γ,t′ is a symplectomorphism preserving

Ψ
(α)
Γ,t . From the hypothesis of induction, Φ

(α)
Γ,1 is a completely integrable sys-

tem, and hence Φ
(α)
Γ,t = (φ

(α)
1−t)

−1
∗
Φ
(α)
Γ,1 is also a completely integrable system

on W
(α)
Γ,t . What we need to show is that W

(α)
Γ,t is dense in X

(α)
Γ,t .

Let P = P
(α−1)
1 ∪ · · · ∪ P

(α−1)
α be the subdivision given by d1, . . . , dα−1,

and suppose that dα is a diagonal of P
(α−1)
1 . Then we have

X
(α)
Γ,t = X̃

(1)

Γ
(α−1)
1 ,t

× G̃r
P

(α−1)
2

× · · · × G̃r
P

(α−1)
α

//C∗
0 ×C∗

d1 × · · · ×C∗
dα−1

.

The functions λ̃β,j (β ≥ α) and ψ̃ei (i= 1, . . . , n−1) in Ψ
(α)
Γ,t are induced from

Ψ
(1)

Γ
(α−1)
1 ,t

onX
(1)

Γ
(α−1)
1 ,t

and Ψ
Γ
(α−1)
m

on Gr
P

(α−1)
m

(m≥ 2). From Lemma 6.3 and

the fact that the Hamiltonian torus action of Ψ
(α)
Γ,t and Ψ

Γ
(α−1)
m

is defined on

an open dense subset of Gr
P

(α−1)
m

, the Hamiltonian actions of λ̃β,j and ψ̃ei are

also defined on an open subset of X
(α)
Γ,t . On the other hand, the Hamiltonian

action of ν̃β is the diagonal S1
dβ
-action, which is defined everywhere on X

(α)
Γ,t

and transverse to the Hamiltonian actions of λ̃β,j and μ̃S1
i
. In particular,

Int(X
(α)
Γ,t ), on which the Hamiltonian T 2n−4-action is free, is dense in X

(α)
Γ,t ,

and hence so is W
(α)
Γ,t ⊂X

(α)
Γ,t .

Since Ψ
(α)
Γ,0 is induced from the integrable systems on X

(1)

Γ
(α−1)
1 ,0

and

Gr
P

(α−1)
m

, the last statement of the proposition follows from Lemma 6.3.

Since the toric degeneration of ΨΓ : Gr(2, n)→ R2n−4 is invariant under

the action of maximal torus TU(n) =
∏n

i=1S
1
ei , we have the following.
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Corollary 6.5. The toric degeneration (X
(α)
Γ , Ψ̃

(α)
Γ , φ(α)) of ΨΓ induces

a toric degeneration of the bending system on Mr associated to Γ. In partic-

ular, ΔΓ(r) = ΦΓ(Mr) is a moment polytope of the central fiber XΓ,0//TU(n).

Example 6.6. Let n= 5, and assume that the side lengths r1, . . . , r5 are

close to each other as in Example 3.3. Then Mr is isomorphic to CP2 blown

up at four points in general position. It follows from Figure 2 that the central

fiber XΓ,0//TU(n) is CP
2 blown up four times at two pairs of infinitely near

points.

§7. Properties of Γ

Let XΓ :=XΓ,0 be the toric variety obtained as the central fiber of the

toric degeneration of Gr(2, n) associated with a triangulation Γ of the ref-

erence polygon P .

Lemma 7.1. The torus fixed-point set in the toric variety XΓ ⊂ P(
∧2

Cn)

consists of points pkl = [Zij ]i,j ∈ P(
∧2

Cn) ({k, l} ⊂ {1, . . . , n}) defined by

Zij = 0 for all {i, j} �= {k, l}. In particular, the number of fixed points is

n(n− 1)/2.

Proof. First note that any torus fixed point in a toric variety is obtained

as an intersection of toric divisors. It follows from the description of XΓ

given in Corollary 5.7 that a toric divisor in XΓ is written as

DP
(n−3)
m

ab = {ZP
(n−3)
m

ab = 0},

where a, b ∈ {e1, . . . , en, d1, . . . , dn−3} are a pair of edges in a triangle P
(n−3)
m

in the triangulation

P = P
(n−3)
1 ∪ · · · ∪ P

(n−3)
n−2

of the reference polygon P . The image of DP
(n−3)
m

ab in P(
∧2

Cn) is given by⋂
i,j{Zij = 0}, where the intersection is taken over all i, j such that the path

γ(i, j) intersects with a and b. Then a torus-invariant subvariety
⋂
DP

(n−3)
m

ab

is 0-dimensional exactly when there is a unique pair (k, l) such that γ(k, l)

does not intersect a, b ∈ {e1, . . . , en, d1, . . . , dn−3}.

