
This paper reports on a theoretical analysis of convection in an inclined layer of
mercury, a common low-Prandtl-number fluid (Pr= 0.025). The investigation is based
on the standard Oberbeck–Boussinesq equations, which are explored as a function of
the inclination angle γ and for Rayleigh numbers R in the vicinity of the convection
onset. Along with the conventional Galerkin methods to study convection rolls and
their secondary instabilities, we employ direct numerical simulations for fluid layers
with quite large aspect ratios. It turns out that, even for small inclination angles γ .6◦,
the secondary instabilities of the basic rolls lead either to oscillatory three-dimensional
patterns or to stationary ones, which appear alternately with increasing γ . Due to the
competition of these instabilities the patterns may show a complex dynamics.
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1. Introduction
Thermal convection in fluids driven by spatial temperature variations has been

investigated during the last decades in many theoretical and experimental studies (see
e.g. Lappa 2009). The most studied example is Rayleigh–Bénard convection (RBC),
where a fluid layer is heated from below and cooled from above. The standard
theoretical description is based on the Oberbeck–Boussinesq equations (OBE), which
couple the temperature and the velocity field. The main control parameter is the
Rayleigh number R, a dimensionless measure of the applied temperature gradient.
Theoreticians have extensively analysed the OBE as a model system in order to
explore a wide variety of different flow patterns and the transition to turbulence (see
e.g. Verma 2018). Besides R, the Prandtl number, Pr, the ratio of the kinematical
viscosity, ν, and the thermal diffusivity, κ , plays an important role for the solution
manifold of the OBE. To simplify the calculations, one considers often fluid layers
of large aspect ratio, i.e. with a height much smaller than the lateral extensions. The
layer is then idealized as quasi-infinite and one switches with respect to the planar
spatial coordinates into Fourier space. In this way the interpretation of the numerical
results becomes much easier, apart from saving a lot of computer time.

For R below the critical Rayleigh number, Rc, the system is in most cases, as also
in the present paper, characterized by a uniform heat-conducting basic state. At R=
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Rc this state becomes linearly unstable and RBC sets in frequently in the form of
a stationary two-dimensional (2-D) periodic array of counter-rotating convection rolls
described by the critical wave vector q= qc. At a sufficiently large R secondary and
tertiary bifurcations of the roll patterns appear which lead to three-dimensional (3-D)
patterns characterized by the impact of additional Fourier modes in wave vector space
and possibly by a periodic time dependence as well.

The construction of the corresponding stability diagrams in the R − q space for
R > Rc but not too large R (typically less than 5Rc), has been promoted since the
sixties of the last century in particular by Busse and coworkers (see e.g. Busse
1989). Their general concept, which deploys its full power in Fourier space, has
then been permanently extended and refined in many ways (for a general review,
see Cross & Hohenberg (1993)). It will be described in the following by the notion
bifurcation approach, which still serves as the common starting point to explore
new aspects in pattern-forming systems. In particular in gases with Pr ∼ 1 and not
too large R the bifurcation approach has led to a very convincing description of
many experiments (for a recent review see, e.g. Bodenschatz, Pesch & Ahlers (2000)
and references therein). It is obvious that the bifurcation approach cannot work for
turbulent convection at large R & 103Rc, which in addition is mostly explored in
cylindrical geometries. Consequently we will typically not refer to the related papers;
for a very recent and quite general discussion including many references we point to
the monograph of Verma (2018).

In the present paper we investigate a variant of RBC, namely inclined layer
convection (ILC), where the fluid layer is tilted by an angle γ with respect to the
horizontal orientation. In contrast to the planar case (γ = 0◦) isotropy is broken by a
shear flow, since already in the basic state the fluid flows downwards at the colder
upper part of the fluid layer and upwards along the warmer lower one. Thus it is
not surprising that ILC has attracted also theoretical studies for decades, mainly
for medium and large Pr. In particular we refer to a recent paper for Pr ∼ 1 and
references therein (Subramanian et al. 2016) for not too large R, where the bifurcation
approach predicts already near Rc as a function of γ , a large variety of different 3-D
pattern types in excellent agreement with the experiments.

Motivated by recent papers on ILC with liquid metals, which are characterized by
very small Pr < 0.1, in the turbulent regime with large R & 106 (Shishkina & Horn
2016; Teimurazov & Frick 2017) we found it attractive to perform a complementary
study of this system using the bifurcation approach and direct numerical simulations
(DNS) at small R slightly above Rc. For definiteness we have restricted ourselves to
mercury with Pr = 0.025. First, we found oscillatory secondary instabilities of the
basic rolls, well known already for γ = 0◦ (see e.g. Rossby 1969), which lead to
time-dependent oscillatory (OS) patterns in the form of waves along the roll axes. On
the other hand, already even for small γ competing stationary instabilities have been
identified. They lead to specific, so-called subharmonic (SH), 3-D patterns, which are
time independent. The detailed analysis of the competition between the OS and the
SH patterns sets the frame of the present work.

The paper is organized as follows: after introducing the OBE for ILC in § 2, we
sketch the linear instability of the basic state leading to transverse rolls. The critical
Rayleigh number Rc and the critical wavenumber qc are given as functions of γ .
Then Galerkin methods are applied to characterize the secondary instabilities of the
transverse rolls as a function of γ . In the following section (§ 3) DNS of the OBE for
different γ and R>Rc are presented, which confirm the Galerkin stability diagram. It
is demonstrated that the arising 3-D patterns, either oscillatory or stationary, can be
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FIGURE 1. Fluid layer of thickness d inclined with an angle γ , heated from below and
cooled from above with temperature difference 1T ≡ T1− T2 > 0. Driven by gravity g the
cold fluid flows downwards near the top plate and the hot one flows upwards near the
bottom plate leading to a cubic velocity profile across the fluid layer (see (2.2)).

understood in terms of simple analytical expressions. In § 4 a number of complex
patterns are discussed, which appear in particular near the various codimension-2
points with respect to γ , where the bifurcation switches from oscillatory to stationary.
A short summary of the paper together with perspectives for future work can be
found in the conclusions (§ 5). Finally, two appendices are devoted to the numerical
methods used in this paper and in particular to a quite detailed discussion of the OS
and SH patterns.

2. Roll solutions and their stability

As sketched in figure 1 we consider in this paper ILC as function of the inclination
angle γ (0◦ 6 γ 6 90◦). The convection cell is cooled from above (at z= d/2) with
the fixed temperature T = T2 and heated from below (at z=−d/2) with fixed T = T1,
where 1T = T1 − T2 > 0. As already indicated before we concentrate on mercury as
the working fluid, i.e. exclusively on Pr = 0.025. In the following we discuss first
the basic equations. Their linear analysis yields the primary instabilities of the basic
state in the form of 2-D convection rolls with the wave vector q= qc at the critical
Rayleigh number R = Rc. For R > Rc the amplitudes of the rolls continuously grow
until at a secondary instability, depending on γ , different 3-D patterns bifurcate.

2.1. Basic equations
The interaction of the temperature and velocity field in our system is described by the
standard OBE for incompressible fluids. As usual, the OBE are non-dimensionalized
using d as the length scale and the vertical diffusion time tv = d2/κ as the time
scale. The velocity u is measured in units of d/tv, the pressure p in units of κ/(νd2).
Temperatures are measured in units of Ts = νκ/αgd3 with α the thermal expansion
coefficient. Using a Cartesian coordinate system aligned with the layer (see figure 1),
the non-dimensional OBE read as follows:

[∂/∂t+ (u · ∇)]T̃ =∇2T̃ + Rẑ · u, (2.1a)

Pr−1
[∂/∂t+ (u · ∇)]u=∇2u−

g
g

T̃ −∇p, (2.1b)
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with the temperature, T̃ , and the velocity field, u, where ∇ · u = 0 due to
incompressibility. The vector g=−g(cos γ ẑ+ sin γ x̂) describes the effect of gravity
with the gravitational constant g. All terms which can be expressed as gradients are
included in the pressure term −∇p. Equations (2.1) are characterized by the angle of
inclination γ along with the two non-dimensional parameters, the Rayleigh number
R=1T/Ts and the Prandtl number Pr= ν/κ .

In line with previous theoretical investigations of ILC on the basis of the bifurcation
approach in the literature (see in particular Clever & Busse (1977), Busse & Clever
(1992)) we use periodic boundary conditions with respect to x and y. At the vertical
boundaries z=±1/2 (in dimensionless units) the temperatures are kept fixed and the
velocity is assumed to vanish (rigid boundary conditions). Equations (2.1) then admit
primary (basic) solutions (denoted with subscript 0) of a linear temperature profile
T̃0(z) and cubic shear velocity profile U0(z),

T̃0(z)= R
[

T1 + T2

21T
− z
]
, U0(z)= x̂ sin γR

z
6

[
z2
−

1
4

]
≡ x̂ sin γRUx

0(z). (2.2a,b)

In the presence of convection T̃0 is modified by θ(x, y, z, t) and U0 by v as follows:

T̃(x, z, t)= T̃0(z)+ θ(x, z, t), u(x, z, t)=U0 + v(x, z, t), x= (x, y), (2.3a,b)

which fulfil the boundary conditions θ(z=±1/2)= v(z=±1/2)= 0.
It is convenient to map the solenoidal velocity field v in (2.3b) by the well-known

poloidal–toroidal decomposition to two scalar velocity functions f , Φ(x, z, t) and a
correction U(z, t)= (Ux,Uy, 0) of U0(z) (2.2b),

v(x, y, z, t)=∇× (∇× f ẑ)+∇×Φ ẑ+U(z, t)≡ χ f + ηΦ +U(z, t). (2.4)

The equations for f , Φ are obtained by inserting u (2.3b) with v (2.4) into (2.1b)
followed by the application of the operators χ , η. The equation for θ results from
inserting the ansatz for T̃ (2.3a) into (2.1a). The explicit expressions for the linear
equations are thus given as

∂tθ =−R∆2 f +∇2θ − R sin γ (Ux
0(z)∂x)θ, (2.5a)

1
Pr
∂t∇

2
42 f =∇4

42 f − cos γ42θ + sin γ ∂x∂zθ −
1

Pr
sin γRF [Ux

0] f , (2.5b)

1
Pr
∂t∆2Φ =∇

2∆2Φ + sin γ ∂yθ −
1

Pr
[(U0∂x)∆2Φ + ([∂zU0]∂y)∆2 f ], (2.5c)

with the operators ∆2 = (∂xx + ∂yy) and F [Ux
0] ≡ [U

x
0(z)∇

2
− ∂2

zzU
x
0(z)]∂x∆2. It should

be noted that the pressure has dropped out in (2.5).
For the following, a compact symbolic representation of the OBE (2.1) transcribed

to θ, f , Φ,U using (2.3) and (2.4) is convenient,

Ĉ
∂

∂t
V̂(x, z, t)= L̂ V̂(x, z, t)+ N̂[v +U, V̂], (2.6)

with x= (x, y) and the symbolic vector V̂ = [θ, f , Φ]T. The linear operators Ĉ, L̂ are
given in (2.5). The symbol N̂ stands for the nonlinear terms which consist of quadratic
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forms in θ, f , Φ and U and their spatial derivatives. The components of N̂ are given
as

N̂θ = (v · ∇)θ, N̂( f ;Φ) = (χ; η)[(v · ∇)(χ f + ηΦ)]. (2.7a,b)
The evolution equation for the secondary mean flow U(z, t) results from averaging the
velocity equation (2.1b) over the x–y plane, leading to

1
Pr
∂U(z, t)
∂t

=−
1

Pr
∂(vzv)

∂z
+
∂2U
∂z2
+ sin γ θ x̂− (∂x, ∂y, 0)(Px(t)x+ Py(t)y), (2.8)

where the overbar indicates the horizontal average. Note that (2.8) contains a special
pressure term first proposed in Busse & Clever (2000) in a different context. The
functions Px(t), Py(t) have to be chosen to guarantee mass conservation, i.e.

∫
dzU(z)

= 0; non-zero Px,y, however, appear only in the DNS of complex patterns in § 4.
In general (2.6) is solved with respect to x, y on a rectangle with the lateral

extensions Lx, Ly using periodic boundary condition, i.e. V̂(x, y, z)= V̂(x+Lx, y+Ly, z)
holds. That is guaranteed by using the following discrete Fourier representation:

V̂(x, z, t)=
∑

q

eiq·xV(q, z, t) with q= (k1qx, l1qy); −N/2 6 (k, l)6 N/2, (2.9)

where 1qx = 2π/Lx, 1qy = 2π/Ly. Thus the simulations run in Fourier space on a
2-D grid of N2 wave vectors. Since V is real the condition V(q, z, t)= V(−q, z, t)∗
has to be fulfilled.

The boundary conditions like θ(z=±1/2)= 0 are automatically satisfied by the use
of truncated Galerkin expansions with respect to z. For example, θ is represented by
the ansatz

θ(x, z, t)=
M∑

m=1

Sm(z)ϑm(x, t); Sm(z)= sin(mπ(z+ 1/2)), (2.10)

which is analogously used also for Φ and U(z, t). The rigid boundary conditions
for v require that f has to be expanded in terms of the Chandrasekhar functions
Cm(z) (Chandrasekhar 1961). Consequently our OBE are finally mapped to a system
of ordinary differential equations in time for the Fourier coefficients of ϑm(x, t) and
the corresponding ones for f , Φ and U. The Galerkin expansions with respect to
the z-direction (see e.g. (2.10)) have been always truncated at M = 8 modes. In line
with the Appendix of Subramanian et al. (2016) we have tested by increasing M
that the numbers given in the present paper are afflicted with a relative error of less
than 0.1 %.

2.2. Linear stability analysis of the basic state
The primary convection instability of the basic state corresponds to exponentially
growing solutions in time of the linear equations (2.5). Thus, using the common
convection roll ansatz V̂(x, z, t) = eσ teiq·xṼ(q, z, R) in (2.6) with N̂ = 0, we arrive
from (2.6) at the following linear eigenvalue problem for σ :

σC(q, ∂z)Ṽ(q, z; R)=LṼ(q, z; R), (2.11)

where the operators C,L(q, ∂z), etc. in Fourier space derive from the corresponding
ones in position space (see (2.5)) via the transformation ∂x→ iq. As indicated before
(see e.g. (2.10)) the z-dependence of Ṽ(q, z; R) is captured by Galerkin expansions
with M= 8 modes. It turns out that it is sufficient to confine the analysis to the θ, f
equations in (2.5). Thus, one arrives finally at an algebraic linear eigenvalue problem
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FIGURE 2. Linear instability of the ILC basic state for Pr = 0.025 (see (2.2)) as a
function of the inclination angle γ with respect to rolls of wave vector q = (qx, qy) =

q̄c(γ ,ψ)(cosψ, sinψ) at R= R̄c(γ ,ψ). (a) Reduced critical Rayleigh number R̄c(γ ,ψ)/Rc0
(logarithmic scale) with Rc0 = 1707.8. (b) Critical wavenumber q̄c(γ , ψ). The solid lines
correspond to the transverse rolls, where R̄c(γ , ψ = 0◦) is minimal. For the other ψ the
following line styles are used: dotted for longitudinal rolls (ψ = 90◦), dashed for ψ = 75◦
and dash-dotted for ψ = 60◦.

of dimension 2M in the Fourier–Galerkin space, which is analysed using a standard
linear-algebra package, LAPACK. Let σmax(R, Pr, γ , q) define the eigenvalue σ with
the largest real part in (2.11); then rolls become unstable when σmax(R, Pr, γ , q)
crosses zero. For each q we have to determine the smallest solution R = R0(q) of
Re[σmax(q)] = 0 (the fixed parameters Pr, γ are suppressed for the moment). The
minimum of R0(q) with respect to q defines the critical wave vector qc and the
critical Rayleigh number Rc = R0(qc) at which the basic state becomes unstable
against convection rolls with wave vector qc. The bifurcation turns out to be always
stationary since Im[σmax(Rc, qc)] ≡ 0; otherwise one would speak of an oscillatory
bifurcation.

It is convenient to parameterize the orientation of a wave vector q in the x–y
plane as q= q̄(ψ)(cos ψ, sin ψ). Thus we obtain from Re[σmax] = 0 the critical data
q̄c(ψ), R̄c(ψ), which depend on γ . At γ = 0◦ we deal with the standard isotropic
RBC, where q̄c = qc0 = 3.116 and R̄c = Rc0 = 1707.8 depend neither on ψ nor on Pr.