Suppose that |r|= n so that the Kähler form on Gr(2, n) represents the

first Chern class of Gr(2, n). Then for each fixed point pkl in XΓ, we have

ψ̃ei(pkl) =

{
n if i= k or i= l,

0 otherwise,

https://doi.org/10.1215/00277630-2643839 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2643839


TORIC DEGENERATIONS OF INTEGRABLE SYSTEMS ON GRASSMANNIANS 159

and

ν̃α(pkl) =

{
0 if the path γ(k, l) intersects dα,

n otherwise.

This shows that the vertices of the moment polytope ΔΓ of XΓ with respect

to this symplectic form are lattice points, so that ΔΓ is an integral polytope.

Definition 7.2. A reflexive polytope Δ is an integral polytope such that

• Δ is given by Δ = {u ∈ RN | 〈vi, u〉 ≥ −1, i = 1, . . . ,m} for some v1, . . . ,

vm ∈ ZN , where m is the number of facets of Δ, and

• Δ has the unique lattice point 0 in its interior.

Proposition 7.3 ([B]). The moment polytope of a polarized toric vari-

ety is reflexive up to translation if and only if it is a canonically polarized

Gorenstein toric Fano variety.

Proposition 7.4. If |r|= n, then ΔΓ is a reflexive polytope up to trans-

lation by an integral vector. Hence, XΓ is a Gorenstein toric Fano variety.

Proof. Set u′ei = uei − 2 for each side ei, and set u′dα = udα + 1− |Iα| for
a diagonal dα =

∑
i∈Iα ei. Then (u′a)a = 0 is equivalent to u(a) = 1 for all

a, where u(a) are the coordinates defined by (4.2) corresponding to lengths

of sides and diagonals. Recall that ΔΓ is defined by triangle inequalities

|u(a)− u(b)| ≤ u(c) ≤ u(a) + u(c) for each triangle in the triangulation Γ.

Then (u′a)a = 0 defines an interior point in ΔΓ. We have to show that

• the triangle inequalities have the form 〈v,u′〉 ≥ −1 for some integral vector

v ∈ Z2n−4, and

• (u′a)a = 0 is the unique interior lattice point in ΔΓ.

We divide the proof into steps, as follows.

Step 1. The triangle inequality associated with a triangle consisting of two

edges ei, ei+1 and a diagonal dα has the form 〈v,u′〉 ≥ −1 for some integral

vector v ∈ Z2n−4.

In this case, one has Iα = {i, i+1} or Iα = {1, . . . , n}\{i, i+1}, depending
on the orientation of dα. The triangle inequalities in the first case are given

by

1

2
|u′ei − u′ei+1

| ≤ 1

2
(u′ei + u′ei+1

)− u′α,2 + 1≤ 1

2
(u′ei + u′ei+1

) + 2,

and these are equivalent to

(7.1) u′dα ≥−1, u′ei − u′dα ≥−1, u′ei+1
− u′dα ≥−1.
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Similarly, the triangle inequalities for the second case are

(7.2) u′ei +u′ei+1
+u′dα ≥−1, −u′ei −u′dα ≥−1, −u′ei+1

−u′dα ≥−1.

Step 2. The triangle inequality associated with a triangle consisting of two

diagonals dα, dβ and a side ej has the form 〈v,u′〉 ≥ −1 for some integral

vector v ∈ Z2n−4.

We may assume that Iβ = Iα ∪ {j}, or that Iα ∪ Iβ = {1, . . . , n} \ {j} and

Iα ∩ Iβ = ∅, depending on the choice of orientations of the diagonals. In the

first case, we have dβ = dα + ej , and hence the triangle inequalities are∣∣∣u′dα − u′dβ +
1

2
u′ej

∣∣∣≤ 1

2
u′ej + 1≤

∑
i∈Iα

u′ei +
1

2
u′ej − u′dα − u′dβ + 2,

which are equivalent to

u′dβ − u′dα ≥−1, u′ej + u′dα − u′dβ ≥−1,∑
i∈Iα

u′ei − u′dα − u′dβ ≥−1.
(7.3)

The triangle inequalities for the second case are

−u′ej − u′dα − u′dβ ≥−1,

−u′dα + u′dβ + u′ej +
∑
i∈Iα

u′ei ≥−1,

u′dα − u′dβ −
∑
i∈Iα

u′ei ≥−1.