In figure 2 one finds representative plots of q̄c(γ , ψ) and R̄c(γ , ψ) as function of γ
for different ψ at fixed Pr= 0.025. One sees that the convection onset is realized by
transverse rolls (ψ = 0◦) for all γ . This is in contrast to the case of medium Pr. There
exists a so-called codimension-2 point, γc2, such that for 0◦ < γ < γc2 longitudinal
rolls with ψ = 90◦ bifurcate at onset in contrast to transverse rolls (ψ = 0◦) for γ >
γc2. With decreasing Prandtl number γc2 moves continuously downwards to zero until
for Pr< 0.264 indeed only transverse rolls bifurcate at onset for 0◦ < γ < 90◦ (for a
detailed discussion, see appendix C in Subramanian et al. (2016)). It is further evident,
that Rc(γ )= R̄c(γ , ψ = 0◦) decreases strongly with γ . This applies also to the critical
wavenumber qc(γ )= q̄c(γ , ψ = 0◦), although the decay is much weaker.

To measure directly the relative distance of R from Rc we use in the following two
definitions of a reduced control parameters, either ε or ε0, which are defined as

ε =
R− Rc(γ )

Rc(γ )
; ε0 =

R− Rc0

Rc0
; Rc0 ≡ Rc(γ = 0◦)= 1707.8. (2.12a−c)
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γ (deg.) qc Rc ε0 γ (deg.) qc Rc ε0

0 3.1162 1707.8 0 50 2.7396 236.06 −0.8618
10 2.8894 777.22 −0.5449 60 2.7288 212.45 −0.8756
20 2.8091 468.23 −0.7258 70 2.7197 198.61 −0.8837
30 2.7740 341.32 −0.8001 80 2.7116 191.91 −0.8876
40 2.7536 274.90 −0.8390 90 2.7037 191.27 −0.8880

TABLE 1. Critical Rayleigh number Rc(γ ) and critical wavenumber qc(γ ) of transverse
rolls together with ε0 = (Rc(γ )− Rc0)/Rc0 (2.12) for increasing γ .

Selected numerical values of Rc and qc as functions of γ , which correspond to
the bold lower curves in figure 2, are listed in table 1. When gradually increasing R
beyond Rc(γ ) finite-amplitude transverse roll patterns with wavenumber qc(γ ) develop.
Their stability analysis will be discussed in the following subsection.

2.3. Secondary instabilities of transverse rolls
The finite-amplitude stationary transverse rolls which develop with wave vector
qc(γ ) = (qc(γ ), 0) for R > Rc(γ ) (see table 1) are represented as a special case of
(2.9) as follows:

V̂r(x, z)=
Nr/2∑

k=−Nr/2

eikqcxVr(kqc, z), (2.13)

where a cutoff Nr= 10 was found to be sufficient in the present context. With respect
to z, we introduce again a Galerkin expansion (see (2.10)) of the (Nr + 1) Fourier
coefficients Vr(kqc, z). Thus we arrive at (3M)Nr coupled nonlinear algebraic equations
for the expansion coefficients in the resulting Fourier–Galerkin representation.
Furthermore, the Galerkin expansion of the mean flow U using sine functions leads
to 2M additional equations. The whole system is then solved by Newton–Raphson
methods. Non-trivial solutions exist only for R > Rc(q). Thus the bifurcation to
transverse rolls is continuous (supercritical). To examine the linear stability of a
transverse roll solution we linearize our general equations about V̂r(x, z) with respect
to an infinitesimal perturbation δV̂r in the form of the standard Floquet ansatz

δV̂r(x, z, t)= eΣ teis·x
k=N/2∑

k=−N/2

eikqcxδVr(kqc, z). (2.14)

Thus, we arrive at a linear eigenvalue problem for the eigenvalues Σ(s, qc, R)
at fixed R; the γ -dependence will be typically suppressed in the following. The
eigenvalue Σ with the largest real part, Σ0(s, qc, R), determines the growth rate of
the perturbation δV̂r in (2.14). The condition Re[Σ0(s, qc, R)] = 0 indicates thus a
secondary instability of the transverse rolls with wavenumber qc at R = R0(s, qc).
The minimum of R0(s, qc) with respect to s gives the Floquet vector sin(qc) of
the most effective perturbation δV̂r(x, z, t) driving the instability of the transverse
rolls at Rin(qc) = R0(sin, qc), where the index in points to secondary instability. The
frequency at onset is determined by ωin = Im[Σ0(sin, qc, Rin)]. For |ωin| > 0 the
secondary instability is oscillatory, otherwise stationary. The corresponding Fourier
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FIGURE 3. (Colour online) Stability diagram of transverse rolls for Pr= 0.025 with 0◦6
γ 610◦ (a) and 10◦6γ 690◦ (b). The basic state in (2.2), stable for ε <0 (2.12), becomes
unstable against the transverse rolls for ε >0. These are stable below the lowest of the two
lines, which determine either the OS instability at ε= εOS (solid line) or the SH instability
at ε= εSH (dashed). The three crossing points of the two curves define the codimension-2
points γ1,2,3.

coefficient δVr(kqc, z) in (2.14) takes its maximum for a value k= kmax with |kmax|6 1.
The most effective destabilizing modes are thus characterized by the wave vectors
qin = (kmax qc, 0) + sin. In the present system we find a twofold degeneracy of the
eigenvalues σ0(sin, qc,R), since they take the same values for s= (sx,±sin

y ). Depending
on γ we find either oscillatory or stationary secondary instabilities. For the first one,
with kmax = 1, the dominant Fourier coefficients in (2.14) belong to the wave vectors
q2,3 = (qc, ±sOS

y ), while for the second one with kmax = 0 the dominant modes
belong to q2,3 = (qc/2, ±sSH

y ). In figure 3 we show the whole secondary-bifurcation
diagram in the γ –ε plane for Pr = 0.025. The well-known OS instability at γ = 0◦
remains dominant up to the first codimension-2 point γ1= 1.023◦. Then the stationary
SH instability takes over in the interval γ1 < γ < γ2 = 2.183◦ with the second
codimension-2 point γ2. Up to the third codimension-2 point γ3 = 6.169◦ again the
OS instability dominates, which is then finally replaced again by the subharmonic
one for γ3 < γ < 90◦. The detailed data for the two instabilities are contained in
table 2 for a representative set of inclination angles γ .

3. Regular OS and SH patterns
According to the previous section (see table 2) one finds as a function of γ either

the OS secondary instability of transverse rolls at εin = εOS or the SH instability
at εin = εSH . For ε & εin the amplitudes of the corresponding destabilizing modes,
characterized by the Floquet vectors sin, start growing exponentially. They are found
to saturate eventually into steady regular 3-D patterns in the nonlinear regime with
finite complex amplitudes. As obvious from the stability diagram in figure 3 and the
discussion before, the most spectacular γ -regime is found for γ . γ3 = 6.169◦, on
which we will mainly concentrate in this paper. In the whole interval γ3 < γ 5 90◦,
where the SH instability prevails, it is sufficient to consider only a few representative
examples.

The nonlinear evolution of the system for ε > εin is studied in the present section
by DNS of the OBE. In the x–y plane we use periodic boundary conditions on a
rectangle of area Lx × Ly and consequently the calculations are performed in Fourier

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.432


84 O. Zier, W. Zimmermann and W. Pesch

O
sc

ill
at

or
y

in
st

ab
ili

ty
(C

1)
Su

bh
ar

m
on

ic
in

st
ab

ili
ty

(C
2)

C
od

im
en

si
on

-2
po

in
ts

(C
3)

γ
(d

eg
.)

ε O
S

sO
S

y
ω

0
q c

γ
(d

eg
.)

ε S
H

sSH y
q c

γ
(d

eg
.)

ε i
n

sO
S

y
ω

sSH y

0
0.

10
4

2.
17

1
1.

39
4

3.
11

6
1

0.
13

9
1.

64
0

3.
10

6
1.

02
3

0.
13

3
2.

07
0

1.
31

4
1.

67
2

0.
5

0.
11

1
2.

14
7

1.
37

6
3.

11
4

1.
5

0.
09

3
2.

24
1

3.
09

4
2.

18
3

0.
11

7
1.

89
8

0.
66

2
2.

46
8

1.
0

0.
13

2
2.

07
5

1.
31

8
3.

10
6

2.
0

0.
10

8
2.

43
6

3.
08

0
6.

16
9

0.
05

1
1.

92
3

0.
40

2
1.

62
1

1.
5

0.
16

0
1.

95
2

1.
20

1
3.

09
4

3.
0

0.
17

7
2.

53
8

3.
04

7
2.

0
0.

18
1

1.
83

9
1.

00
7

3.
08

0
5.

0
0.

41
0

2.
65

9
2.

98
6

2.
5

0.
06

3
1.

98
7

0.
46

7
3.

06
4

7.
0

0.
04

0
1.

68
0

2.
94

0
5.

0
0.

04
9

1.
96

1
0.

40
1

2.
98

6
10

.0
0.

03
5

1.
68

8
2.

88
9

6.
0

0.
05

1
1.

92
9

0.
40

2
2.

96
1

30
.0

0.
03

6
1.

60
4

2.
77

4
10

.0
0.

05
7

1.
83

1
0.

40
6

2.
88

9
50

.0
0.

03
7

1.
57

4
2.

74
0

50
.0

0.
07

3
1.

64
2

0.
41

0
2.

74
0

90
.0

0.
03

9
1.

54
3

2.
70

4
90

.0
0.

07
7

1.
60

2
0.

40
9

2.
70

4

TA
B

L
E

2.
Se

co
nd

ar
y

in
st

ab
ili

tie
s

of
tr

an
sv

er
se

ro
lls

w
ith

w
av

en
um

be
r

q c
(γ
)

at
ε
=
ε i

n
w

ith
Fl

oq
ue

t
ve

ct
or

s in
=
(s

in x
,

sin y
)

fo
r

se
le

ct
ed

va
lu

es
of

th
e

in
cl

in
at

io
n

an
gl

e
γ

(s
ee

§
2.

3)
.

C
1:

O
S

in
st

ab
ili

ty
at
ε i

n
=
ε O

S
w

ith
s in
=
(0
,

sO
S

y
)

an
d

fr
eq

ue
nc

y
ω

0.
C

2:
SH

in
st

ab
ili

ty
at
ε i

n
=
ε S

H

w
ith

s in
=
(q

c/
2,

sSH y
).

C
3:

co
di

m
en

si
on

-2
da

ta
(O

S/
SH

)
fo

r
γ
=
γ

i,
(i
=

1,
2,

3)
at
ε i

n
=
ε O

S
=
ε S

H
w

ith
sO

S
y
,
ω

0
an

d
sSH y

.
A

s
al

w
ay

s
in

th
is

pa
pe

r,
s in

is
gi

ve
n

in
un

its
of

1/
d

an
d
ω

in
un

its
of

1/
t v

.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.432


On low-Prandtl-number convection in an inclined layer of liquid mercury 85

y

x

(a) (b) (c)

FIGURE 4. Midplane temperature plots in ILC for Lx = Ly = 8λc(γ ): (a) transverse rolls
for γ = 3◦. (b) Stationary SH pattern for γ = 1.5◦. (c) Snapshot of an OS pattern for
γ = 6◦ (for details see text).

space (see (2.9)) using a pseudo-spectral method. The z-dependence of the fields is
captured by Galerkin expansions. For the time integration we use the semi-implicit
‘exponential time-differencing method’ as in Subramanian et al. (2016) (for some
details see appendix A). The results are typically visualized in this paper by the
temperature field at the midplane z= 0, i.e. by the function θ(x, y, z= 0, t). We use
individually scaled 8-bit grey scale images, where lighter areas correspond to positive
values and darker ones to negative ones. Thus here and in the following a white
stripe stands for a roll pair. In figure 4 we show representative stable steady-state
snapshots of θ(x, y, z = 0, t) for different γ calculated with the periodicity lengths
Lx = Ly = 8λc(γ ). They result from DNS started from random initial conditions
after the transients have died out. For ε < εin(γ ) with γ > 0◦ we arrive always at
stable transverse rolls, as shown in figure 4(a). In line with their stability diagram in
figure 3 we arrive for ε > εin(γ ) either at stationary 3-D SH patterns (see figure 4b)
or at OS patterns in the form of travelling waves along the y-axis (see a snapshot in
figure 4c). The frequency ω of the oscillatory patterns is easily obtained by analysing
the periodicity in time of θ(x, y, z = 0, t) at fixed x, y. It should be noted, that
our system, as a consequence of the periodic boundary conditions in the plane, is
invariant against translations along the x- and the y-directions. Thus using different
random initial conditions one arrives at different patterns which, however, can be
mapped onto each other by shifting the origin of the coordinate system with respect
to x and y.

Inspection of such pictures yields immediately the dominant wavelengths λx and λy

characterizing the spatial periodicity of the patterns in the x–y plane. Note that as a
consequence of our periodic boundary conditions in the plane the wavelengths λx, λy

must be integer fractions of Lx and Ly, respectively. In the x-direction all DNS have
obviously locked into λx = Lx/8 = λc(γ ), corresponding to 8 roll pairs. The critical
wavelength λc(γ ) = 2π/qc(γ ) ∼ 2 is determined by qc(γ ) from table 1 or 2. The
theoretical value of λc must be reflected in the experimental roll patterns observed
in large-aspect-ratio systems, when slowly increasing R until it crosses Rc. Further
increasing R should then reveal the secondary instabilities of the rolls as well. This
has been indeed confirmed for instance in RBC with Pr ≈ 1 (see Bodenschatz et al.
(2000) and references therein).

The wavelength λy has locked into a value λy = Ly/m with an integer m. Not
surprisingly we find in all our simulations that m is chosen by the system such that
λy is in the vicinity of λin

y = 2π/sin
y , where the values of sin

y are given in table 2.
This selection process has been validated by DNS with different Ly. In general,
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(a) (b) (c)

FIGURE 5. Basic patterns as in figure 4 for larger Lx = Ly= 16λc(γ ): (a) transverse rolls
for γ = 50◦, ε = 0.03, ε0 = −0.8576 with λc = 2.293. (b) SH pattern for γ = 50◦, ε =
0.045> 0.037= εSH , ε0=−0.8556. (c) Snapshot of an OS pattern for γ = 5◦, ε= 0.055>
0.049= εOS, ε0 =−0.2859 with λc = 2.104 (for details, see text).

larger values of Ly give the system more flexibility in selecting m. Thus we have
performed some even more time-consuming simulations for larger periodicity areas in
the x–y plane with Lx = Ly = 16λc(γ ). As demonstrated in figure 5 we arrive indeed,
starting from random initial conditions, at the common basic patterns already shown
in figure 4. The SH pattern (see figure 5b) for γ = 50◦ has locked into λy = Lx/9,
such that sy = 2π/λy = 1.541 matches very well sSH

y = 1.574 in table 2. In figure 5(c)
we show an OS pattern for γ = 5◦, which has locked into λy = Lx/11 corresponding
to sy = 2.053 near to sOS

y = 1.961 in table 2. Although in this context choosing large
values of Lx, Ly would be desirable, this is in general hardly possible in practice due
to the fast increase of computer time.

Finally it is obvious that the values of qc and Rc depend on the real lateral
boundary conditions for systems with smaller lateral extensions or different geometries.
Typically in analysing experiments one uses thus the experimental value of Rc

to calculate the relative distance ε (2.12) of R from onset and measures the wave
vectors q in units of |qc|. In this way the results obtained via the bifurcation approach
match much better the experimental ones.

In the following sections we will discuss the regular SH and OS patterns in more
detail.

3.1. SH patterns
The SH patterns bifurcate from the transverse rolls for γ in the intervals 1.023◦ <
γ < 2.183◦ and 6.169◦ < γ < 90◦. In line with the discussion of the SH instability
in § 2.3 their dominant Fourier coefficients belong to the wave vectors ±qi, i= 1, 2, 3
in Fourier space where q1 = (qc, 0), q2,3 = (qc/2,±sy), with sy ≈ sSH

y given in table 2.
In figure 6 we show for three values of γ = 1.5◦, 50◦, 90◦ representative examples
of the time independent midplane temperature field θ(x, y) in (3.1), where we used
Lx= Ly= 8λc(γ ). The subharmonic nature of the patterns, where the teeth are shifted
by λy/2 after moving by λc(γ ) in the x-direction is obvious. In all our simulations the
teeth of the SH patterns have pointed to the right for 1.023◦<γ < 2.183◦ opposite to
their orientation for 6.169◦ < γ < 90◦.

In the following we discuss the 3-D character of the SH patterns in more detail
using γ = 10◦ and ε = 0.05 as a representative example. All pictures have been
produced with Mathematica. First we show a 3-D contour plot of the temperature
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(a) (b) (c)

FIGURE 6. Temperature plots of SH patterns for Pr= 0.025 and different γ : (a) γ = 1.5◦,
ε = 0.12, ε0 = 0.0522, (b) γ = 50◦, ε = 0.05, ε0 =−0.85487, (c) γ = 90◦, ε = 0.06, ε0 =

−0.88128.
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FIGURE 7. DNS for γ = 10◦, ε = 0.05, ε0 = −0.522145, λx = λc(γ ) = 2.175d with the
periodicity lengths Lx = Ly = 8λx: (a) 3-D contour plot of θ(x, y, z) for 0 5 x 5 2λx, 0 5
y 5 2λy = 2(8/5)λx; (b) 2-D contour plot of the midplane temperature θ(x, y, z= 0) from
panel (a).

field θ(x, y, z) in figure 7, according to which the SH instability leads to a y-periodic
bulging out of the original transverse rolls. In figures 7(b) and 8(a) we show the
corresponding 2-D plots of θ(x, y, z= 0) at the midplane and of θ(x, y= 0, z) in the
x–z-plane at y = 0. Due to the subharmonic character of the bifurcation the spatial
periodicity of the pattern in x corresponds to the wavelength 2λc(γ ).