(7.4)

Step 3. The triangle inequality associated with a triangle consisting of three

diagonals dα, dβ, dγ = dα + dβ has the form 〈v,u′〉 ≥ −1 for some integral

vector v ∈ Z2n−4.

In this case, we have∑
i∈Iα

u′ei − u′dα + u′dβ + u′dγ ≥−1,

∑
i∈Iβ

u′ei + u′dα + u′dβ − u′dγ ≥−1,

−u′dα − u′dβ + u′dγ ≥−1.
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If the orientations of dα, dβ , dγ are chosen in such a way that dα+dβ +dγ =

0, then Iα ∪ Iβ ∪ Iγ = {1, . . . , n}, and hence the triangle inequalities are

u′dα − u′dβ − u′dγ −
∑
i∈Iα

u′ei ≥−1,

−u′dα + u′dβ − u′dγ −
∑
i∈Iβ

u′ei ≥−1,

−u′dα − u′dβ + u′dγ −
∑
i∈Iγ

u′ei ≥−1,

as desired.

Step 4. We have that (u′a)a = 0 is the unique interior lattice point in ΔΓ.

Let (u′a) be an interior lattice point in ΔΓ. For a triangle consisting of

two edges ei, ei+1 and a diagonal dα, (7.1) or (7.2) implies that u′ei , u
′
ei+1

,

and u′dα satisfy

u′dα ≥ 0, u′ei − u′dα ≥ 0, u′ei+1
− u′dα ≥ 0,

or

u′ei + u′ei+1
+ u′dα ≥ 0, −u′ei − u′dα ≥ 0, −u′ei+1

− u′dα ≥ 0.

Then we have u′ei , u
′
ei+1

≥ 0 in either case. Similarly, for a triangle consisting

two diagonals dα, dβ and one side ej , we obtain u′ej ≥ 0 from (7.3) or (7.4).

Hence, u′ei ≥ 0 for all sides e1, . . . , en. Combining this with
∑n

i=1 u
′
ei = 0,

we have u′ei = 0 or, equivalently, u(ei) = 1 for all e1, . . . , en. Note that the

coordinate change (u′dα)α �→ (u(dα))α restricted to u′e1 = · · · = u′en = 0 is

defined over Z. In particular, (u′dα) ∈ Zn−3 if and only if (u(dα))α ∈ Zn−3.

We take a triangle P1 consisting of two sides ei, ei+1 and a diagonal dα.

The triangle inequalities 0 = |u(ei)− u(ei+1)|< u(dα)< u(ei) + u(ei+1) = 2

imply that u(dα) = 1 or, equivalently, u′dα = 0. Then the (n− 1)-gon P \P1

also has edges with unit lengths. By repeating this process, we obtain u′a = 0

for all a.

Let

YΓ = G̃r
P

(n−3)
1

× · · · × G̃r
P

(n−3)
n−2

//(1,1,...,1)C
∗
0 ×C∗

d1 × · · · ×C∗
dn−3

be the symplectic reduction of G̃r
P

(n−3)
1

×· · ·× G̃r
P

(n−3)
n−2

at level (1,1, . . . ,1).

Since XΓ is the symplectic reduction of the same space at level (1,0, . . . ,0),

there is a natural map π : YΓ →XΓ.
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Proposition 7.5. We have that π : YΓ →XΓ is a small resolution.

Proof. We first show that YΓ is smooth. Recall that the moment map of

the S1
dα
-action on G̃r

P
(n−3)
1

× · · · × G̃r
P

(n−3)
n−2

is given by

μS1
dα

=
1

2

(
|ZPa

a1dα
|2 + |ZPa

a2dα
|2 − |ZPb

b1dα
|2 − |ZPb

b2dα
|2
)
.

Then one can see that the S1
dα
-action on μ−1

S1
dα

(1) is free, so that the sym-

plectic reduction

YΓ
∼= μ−1

S1
0
(1)∩ μ−1

S1
d1

(1)∩ · · · ∩ μ−1
S1
dn−3

(1)/S1
0 × S1

d1 × · · · × S1
dn−3

is smooth.