The velocity field (see (2.4)) is much more complex and we have been unable
to produce appealing 3-D plots. So we show in figure 8(b) a streamplot of (vx, vz)

obtained from (2.4) in the x–z plane. According to figure 8(a) we expect a buoyancy
driven upward flow at x = 1/4, where θ is maximal at z = 0 and analogously a
downward flow at x = 3/4. This applies analogously to x = 1.25 and x = 1.75. For
standard RBC the flow would be y-independent and parallel to the z-axis at those x
values between z= 1/2 and z=−1/2. In contrast, the streamlines turn here towards
the x-direction and develop even small vortices. The additional temperature variations
in the x–y-plane (see figure 7b) drive also a flow with vy 6= 0. This is documented
by the (vx, vy) streamlines in figure 9(a). The clearly visible vortices are immediately
identified by the contour plot of the vertical vorticity (∇ × v)z in figure 9(b). Note
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1/2
(a) (b)

0

-1/2
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-1/2
0 1 2 0 1 2

x[¬c]

z[
d] z[
d]

x[¬c]

FIGURE 8. Same parameters as in figure 7: (a) 2-D contour plot of the temperature field
θ(x, y = 0, z) at y = 0 from figure 7(a). (b) Corresponding streamplot of the velocity
components vx(x, y= 0, z), vz(x, y= 0, z) (see (2.4)) at y= 0.
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FIGURE 9. Same parameters as in figure 7: (a) streamplot of the velocity components
vx(x, y, z= 0), vz(x, y, z= 0) (see (2.4)) in the midplane z= 0. (b) The z component of
the vorticity, (∇× v)z, with v from panel (a).

that the subharmonic nature of the bifurcation is here also reflected in the difference
between the velocity vector field in the intervals 0< x< λx and λx < x< 2λx and also
in a small opposite rotation about the z-axis of the white and black ‘lenses’ in the
vorticity plot.

In the following we will demonstrate that the temperature field θ(x, y, z= 0) at the
midplane shown in figure 7(b) is very useful to characterize the SH pattern in more
detail. Our starting point is the 2-D Fourier representation of θ(x, y, z= 0) where the
Fourier coefficents with wavevectors q1 = (qc, 0) (for the transverse rolls) and q2,3 =

(qc/2, ±sy) with sy ≈ sSH
y (characterizing the SH instability), are dominant according

to § 2.3. In fact, when calculating θ(x, y, z = 0) using only this wave vector subset,
one obtains a function h(x, y), which yields a very useful and accurate approximation
of θ(x, y, z= 0): a plot of h(x, y) looks practically identical to figure 7(b) for not too
large ε.

The phases of the Fourier coefficients associated with the wave vectors q1,2,3 defined
above fulfil always a special relation detailed in § B.1, which we use as the general
signature of SH patterns. As a consequence the function h(x, y), after a suitable shift
of the x, y-coordinate system can be always written in a form which depends only on
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Subharmonic patterns
γ (deg.) ε sy A0 B0

1.5 0.12 1.900 35.1 6.69
1.5 0.12 2.100 29.4 9.31
1.5 0.12 2.241 26.7 10.6
1.5 0.12 2.300 25.9 11.2
1.5 0.12 2.320 25.7 11.2

10 0.05 1.400 4.14 1.21
10 0.05 1.688 3.81 1.70
10 0.05 1.700 3.73 1.69
10 0.05 1.810 3.80 1.66
10 0.05 2.000 4.40 0.91

30 0.05 1.400 1.61 0.52
30 0.05 1.604 1.56 0.59
30 0.05 1.700 1.57 0.60
30 0.05 1.730 1.58 0.59
30 0.05 2.000 1.80 0.34

50 0.05 1.300 1.15 0.28
50 0.05 1.574 1.08 0.38
50 0.05 1.600 1.08 0.38
50 0.05 1.710 1.10 0.37
50 0.05 1.900 1.18 0.29

90 0.05 1.300 0.92 0.22
90 0.05 1.543 0.87 0.28
90 0.05 1.600 0.88 0.28
90 0.05 1.690 0.89 0.27
90 0.05 1.900 0.97 0.18

Travelling waves
γ (deg.) ε sy ω ω0 A0 B0 D0

0 0.108 2.171 1.393 1.394 67.8 9.16 0
0 0.108 2.190 1.400 1.394 67.6 9.35 0
0 0.108 2.337 1.482 1.394 68.4 7.29 0

0 0.127 2.083 1.354 1.394 67.2 24.4 0
0 0.127 2.171 1.395 1.394 67.6 22.5 0
0 0.127 2.181 1.386 1.394 66.7 23.0 0
0 0.127 2.224 1.402 1.394 66.7 22.3 0
0 0.127 2.259 1.417 1.394 66.7 21.8 0
0 0.127 2.337 1.454 1.394 67.0 20.5 0

0.5 0.130 1.946 1.313 1.376 68.8 22.0 0.30
0.5 0.130 2.147 1.373 1.376 67.3 20.0 0.29

4 0.060 1.884 0.392 0.403 8.89 2.54 0.67
4 0.060 1.992 0.398 0.403 8.80 2.47 0.69
4 0.060 2.035 0.399 0.403 8.74 2.46 0.68

5 0.055 1.866 0.393 0.401 7.70 1.53 0.39
5 0.055 1.961 0.398 0.401 7.65 1.52 0.40
5 0.055 2.053 0.405 0.401 7.68 1.41 0.39

5 0.060 1.866 0.392 0.401 7.60 2.18 0.56
5 0.060 1.961 0.396 0.401 7.59 2.08 0.55

6 0.070 1.850 0.386 0.402 6.71 2.59 0.64
6 0.070 1.929 0.393 0.402 6.69 2.49 0.64

TABLE 3. Left table: amplitudes A0, B0 of SH-patterns (see (3.1)) for different γ , ε and
sy in the DNS. Near the bold/underlined γ values with the corresponding wavenumbers
sy the amplitudes B0 are maximal (for details see text). Right table: the analogous data
for travelling waves; in addition their frequency ω is listed in comparison with ω0 at the
onset of the OS instability (see table 2).

two real amplitudes A0 > 0, B0 > 0,

h(x, y)= A0 cos(qcx)+ B0 cos(syy) cos(qcx/2+ aπ/4), with a=±1. (3.1)

There is a discrete symmetry breaking involved; for a = −1 the ‘teeth’ point to the
right as in the figure 4(b) and for a= 1 to the left.

The SH solutions exist for ε > εSH (see table 2). The amplitude B0 depends on γ

and rises continuously with increasing ε − εSH , while for 0< ε < εSH we have simple
transverse rolls with B0 = 0 and A0 ∝

√
ε. Some characteristic data of our DNS have

been collected in table 3 for different γ , where always Lx = 8λc(γ ) was chosen. In
contrast, we have used different periodicity lengths Ly in the DNS, which then have
locked into different values of the wavelength λy= Ly/m, i.e. of the wavenumber sy=

2π/λy (see table 3). Here for each γ two data sets have been emphasized: the first set
(γ in bold) corresponds to DNS with our standard choice Ly= Lx while in the second
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FIGURE 10. DNS for γ = 6◦, ε = 0.07, ε0 = −0.33836, λx = λc(γ ) = 2.175d with the
periodicity lengths Lx = Ly = 8λx: (a) snapshot of a 3-D contour plot of the temperature
θ(x, y, z) for 0 5 x 5 2λx, 0 5 y 5 2λy = 2(8/5)λc and −d/2 < z < d/2; (b) 2-D contour
plot of θ(x, y, z) obtained from panel (a) for y= 0.

one (γ underlined) values of Ly, slightly different from Lx, have been chosen, such
that sy = sSH

y . In vicinity of these sy values the amplitude B0 is found to be maximal,
which means that the secondary SH instability is most effective.