The natural morphism π : YΓ →XΓ sends a point [y] ∈ YΓ for

y ∈ μ−1
S1
0
(1)∩ μ−1

S1
d1

(1)∩ · · · ∩ μ−1
S1
dn−3

(1)

to [x] ∈XΓ, where x is a point

x ∈Oy ∩
(
μ−1
S1
0
(1)∩ μ−1

S1
d1

(0)∩ · · · ∩ μ−1
S1
dn−3

(0)
)

in the intersection of the closure of the C∗
0 ×C∗

d1
× · · · ×C∗

dn−3
-orbit

Oy ⊂ G̃r
P

(n−3)
1

× · · · × G̃r
P

(n−3)
n−2

of y. One can see that

EΓ =
{
[y] ∈ YΓ | ZPb

b1dα
= ZPb

b2dα
= 0 for some triangle Pb

}
is the exceptional set of π; the morphism π is an isomorphism outside EΓ

since Oy is closed if y /∈ EΓ, and π is not an isomorphism at EΓ since

π(y) ∈XΓ for y ∈EΓ is singular by Proposition 5.8, whereas YΓ is smooth

everywhere.

Since E ⊂ YΓ is of codimension 2, the exceptional locus of π does not

contain a divisor, and Proposition 7.5 is proved.

Remark 7.6. Propositions 7.4 and 7.5 are not true for toric degenerations

of polygon spaces in general. Indeed, the triangulation Γ2 in Example 3.3

gives a degeneration of the space Mr of pentagons into the Hirzebruch

surface F2 of degree 2, which is not Fano. If we further assume that r1 =

r2, then the central fiber is the weighted projective plane P(1,1,2), whose

minimal resolution F2 → P(1,1,2) is not small.
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§8. Potential functions

For a Lagrangian submanifold L in a symplectic manifold, the cohomol-

ogy group H∗(L;Λ0) has a structure of a weak A∞-algebra (see [FO+1]),

where Λ0 is the Novikov ring

Λ0 =
{ ∞∑

i=0

aiT
λi

∣∣∣ ai ∈Q, λi ∈R≥0, lim
i→∞

λi =∞
}
.

A solution to the Maurer–Cartan equation

∞∑
k=0

mk(b, . . . , b)≡ 0 mod PD
(
[L]
)

is called a weak bounding cochain, where PD([L]) is the Poincaré dual of the

fundamental class [L]. The potential function is a map PO : M(L) → Λ0

from the moduli space M(L) of weak bounding cochains defined by

∞∑
k=0

mk(b, . . . , b) =PO(b) ·PD
(
[L]
)
.

Cho and Oh [CO] and Fukaya, Oh, Ohta, and Ono [FO+2] computed the

potential functions for Lagrangian torus orbits in toric manifolds. This is

generalized in [NNU1] and [NNU2] to an integrable system on a Fano man-

ifold which has a degeneration into the toric moment map on a toric Fano

variety admitting a small resolution. From Propositions 7.4 and 7.5, we can

apply this result to the toric degeneration of the integrable system ΨΓ on

Gr(2, n) to obtain the following.

Theorem 8.1. Fix a triangulation Γ of the reference polygon, and let

�i(u) = 〈vi, u〉 − τi be the affine functions defining ΔΓ:

ΔΓ =
{
u ∈R2n−4

∣∣ �i(u)≥ 0, i= 1, . . . ,m
}
.

Then for any u ∈ IntΔΓ, one has an inclusion H1(L(u);Λ0) ⊂ M(L(u))

for the Lagrangian torus fiber L(u) = Ψ−1
Γ (u), and the potential function is

given by

POΓ

(
L(u), x

)
=

m∑
i=1

e〈vi,x〉T �i(u)

for x ∈H1(L(u),Λ0)∼=Λ2n−4
0 .
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By setting ya = exaT ua and Q = T |r|, the potential function can be re-

garded as a Laurent polynomial in ya and Q. Since ΔΓ is given by triangle

inequalities

−u(a) + u(b) + u(c)≥ 0,

u(a)− u(b) + u(c)≥ 0,

u(a) + u(b)− u(c)≥ 0

in terms of the length coordinates defined in (4.2), the potential function

can be written as

POΓ =
∑

triangles

(y(b)y(c)
y(a)

+
y(a)y(c)

y(b)
+

y(a)y(b)

y(c)

)
,

where y(a) is a Laurent monomial in y
1/2
ei , ydα , and Q is defined by

y(a) =

⎧⎪⎨⎪⎩
y
1/2
ei , a= ei (i= 1, . . . , n− 1),

Q(ye1 . . . yen−1)
−1/2, a= en,

y−1
dα

∏
i∈Iα y

1/2
ei , a= dα,

and the sum is taken over all triangles in the triangulation Γ. This is the

potential function given in (1.4), and Theorem 1.6 is proved.