3.2. OS patterns
In our DNS, starting from random initial conditions, we arrive eventually always at
stable travelling-wave patterns. In figure 4(c) we have shown a representative snapshot
for γ = 6◦ at ε= 0.058 which originates from the oscillatory instability at εOS= 0.051
with sOS

y = 1.929 and ω0 = 0.402 (see table 2). The simulations have locked into
λy= 8/5λc, i.e. into sy= 1.850, with ω= 0.4002, which is near ω0. In general, we are
confronted in our DNS with very long transients often of the order of 1000tv or more.
During that time interval the oscillatory patterns resemble, however, standing-wave
ones, to which we return later in this section.

Our basic equations are invariant against the reflection y→−y. This symmetry is
spontaneously broken in travelling-wave patterns which move either upwards along y
with a phase velocity vphas or downwards with −vphas. When transforming the basic
equations with y→ y− (+)vphast for the first (second) case into the comoving frame,
the resulting DNS produce essentially equivalent stationary patterns. According to the
3-D contour plot of θ(x, y, z) in figure 10(a) we deal again with deformed convection
rolls. In contrast to the SH patterns they bulge out symmetrically to the left and to
the right along the x direction when moving along y. The wavelength λx is given
as λc(γ ), while λy = 8/5λx holds as evident from the plot of θ in the x–y plane
in figure 10(b). We leave out a detailed discussion of the velocity field shown in
figures 11 and 12 since one finds only quantitative differences compared to the SH
patterns in the previous section.

In analogy to the discussion of the SH patterns before, it is very useful to
approximate the midplane temperature field θ(x, y, z = 0, t) by a function h(x, y, t)
(see § B.2). That is based on the leading Fourier coefficients with the wave vectors
q1 = (qc, 0), q2,3 = (qc, ±sy) describing the basic transverse rolls (q1) and their
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FIGURE 11. Same parameters as in figure 10: (a) 2-D contour plot of the temperature
field θ(x, y= 0, z) at y= 0 from figure 10(a). (b) Corresponding streamplot of the velocity
components vx(x, y= 0, z), vz(x, y= 0, z) (see (2.4)) at y= 0.
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FIGURE 12. Same parameters as in figure 10: (a) streamplot of the velocity components
vx(x, y, z= 0), vz(x, y, z= 0) (see (2.4)) in the midplane z= 0. (b) The z component of
the vorticity, (∇× v)z, for v in panel (a).

destabilizing oscillatory modes (q2,3). In addition the Fourier coefficient with wave
vector q4 = (0, sy) is also of interest. Exploiting certain relations between the phases
of these Fourier coefficients (see § B.2) one arrives finally at

h(x, y, t)= A0 cos(qcx)+ B0 sin(qcx) cos[sy(y− vphast)] +D0 cos[sy(y− vphast)+ψC],

(3.2)
with the phase velocity vphas=ω/sy. The amplitudes A0,B0,D0 obtained in our various
DNS with different γ and ε are listed in table 3; in addition one finds there the
frequency ω of the travelling waves together with the corresponding ω0 at the onset of
the OS-instability (see table 2). The amplitude D0, always considerably smaller than
A0, B0, vanishes for γ = 0◦ and describes a x-independent contribution to h(x, y, t)
which is, however, practically not visible in DNS snapshots. Inspection of (3.2) shows
that D0 lifts the reflection symmetry y→−y in the comoving frame (vphas = 0) due
to the constant positive phase shift ψC = π/4(1 + δψC) with a positive δψ < 0.05.
The representation of the downwards travelling waves is obtained from (3.2) by the
transformations vphas→−vphas and δψC→−δψc.

Oscillatory standing-wave patterns appear typically when starting our DNS using
restricted initial conditions (see appendix A). A representative time sequence is
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(a) (b) (c) (d) (e)

FIGURE 13. Time evolution of standing waves over one time period T = 16.0tv , i.e. with
ω= 2π/T = 0.39237 again for γ = 6◦, ε = 0.07, ε0 =−0.33836.

shown in figure 13, where the sidewise distortion amplitude of the rolls varies in
time periodically between a maximum and a minimum. The corresponding function
h(x, y, t) for standing waves (see appendix B) reads as follows:

h(x, y, t)= A(t) cos(qcx)+ B(t) sin(qcx) cos(syy)+D(t) cos(syy); (3.3a)
A(t)= A0 + A1 cos(2ωt− α), B(t)= B0 cos(ωt), D(t)=D0 cos(ωt− β). (3.3b−d)

The amplitude factors A1 and D0 (zero at γ = 0◦) are small and are practically not
visible in the DNS snapshots of h(x, y, t). For the representative example, γ = 6◦
and ε = 0.07, our DNS were characterized by ω = 0.39237, A0 = 6.80, A1 = 0.15,
α = 2.86, B0 = 3.58, D0 = 0.90, β = 0.71. As already mentioned, the standing waves
were, however, never stable and developed after superimposing arbitrary noise onto
travelling waves.

In the planar case, γ = 0◦, we have compared our DNS with a previous one in
the literature (Meneguzzi et al. 1987), which was performed for a small-aspect-ratio
system (!) at ε= 0.127, where Lx= λc= 2π/qc= 2.016 and Ly= 2π/sy= 2.79 for sy=

2.5. According to figure 10 in this paper the frequency of the resulting standing wave
was approximately ω= 1.6. For comparison we have performed a DNS with restricted
initial conditions using a larger aspect ratio with Lx= 8λc and Ly= 6(2π/sy)= 0.935Lx
and also obtained ω=1.6, which is, however, larger than ω0(γ =0◦)=1.394 in table 2.
However, this pattern was not stable, when continuing the DNS after superimposing
arbitrary noise. We arrived at a travelling-wave pattern with a much smaller sy=2.083,
which compares well with sOS

y = 2.172. Also the frequency ω= 1.35 fits much better
ω0(sy)= 1.394.

Note, that in the literature for γ = 0◦ also the less realistic free-slip boundary
conditions with respect to the velocity field have been applied (see e.g. Mishra, Wahi
& Verma 2010; Dan et al. 2017). Though in this way the numerics is considerably
simplified, one should be aware of profound qualitative differences to rigid boundary
conditions in particular with respect to the vertical vorticity (Clever & Busse 1974).

The following § 4 is devoted to some complex patterns to be found near the
codimension-2 points or at larger ε.

4. DNS of complex patterns
In the previous section we have described the OS and the SH patterns for γ away

from the codimension-2 points. In their vicinity the patterns should show a tendency
to become more complex, as indeed demonstrated in § 4.1 on the basis of some
characteristic examples. In addition we expect more complicated patterns at larger ε,
which is confirmed in § 4.2.

4.1. Patterns in the vicinity of the codimension-2 points
According to figure 3 and table 2 the first codimension-2 point appears at γ1= 1.023◦
with εOS = εSH = 0.133, where λc(γ1) = 2.083. However, our DNS at a larger ε =
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 14. Heteroclinic cycle with subharmonic, transverse and oblique patterns from a
DNS at γ = 1.5◦ with Lx= Ly= 8λc(γ ) at ε= 0.165 (ε0= 0.0945). The pictures are sorted
with increasing time t from left to right and top to bottom and correspond to t = 0 (a),
68 (b), 195 (c), 278 (d), 702 (e), 755 ( f ), 788 (g), 873 (h) in units of tv .

0.14 for Lx = Ly = 8λc(γ1) have always produced travelling waves with wavelengths
λx = λc and λy = Ly/5 = 3.237 where sy = 2π/λy = 1.94 differs not too much from
sOS

y = 2.070. In contrast, the frequency ω = 1.26 is not well approximated by ω0 =

1.314. There was no trace of the competing SH instability, maybe because sSH
y = 1.672

deviates too much from sOS
y . These general features remain robust, when increasing the

horizontal size of the system to Lx= Ly= 16λc(γ1) using 256× 256 Fourier modes in
the x–y plane. The system produces again an OS pattern with λx = λc but a smaller
λy = Ly/11 = 2.843 where sy = 2.14 > sOS

y . The frequency ω = 1.35 was now larger
than ω0.

An analogous scenario was observed at the codimension-2 point γ2= 2.183◦ where
εSH = εOS = 0.117 (see table 2) and λc(γ2) = 2.044. Here the DNS have always
produced at ε = 0.125 with Lx = Ly = 8λc(γ2) perfect SH patterns without any trace
of OS motifs. The DNS have locked into λx = λc(γ )2 = 2.043 and λy = (8/6)λx,
which corresponds to sy = 2.306 considerably different from sSH

y = 2.468. For larger
Lx = Ly = 16λc(γ2) and again with ε = 0.125 the DNS had more freedom and locked
into λy = 16/13λc corresponding to sy = 2.496 much nearer to sSH

y . The fact that
sOS

y = 1.898 is considerably smaller than the sy values selected in the DNS, might
explain why the competing OS instability has played no role.