Now we consider the relation between the potential functions POΓ1
and

POΓ2
corresponding to two different triangulations Γ1 and Γ2. It suffices

to consider the case where Γ1 is transformed into Γ2 by a single Whitehead

move replacing a diagonal d with d′. Recall that the piecewise-linear trans-

formation (1.3) sends ΔΓ1 to ΔΓ2 . We define its geometric lift in the sense

of [BZ] by

(8.1) y(d′) = y(d) · y(a1)y(a4) + y(a2)y(a3)

y(a1)y(a2) + y(a3)y(a4)
,

which means that the tropicalization of this map gives the piecewise-linear

transformation (1.3). From (1.3) or a direct computation, (8.1) is also writ-

ten as

(8.2) y(d′) = y(d) ·
y(a1)
y(a2)

+ y(a2)
y(a1)

+ y(a3)
y(a4)

+ y(a4)
y(a3)

y(a1)
y(a4)

+ y(a4)
y(a1)

+ y(a2)
y(a3)

+ y(a3)
y(a2)

.

Then Theorem 8.1 gives the following.
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Corollary 8.2. Under the above situation, the potential functions POΓ1

and POΓ2
are related by the rational map (8.1).

Proof. The potential function corresponding to Γ1 is written as

POΓ1
= y(d)

(y(a1)
y(a2)

+
y(a2)

y(a1)
+

y(a3)

y(a4)
+

y(a4)

y(a3)

)
+

y(a1)y(a2) + y(a3)y(a4)

y(d)
+ F (y),

where F (y) is a Laurent polynomial which does not contain yd. Since the

triangle inequalities for Γ1 and Γ2 are the same except for those containing

d and d′, the potential function for Γ2 is written as

POΓ2
= y(d′)

(y(a1)
y(a4)

+
y(a4)

y(a1)
+

y(a2)

y(a3)
+

y(a3)

y(a2)

)
+

y(a1)y(a4) + y(a2)y(a3)

y(d′)
+ F (y).

Hence, the coordinate change (8.1) transforms POΓ1
into POΓ2

.

Theorem 1.7 is a direct consequence of Corollary 8.2.

Remark 8.3. In the case of flag manifolds, Rusinko [Ru] proved a similar

result for string polytopes.

Example 8.4. Consider a triangulation Γ of a quadrilateral given by

d= e1 + e2. The triangle inequalities for Γ are〈
(1,0,0,−1), (ue1 , ue2 , ue3 , ud)

〉
≥ 0,〈

(0,1,0,−1), (ue1 , ue2 , ue3 , ud)
〉
≥ 0,〈

(0,0,0,1), (ue1 , ue2 , ue3 , ud)
〉
≥ 0,〈

(0,0,−1,−1), (ue1 , ue2 , ue3 , ud)
〉
+ |r| ≥ 0,〈

(−1,−1,0,1), (ue1 , ue2 , ue3 , ud)
〉
+ |r| ≥ 0,〈

(1,1,1,−1), (ue1 , ue2 , ue3 , ud)
〉
− |r| ≥ 0.

Thus, the potential function is

POΓ =
ye1
yd

+
ye2
yd

+ yd +
Q

ye3yd
+

Qyd
ye1ye2

+
ye1ye2ye3

Qyd
.
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After the coordinate change

y
(1)
1 = ye1 , y

(2)
1 =

ye1ye2
yd

, y
(2)
2 = yd, y

(3)
2 =

ye1ye2ye3
Q

,

which is a geometric lift of (4.4), the potential function becomes

(8.3) POΓ = y
(2)
2 +

y
(1)
1

y
(2)
2

+
y
(3)
2

y
(2)
2

+
y
(2)
1

y
(1)
1

+
y
(2)
1

y
(3)
2

+
Q

y
(2)
1

.

Remark 8.5. The potential function in (8.3) coincides with the superpo-

tential in [EHX, (B.2)]. More generally, for every n, the potential function

corresponding to the caterpillar coincides with [EHX, (B.25)] after a coor-

dinate change corresponding to (4.4).
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