Inspection of table 2 shows immediately that sOS
y monotonically decreases with γ

while sSH
y increases as long γ < 5◦. Thus there was the chance that in a DNS for γ

between γ1 and γ2 both stationary SH- and oscillatory motifs might appear. That was
indeed the case: in a DNS at γ = 1.5◦ for Lx = Ly = 8λc(γ2) with λc(γ2)= 2.03 and
for ε= 0.165 slightly larger than the εin of both the SH and OS instabilities we found
a persistent heteroclinic cycle as shown in figure 14. One starts with a transverse roll
pattern with 8 roll pairs, which first transforms into a SH pattern. Later we find a
pattern with 7 oblique roll pairs which first become transverse, before the original 8
roll pair pattern is recovered. This scheme repeats itself every 873tv. We concentrate
on SH-type pictures in figure 14 and the corresponding Fourier modes with wave

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.432


94 O. Zier, W. Zimmermann and W. Pesch

t

-50

0

50

200010000

FIGURE 15. (Colour online) Coefficients A0(t) (solid line) and 3B0(t) (dashed line) in
(3.1) as a function of time (in units of tv) for the heteroclinic cycle in figure 14. The
black bullets correspond to the times of the images shown there.

vectors q1,2,3 which describe, according to (3.1), a SH pattern. Thus generalizing the
representation of stationary SH patterns in (3.1) (see also § B.1) we use the time-
dependent amplitudes A0(t), B0(t) shown in figure 15 to describe the SH motifs in
figure 14. The times t, at which the pictures are presented in figure 14, are marked
with the black bullets on the time axis of the figure 15. For the perfect transverse roll
pattern at t = 0 the amplitude A0 is maximal, while B0 = 0. Then A0 decreases and
B0 grows for the following SH pattern. Afterwards both A0, B0 essentially become
zero for the oblique roll patterns, before the transverse rolls appear again. It took
approximately 10 000tv for the cycle to become stable and we followed it over 15
cycles in our simulation.

Finally, we address the codimension-2 point at γ3 = 6.169◦ for ε = 0.051, where
a SH instability with sy = 1.62 competes with an OS instability with sy = 1.92.
A simulation with ε = 0.08 led to a weakly chaotic sequence of patterns, which
are shown in figure 16. It took approximately 10 000tv in our DNS before that
characteristic pattern sequence appeared for the first time, which then persisted
afterwards. However, the time lapse between the reappearance of the transverse roll
pattern was not constant and varied between 1000tv and 1600tv.

However, for the larger aspect ratio Lx = Ly = 20λc(γ3) with otherwise the same
parameters as before, we observed a different scenario. One finds a kind of domain
chaos as exemplified by the three snapshots in figure 17 taken at increasing times. The
pictures show a background of transverse rolls superseded by SH patches and some
dislocations, whose locations change with time.

4.2. Complex patterns at larger ε
In this section we discuss two very time-consuming simulations, to obtain a first
impression of the pattern dynamics for larger ε. The first example deals with
OS patterns for ε = 0.172 > εOS = 0.111 and for γ = 0.5◦, where the system is
slightly anisotropic. The periodicity lengths have been chosen as Lx = 8λc(γ ) and
Ly = 5λy with λc(γ ) = 2.018 and λy = (2π)/sy where sy = sOS

y = 2.147. First, using
restricted random initial conditions (see appendix A) a standing-wave pattern has

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.432


On low-Prandtl-number convection in an inclined layer of liquid mercury 95

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 16. Heteroclinic orbit between OS, SH and transverse roll patterns for γ =6.169◦,
ε = 0.08 and ε0 =−0.3419 with Lx = Ly = 8λc(γ ). The snapshots of h(x, y, t) are shown
at times t = 0 (a), 140 (b), 690 (c), 890 (d), 1130 (e), 1300 ( f ), 1360 (g), 1490 (h) in
units of tv increasing from left to right and from top to bottom.

(a) (b) (c)

FIGURE 17. Domain chaos in a system with Lx = Ly = 20λc(γ ) and the same parameters
as in figure 16 (γ = 6.169◦, ε = 0.08). Snapshots of the midplane temperature from a
DNS started with random initial conditions at consecutive times t = 3080 (a), 3948 (b)
and 4198tv (c).

been constructed, which was stable after 350tv. It is perfectly described by (3.3)
with the amplitudes A0 = 71.4, A1 = 3.7, B0 = 52.4. The frequency ω = 1.45 was
comparable with ω0 = 1.376. Then we superimposed noise and continued the run.
In figure 18 we show representative snapshots. Their inspection clearly demonstrates
that, besides the basic modes q1,2,3, additional modes come into play. Nevertheless
the contribution of the basic modes is still well described by (3.2) except that we
need time-dependent coefficients A0(t), B0(t), which are presented in figure 19. They
vary periodically in time with a period of approximately 123tv much larger than the
fast period τ = (2π)/ω = 3.9tv, where ω = 1.62 is now considerably larger than the
value ω= 1.45 for the standing waves above.

Finally we consider a complex SH-pattern for γ = 50◦ and ε = 0.15> εSH
in = 0.05.

Here, according to figure 3(b), the transverse rolls are also linearly unstable against
oscillatory modes. Inspection of figure 20 shows that these are indeed reflected in the
transients of a DNS starting with general random noise. But finally we arrived at a
slightly oblique stationary SH-pattern, which was stable.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.432


96 O. Zier, W. Zimmermann and W. Pesch

(a) (b) (c) (d) (e)

FIGURE 18. Complex travelling-wave pattern for γ = 0.5◦, ε = 0.172, ε0 = 0.163, Lx =

8λc(γ ), Ly = 0.906Lx. The pictures are sorted increasing in time from left to right at t=
3728 (a), 3741 (b), 3779 (c), 3804 (d), 3851 (e) in units of tv . For the travelling waves
we find ω= 1.62.

t

10

20

30

40

3500 3750 4000

FIGURE 19. (Colour online) Same parameters as in figure 18: the coefficients A0(t)/2
(upper line) and B0(t) (lower line) in (3.2) as a function of time (in units of tv). The
black bullets correspond to the times of the images in figure 18.

(a) (b) (c) (d) (e)

FIGURE 20. Oblique SH pattern for γ = 50◦, ε = 0.15, ε0 = −0.8410, Lx = 8λc, Ly =

1.087Lx. For the subharmonic pattern we find sy=1.575. The simulations were started with
random noise. The pictures are sorted increasing in time from left to right at t= 120 (a),
440 (b), 1800 (c), 2540 (d), 4800 (e) in units of tv .

5. Concluding remarks

In this paper we have presented a theoretical analysis of ILC for a low-Prandtl-
number fluid (mercury, Pr= 0.025), where the fluid layer includes an angle (90◦+ γ )
with the gravity vector g (see figure 1). The focus has been on large-aspect-ratio
systems with Rayleigh numbers R slightly above the critical values Rc(γ ) in the
spirit of a previous study of ILC with Pr = 1.07 (Subramanian et al. 2016), where
an excellent agreement with the corresponding experiments has been achieved. In
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close analogy to that paper our calculations are based on a bifurcation approach to
determine the critical data Rc, qc and the secondary instabilities of the primary roll
patterns. In addition DNS have been used to characterize the pattern evolution.

Inclining the fluid layer breaks isotropy and convection rolls with a definite
orientation are seeded at R= Rc. For instance, the uniform roll patterns produced at
small γ have been used to provide the appropriate initial conditions for experiments
at γ = 0◦. This procedure has been shown to be crucial to match the stability diagram
of standard, non-inclined RBC with experiments for Pr∼ 1 (Cakmur et al. 1997).

In general, the pattern types bifurcating at onset and their secondary instabilities
vary with γ . For not too small Pr > 0.264 (see e.g. Subramanian et al. 2016) there
exists a codimension-2 angle, γc2. It separates the regime of longitudinal roll patterns
at onset with their axes parallel to the incline from the regime of transverse ones with
perpendicular orientation. In particular for γ ≈ γc2 one observes then complex patterns
in experiments in agreement with the theory.

Convection in low-Prandtl-number fluids for γ = 0◦ and R & Rc has also attracted
considerable interest in the past (see e.g. Rossby 1969; Libchaber, Laroche & Fauve
1982; Meneguzzi et al. 1987; Clever & Busse 1990; Thual 1992). Here the primary
bifurcation is always to transverse rolls for arbitrary γ . However, an oscillatory
secondary bifurcation, leading to travelling waves appears already very close to Rc,
which has in particular motivated the theoretical studies. It seemed thus natural to
investigate low-Prandtl-number ILC for finite γ .

In general, the resulting patterns turned out to be more complex than anticipated.
For instance, the secondary bifurcation of the transverse rolls leads either to OS
travelling-wave patterns or to 3-D stationary SH ones, which alternate three times
with each other already in the fairly small interval 0◦ 6 γ 6 6◦. This explains the
appearance of complex patterns near the corresponding three codimension-2 points
in § 4. In the spirit of an amplitude-equation approach the SH and OS patterns are
described by only three leading Fourier modes with a characteristic relation between
their phases (see § 3).

For completeness it should be mentioned that a strong sensitivity of the bifurcations
at small γ and small R&Rc has been also described recently in a theoretical analysis
of ILC in binary fluids (Mercader et al. 2019). However, this system qualitatively
differs from ours: the primary bifurcation of the basic state is typically not continuous
and leads to travelling waves already at γ = 0◦ at R= Rc. Depending on γ a whole
zoo of different pattern types develops, which often are in particular confined to a
small part of the fluid layer.

Already decades ago it has also been demonstrated in convection experiments with
mercury (Libchaber et al. 1982) for γ = 0◦, that an additional magnetic field applied
parallel to the fluid layer has an important impact. This has been confirmed in many
theoretical studies (see e.g. Busse & Clever 1989) and also continuously extended to
the turbulent regime (see e.g. Vogt et al. (2018) and references therein). In general, the
magnetic field leads to a preferred orientation of the roll axes parallel to the magnetic
field. Thus for instance a magnetic field along the incline exerts a kind of torque on
the standard transverse rolls for γ 6= 0◦ and small Pr. Thus one expects novel complex
convection patterns and their secondary bifurcations in this case already near onset,
which we plan to investigate in the near future.
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Appendix A. On the time integration of the OBE
The DNS in this paper is based on a pseudo-spectral code already used in

Subramanian et al. (2016). Thus according to (2.9) the simulations run in Fourier
space on a discrete set of N2 wave vectors q = (k1qx, l1qy) with −N/2 6 (k, l) 6
N/2− 1. For the periodicity lengths in this paper we use typically Lx = Ly = nλc(γ )
with n= 8, 16, 20 and N = 128, 256, 320, respectively. In some cases we allow for
Lx 6= Ly, which implies a corresponding small difference between 1qx and 1qy. In
this way it is possible to produce periodic patterns with a prescribed wavelength λy
that match in Fourier space the corresponding Galerkin Floquet vectors s with the
y-component sy = (2π)/λy.

For the time integration we use an ‘exponential time-differencing method’ also
described in appendix B1 of Subramanian et al. (2016). We found in general time
steps of dt = 0.002tv to be sufficient to resolve the dynamics of the patterns
and to guarantee robust results. In all cases we made sure that the secondary
instabilities according to the Galerkin analysis are perfectly reproduced in our
DNS. In view of typical transients of 1000tv and more before the patterns would
become steady (see e.g. § 3.2), our DNS are in general very time consuming. Using
κ = 4.62 × 10−6 m2 s−1 for mercury the thermal diffusivity time takes the value
tv = d2/κ = 21.6 s for d = 1 cm. Thus our DNS needed typically more than 5× 105

time steps in particular for the OS patterns.
Note, that in view of the periodic boundary conditions, the origin of the coordinate

system in the x–y plane can be arbitrarily shifted, when analysing a single run. Thus a
shift by x0= (x0, y0) with arbitrary x0, y0 leads to a phase factor exp[ix0 ·q] multiplying
the original Fourier coefficients V(q, z, t) in (2.9). Consequently the amplitudes A0,B0
of the leading Fourier coefficients in (3.1) and in (3.2), (3.3) could be made real.

Usually our simulations have started with general random initial conditions. To
save computer time, in particular to construct standing waves, alternatively a kind of
restricted initial conditions has been used. First they are based only on the Fourier
coefficients with the wave vectors q1,2,3 which represent the functions h(x, y) in
appendix B. Furthermore the Fourier coefficients had to fulfil the phase restriction in
(B 3) and (B 10d–f ). It was also helpful, for smaller changes of parameters to use
already existing results.

Appendix B. Signature of subharmonic and oscillatory patterns in the DNS
A first impression of SH and OS patterns is simply obtained by looking at the

corresponding DNS pictures and their time evolution, as done in §§ 3 and 4. In this
section we discuss in more detail the SH and OS patterns in terms of the function
h(x, y; t) which derives from θ(x, y, z; t) at the midplane z = 0, when keeping only
the leading Fourier coefficients. These are directly provided by our pseudo-spectral
code and their analysis gives an important clue to analysing SH and OS as discussed
in the following subsections.

B.1. The function h(x, y, t) for SH patterns
The SH patterns are spanned by the dominant wave vectors q1 = (qc, 0) and
q2,3= (qc/2,±sy). Thus h(x, y), the leading approximation of the midplane temperature
θ(x, y, z= 0) introduced in § 3.1 is in general given as

h(x, y)= Re{exp(iqcx)Â+ exp(iqcx/2)(exp(isyy)B̂+ exp(−isyy)Ĉ)}, (B 1)

Â= |Â| exp(iφA), B̂= |B̂| exp(iφB), Ĉ= |Ĉ| exp(iφC). (B 2a−c)
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It turns out that h(x, y) describes a perfect SH pattern when the phases of the
Fourier coefficients allow the following representation:

φB = φA/2−ψ + aπ/4; φC = φA/2+ aπ/4+ψ, (B 3a,b)

with a=±1 and the phase shift ψ . Obviously (B 3) is equivalent to

φB + φC = φA + aπ/2. (B 4)

The system is then only characterized by the moduli A0,B0 of the Fourier coefficients
as follows:

|Â| = A0, |B̂| = |Ĉ| = B0/2. (B 5a,b)

The phase shifts φA and ψ can be put to zero by a shift of the origin of the x, y
coordinate system and one arrives at the most simple representation of h(x, y) in (3.1).

We found that the procedure described above works also when a SH pattern appears
only for finite time as in figure 14. One arrives then at time-dependent amplitudes
A0(t), B0(t) as shown in figure 15.

B.2. The function h(x, y, t) for OS patterns
The discussion of the OS patterns follows closely the one for SH patterns, though it is
slightly more complicated since already the regular OS patterns oscillate in time. The
OS patterns are spanned by the dominant wave vectors q1= (qc,0) and q2,3= (qc,±sy).
In addition it is useful to keep also the mode with wave vector q4= (0, sy) as a small
correction.

Thus in analogy to (B 1) we use the following ansatz for h(x, y, t):

h(x, y, t) = Re {exp[iqcx] [|Â(t)| exp[iφA] + |B̂(t)| exp[isyy+ iφB(t)]

+ |Ĉ(t)| exp[−isyy+ iφC(t)]] +|D̂(t)| exp[isyy+ iφD(t)]} . (B 6)

For travelling waves the phases of the Fourier coefficients have to fulfil the condition

φB =ψ −ωt+π/2+ φA; φC =−ψ +ωt+π/2+ φA, φD =−ωt+ φ0
D, (B 7a−c)

with the frequency ω. In analogy to (B 4) we arrive at

φB + φC = 2φA +π. (B 8)

The system is then mainly characterized by the moduli A0, B0 of the Fourier
coefficients as before and in addition by the small correction D0 as

|Â| = A0, |B̂| = |Ĉ| = B0/2, |D̂| =D0. (B 9a−c)

The amplitude D0 vanishes at γ = 0◦ and increases then slowly with increasing γ .
Again after a suitable shift of the origin of the coordinate system, φA, and ψ can be
put to zero and one arrives for h(x, y, t) in (3.2). The amplitudes A0, B0, D0 are time
independent for regular OS patterns as discussed in § 3.2. However, also intermediate
travelling-wave patterns as in figure 18 are very well described by time dependent
amplitudes A0(t) and B0(t) (see figure 19).
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Finally we come to the standing waves, which are represented as the travelling ones
in (B 6) excepting some minor modifications in the complex amplitudes as follows:

|Â| = A0 − A1 cos(2ωt+ α), |B̂| = |Ĉ| = B0/2 cos(ωt), |D̂| =D0 cos(ωt− β);
(B 10a−c)

φB =ψ +π/2+ φA; φC =−ψ +π/2+ φA; φD =ψ. (B 10d−f )

Eliminating then ψ, φA as before yields h(x, y, t) given in (3.3).
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